
Bi-Objective Routing for Robotic Irrigation and Sampling in Vineyards

Thomas C. Thayer Stavros Vougioukas Ken Goldberg Stefano Carpin

Abstract— Motivated by the use of robots in implementing
new systems for precision irrigation, in this paper we consider
a routing problem where the robot is tasked with collecting
two unrelated rewards at once. While operating under a budget
constraint limiting the number of locations it can visit, the robot
needs to decide which locations to visit, to adjust water emitters
and collect soil moisture samples to improve the inference model
used to estimate soil water content. This problem can be cast as
an instance of multi-objective orienteering, a computationally
hard problem scarcely studied in the past. Building upon
the heuristic solutions we recently developed for the single
objective Orienteering Problem, in this paper we develop and
compare various solutions for the case involving two distinct
but concurrent objective functions. The goal is to develop
algorithms that are both efficient and easy to tune for a non-
expert human user. Extensive simulations informed by our field
experience show the effectiveness of the proposed solutions.

I. INTRODUCTION

Soil irregularity of moisture content is a poorly controlled
but critical aspect of agriculture. Irrigation is used to partially
control this variability, but is typically performed on the
block level, where all crops on a large parcel of land will
receive the same amount of water regardless of plant specific
requirements and soil variation. This results in crops that
may on average be watered properly, but with irregular
results for individual plants. This lack of control introduces
inefficiencies in the system, resulting in plants that are over
or under-watered and the associated problems.

With some types of crops, such as wine grapes, special
modalities of irrigation are necessary to produce the best
product. Wine grapes require deficit irrigation, a.k.a. stress
irrigation, where slightly under-watering vines yields grapes
of higher quality. Deficit irrigation is difficult to correctly
achieve on its own, but with current irrigation installations it
is nearly impossible to accomplish for every vine in a block
without harmful effects. To mitigate these problems, farmers
often apply excess water to their fields, trading economically
desirable grapes and water resources for crop security.

One way to remove these trade offs is to perform precision
irrigation, meaning irrigating crops on a fine grain spatial
and temporal basis, ideally at the individual plant level. Ex-
actly watering each plant according to its needs using deficit
irrigation means maximizing desirable crop production and

T.C. Thayer and S. Carpin are with the University of California, Merced,
CA, USA. S. Vougioukas is with the University of California, Davis, CA,
USA. K. Goldberg is with the University of California, Berkeley, CA, USA.

This material is based upon work that is supported by the by USDA-NIFA
under award number 2017-67021-25925 (NSF National Robotics Initiative).
Thomas Thayer was also partially supported by the NSF under grant
DGE-1633722. Any opinions, findings, conclusions, or recommendations
expressed in this publication are those of the authors and do not necessarily
reflect the view of the USDA and NSF.

minimizing water waste. This addresses variability caused by
soil and ground conditions that normally effect the moisture
available to plant roots. It also means upgrading current
irrigation systems with an infrastructure capable of being
adjusted at a higher resolution. To properly operate, such an
infrastructure also requires a control system to regulate it.

RAPID (Robot Assisted Precision Irrigation Delivery) is
a novel irrigation system in development by multiple Uni-
versity of California campuses that aims to combine robots,
remote sensing, computational engines, and new irrigation
hardware to provide scalable water delivery management on
a per-plant level for vineyards, with the overall objective
of helping farmers grow better grapes and reduce water
expenditure. Data collection is performed by remote sensing
with imagery and direct sensing with soil probing. Informed
by this data, machine learning models are trained to infer
soil conditions and necessary irrigation adjustments. Finally,
robots are sent to regulate individual irrigation emitters,
releasing the optimal amount of water to individual plants.

Our previous work on this project focused on routing al-
gorithms for single and multiple robots working in vineyards
adjusting irrigation emitters [13], [14], designing customized
hardware to adjust variable rate emitters [1], [3], and infer-
ence [15]. In particular, the routing problem emerges when
the robot needs to move from emitter to emitter adjusting
them while subject to a preassigned travel budget (battery
life). This is an optimization problem related to the (Team)
Orienteering Problem ((T)OP) and is NP-hard. Because of
the large size and specific structure of the typical vineyard,
special heuristics were developed to compute routes to adjust
a subset of possible emitters maximizing water utility. While
these algorithms work well for their intended task, it is useful
for a robot to perform additional tasks while in a vineyard.
One such task is soil moisture probing, which augments
data on the variability of soil moisture content within the
vineyard. Figure 1 shows a prototype robot used by RAPID.

The additional information acquired on the fly can be used
to check the accuracy of the computational engine and the
effectiveness of previous irrigation adjustments. However,
introducing another factor into the problem moves it into the
domain of multi-objective optimization, because the spatial
locations of interesting places to sample are unrelated to the
positions of emitters that need adjusting. This problem is
fundamentally more difficult and less studied.

This paper explores methods to expand the algorithms
from prior work to perform bi-objective optimization,
whereby the robot is tasked with finding a route that tries
to optimize the set of emitters adjusted as well as the set of
samples collected. In both instances, the values associated

Fig. 1: The RAPID robot prototype, featuring a linear actua-
tor mounted soil moisture probe and a data logger recording
sampled values (visible on the right). This robot can collect
soil moisture data while operating in the vineyard.

with emitters or samples is not constant, but rather are a
spatial function of the region in which the robot operates.

The rest of this paper is organized in the following way.
Section II succinctly discusses work related to this research,
and section III formally details the problems being addressed.
Viable procedures to solve the aforementioned problems, as
well as the formerly developed heuristic method on which
they are based, are outlined in section IV. Evaluations of
the solution procedures, using multiple problem instances
formulated from physical systems, are given in section V
and final conclusions are presented in section VI.

II. RELATED WORK

The problems investigated in this work are related to the
OP. First discussed in [16], it was proven as NP-hard in [4],
and APX-hard in [2]. The goal is to compute a path over a
graph that maximizes reward gained for visiting each vertex
while limited by a travel budget for costs associated with
each edge. Rewards can only be collected once per vertex
but costs are accumulated each time an edge is crossed.
Solution approaches commonly involve heuristics due to the
innate difficulty of the problem, but exact methods are also
used when problem sizes are small enough (i.e. contain less
than 1,000 vertexes). For large problem instances that contain
tens of thousands of vertexes, domain specific heuristics are
necessary to generate a useful solution, as evidenced by our
prior work [14]. An abundance of variations exist for the OP,
and the reader should consult [5] for a contemporary survey
discussing some of the more common variants and recent
solution procedures.

This paper deals with the Bi-Objective Orienteering Prob-
lem (BOOP), where two separate reward functions are con-
sidered. The problem is described in detail in [12], and
because it is an extension of the OP it is also NP-hard. Unlike
the OP, the BOOP and other multi-objective versions of the

OP are sparsely studied, with most work motivated by spe-
cific applications such as tourism or work scheduling. A few
solution methods have been created for it, mostly relying on
multi-objective variations of prevalent orienteering heuristics.
These include Pareto Ant Colony Optimization and Pareto
Variable neighborhood search [12], Multi-Objective Artificial
Bee Colony [7], and Greedy Randomized Adaptive Search
Procedure with Path Relinking [6] for the standard BOOP.
A few algorithms for extensions to the BOOP also exist,
including Bi-Objective Large Neighborhood Search [8] for
the BOOP with time windows, and Multi-Objective Memetic
Algorithm and Multi-Objective Ant Colony System for the
time-dependent BOOP [9].

III. PROBLEM DEFINITION

There are multiple types of the BOOP (two of which
are studied in this paper), but they are all defined similarly
and have the following arrangements in common. Let G =
(V,E) be a weighted and undirected graph. Let c : E → R≥0
be the cost function for edges, and let r1 : V → R≥0 and
r2 : V → R≥0 be two reward functions. On the graph a path
P can be built following an ordered subset of connected
vertexes v ∈ V and edges e ∈ E. The path has an associated
total cost c(P) equal to the sum of costs c(e) for edges in
the path, and two total rewards, equal to the independent
sum of rewards r1(v) and r2(v) for vertexes in the path. It
is important to note that every time an edge is traversed in
the path, the cost of that edge is added to the total cost, but
the rewards for visiting a vertex can only be collected once,
regardless of how many times the vertex is visited in the
path. Additionally, let Tmax be a travel budget.

The Dual Maximization BOOP aims at determining a path
P of cost c(P) ≤ Tmax that maximizes both total rewards.
Because it is often the case that the two reward functions
are not positively correlated with one another, it is likely
that maximizing both total rewards together is impossible.
As common in multi-objective optimization, different ap-
proaches can be followed to tackle this problem, including
combining r1 and r2 into a single objective function (e.g.
linear combination), studying Pareto dominant solutions [10],
or characterizing situational relationships between the two
reward functions that qualify reward gathering decisions.

Because the rewards we consider in our application are
inherently heterogeneous (water variations and information
gain), and considering in practical scenarios farmers may
have individual preferences on what they value more, it is
useful to study alternative approaches. The Objective Con-
straint BOOP aims to form a path P within the given budget
satisfying a lower bound rmin for one of the rewards while
maximizing the other. This makes the lack of a formally
defined relationship between the two reward functions easier
to handle, since the problem does not involve maximizing
two independent or potentially anti-correlated variables.

For the special case of routing within vineyards, a class
of graphs called Irrigation Graphs (IG) was introduced and
formally defined in [14]. IGs, designated as IG(m,n) where
m and n are the respective number of rows and columns,

are planar graphs with degree at most 3 that delineate the
movement restrictions placed on robots maneuvering through
a vineyard. Each vertex symbolizes the position of an irriga-
tion emitter (necessarily adjacent to a grapevine), and each
edge illustrates viable movements between emitters. From
an application perspective, desirable locations for collecting
samples for soil moisture content are also co-located with
vines. Therefore, vertices in the graph represent both the
location of water emitters and possible points of interest
for the samples. Figure 2 shows the specific arrangement of
vertexes and edges for this class of graphs, where rows are
only connected at their ends and movement between rows is
prohibited from within.

Fig. 2: An example of an IG, where each blue dot is a vertex
and each black line is an edge.

Orienteering on an IG is a special case the OP, described in
[14], as is team orienteering [13]. In this paper, we consider
both types of the BOOP described above in the special case
of IG, each defined as follows.

Irrigation Graph Dual Maximization Bi-
Objective Orienteering Problem (IGDMBOOP):
Given a graph G(V,E) = IG(m,n) with a cost
function c and two reward functions r1, r2, vertexes
within the graph v1, vn;∈ V , and a constant Tmax,
find a route over G that begins at v1, ends at vn, has
cost no more than Tmax, and independently max-
imizes the cumulative rewards r1(v), r2(v); v ∈
V , such that any reward for visiting a vertex is
collected only once regardless of how many times
the vertex is visited.
Irrigation Graph Objective Constraint Bi-
Objective Orienteering Problem (IGOCBOOP):
Given a graph G(V,E) = IG(m,n) with a cost
function c and two reward functions r1, r2, vertexes
within the graph v1, vn ∈ V , and two constants
Tmax, rmin, find a route over G that begins at
v1, ends at vn, has cost no more than Tmax,
has a cumulative reward r1(v) ≥ rmin v ∈ V ,
and maximizes the cumulative reward r2(v); v ∈
V , such that any reward for visiting a vertex is
collected only once regardless of how many times
the vertex is visited.

Note that in some practical instances of these problems,
based on real vineyards in regions like central California, the
edge costs are safely assumed to be constant because of flat

topography and homogeneous vine/emitter spacing. In [14]
we proved that the single objective IG OP with constant
cost is NP-hard. This can be described as a special case of
either BOOP discussed here. For the IGDMBOOP, it is a case
where one of the rewards r1 or r2 is equal to zero for all
vertexes. For the IGOCBOOP, it is a case where r1 = 0 for
all vertexes and rmin = 0. Therefore, both the IGDMBOOP
and the IGOCBOOP are NP-hard as well.

IV. PROPOSED SOLUTION METHODS

Because we attempt to address the BOOP in the domain
of agriculture, one of the goals for our proposed solution
methods is to create algorithms that have minimal input
variables, so that non-expert human users can use them ef-
fectively. Therefore, our methods have been limited, beyond
the specific problem inputs, to only a single tuning parameter
that has an intuitive function.

A. Greedy Partial-Row Heuristic

The proposed solution methods for solving the BOOP on
IGs all rely on the use of the single objective solver Greedy
Partial-Row (GPR) introduced in [14]. Hence, we shortly
outline the pseudo-code in algorithm 1.

1: Vtour = ∅
2: T = 0
3: v = vs
4: for all v(i, j) ∈ V do
5: R(i, j)←

∑n
l=j r(i, l)

6: L(i, j)←
∑j

l=1 r(i, l)
7: feasiblei,j ← true
8: while there exists feasible vertexes do
9: for all v(i, j) ∈ V do

10: if not feasible(i, j, T, v) then
11: feasiblei,j ← false
12: for all feasible vertexes do
13: R′

i,j ← Ri,j/cost(v, v(i, j), v(i, n))
14: L′

i,j ← Li,j/cost(v, v(i, j), v(i, 1))
15: for i← 1 to m do
16: if not feasible(i, T, v) then
17: feasiblei ← false
18: for all feasible rows do
19: R′

i,1 ← Ri,1/cost(v, v(i, 1))
20: L′

i,n ← Ri,n/cost(v, v(i, n))
21: if vj = n then
22: next← argmaxR′

i,1, R
′
i,j

23: else
24: next← argmaxL′

i,n, L
′
i,j

25: add path from v to next to Vtour

26: if nextj 6= 1 or n then
27: add path from next to v(i, vj) to Vtour

28: update v and T
29: feasiblepathtonext ← false
30: update R(i, j) and L(i, j) for relevant i
31: add path from v to vs to Vtour

32: return Vtour

Algorithm 1: Greedy Partial-Row Heuristic (as pro-
posed in [14])

GPR uses the vineyard’s regular block structure to its
advantage. The robot builds its tour iteratively by greedily
adding to the tour the best full-row (complete traversal from

one side of the vineyard to the other along a horizontal row)
or partial-row (traversal from one side of the vineyard along
a horizontal row to a point within the row, then back to
the same side). The best full-row or partial-row is the one
with the highest heuristic value, defined by the sum of the
collected rewards along the path divided by the total cost
of the path from the current position in the graph. Every
possible full-row and partial-row is checked for feasibility,
which is the ability to add the path to the tour and return
the robot to the start position without exceeding the overall
budget. Once added to the tour, the rewards for each traversed
vertex are zeroed so they cannot be collected again and their
feasibility is marked as false to prevent unnecessary additions
to the tour.

With a complexity of O(m2n), the algorithm can effi-
ciently compute solutions for large problem instances fea-
turing graphs with more than 50,000 vertexes. In [14] we
demonstrated that it performs better than other heuristics
on IGs, especially general case heuristics. This makes it a
good candidate for further development to solve bi-objective
problems.

B. Dual Maximization Methods

Methods that solve the IGDMBOOP by attempting to
balance the two objectives through assigning a weight or
importance to each objective are included in this category.
These are meta-methods, which can be used in combination
with any heuristic algorithm that works on the OP for IGs,
but in practice only the GPR algorithm is used.

1) Heuristic/Heuristic: The Heuristic/Heuristic method
takes as input two reward maps, one for irrigation rewards,
and one for sampling rewards. A fraction α of the overall
budget is allocated to the sampling reward collection and
the rest is assigned to the irrigation reward collection. In
this way, budget allocation is the mechanism that determines
which reward value is more important to collect. Then, the
GPR algorithm is run in succession for each reward map and
the tours are combined sequentially. Algorithm 2 shows this
procedure.

1: VStour = GPR for sampling with allocated budget
2: Remove end of VStour

3: for all vi,j ∈ V Stour do
4: rI(i, j) = 0
5: VItour = GPR for irrigation with remaining budget
6: Vtour = VStour ∪ VItour

7: return Vtour

Algorithm 2: Heuristic/Heuristic

After running GPR for sampling reward collection with
the allocated budget, the end of the produced tour VStour,
which goes from the last chosen full-row or partial-row
to the ending vertex, is removed from the tour. Then, the
irrigation rewards for all visited vertexes are set to zero to
prevent them from being collected twice, and GPR is run
for irrigation reward collection with the remaining budget.
Here, the starting vertex is the last vertex in VStour and

the ending vertex is the original ending vertex. Finally, the
two tours are combined sequentially and the total collected
rewards for both irrigation and sampling are recalculated for
the combined tour.

Since this method is comprised of two sequential execu-
tions of the GPR algorithm, its complexity is O(m2n).

2) Heuristic/Knapsack: As with the method in section IV-
B.1, the Heuristic/Knapsack method takes as input a reward
map for both sampling and irrigation, and a fraction α of the
total budget is allocated to collecting each type of reward.
Then, GPR is run for irrigation rewards until the allocated
budget is exhausted. With a tour in place, possible extensions
to visit sampling locations are analyzed and added to the tour
using dynamic programming by formulating the problem as a
version of the 0-1 knapsack problem. Lastly, the GPR is run
again for irrigation rewards to use up any remaining budget.
Algorithm 3 outlines how this method works.

1: Vitour = GPR for irrigation with allocated budget
2: for all vi,j ∈ Vitour do
3: rS(i, j) = 0
4: for all rS(i, j) > 0 do
5: Find minimal cost insertion to tour, add to prospect list
6: while true do
7: Perform DP 0-1 knapsack on prospect list
8: if Any chosen insertions overlap then
9: Remove the one crossing less sampling locations

10: else
11: Break
12: Insert prospects into Vitour

13: Remove end of Vitour

14: for all vi,j ∈ Vitour do
15: rI(i, j) = 0
16: Vetour = GPR for irrigation with remaining budget
17: Vtour = Vitour ∪ Vetour

18: return Vtour

Algorithm 3: Heuristic/Knapsack

GPR is first run for irrigation rewards to build an initial
tour. For each possible sampling location not already visited
by the tour, the insertion (i.e. a detour that visits the sampling
location beginning and ending at the same vertex in the
initial tour) with the minimal cost is found and added to a
list of prospects holding all such insertions. Then, dynamic
programming finds which subset of prospects will maximize
the sampling reward within the allocated sampling budget.

It is possible that the dynamic programming solver will
choose multiple prospects that lie in the same row and
overlap in their paths. This happens because each prospect
is considered independently when solving the 0-1 knapsack
problem, but in reality the detours for some prospects include
visiting multiple sampling locations. When two overlapping
prospects are chosen, the one that covers the least sampling
locations is removed from the list of prospects and dynamic
programming is run again. This continues until there are no
more overlapping prospects in the solution, and then all the
chosen prospects are added to the tour.

With the extended initial tour, it is possible that there
is some remaining budget from the portion allocated to

collecting sampling rewards, so it should be used to collect
more irrigation rewards. This is done in the same manner as
algorithm 2, where the concluding leg of the tour is removed
and previously collected rewards are zeroed out before
running GPR and combining the results. Finally, the total
collected irrigation and sampling rewards are recalculated
and the algorithm terminates.

This algorithm runs with a complexity of O(2 · m2n +
2mn+TI ·mn+TS ·m2n2), where TI and TS are the budgets
allocated to irrigation and sampling, respectively. The first
term is due to running GPR twice, the second is due to
zeroing rewards in lines 2-3 and 14-15, the third is from
finding the minimal cost insertions to the tour (length of tour
TI times possible sampling locations), and he last term is due
to the repeated use of the dynamic programming knapsack
approach. Considering that TS could be the entire budget
Tmax, the complexity reduces to O(Tmax ·m2n2).

3) Weighted Addition: The Weighted Addition approach
attempts to optimize for both irrigation and sampling rewards
by simply combining them as a single value over which GPR
is run. Instead of splitting the total budget to identify when to
collect either type of reward separately, each type of reward
is normalized and assigned a weight, then the respective
values are added together at each vertex in the graph.

r(v) = α · rS(v)∑
i∈V rS(i)

+ (1− α) · rI(v)∑
i∈V rI(i)

∀v ∈ V

Because there is no physical meaning behind the addition
of these two rewards, the weights must be carefully chosen
to reflect the desired proportional importance of each reward
type. Since the combined rewards r(v) are directly used
by GPR, the only additional computation required is the
calculation of the total collected irrigation and sampling
rewards for the resulting tour.

C. Objective Constraint Methods
Methods that attempt to solve the IGOCBOOP are in-

cluded in this category.
1) Heuristic/Heuristic: A simple method for maximizing

one objective while satisfying the constraint on the other is
to first prioritize meeting the constraint with all necessary
budget resources, then focus on maximization. Because the
two objectives are independent from each other, and there
are no negative rewards in the IGOP problem, switching
between the two objectives after one is satisfied will not
cause problems later on. That is, once the minimum bound
is satisfied by a tour, it will never become unsatisfied again
while that tour is expanded. Therefore, it is possible to
run GPR to collect rewards for the first objective until the
minimum bound is met, then switch to maximizing the
second objective until the budget is exhausted.

This method works the same way as the one described in
section IV-B.1, except the first run of GPR terminates as soon
as the minimum bound is fulfilled. Algorithm 4 shows how
this method would work when a minimum sampling reward
must be obtained. The complexity is the same as algorithm
2, i.e. O(m2n).

1: VStour = GPR for sampling until constraint is satisfied
2: if Constraint can not be satisfied then
3: Return empty tour
4: Remove end of VStour

5: for all vi,j ∈ V Stour do
6: rI(i, j) = 0
7: VItour = GPR for irrigation with remaining budget
8: Vtour = VStour ∪ VItour

9: return Vtour

Algorithm 4: Objective Constraint Heuristic/Heuristic

2) Bisection GPR: It is possible that the method described
in section IV-C.1 will collect additional rewards for the
constrained objective while trying to maximize the other
objective. Therefore it may not be necessary to satisfy the
constraint immediately at the beginning of execution. It
could be possible to satisfy the lower bound constraint while
devoting limited resources to this goal, but it is impossible
to know beforehand how to split the resources for optimally
achieving both objectives. It is possible, however, to combine
the methods in section IV-B with a bisection search to find
the best split of parameters, whether it is how much budget
to devote to collecting each type of reward or how much
weight to assign to them. This approach is called Bisection
GPR and is outlined in algorithm 5.

1: αh = 1; αl = 0; α = 0.5
2: Vtour = ∅
3: while αh − αl > ε do
4: Vtour2 ← Run bi-objective GPR with α and 1− α
5: Calculate total collected rewards
6: if r1(Vtour2) ≥ rmin and r2(Vtour2) > r2(Vtour) then
7: Vtour = Vtour2

8: αh = α
9: α = (α+ αl)/2

10: else if r1 ≥ rmin then
11: αh = α
12: α = (α+ αl)/2
13: else
14: αl = α
15: α = (α+ αh)/2
16: return return Vtour

Algorithm 5: Bisection GPR

Bisection GPR can be used with the Heuristic/Heuristic,
Heuristic/Knapsack, or Weighted Addition methods of dual
maximization, and either sampling or irrigation rewards can
be chosen as the constrained objective r1 with minimal
constraint rmin. If Heuristic/Heuristic or Heuristic/Knapsack
is used, α is the fraction of total budget Tmax devoted to
gathering constrained rewards r1 and 1 − α is the fraction
devoted to maximizing the other rewards r2. If Weighted
Addition is used, then α and 1 − α are the weights w1 and
w2, depending on which of the objectives are constrained
and maximized.

Algorithm 5 will eventually terminate when the change
in α is too small to cause significant changes in the tour,
the limit of which is defined by ε. The complexity of this
algorithm is O(X · log(1/ε)), where X is the complexity of

the bi-objective GPR method used within.

V. EXPERIMENTAL RESULTS

The methods presented in section IV were tested on
multiple different routing problems built using data collected
from a commercially operated vineyard in central California.
A range of 13 budgets (one unit equal to the time to
travel between two vines, adjusting irrigation and sampling
soil moisture) and various values of α and rmin were
used on these routing problems to thoroughly examine the
effectiveness of each algorithm. The vineyard block in our
experiments consisted of m = 275 rows with n = 214
columns (vines per row), for a total of 58,850 vine/emitter
locations. On a vineyard of this size, with vine spacing of
6ft and row spacing of 8ft (as measured at the test site), a
robot traveling at 3.3ft/s (1m/s) would take approximately
30 hours to traverse the entire vineyard in a naive row by
row fashion without making stops for irrigation adjustment
and sample collection. This is well beyond the capabilities
of typical battery powered robots and therefore the travel
budget must be considered. Using a manual probe with
GPS tagging capabilities (Hydrosense HS2P from Campbell
Scientific), soil moisture data was manually collected at 72
locations uniformly spread within the block on multiple days
throughout the growing season. Kriging [11] interpolation
was used to obtain soil moisture and variance values for
every vine location in the block.

Fig. 3: Locations where soil moisture data was collected in
a vineyard outside of Madera, California.

To define the rewards for the routing problems, the data
was used to calculate potential rewards for visiting each

Fig. 4: A heatmap displaying the irrigation rewards for every
vertex (left) and a scatter plot showing the sampling rewards
for relevant vertexes (right). Note that each sampling reward
is available at only a single vertex and large dots are used
for an enhanced visual representation.

vine vertex in the graph. Irrigation rewards were defined
for every vine using rI(v) = |M − m(v)|, where M is a
constant target moisture value for the soil and m(v) is the
current moisture at vine vertex v. Sampling rewards rs(v)
were defined as the variance values at the vines. Because soil
moisture values are not expected to change much over short
distances, it is unnecessary to sample at a high resolution.
Therefore, only the local maxima variance values were kept
and all other vertexes were given sampling rewards of 0.
Noise was introduced to reduce regularity and study the
algorithm under more realistic conditions. Figure 3 shows
the vineyard and sampling locations, while figure 4 shows
the computed irrigation rewards and sampling rewards for
one day’s worth of moisture data.

All of the results shown in this section are averages
compiled from multiple independent tests using a different
day’s worth of moisture data for each test. This was done
to clarify the results demonstrating which of the tested
methods is better for the type of problem solved, as some
variation emerges due to data fluctuation for different tests.
For comparison, the original GPR algorithm with knowledge
of only the irrigation rewards was run with all of the test data
to see how well it performed on the bi-objective problems.

A. Dual Maximization

The methods solving the IGDMBOOP were run while
varying α and the total budget Tmax. Figures 5 and 6 show
the results of this. The rewards were normalized, such that
collecting 100% of rewards correlates with a value of 1 on
the y-axes. The original GPR solver always received the full
budget Tmax, due to the lack of dependence on α.

Looking at the irrigation rewards in figure 5, there is
a subtle trend. With smaller values for α, the irrigation
rewards for all methods are nearly identical, and indeed
when α = 0 (not shown) they are the same. As α in-
creases, the three proposed methods all diverge from GPR
and collect less irrigation reward, generally with weighted

Fig. 5: Irrigation rewards for the proposed IGDMBOOP
methods with different values of α. Note that GPR is
consistent across each graph.

addition collecting the most, and heuristic/knapsack trading
off heuristic/heuristic for second.

There is a less subtle trend for sampling rewards in figure
6. At all shown values of α there is a clear separation
between the three proposed methods and the original GPR,
which is expected because the proposed methods all attempt
to maximize sampling rewards while the GPR is unaware of
these values. Larger values of α increase the gap. Interest-
ingly, when α = 0.1, the heuristic/knapsack method collects
the most sampling reward, but as α increases, weighted ad-
dition takes the lead for most budgets. Heuristic/heuristic al-
ways collects more than GPR, but always less than weighted
addition. With α = 0 (not shown), the sampling reward is
the same for all methods.

It is evident that when α ≤ 0.1, representative of
when adjusting irrigation is of high importance, the heuris-
tic/knapsack method is best because it collects nearly the
same total irrigation reward as the original GPR but is also
able to collect a substantial amount of sampling rewards
more than GPR. In cases when α ≥ 0.1, where collecting
soil samples is of greater importance, weighted addition is
the clear choice.

B. Objective Constraint

The methods for solving the IGOCBOOP were run while
varying the total budget Tmax. Performance was tested for
the case when sampling rewards were constrained while
irrigation rewards were maximized (figure 7), and the case

Fig. 6: Sampling rewards for the proposed IGDMBOOP
methods with different values of α. Note that GPR is
consistent across each graph.

when irrigation rewards were constrained while sampling
rewards were maximized (figure 8). In both cases, rmin was
set to 50% of the total possible rewards. As before, the
rewards were normalized, and the GPR results are shown
for comparison purposes.

Fig. 7: The total irrigation and sampling rewards for each
method, when a minimum of 50% of the sampling re-
wards must be collected. Magenta is heuristic/heuristic, red
is heuristic/heuristic bisection, green is heuristic/knapsack
bisection, blue is weighted addition, and black is GPR.

For the case when sampling rewards are constrained and
irrigation rewards are maximized, the performance of the
different proposed methods is very similar, while the GPR
shows its deficiencies immediately. The heuristic/knapsack
bisection method was not able to find a viable solution for the
2 smallest budgets tested, and the GPR method was unable
to find solutions for half of the tested budgets, while the

other methods worked for 12 of 13 budgets. With larger
budgets, heuristic/heuristic bisection and heuristic/knapsack
bisection methods had the same performance at the top, but
with mid-range budgets all the proposed methods had similar
performance.

Fig. 8: The total irrigation and sampling rewards for each
method, when a minimum of 50% of the irrigation re-
wards must be collected. Magenta is heuristic/heuristic, red
is heuristic/heuristic bisection, green is heuristic/knapsack
bisection, blue is weighted addition, and black is GPR. Note
that lines for weighted addition and GPR are overlapping.

For the case when irrigation rewards are constrained and
sampling rewards are maximized, there was more variability
in the results. All methods lack the ability to meet the
constraint with lower total budgets, but heuristic/heuristic,
heuristic/heuristic bisection, weighted addition, and GPR
were able to do it first. With regard to maximizing the sam-
pling rewards, results are mixed with the heuristic/heuristic,
heuristic/heuristic bisection, and heuristic/knapsack methods
contending for the top spot. Surprisingly, the weighted ad-
dition bisection method performed poorly, showing that it is
not very good at the IGOCBOOP when one of the rewards
is too sparse.

VI. CONCLUSIONS

In this paper we studied vineyard routing problems for
bi-objective task optimization, where a robot must adjust
irrigation emitters and collect soil moisture samples simul-
taneously. Observing that there are various ways to formu-
late these problems, we describe two and present multiple
solution approaches for each, based on the GPR algorithm
from previous work. Then, we compared the approaches,
examining how well they perform for both objectives in their
respective problems.

For the IGDMBOOP, the weighted addition approach
seemed to be the most useful for a range of inputs. For
the IGOCBOOP, the heuristic/heuristic bisection approach
was generally the better scheme. The heuristic/knapsack
and heuristic/knapsack bisection methods also achieve good
performance in limited situations, which suggests there might
be room for improvement to make them more applicable in
broader circumstances.

VII. ACKNOWLEDGMENTS

We appreciatively acknowledge Luis Sanchez and Nick
Dokoozlian from E&J Gallo Winery for allowing us access

to their vineyards to collect data, and for their valuable
insight provided during this project. We also thank Christine
Breckenridge, Jonathan Garache, Andres Torres Garcia, and
Jose Manuel Gonzalez for helping with data acquisition in
the field.

REFERENCES

[1] Ron Berenstein, Roy Fox, Stephen McKinley, Stefano Carpin, and Ken
Goldberg. Robustly adjusting indoor drip irrigation emitters with the
toyota hsr robot. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 2236–2243, 2018.

[2] Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, Adam
Meyerson, and Maria Minkoff. Approximation algorithms for ori-
enteering and discounted-reward tsp. SIAM Journal on Computing,
37(2):653–670, 2007.

[3] David V. Gealy, Stephen McKinley, Menglong Gou, Lauren Miller,
Stavros Vougioukas, Joshua Viers, Stefano Carpin, and Ken Goldberg.
Co-robotic device for automated tuning of emitters to enable precision
irrigation. In Proceedings of the IEEE Conference on Automation
Science and Engineering, pages 922–927, 2016.

[4] Bruce L. Golden, Larry Levy, and Rakesh Vohra. The orienteering
problem. Naval Research Logistics, 34:307–318, 1987.

[5] Aldy Gunawan, Hoong Chuin Lau, and Pieter Vansteenwegen. Orien-
teering problem: A survey of recent variants, solution approaches, and
applications. European Journal of Operational Research, 255(2):315–
332, 2016.

[6] Rafael Martı́, Vicente Campos, Mauricio G. C. Resende, and Abraham
Duarte. Multiobjective grasp with path relinking. European Journal
of Operational Research, 240(1):54–71, 2015.

[7] Rodrigo Martı́n-Moreno and Miguel A. Vega-Rodrı́guez. Multi-
objective artificial bee colony algorithm applied to the bi-objective
orienteering problem. Knowledge-Based Systems, 154:93–101, 2018.

[8] Piotr Matl, Pamela C. Nolz, Ulrike Ritzinger, Mario Ruthmair,
and Fabien Tricoire. Bi-objective orienteering for personal activity
scheduling. Computers and Operational Research, 82:69–82, 2017.

[9] Yi Mei, Flora D. Salim, and Xiaodong Li. Efficient meta-heuristics
for the multi-objective time-dependent orienteering problem. European
Journal of Operational Research, 254(2):443–457, 2016.

[10] Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12.
Springer Science & Business Media, 2012.

[11] M. A. Oliver and R. Webster. Kriging: A method of interpolation
for geographical information systems. International Journal of Geo-
graphical Information Systems, 4(3):313–332, 1990.

[12] Michael Schilde, Karl F. Doerner, Richard F. Hartl, and Guenter
Kiechle. Metaheuristics for the bi-objective orienteering problem.
Swarm Intelligence, 3:179–201, 2009.

[13] Thomas C. Thayer, Stavros Vougioukas, Ken Goldberg, and Stefano
Carpin. Multi-robot routing algorithms for robots operating in vine-
yards. In Proceedings of the IEEE International Conference on
Automation Science and Engineering, pages 14–21, 2018.

[14] Thomas C. Thayer, Stavros Vougioukas, Ken Goldberg, and Stefano
Carpin. Routing algorithms for robot assisted precision irrigation. In
Proceedings of the IEEE International Conference on Robotics and
Automation, pages 2221–2228, 2018.

[15] David Tseng, David Wang, Carolyn Chen, Lauren Miller, William
Song, Joshua Viers, Stavros Vougioukas, Stefano Carpin, Juan Apari-
cio Ojea, and Ken Goldberg. Towards automating precision irrigation:
Deep learning to infer local soil moisture conditions from synthetic
aerial agricultural images. In Proceedings of the IEEE International
Conference on Automation Science and Engineering, pages 284–291,
2018.

[16] Theodore Tsiligirides. Heuristic methods applied to orienteering.
Journal of Operational Research Society, 35(9):797–809, 1984.

