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Abstract We consider the problem of patrolling an assigned area using a team
of heterogeneous robots consisting of sentinels and searchers in the presence of
stochastic arrivals of attacks. Sentinels and searchers operate using a different sen-
sor model featuring a tradeoff between accuracy and the sensed area. Using an ap-
proach based on queuing theory, we derive an accurate analytic characterization of
the patrolling performance that can be used to predict the behavior of a given con-
figuration or inform the composition of a team in order to meet a desired target
performance. Extensive simulation results corroborate our theoretical findings.

1 Introduction

Among the many uses envisioned for teams of coordinated autonomous robots, tasks
related to intelligence, surveillance and reconnaissance (ISR) continue to be at the
forefront of research in distributed robotics. Teams of robots can implement search
and patrolling strategies that complement and enhance human performance while
reducing costs, increasing resilience, and decreasing operational risks for humans.
Recent developments in the area of unmanned aerial vehicles (UAVs) have added
momentum to this very active research area, in particular with the development of
vertical take-off and landing vehicles, such as quadrotor UAVs [10].

In the recent past we have studied the problem of robotic search and patrolling
using a single quadrotor UAV [1, 5]. Our initial modeling efforts and theoretical
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findings were corroborated with extensive field experiments demonstrating the va-
lidity of our assumptions [4]. A characteristic aspect of this class of vehicles is that
their sensing resolution can be adjusted on the fly by varying their elevation – a
fact already evidenced in [14]. Therefore, when planning how to allocate the search
effort in space and time, one should also explicitly consider the variable sensor ac-
curacy, defined here as detection probabilities. In fact, sensors and sensor processing
algorithms have preferred operating conditions and one should strive to operate in
those regions, when possible. Needless to say, operating in a regime offering the
highest accuracy often comes at the cost of reducing the sensing area, thus creat-
ing opposing objectives. Our former works in this area have exactly explored this
tradeoff in the single agent case.

In this paper we extend our existing work by considering how teams of heteroge-
neous robots can jointly patrol an assigned area. Our setup consists of two classes
of robots, called sentinels and searchers. Sentinels and searchers operate at different
elevations, and their sensors are then subject to different performances. The role of
sentinels is to detect intrusions1 and to then alert and dispatch searchers for their
removal. Sentinels are stationary and capable of detecting intruders within large ar-
eas, whereas searchers are mobile and capable of removing the intruders, but their
sensing area is much smaller. Both sentinels and searchers are equipped with faulty
sensors incurring false alarms and missed detections. We model the problem using
an approach based on queueing theory and we characterize the steady state behav-
iors of the queues using parameters characterizing the agents’ sensors as well as the
search strategy implemented by the searchers once dispatched. The derived model
provides the basis for addressing various design and analysis questions. For exam-
ple, we can anticipate the performance of a given composition and configuration of
sentinels and searchers when contrasting different temporal and spatial stochastic
profiles of intruder attacks. Alternatively, we can determine the optimal size and
make-up of a team of sentinels and searchers in order to match a desired perfor-
mance. Our approach is distributed in the sense that all processing is local to the
agents and no information exchange is required. The only communication within
the system is from the sentinels to the searchers, i.e., sentinels dispatch searchers
when an intrusion is detected but sentinels do not communicate with each other, nor
do searchers, respectively. By reducing the amount of exchanged communication
and not having a centralized computational center, the resiliency of the system to
individual failures increases – a key tenet of distributed robotic systems.

The rest of the paper is organized as follows. Selected related works is discussed
in Section 2. The formal definition of the problem is given in Section 3. The formal-
ization based on queueing theory is given in Section 4 and simulations substantiating
our findings are presented in 5. Finally, conclusions and future works are given in
Section 6.

1 Throughout this paper we use terms like intrusion, attack and the like that come from the security
games literature. Clearly these events encompass a broader scope and may be related to phenomena
not necessarily triggered by an antagonistic opponent.
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2 Related work

Algorithmic models for addressing the proposed patrol problem and its variants have
been explored extensively in various communities, including robotics, operations re-
search, and industrial engineering, with operational relevance and significant impact
in application areas such as law enforcement, perimeter security, and shipping lo-
gistics. Of closest relevance to this paper are formulations of the dynamic vehicle
routing problem in relation to algorithmic queuing theory, such as in [3, 8], in which
events requiring servicing appear in the environment stochastically, such as random
arrivals of intruders in a protected area, requiring one or more agents to prioritize
and visit these locations in an online manner. Alternate formulations consider pa-
trol sequences under different assumptions for intruder arrivals, such as cases where
intrusion sites are determined according to known probability distributions or by
assuming adversarial intruders requiring game-theoretic design of patrols [9]. Com-
monly used objectives in such patrol problem formulations include minimizing the
average or worst case revisit rate to return to a given location, which has correspon-
dence to measures of service rates and wait time in queuing theory models [7, 12].
Other metrics, such as maximized area coverage for sensor deployments [13, 2], en-
able decentralized control laws to govern persistent surveillance of areas. However,
these previous models do not incorporate the possibility of imperfect detections of
the events, for which Bayesian methods found in probabilistic search theory [6, 5]
provide key insights.

The main theoretical and algorithmic contributions of the proposed work address
the challenge of persistently surveilling an area with distributed probabilistic sen-
sors, both fixed and mobile, that are prone to false positive and false negative detec-
tions. In addition, this paper highlights insights into the tradeoff in using multi-scale
representations of the environment with varying numbers and compositions of such
heterogeneous sensors.

3 Problem definition

We consider the problem of patrolling a planar region using a team of multiple
UAVs. We adopt a discretized representation of the environment, namely a regular
grid G composed by k equally sized square cells. Any cell c can be the target of
a malicious activity referred as attack. Attacks can be ongoing in one or multiple
cells at any given time and only searchers can remove them by performing a clear
action. A loss function l : G → R≥0 assigns to each cell c a value l(c) which is the
cost incurred per unit time while an attack is taking place at cell c.

Given this general background, we define a metric to evaluate the performance of
any team of agents independently from their number and their coordination mecha-
nism. Similarly to the metric we introduced in [1], let a(c, t) be a function describing
the spatio-temporal realization of attacks, where a(c, t) = 1 if at time t an attack is
present in cell c, and a(c, t) = 0 otherwise. Without loss of generality, we assume
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that a patrolling mission starts at time t = 0 and ends at time T . We then define our
performance metric as:

ρ(T ) = ∑
c∈G

l(c)
∫ T

0
a(c, t)dt (1)

Equation 1 is the sum of k integrals, each measuring the time every cell is under
attack (scaled by the loss attributed to the cell). Differently from [1], here we con-
sider continuous time to ease our subsequent theoretical analysis based on queueing
theory.

The heterogeneous patrolling team consists of N = M+R agents, with 1≤M ≤
|G | and R≥M. M agents are of type sentinel while R are of type searcher. Sentinels
are stationary agents which repeatedly scan large portions of the environment for
the presence of an attack in that region. When a sentinel observes a positive reading,
it dispatches a searcher. Searchers are instead moving agents capable of conduct-
ing fine-grained, find–and–clear tasks over some area. Searchers try to localize and
clear attacks within the region assigned to the sentinel that dispatched them. In pur-
suing such task, they will follow some search strategy and will be subject to a finite
temporal budget limit. Due to the limited temporal budget and to the use of faulty
sensors resulting in missed detections, searchers may fail to detect and remove an
intruder present in their assigned area.

The stochastic process of attacks. We consider a situation where the environ-
ment is constantly under the threat of attacks which can randomly occur at any time
and at any place. We adopt a common assumption from patrolling literature (see, for
example, [3]) according to which arrival times for attacks obey a Poisson distribu-
tion while their spatial location is determined according to some discrete probability
distribution over G . More formally, the inter-arrival time in the whole environment
is modeled by an exponential variable with parameter λ while the specific cell c is
chosen with a probability proportional to the value l(c), i.e., once an attack arrived
in the environment, the probability that it will be located at cell c is

Pr[c] =
l(c)

∑m∈G l(m)
. (2)

Once started in a cell c, an attack persists until it is eventually cleared. Note that,
based on this model, the same cell may suffer from multiple concurrent attacks.

Defending the environment with sentinels and searchers. Each sentinel i is
stationed at a fixed location and is tasked with monitoring a sub-portion of the en-
vironment Gi ⊂ G . Different assumptions can be made on how sub-portions are
defined and where sentinels are positioned. For example, if a Voronoi partition is
used, the sentinel could occupy the generator points associated with each partition
[2]. Consistent with our sensor model, we adopt a representation based on proba-
bilistic quadtrees [4]. Each sentinel guards a rectangular area Gi, and all Gis consti-
tute a partition of G (see Figure 2 for a visual representation). All areas assigned
to the sentinels are equally sized and sentinels are therefore all positioned at the
same elevation. With each sensing action, sentinel i obtains a binary reading which,
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if positive, is interpreted as evidence that at least one attack is currently present
in Gi. No additional information is provided for the location of the attack, that is,
uniform spatial uncertainty over the cells of Gi is assumed. With probability α , a
sentinel receives a positive reading even if no attack is present in its region (false
positive), and with probability β , a negative reading occurs when at least one attack
is present (missed detection). Such false positives and missed detection rates depend
on the sensor resolution, e.g., defined by the altitude, at which sentinels are located
(see [4]). Each sentinel inspects its assigned area for the presence of attacks on a
periodic basis every ∆ time units.

As soon as a sentinel receives a positive detection (whether true or false), a
searcher is dispatched over Gi. A searcher’s objective is to find and clear ongoing
attacks in that area. To this end, it searches the area to determine which cells within
Gi are under attack. Once a cell c is believed to be under attack above some level
of confidence, a clearing action is undertaken. We assume that when such action is
performed, if an attack is indeed present, then it is always neutralized. (If more at-
tacks are present, then only the one that has been residing there for the longest time
is cleared in a FIFO fashion).

The execution of this task poses the problem of using a patrolling strategy with
which a searcher can be driven in the decisions about where to sense next and when
to perform clearing actions trying, at the same time, to locally minimize the perfor-
mance metric. In introducing our two–type based architecture, we opt for searchers
driven by deterministic strategies. Such strategies are defined as cyclically repeated
paths that scan every cell on a periodic basis. Examples of such strategies are the
sweep and the lawn mower patterns [6]. In fact, from a practical perspective these
strategies are nowadays still the most widely used in the field. The reason for this
restriction to deterministic strategies comes from their relatively simple characteri-
zation under statistical terms. This allows us to provide a neat theoretical analysis of
our two–type approach, without the cumbersome technicalities that more complex
patrolling strategies would have introduced. Such investigations belong outside the
scope of this paper and will be the subject of our future research on this problem.

We assume that each searcher is given a time budget B. As soon as such budget
is completely consumed, the searcher ends its patrolling mission and returns to the
base station. Just like sentinels, each searcher s is equipped with faulty detection
sensors whose false positive and missed detection rates are denoted with αs and βs,
respectively.

4 Theoretical analysis

Our eventual objective is to evaluate the loss value defined in Eq. 1 as a function of
the various parameters characterizing the system. Inspired by [3], in this section we
answer this question relying on queueing theory. The relevant parameters are:

• α,β : false positive/missed detection rates by each of the sentinels;
• ∆ : interval between two successive scans by a sentinel;
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• A: probability that an attack occurs within the area assigned to the sentinel guard-
ing cell c during an interval of time ∆ ;

• N = 1−A: probability that no attack occurs;
• αs,βs: false positive/missed detection rates of each of the searchers (in general

different than values for the sentinels).

To evaluate the loss, we associate a queue to each cell c and we determine its
steady state behavior. This is simpler than modeling all attacks occurring in G with a
single queue. Once the steady behavior of each queue is determined, the overall loss
can be evaluated simply adding up the loss accrued in each individual cell. Let Qc be
the queue associated with cell c. Using Kendall’s notation, Qc can be modeled as a
M/G/1 queue. Note that in general each of the queues is characterized by a different
set of parameters. In particular, they will depend on the q value l(c). The assumption
that the service time is generic (G) stems from the choice of search strategy, i.e., the
sweep pattern. Little’s theorem [11] states that the expected number of elements Lc
in the Qc is

Lc = λcWc,

where λc is the arrival intensity (number of arrivals per unit time) and Wc is the
expected time spent in the queue. Note that this theorem does not rely on Markovian
assumptions on the processes, but only on the ergodicity of said stochastic processes
and is therefore applicable also for M/G/1 queues. Once we know Lc for each cell,
then through Eq. 1 we can compute the expected aggregate loss. In the following we
construct λc and Wc for the generic queue Qc.
Interarrival time. The process governing the intruders’ spatial and temporal behav-
ior is described in Section 3. The interarrival time between two intruders entering
the patrolled area is modeled by an exponential variable with parameter λ , such that
the expected interarrival time in the patrolled area is 1/λ . Upon an intruder’s arrival,
it determines the specific cell c to attack according to the mass distribution defined
by Eq. 2. The number of attacks necessary before c is attacked is then modeled by
a geometric variable with parameter p(c) and its expectation is 1/p(c). Thus, the
expected interarrival time for a specific cell c incorporates both temporal and spatial
components, given by

Tc =
1
λ

1
p(c)

(3)

and the arrival intensity for cell Qc is then λc = λ p(c).

Service time. We next need to determine Wc, i.e., the expected time spent in Qc by
an intruder. Figure 1 depicts the most general case that helps in understanding the
structure of the random variable wc, modeling the time spent by an intruder before
it is removed.

The sentinel queries its sensor at a fixed frequency and once a searcher is dis-
patched to the area, it may or may not find all intruders. wc is then the sum of various
components. The first component, ζ , is the time elapsed between when the intruder
arrives in cell c (and then enters Qc) and the first time the sentinel scans the area in-
cluding c. In general it may take more than one scan before a searcher is dispatched.
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Fig. 1: Elements contributing to the time wc between the arrival and removal of an
intruder.

This time is given by the variable ttr (time to trigger) and by construction, a multiple
of ∆ . After a searcher is dispatched, it will not necessarily find the intruder, so in
general multiple successive, independent searchers have to be dispatched. Then, t i

tr
is the time to trigger the dispatch of the ith searcher. Once the successful searcher is
dispatched, it spends time s before it finds the intruder. Therefore,

wc = ζ +
ns

∑
i=1

t i
tr + s

where ns, the number of dispatched searchers, is also a random variable. As it will be
explained later on, the various t i

tr are all independent but not all equally distributed.
In particular, t1

tr has a distribution different from the following ones, whereas all the
t j
tr with j ≥ 2 are iid. Keeping this in mind, we can then write

Wc = E[wc] = E[ζ ]+E[t1
tr]+ (E[ns]−1)E[ttr]+E[s]. (4)

Let us start with computing Ns =E[ns]. Each searcher follows a deterministic search
strategy with a finite time budget. During this search each cell is inspected the same
number of times, say m. The missed detection error rate is βs, so a searcher fails
to find the intruder located in c with probability β m

s , and finds it with probability
1−β m

s . The number of searchers, ns, needed to detect the intruder is then modeled
by a geometric variable with parameter 1− β m

s and its expectation is is E[ns] =
1

1−β m
s

.
Next, we determine S = E[s] conditioned on the event that the searcher finds

the intruder. Given that the searcher follows a predetermined path unrelated to l(c),
assuming that the search time budget is B, then S = B/2 because the intruder could
be located with equal probability in any of the sequentially scanned cells.

To determine Z = E[ζ ], it is useful to recall that the interarrival time of Qc and
then of the intrusions to cell c is modeled by an exponential variable of parameter
λc = λ p(c). Due to the memoryless property of exponential random variables and its
basic properties, it follows that ζ =∆−y, where y is an exponential random variable
of parameter λc conditioned on the event y ≤ ∆ . Through algebraic manipulation
and applying the definition of expectation one obtains

E[ζ ] = E[∆ − y] = ∆ −E[y] = ∆ − 1− e−λc∆ −λc∆e−λc∆

λc(1− e−λc∆ )
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Finally, it is necessary to compute E[t1
tr] and E[t j

tr] with j > 1. Recalling that t i
tr

is an integer multiple of ∆ , i.e., t i
tr = K∆ , it is then sufficient to compute the mass

distribution of the multiplicative factor K for the two different cases. K is the number
of times the sentinel has to sense before a searcher is dispatched. It is useful to recall
that t1

tr models the time to trigger the dispatch of the first searcher conditioned on
the fact that one intruder entered the area assigned to the sentinel (see Figure 1). Its
mass distribution is

Pr[K = k] =

{
(1−β ) k = 1
β (Aβ +N(1−α))k−2(Nα +A(1−β )) k ≥ 2

(5)

The rationale behind the formula is the following. K = 1 if the intruder generates
a detection by the sentinel the first time the sentinel senses the area. This is by
definition 1− β . Otherwise, conditioned on the fact that an intruder entered cell
c, the first searcher will be triggered after k ≥ 2 scans as a consequence of the
simultaneous occurrence of the following independent events:

• the intruder is not detected, which has probability β ;
• for k−2 steps there was not detection. Since each step is independent from each

other, we can just raise to the power of k− 2 the probability that no detection
occurred in one step. This event is either due to an attack going undetected,
whose probability is Aβ or a non-attack not generating a false positive (prob-
ability N(1−α)). Note that these two events are mutually exclusive (either an
attack happens or it does not), so we can just add the probabilities together.

• at the last step a detection happens. This is either due to a non-attack generating a
false positive (probability Nα) or an attack being detected (probability A(1−β )).

We seek an expression for the mass distribution for t j
tr, i.e., the time to trigger

the jth searcher ( j > 1) conditioned on the fact that the first searcher has already
been dispatched. This variable is a geometric random variable, and its distribution
is then:

Pr[K = k] = (N(1−α)+Aβ )k−1(A(1−β )+Nα).

The rationale to derive this formula is similar to the one for t1
tr and one should also

notice that it is indeed a geometric variable because N(1−α)+Aβ +A(1−β )+
Nα = 1. To complete the computation of Eq. 4 we need to compute E[t1

tr] and E[ttr].
Skipping the algebraic details in the interest of space, we just give the results, i.e.,

E[t1
tr] = 1−β +

β

1−Nα−A(1−β )
E[ttr] =

1
1−A(1−β )+Nα

.

We conclude this section noting that A and N can be easily determined from
knowledge of the set of cells covered by the sentinel guarding cell c.
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5 Simulations

In this section, we provide experimental analysis for empirical assessment of some
of the properties of the proposed two-type approach. We analyze performance in
terms of accrued loss (per Equation (1)), required costs in terms of number of de-
ployed sentinels and frequency of sampling for each of them, and we look at how
the system responds under different loads expressed by variable attack arrival rates.

Our basic experimental setting builds on top of the in-the-field validation con-
ducted in [4] with the aim of maintaining relevance to realistic deployments of
UAVs. The grid G consists of 16× 16 cells and two different loss functions are
considered: a simple uniform loss (UNI) that assigns equal loss to every cell and a
bimodal one (BI) depicted in Figure 2a. The arrival rate for attacks is λ = 1/95.

We consider three different groups of sentinels of cardinality 1, 4, and 16 uni-
formly deployed in the environment (see Figures 2b and 2c). That is, if h sentinels
are present, then their equally sized assigned areas Gi constitute a partition of G .
The sampling period for each sentinel is given by ∆ = L/4, where L is the time a
searcher would require to scan and clear every cell of its area by following some
deterministic strategy. Error rates are chosen as a function of the altitude and, to
account for the fact they are tailored for constant altitude, we scaled by a 1

2 fac-
tor, that is α1 = 0.43/2, β 1 = 0.38/2, α4 = 0.36/2, β 4 = 0.27/2, α16 = 0.35/2,
β 16 = 0.37/2 where αh and β h refer to the error rates when having a deployment
of h sentinels. These error rates, as well as those for the searchers given in the fol-
lowing, were determined from extensive live-fly experiments presented in [4].
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(a) Bimodal loss.
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(b) Deployment of 4 sentinels.
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(c) Deployment of 16 sentinels.

Fig. 2: Bimodal loss function and deployments of multiple sentinels.

Searchers conduct a deterministic sweep pattern, sequentially scanning every cell
per unit time on the sub-grid associated to that area. False positives and missed
detections are chosen according to their altitude value (the lowest in a quadtree built
over a 16× 16 grid) as αs = 0.09 and βs = 0.05. We assume that flying from a
cell to an adjacent one, scanning that cell, and performing a clear action on the cell
each take a single time unit. As a consequence, scanning and clearing every cell
of a sub-grid G ′ takes L = 3|G ′| time units. We also define the temporal budget of
each searcher w.r.t. this quantity as B = mL, where m is an integer value. In the
results presented here, we fix m = 2, that is, once dispatched, each searcher must
always perform at least two whole sweeps of the assigned area. Finally, we assume
to have an unbounded number of searchers, namely every dispatch is immediately
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executed. Studying the situation where the number of searchers is bounded is left
for future work, although as evidenced in this section, the number of concurrently
active searchers remains limited.

Figure 3 reports average results obtained for an experimental design of 20 ran-
dom missions. (Each run corresponds to a different realization of the attacks arrival
process.) Graphs 3a and 3b show how the average accrued loss evolves as the mis-
sion unfolds and as sentinels sense their areas every scan period k.

By inspecting these graphs, we can empirically assess the extent of two expected
trends in the actual performance achieved by the different teams. The first observa-
tion is that having more sentinels leads to a smaller loss whose reduction is nearly
optimal when employing 16 sentinels. One interesting feature can be observed in
Figure 3c where the ratios between single-sentinel and 4-sentinel loss as well as
between 4-sentinels and 16-sentinels are depicted (bimodal loss is considered here).
The first thing we notice is that even if we increase our resources by a factor 4,
we observe (mostly at every mission time) gains of much higher order (≥ 10). The
reason is that, besides merely having more sentinels we are also introducing two
improvement factors, which indirectly come by construction of our framework: 1)
not only are sentinels greater in number but also are each less inaccurate in sens-
ing, since they operate at lower altitudes; 2) the more sentinels are employed, the
more effectively the environment is split for parallel patrolling missions (for any
loss function). This second factor contributes to the other observed trend, that is,
passing from 4 to 16 sentinels is never worse than increasing from 1 to 4. Indeed,
when deploying 16 sentinel we get a critical split of an highly targeted sub-area of
the environment (recall Figure 2).

Moreover, from Graphs 3a and 3b we can see how a bimodal loss function re-
sults in poorer performance, showing the disadvantage of adopting a uniform spatial
deployment over a non-uniform loss distribution.

An interesting operational metric is given by the load factor of each sentinel,
defined as the ratio between the total number of attacks still present in the environ-
ment over the number of searchers that have been dispatched by that sentinel and
did not use up their respective time budgets. Figures 4a and 4b compare average
factors for the 1-sentinel and 4-sentinels cases as the mission evolves (the curve in
Figure 4b depicts the average load factor over the four sentinels). The 1-sentinel
case reported an overall average load of 28%, whereas, as it can be seen, different
mission times experienced an overload condition (load factor greater than one) with
attacks outnumbering searchers. Such situation is not observed when employing
four sentinels, and the overall average factors for each sentinel resulted to be re-
markably lower. Such results experimentally highlight the improvements obtained
from the partitioning of the search area, w.r.t. a metric which is independent from
the loss function, i.e., the importance level assigned to every cell in the grid.

The number of sentinels constitutes the primary measure of cost in our setting.
Another important cost factor is given by the number of employed searchers or,
equivalently, the number of dispatches. Given the assumption of an unbounded R,
we can control such cost via the sentinels scanning period ∆ , with the obvious ex-
pectation that the more frequently sentinels scan the more dispatches they will likely
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Fig. 3: Total loss accrued during missions for varying number of sentinels for dif-
ferent loss functions.
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issue. Figure 4c shows how reducing costs of this type can introduce a decrease in
performance. Starting from our reference value of ∆ , we scale it by increasing in-
teger factors and we measure the total loss accrued at the end of the mission. As
can be seen, the 1-sentinel case is where longer scan periods are more critical. On
the contrary, situations with multiple sentinels (e.g., the case of four sentinels in-
cluded in the graph) seem to be more robust with a relatively graceful degradation
in performance.
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Fig. 5: Number of active searchers and attacks with different arrival rates

For further experimental validation, we assess how the system responds to in-
creasing attack arrival rates by showing in Figure 5 how the number of active
searchers and attacks vary during the mission under arrival rates obtained by scaling
our reference λ . The observed trend is that for very high arrival rates, the number
of attacks almost always exceeds the number of active searchers for each sentinel.
(Note that the number of attacks is the per-sentinel average where an attack is asso-
ciated to a sentinel if it occupies a cell in that sentinel’s area.)

In our final experiment we assess the sensitivity of our model to the parameters
characterizing the stochastic model of attacks. In particular, we focus on the inter-
arrival times. Our analysis stands on the assumption that these random variables
are iid and follow an exponential distribution with known parameter λ . In our last
test we change this distribution with a different one having the same expectation.
This choice is motivated from practical considerations. When building a model of
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the opponent through repeated observations, experimentally observing the expected
interarrival time is the simplest first step, but there are evidently multiple distri-
butions that can fit the data. In this experiment, we select a uniform distribution.
Figure 6 plots the difference between the performance of the system under two dif-
ferent scenarios. In the first case interarrival times are distributed according to an
exponential distribution and then match the model we used in deriving our analysis.
In the second case interarrival times are uniformly distributed, but now incorrectly
modeled. As we did for Figure 3a, we vary the number of sentinels (one or four)
and consider two different loss models (unimodal or bimodal), thus obtaining four
different curves. The figure shows that when considering four sentinels, differences
in performance are negligible. When a single sentinel is considered, a difference,
albeit limited, is observed. To put the magnitude of the difference into perspective,
the reader is referred to Figure 3a for absolute loss values. Given that in general one
will use multiple sentinels, these findings tend to indicate that the model is robust to
identification errors for interarrival times.
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Fig. 6: Difference in accrued loss when interarrival times arrivals are exponentially
distributed or uniformly distributed.

6 Conclusions

In this paper we have studied a patrolling problem using two classes of agents,
namely sentinels and searchers. The setup is inspired from our recent work in a
single-agent setting and our model is driven by experimental data collected through
extensive live-fly experiments. Using analytic formulations founded on queueing
theory, it is possible to determine how the system behaves asymptotically in re-
sponse to different stochastic models of arrivals. Studies in simulation show how
explicitly modeling a variable resolution sensor leads to gains outweighing the po-
tential penalty of increasing the number of allocated sentinels.

Future work include extensions explicitly handling deconfliction and coordina-
tion among searchers, as well as deploying sentinels with overlapping regions for
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increased robustness and performance. Additional research addresses further theo-
retical analysis of the impact of constrained resources (e.g., number of searchers
available to sentinels), with relevance to realistic deployments. Finally, building
upon the analysis we developed, we will consider how to non-uniformly allocate
sentinels in the environment in order to minimize the given performance metrics.
This includes positioning more sentinels to cover areas with higher loss values, as
well as varying their elevation to operate in regimes with lower error rates where
needed.
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