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Abstract— We study the problem of deploying a high number
of low-cost, low-complexity robots inside a known environment
with the objective that at least one robotic platform reaches
each of IV preassigned goal locations. Our study is inspired by
SensorFly, a micro-aerial vehicle successfully used for mobile
sensor network applications. SensorFly nodes feature limited
on-board sensors, so one has to rely on simple navigation
strategies and increase performance through redundance in
the team. We introduce a simple, fully scalable deployment
algorithm exploiting the limited capabilities offered by the
SensorFly platform, and we explore its performance by feeding
the simulation system with parameters extracted from the real
SensorFly platform.

I. INTRODUCTION

In this paper we are interested in the following variant
of the deployment problem. Given an environment with [NV
target locations (e.g., N rooms inside a large building), the
goal is to deploy a team of K robots so that eventually
at least one robot reaches each of the N locations. After
one robot reaches one of the /N locations it may stop there
or proceed further. The task is successfully completed as
soon as each location as been visited by at least one robot.
Problems of this type find applications in urban search and
rescue, surveillance, intelligence, and related fields. For
example, each of the robots might carry a sensor to detect
dangerous chemicals and the objective is to collect samples
in a set of critical locations. Instances of this problem have
frequently been studied under the assumption that N and K
are not too different and often K is smaller than N. In this
case robots need to coordinate their plans to ensure each
location will be reached. In many scenarios, the integrity of
the robot team is a prime concern because individual robot
failures may hinder the ability to successfully complete the
deployment.

In our research we tackle the problem from a different
perspective. Our focus is on deployment problems where
robots can be considered expendable assets, i.e., we consider
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robot swarms. This assumption is legitimate when robots
are simple devices with limited cost and capabilities. In
this case we may assume K is much larger than N and we
can tolerate that some robots fail to accomplish their task.
Moreover, we not only focus on the ability to successfully
complete the mission, but also on the time taken to
complete the mission. Therefore, deployment algorithms
that will solve the problem with probability 1 “as time
tends to infinity” are not of interest. We recently studied
a slightly different instance of the deployment problem
from a theoretical standpoint [2]. Therein, we modeled the
environment as a graph with one vertex per relevant location.
We assumed each edge was characterized by a success
function S returning the probability that a robot could
traverse an edge as a function of the time spent trying to
make the transition. For a given environment (or equivalent
graph), our focus was to understand the tradeoff between the
number of robots, the probability of successfully completing
the deployment, and the time spent. Our initial investigation
has been useful to better understand the problem at hand
and to identify a relevant space of design parameters
when building multi-robot systems to solve this class of
deployment problems. However, the theoretical setup made
some strong assumptions. For example, it assumed that
robots were capable of self localizing in the graph. It also
assumed all robots were equipped with a primitive to move
along an edge with a fixed speed.

In an effort to link theory and practice, and with the
eventual goal of eventually deploying a fully functioning
system, in this paper we relax some of the previous
assumptions and tie our investigation to a specific robotic
platform that can be considered an expendable asset. In
particular, we relax the hypothesis that robots can reliably
self localize themselves in the environment (or graph). The
minimalist platform we consider is the SensorFly node that
has been previously developed to deploy mobile sensor
networks.! This robot is inexpensive, lightweight (30g) and
offers minimal onboard processing power. Nevertheless,
teams of SensorFly robots can collaborate and communicate
with each other. The objective of this paper is to explore
in simulation a simple open loop deployment strategy and
determine how communication can be used to overcome
the inherent limitations of this approach. Indeed, because
of the limited sensor payload associated with the SensorFly

I The term node was coined when the SensorFly platform was introduced.
In the following, the terms node and robot will be considered synonyms.



platform, one cannot assume to implement state-of-the-art,
sophisticated localization algorithms. Therefore an open
loop approach (with all its limitations) is the best one can
hope for, and communication between agents is used to
improve the performance.

The rest of the paper is organized as follows. Related
work is shortly discussed in Section II, and in Section III
we describe the SensorFly node that inspired our model.
Section IV defines the deployment problem based on the
characteristics of the SensorFly platform. The deployment
algorithm is then described in Section V. Simulations are
offered in Section VI and future work and conclusions are
sketched in Section VII.

II. RELATED WORK

Deployment problems are related to coverage because in
both problems robots are required to reach certain locations
to gather data. Coverage is a very active research area
and was greatly influenced by the work of Bullo and co-
authors [1], [4]. However, coverage problems are very often
studied in obstacle-free environments and focus on metrics
different than the one we consider in our research, i.e.,
time to completion. Deployment problems are also related to
robotic dispersion, like [8], [10]. Many approaches to robotic
dispersion embrace a behavior-based approach and often aim
at obtaining asymptotic properties, like e.g., guaranteeing
that eventually all areas of a given environment are reached,
or maintaining communication. The deployment problem
studied in this paper instead is concerned with the transitory
stage, i.e., we are interested in the process through which
robots reach an assigned set of final destinations, and we
aim at minimizing the time spent to complete the task. Large
teams of simple, expendable robots have been designed and
fielded for various applications. Notable examples include
the SCOUT platform [10], Millibots [9], and the Kilobot
[14], just to name a few. The SensorFly node we consider in
this paper can be assimilated to these platforms, although it
was developed within the sensor networks community and as
such it is designed with a greater attention to communication
and energy efficiency. Finally, there have been studies where
robots collaborate and self deploy an infrastructure for lo-
calization [5], [7]. However, in our study we assume robots
are not equipped with sensors capable of returning mutual
information, so this class of approaches is not applicable. In
our former paper [2] we studied a variant of the deployment
problem where robots were required to reach each location
and then stop, while here we allow robots to move forward
after having visited one of the target places. Although the
definition of the problem is slightly different in this paper,
most of the lessons learned here can be transferred to the
other scenario.

III. THE SENSORFLY PLATFORM

The SensorFly [11], shown in Figure 1, is a low-cost,
low-weight, micro-aerial vehicle (MAV) swarm platform for
facilitating research in emerging indoor sensor-networking

Fig. 1: The figure shows a SensorFly node with a US quarter
dollar coin.

applications such as disaster response, urban surveillance,
and toxic plume monitoring. These applications scenarios
are hazardous and rapidly-changing, requiring resilience,
adaptability, and speed from the monitoring solution. The
SensorFly swarm comprises of a relatively large number
of miniature aerial sensor nodes capable of autonomous
movement. Due to cost and size constraints individual nodes
are limited in their sensing, computing, and communications
capabilities. The swarm seeks to utilize collaboration and
numbers to provide greater resilience, adaptability and speed
of sensing compared to monolithic robots.

Each aerial SensorFly node is equipped with an 8-bit AVR
AtMegal28rfal micro-controller, inertial sensors (a 3-axis
accelerometer and 3-axis gyroscope,) an ultrasonic ranger
for altitude estimation, a 3-d magnetometer, an optical flow
sensor for velocity estimation, and an 802.15.4a compatible
radio with Round-trip time-of-flight (RToF) measurement
capability. The entire platform weighs less than 30g. Each
node has a 130mAh LiPo battery with a continuous flight
time of 6-8 minutes on a single charge. The design of the
platform seeks to strike a careful balance between weight
and individual sensing capability. The SensorFly node flight
mechanism consists of a co-axial counter-rotating dual rotor
that is passively stable for hover and forward flight. The
node has 3 motors, 1 for each of the 2 rotors, and 1 for
the tail rotor. Altitude control is attained by controlling the
speed of the two main rotors of the node. Yaw control is
achieved by increasing the speed of one rotor and reducing
the speed of the other rotor by the same amount. Fixed-
velocity forward flight of the node is attained by turning
on the tail motor, which provides a forward tilt resulting in
forward momentum. The SensorFly nodes are capable of re-
ceiving high-level motion commands, e.g., “Turn X degrees”
and “Move forward X seconds”. The nodes execute motion
commands via on-board PID controllers utilizing angular
and translational velocity feedback from the gyroscope and
optical-flow sensors, respectively. Assumptions made in the



following algorithm and simulations mirror the capabilities
offered by the SensorFly node and are based on extensive
field experience with this platform [11].

IV. PROBLEM FORMULATION AND MODELING

We consider the following deployment task. We are given
an indoor environment with N target locations, and the goal
is to deploy a team of K robots so that eventually at least
one robot reaches each of the N locations. We assume that
a map of the environment is known and that all robots are
initially deployed in a known area (or room), although their
precise position within the area is not necessarily known.
The assumption that the map is known is admittedly strong,
but there is growing availability of indoor maps for public
places (e.g., Google indoor maps) and this hypothesis is
useful to start studying the problem in a simplified scenario.

In our previous work [2] we assumed that robots were
capable of self localizing in the map without errors, and this
allowed us to reduce the problem to an abstract formulation
based on undirected graphs. Here we remove the hypothesis
that robots can reliably localize themselves. SensorFly nodes
can estimate their own location using exclusively on board
sensors. Since the SensorFly platform does not include
exteroceptive sensors, this estimation is necessarily based on
proprioceptive sensors only. The problem we consider in this
paper is then more difficult because imprecise localization
implies that it may take a long time to reach a given target
area. Moreover, because of imprecise localization robots
may end up repeatedly bumping into walls and fail to
complete a desired motion between two locations.

The problem we consider can be modeled using a graph.
Let G = (V, E) be a graph modeling the environment, where
V is the set of vertices and F is the set of edges. The set
of target locations is 7" C V. The existence of an edge ey
between vertices v; and v; indicates that there exists a path
from v; to v;. One vertex in V' represents the location where
the SensoFly nodes are initially deployed and is indicated
with the letter d.

V. DEPLOYMENT ALGORITHM

The role of the deployment algorithm is to increase the
probability that each of the IV relevant locations is reached
by at least one robot. We associate to the graph G a spanning
tree 7 rooted at the deployment vertex d.

We hypothesize that the swarm nodes are introduced into
the operating environment at a known location. For exam-
ple, a firefighter introduces nodes into a collapsed building
through an accessible opening. In our case this is the area
associated with the deployment vertex d.

Nodes estimate their location (vertex in graph) with re-
spect to their initial location through dead-reckoning. Dead-
reckoning is known to be an error-prone technique because
its cumulative error grows over time. However, given the
minimalistic platform we embrace, one cannot run more

sophisticated localization techniques based on on-board sen-
sors or assume the availability of external infrastructure
offering localization. The SensorFly platform is equipped
with the magnetometer and gyroscope sensors that together
measure pose, as well as, an optical flow sensor that measures
velocity. The challenge is then to exploit this reduced sensor
payload to successfully complete the deployment task. The
pseudo code for the deployment strategy is given in Algo-
rithm 1. The same algorithm is supposed to be executed by
each of the K robots in the team.

Initially, all nodes mark all vertices (except d) as non-
visited. At each iteration the robot estimates its own location
and maps it to a vertex in the graph. Then, if there are
adjacent vertices that are unvisited the robot randomly selects
one of them and tries to reach it. Otherwise (all neighbors
are marked as visited), one random neighbor is selected.

The error in dead-reckoning location estimates accumu-
lates with time. To account for the inaccurate location, the al-
gorithm incorporates a strategy of backing-off in a randomly
chosen direction on contact with obstacles. The length of the
back-off segments is computed as an exponential function of
the number of collisions in a specified time window.

1 while battery lasts do

2 estimate location v; € 7 from dead-reckoning

Sensors;

3 mark v; as visited and propagate info to other

nodes;

find set of vertices A adjacent to v;;

find set of unvisited vertices U € A;

if U is non-empty then

| randomly choose a vertex v; € U
end
else
‘ randomly choose a vertex v; € A

end

Move along edge (v;,v;) to vertex v;;

if collsion with obstacle then
increment collision counter col_cnt;
compute back-off time ¢; as a exp function of
col_cnt;
choose random direction p;
back-off in direction p for time t;

end

else
decrement collision counter col_cnt;

end

N A W N =D 0 XN A

N = S v R

end

Algorithm 1: Deployment algorithm

This deployment algorithm utilizes the ability of nodes
to communicate with each other to propagate knowledge of
visited nodes. With communication, the resource constrained
nodes collaboratively improve the speed of coverage. All
assumptions made in the deployment algorithm are inspired
and consistent with the abilities offered by the real SensorFly



platform, as further explained in the next section.

VI. SIMULATIONS

In this section we illustrate how the model we formulated
can be used to simulate the deployment performance of the
robot team. In particular, in numerous operative scenarios
one is interested in deciding the number of robots to deploy
in order to complete the deployment task within a given time.
When the environment is complex it may be useful to run
a preliminary simulation to get a sense about an appropriate
size for the team. The goal of this section is not to present a
comprehensive evaluation over a diverse set of environments,
but rather to show how informed decisions can be made
based on the assumptions we made and the simulations we
present. Two environments offering different challenges are
used.

A. Simulation Setup

We utilize a simulation environment for the SensorFly
MAV indoor sensor swarm [12], [13]? to evaluate our de-
ployment algorithm in a realistic scenario. The software is
written in Phython and optimized to use GPUs to allow an
high accuracy simulation of systems including tens of Sen-
sorFly nodes. The simulator provides the ability to specify
a realistic physical arena. It supports various Micro-Aerial
Vehicle (MAV) mobility models, sensors and sensor noise
models, wireless communication model, and application-
specific sensing models. These models are based on data
collected from MAV nodes during a large number of indoor
environments. We use an empirically determined actuation
noise model for the SensorFly platform [12] to inform our
simulations. The SensorFly platform uses PID control with
feedback from an optical flow sensor (velocity) and a gyro
(turn) to execute the commanded motion. From [12], the pose
and velocity error is determined to be within +/ — 20% of
commanded value.

B. Experiments

Figure 2 shows the map of a simple indoor environment
built by an autonomous robot running a Simultaneous
Localization and Mapping (SLAM) algorithm while
exploring part of the Science and Engineering building at
the University of California, Merced. The figure also shows
the corresponding graph with N = 7 vertices. In this case
the deployment vertex is v;. The objective of the swarm is
to deploy at least one robot in each of the vertices. Figure
3 shows instead a more complex environment with 22
rooms. This environment is also obtained running a SLAM
algorithm using a publicly available dataset.> Note that
given a map produced by a SLAM algorithm, graphs like
those displayed in the figures can be automatically extracted
and do not have to be produced by hand [6].

2The SensorFly simulator is available for download at
https://bitbucket.org/imaveek/sensorflysim.

3This map is obtained from the sdr40 dataset available on
http://radish.sourceforge.net.

Fig. 2: Test environment with 7 rooms used to illustrate the
presented framework. Nodes are initially deployed in the area
corresponding to vertex v .

Fig. 3: Test environment with 22 rooms and associated tree.
Nodes are initially deployed in the area corresponding to
vertex 7.

Figure 4 shows the trend for completion time as a function
of the number of robots in the 7 room map. Figure 6 shows
the trend for completion time as a function of the number
of robots in a larger 22 room map. Here, completion time
is defined as the moment when each target vertex has been
reached by at least one robot. For comparison purposes figure
4 shows also the completion time as a function of K in case
the swarm just follows a random walk strategy.

Evidently, the expected time to completion is heavily
influenced by the amount of error affecting the dead-
reckoning estimation. Figure 5 and 7 then show the trend
for completion time, for 10 nodes, as a function of the
dead-reckoning error in the 7-room and 22-room map
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Fig. 4: Smulated time to complete a deployment as a function
of the number of robots (7 room map). Error bars show
standard deviation over 100 simulation runs. Dead-reckoning
error is up to +/ — 20%.

respectively. The time to completion is a function of the
robots’ ability to localize themselves and correctly move
towards designated map regions. In absence of external
infrastructure and limited available on-board sensors, MAV
swarm platforms must rely on innacurate localization
estimates from techniques such as dead-reckoning. In
addition, dead-reckoning error accumulates with time. The
plots show the impact of location sensor noise on the time
to complete deployment. As a consequence of inaccurate
localization, robots may mark vertices as visited even when
they have not reached them. This information is passed
to other team members and has a negative impact that
is eventually remedied when robots randomly pick the
next location to visit among all their neighbors. Figure 8
shows the rate of misclassification as a function of the dead
reckoning error. The take home message from this set of
simulations is that even though dead-reckoning is an error
prone technique, teams of SensodFly MAVs can successfully
complete the deployment task by relying on communication
and increased robustness through redundancy.

The simulation system we used is tuned to match the
performance observed on SensorFly nodes in real world
scenarios. While of course one should be careful in extrapo-
lating results observed in simulation, the performance curves
depicted are useful to make decisions about the approximate
size of the team needed to meet the temporal constraints of
the deployment task.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have extended our recent work on multi-
robot deployment [2] tying our former high-level theoretical
model with the SensorFly platform, an experimental MAV.
In particular, we have relaxed the hypothesis that robots
can reliably self localize in the map, and we have instead
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Fig. 5: Time to complete a deployment of 10 robots as a

function of dead reckoning noise (7 room map). The box-
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Fig. 6: Time to complete a deployment as a function of the
number of robots (22 room map). Error bars show standard
deviation over 100 simulation runs. Dead-reckoning error is
up to +/ — 20%.

assumed that only rough localization can be obtained
through dead-reckoning. This assumption is justified by the
limited sensor payload currently available on the SensorFly
nodes.

The deployment algorithm tries to overcome
the limitations imposed by dead-reckoning through
communication, one of the capabilities offered by the
SensorFly node. In addition, heuristic maneuvers (backing
off) to evade problematic situations emerging during the
deployment have been implemented and have shown to be
effective.

Numerous directions can be explored to extend this work,
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a priori, and to develop deployment strategies for this case.
Our eventual goal is to migrate the developed algorithms
from simulation to the real world, taking advantage of
the preliminary experience gained while developing and
perfecting the SensorFly MAV.

One of the limitations associated with the presented de-
ployment algorithm is the lack of a formal performance
analysis, as we did in [2]. From a practical point of view
it would be useful to derive analytic relationships between
the size of the team, the complexity of the environment, the
time needed to complete the deployment, and the probability
to successfully complete the mission. This analysis is part of
our current and future work.

Dead Reckoning Error (%)

Fig. 7: Time to complete a deployment of 10 robots as a
function of dead reckoning noise (22 room map). The box-
plot shows the median, 25th and 75th percentile from 100
simulation runs
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and we here sketch just a few of them. First, when navigating
from vertex v; to vertex v; one can tune the velocity of the
robot to maximize the chance of successfully completing the
move. To do so, one needs a function mapping velocity to
probability of success, as we did in [2]. Future work aims
at predicting these parameters from simulation before the
system is actually deployed.

Then one could consider more sophisticated navigation
strategies explicitly considering temporal deadlines during
the planning process. For example, deployment strategies
based on constrained Markov decision processes are being
developed for the deployment problem [3] and could be
used with the SensorFly too. Of course, it will also be
important to consider the case when the map is not known
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