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We consider the problem of searching for one or more targets in an environ-

ment using a noisy multi-scale sensor. This work utilizes the recently introduced

probabilistic quadtree (PQ) framework and provides several improvements and

extensions. This framework allows searchers to maintain a compact representa-

tion of their belief of the world, while allowing them to consider sensing at various

scales. Improvements herein include: reduced computational complexity on our

previously used objective function, an alternative quadtree updating technique,

and a new searcher objective function. In addition to theoretical contributions,

this work considers the problem of coordinating multiple searchers using the PQ

structure. Several experiments are included which demonstrate the performance

of the algorithms under various configurations and conditions.
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CHAPTER 1

Introduction

Robots are playing an increasing roll in the lives of humans. Example areas

of influence include manufacturing, search and rescue, personal assistance, and

others. While the robots of today may not be quite as advanced as people dreamed

them to be, they are still progressing and providing assistance to humans. With

devices like the Roomba vacuum cleaner, robots have even been able to enter

and function in peoples’ homes. This thesis focuses on robotic search with the

important application of search and rescue. Every time a disaster occurs rescue

workers put their lives on the line to try and save others. By introducing robots

to this area, we can hope to both increase the amount of lives that can be saved

and also reduce the risk to rescue workers. One such event where robots were used

to provide assistance was the Fukushima nuclear power plant disaster after the

earthquake in Japan in 2011. By using robots to gather data in the facility, clean

up crews did not have to enter into areas with very harmful levels of radiation

[12]. In other disaster scenarios such as building fires, robots could be sent in to

give rescue workers an accurate look into the building and see if there are people

needing rescue inside. They could also provide accurate maps to help rescue teams

navigate buildings after damage from fire or earthquake. In search and rescue,

the chances of finding a person alive drops significantly after 72 hours and is often

referred to as the ”golden 72 hours” [25]. This highlights the importance of using

whatever methods possible to accelerate the rescue process.

In general for robots to perform well at their assigned tasks, they need to be
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able to search for people and objects effectively. This thesis focuses on how robots

can search when they are given a sensor that can be used at multiple resolutions.

An example situation is using an aerial vehicle to search for a lost hiker. Recently,

vertical take off and landing (VTOL) vehicles are becoming more popular. They

generally are very mobile robots that use 4 rotors to take off vertically and can

hover in place making them excellent for surveillance and data collection. Robots

of this type can be equipped with a camera and by changing their altitude they

can collect images of varying fields of view. The trade off for the searcher is that

by flying high to get a larger view of the environment it reduces the small details

visible to the camera and thus reduces the accuracy of its sensing. It is important

in this case that the robot balance this ability to search at different altitudes

depending on its need for course or more fine grained information.

This hierarchical form of data collection is already being validated in practice

via research done by the Robotics lab at UC Merced. Data was collected using

our Air Robot quad rotor platform at the Camp Roberts testing facility. Various

objects were placed in a large environment and images from the quad rotor were

taken at several locations and altitudes. Using this data, an image classifier could

be trained to detect cars or people. This type of data collection is important

because it allows validation of the theoretical models and simulations being tested

in our lab.

There are multiple ways to try and improve the performance of robots. One

such way is to improve the hardware they use by giving them better/more sensors

and computational power. The downside of this strategy is that it is costly and

by using only one robot if it fails the mission is over [1]. Alternatively, robots

can be improved by using better algorithms for search. Examples of this will be

seen in later chapters in this thesis. A final way to improve robotic performance

is to increase the number of robots used. This often involves using robots that

on their own are inferior, but can work effectively as a team. The downside to
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this strategy is that creating algorithms to work with teams of robots is more

difficult as it generally involves coordination and communication much like teams

of humans. Utilizing teams of robots and getting them to perform effectively

with minimal communication is a difficult prospect and is something that will be

discussed later in the thesis. Lastly, this work contains benchmarks for teams of

varying numbers of robots in an attempt to measure the presented algorithms’

ability to scale based on the number of searchers.

In summary, this thesis provides the following contributions to our previously

researched hierarchical search structure.

• A reduction in the computational complexity when searching for a single

target in an environment.

• An alternative method to update the search structure when searching for

multiple targets.

• An improved objective function when patrolling an environment.

• Extensions to multi-agent search.
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CHAPTER 2

Related Works

2.1 Probabilistic Search

In operations research, the theory of search is a well studied topic and its use

dates back to World War II. The goal of search theory is to define a strategy to

find the location of an object or the locations of multiple objects in an optimal

manner. In addition to having objects with unknown location, the way in which

these objects are detected has a degree of uncertainty as well. Works by Koopman

[16], Stone [23], and others have provided solutions to these problems that are

grounded in mathematical theory. In general, the problem is solved by using

prior knowledge to construct a probability distribution over the possible locations

for the object or objects and applying sensor readings to locate those objects. The

search effort is applied to locations that provide the greatest chance of finding the

object. In one example application, Koopman discusses how the work was used

to help find optimal defensive placement of U.S Navy ships during World War II.

One way to formulate the search problem is using a partially observable Markov

decision process (or POMDP). The POMDP framework allows the searcher to

deal with many forms of uncertainty. It is able to handle cases where the searcher

has error in its own motion model, the search target can move, and cases where

the sensor used is noisy. In short, to use a POMDP one models the position of

the searcher and object as a state of the world. The exact state of the world is

unknown to the searcher so it maintains a probability distribution over all possible
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states. Then through various actions the searcher and object transition to other

states. These transitions behave based on a known probability distribution based

on actions taken by the searcher. Additionally, the searcher is provided with

observations to help identify the current state of the world. In a work by J.N.

Eagle [11] a POMDP is used to perform optimal search for moving targets with

constrained search paths. By modeling the problem with a POMDP, the author is

able to handle moving targets, while finding optimal search paths. The downside

of the POMDP framework is that it has difficulty scaling to large problem sizes.

One could also frame the search problem in the context of game theory. In

work by B. Sujit and colleagues [24], the authors approached the problem of multi-

agent search in an unknown environment using game theory. This allows well

known concepts such as Nash equilibrium to be applied and determine the optimal

strategies for the search process. Each of the searchers maintain an uncertainty

map of the environment and it is their goal to select actions that maximize the

reduction in uncertainty. The work considers the case where the searchers do

not communicate with each other (and thus can be thought as competing with

one another). It also considers the case where the searchers work together and

cooperate on the search mission. It is the goal of the searchers to maximize their

own reward based on the worst case actions of the other search agents.

Another framework is one for cooperative search with distributed agents by

M.M. Polycarpou and colleagues [21]. In their work, they considered the case

where the environment of the searchers is unknown. Additionally, it is assumed

that the searchers communicate their sensor information with each other so that

they can intelligently cooperate. This means that the searchers must learn the

features of their environment, while also searching for targets with no prior infor-

mation. This scenario requires knowledge to be incorporated during the mission

and is solved using a combination of on-line learning and optimization. On-line

learning is used to interpret readings from the environment and optimization is
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used to find the best search path through the environment.

It is not always the case that the prior probability distributions provided to

searchers are known with high certainty. One method for handling uncertainty

in prior belief distributions was proposed by I. Sisso and colleagues [22]. In their

work, they utilize a technique base on info-gap theory which allows for decision

making when faced with large uncertainty in prior information. The work provides

an alternative to just using the search method that provides the highest expected

utility. Instead, the work describes strategies that maximize the robustness of

the search strategy. This allows the searcher to use a robust search method when

uncertainty in the prior information is high and a utility maximization method

when the uncertainty in the prior is low. Searchers can also handle the problem

of uncertainty in their prior by altering their search strategies throughout the

mission as they obtain more sensor readings.

For a more complete history of the theory of search refer to a the survey by

S.J. Benkoski [3]. For another summary on more recent work and challenges one

can also refer to a survey by T.H Chung [10].

2.2 Bayesian Search and Rescue

Bayesian search is a type of probabilistic search which uses evidence to modify

probability values. One important application of Bayesian search is search and

rescue. In work by L. Lin and M.A. Goodrich [19], the authors consider searching

for a lost person in the wilderness. When searching for a lost person one often

creates a probability distribution that tries to identify possible locations for the

person. In order for Bayesian search to work effectively, one must have prior

distributions that are as accurate as possible. Their work attempts to generate

good prior distributions for the person’s location by incorporating prior knowl-

edge of lost-person behavior along with environment features. This information
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allows for a more accurate prediction of the target’s location and can also provide

information for how the missing person may move over time. Overall, the work

provides tools that can be used by rescue teams to find people faster and increase

the chance of finding lost people alive.

2.3 Searching with UAVs

Search theory is now being applied in the field of robotics for autonomous

search. Some work that has strong influences in the work of this thesis was done

by Furukawa and colleagues [5] [6] [28]. In their works, they considered search-

ing with unmanned aerial vehicles (UAVs). The authors investigated applying

Bayesian techniques to searching for lost targets using grid representations of the

environment. Scenarios with both multiple searchers and multiple targets are

considered. The methods used allowed for the use of noisy sensors and provided

an objective function to guide the search. Their work focused on searching with

fixed altitude UAVs which means that the sensor accuracy remained constant

throughout the mission. In the works, greedy methods are applied since the op-

timal searcher trajectories are too computationally difficult to compute. In [18]

the authors lift the assumption of a fixed grid like environment and allow it to be

dynamically reconfigured during the mission. The goal of this reconfiguration is

to allow better tracking and better handling of the underlying probability density

function in the case of moving targets.

Another work that that provides foundation for our work is that done by T.H.

Chung [8]. In this work, Chung also applied Bayesian techniques to search for a

single lost target with a searcher constrained to move on a grid. The single target

assumption induces correlations between cells in the grid. In addition, the work

allows for the existence of false positives and missed sensor detections rather than

just the usual missed detections. Finally, the work also considers the expected
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time to find the target in relation to the motion constraints of the searcher. The

work shows that a relationship exists between the decision time of the searcher

and the second smallest Laplacian eigenvalue.

In work by S. Waharte and colleagues [26], the authors consider the case of

searching with agile UAV’s. These agile UAV’s move at low speeds and are able to

easily alter their altitude. The authors discuss ways to combine sensor readings

from different altitudes into one belief about the environment. In their work,

they use a uniform grid representation, but the sensor readings are allowed to

partially cover cells and/or cover multiple cells. The searcher is then able to

control its sensor coverage and accuracy by controlling its altitude. The work

provides control algorithms to balance the trade off between sensing more with

less accuracy and sensing less with higher accuracy. Results from the work showed

that sensing at multiple altitudes improved the performance of the searcher. One

important difference between the work of these authors and the work in this thesis

is that this thesis utilizes a hierarchical data structure to make the search process

more efficient.

One can also consider the case of using UAV’s to search in an environment with

imprecise prior probability distributions. This scenario is considered in work by

L. F. Bertuccelli and J. P. How [4], where they use a beta distribution to predict

the minimum number of sensor reading needed per cell for a required amount of

certainty. This distribution allows the authors to encode uncertainty about the

prior and allows integration of imperfect binary sensor readings. Additionally,

their framework allows the searchers to determine the minimum number of looks

to achieve a desired confidence for the occupancy of a cell in the environment.

This work provides an alternative to the methods used by Sisso and colleagues

[22] mentioned previously.

In work by M. Flint and colleagues [15], the cooperative control problem for

multiple UAV’s is handled using a dynamic programming approach. The authors
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propose using a stochastic decision model along with approximation techniques

to handle the computational complexity of the problem. Rather than compute

the optimal paths for each searcher, the searchers model each other as stochas-

tic elements. This results in sub-optimal trajectories, but their results showed

good performance. This work was also extended to handle scenarios with risky

environments [14]. In this scenario, it is possible for the searcher to be destroyed

during its mission depending on how it explores its environment. Incorporation

of prior information was also added to their dynamic programming framework. A

summary work [13] provides a combined discussion on the two previous works. In

the combined work, performance comparisons between informed and uninformed

searchers were explored.

A decentralized cooperative search framework was considered in a work by Y.

Yang [29] and colleagues. Their idea was to have each searcher view each other

as soft obstacles that needed to be avoided. Like the previous work an approxi-

mate dynamic programming method was used to guide the searchers. This was

done using various approximated reward functions that balance immediate, explo-

ration, thread avoidance, and cooperation reward. In the work, the cooperation

reward was larger the further searchers are from each other. This creates what

they refer to as a rivaling force that pushes searchers away from each other. Ad-

ditionally, another reward function was added to help searchers also try for long

term goals. This mixture of objective functions allows the searchers to consider

many search factors while keeping the computational complexity low. Overall,

the proposed method was efficient and managed to provide a working framework

for decentralized cooperative search.
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2.4 Work on Probabilistic Quadtrees

A major weakness in the works previously mentioned is that they almost all

rely on the usage of some form of uniform grid. These uniform grids result in a

large search space that cause issues with many of the proposed search strategies.

Recent work by S. Carpin and T.H. Chung [9] has been done to extend the pre-

vious techniques towards hierarchical representations. The work considers using

a mobile UAV searcher with the ability to change its altitude to vary its sensor

coverage and accuracy. Similar to the work by Chung mentioned above, this work

considered the case of looking for a single object in an environment. Addition-

ally, they introduced the probabilistic quadtree data structure which allowed the

searcher to sense at different altitudes and maintain a compact belief represen-

tation. This compact representation also allowed the searcher to compute search

locations more efficiently.

This work was later extended by S. Carpin, T.H. Chung and myself [7] to

handle the case where multiple objects may be located in an environment. This

extension required modifying the updated strategies used on the probabilistic

quadtree and additionally the criterion used to decide when to stop the search.

Lastly, the work focused on improving the search decisions using an entropy based

approach.

Later work by N. Basilico and S. Carpin applied the probabilistic quadtree

framework to the problem of patrolling an environment [2]. In this scenario,

intruders enter the environment over time and it is up to the searcher to locate

them in a timely manner to reduce the damage sustained.

Lastly it should be mentioned that work by G.K. Kraetzschmar [17] was the

first to introduce a probabilistic quadtree. While this work shares the same name

and a similar data structure as the one described in this thesis, ours considers the

case of search where the other considers the problem of mapping. Additionally,
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the structure discussed in this thesis has different properties and different sen-

sor reading integration. In short, both works consider applying the well known

quadtree data structure to probabilistic beliefs, but differ on the implementation

details.
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CHAPTER 3

Probabilistic Quadtrees

3.1 Quadtrees

In general, a quadtree is a method for data representation that aids in com-

pression and/or data partitioning. It is a recursive structure composed of nodes

each with potentially four children. Quadtrees are mostly used to partition 2

dimensional data, but there are other variants that deal with higher dimensions

such as octrees. An example usage is compression in a 2D black and white image.

One could split the image in four regions and mark the nodes as completely filled,

completely empty, or mixed color. If the nodes are mixed color four children

would be added to this node. Otherwise, no children are added and the node

is marked as filled or empty. This process would continue for these new nodes

or until a maximum depth is hit. Using this method, the image can potentially

be represented with fewer nodes than the number of pixels in the original image.

Refer to Figure 3.1 for a quadtree example dealing with image compression.

12



De p t h  1

De p t h  2

De p t h  3

Figure 3.1: Simple Quadtree Example: The 16 pixel image is represented with 13

nodes.

3.2 Probabilistic Quadtrees

Rather than have the nodes of a quadtree represent filled, empty, or mixed

one can instead have the nodes contain the probability that an object is present

within a region. In areas where the probability is uniform, fewer nodes are needed

to represent the underlying probability distribution which reduces the amount of

information needed to represent the belief space. More importantly, this type of

representation can also reduce the size of the search space when selecting areas

to sense. Our work focuses on the idea that the different levels in a quadtree

can be mapped to different sensing altitudes of an aerial vehicle. By changing

its altitude, the searcher can change its sensor coverage and accuracy. When the

searcher increases its altitude it can see more of an environment, but its sensor will

detect objects at a reduced accuracy. In order to make updates to the probabilistic

quadtree, it is assumed that the rate at which the sensor makes false positives and

missed detections is known. By using this structure, searchers can balance the

trade-off of scanning larger areas (areas at higher levels in the quadtree) versus

scanning smaller areas (lower levels in the tree). The exact management of this
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tree structure depends on the assumptions made about the search process and

will be explained in sections below.

3.3 Formal Definition

Given a rectangular search domain A, a probabilistic quadtree(PQ) T can

be constructed. Each node in T is associated with a square or rectangular region

inside ofA. The region covered by node n will be referred to as R(n). Additionally,

for each node n in the tree a binary random variable Xn is assigned. This variable

indicates the event that at least one intruder is present in the area R(n). For

convenience we also define:

pn = Pr[Xn = 1]

which is the probability that something is present in the region associated with

node n.

Additionally, it is assumed that the tree T is restricted to a maximum depth

D. If all the leaves of the tree are at depth D then the tree represents the same

partition of A as a uniform grid. Lastly, let L(T ) be the set of leaves of T and

N (T ) be the set of all nodes in the tree. It is important to note that the tree

may not and in general will not be fully expanded. This means that its leaves will

not all be at depth D and that |N (T )| will change throughout the search mission.

Some other sets that are used are listed below:

• Let C(n) be the set of nodes that have n as their parent node. In a quadtree

a node either has 0 or 4 children.

• Let IN (T ) be the set of internal nodes in the tree where

IN (T ) = N (T ) \ L(T )

• let S(n) be the subtree in T rooted at node n
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Lastly, there are important relationships between the event Xn and the events

of descendant nodes of n. Since the descendants of n are contained within the

region associated with n it must be the case that

Xn = 1⇔ ∃i ∈ S(n) ∩ L(T ) s.t. Xi = 1

This states that if the event Xn = 1 there must be a target inside of n and thus a

target inside at least one of its descendant leaves. This is true because the leaves

descendant from n form a complete partition of n. The opposite relationship is

also true. Meaning that when a descendant i of n has a target within it, Xi = 1,

then it must be the case that Xn = 1. This is true because the region associated

with a descendant of n is always within the region of n. Similar relationships also

hold for the case when node n is empty, Xn = 0, and when all of its descendants

are empty:

Xn = 0⇔ ∀i ∈ S(n) Xi = 0

Refer to Figure 3.2 for an example PQ with its associated X variables.
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X = 0 X = 0 X = 1 X = 0

X

X

Figure 3.2: Event Example. On the left the red X’s indicate the presence of a

target in the region. The tree on the right shows the relationships of the event

variables in the tree.

3.4 General Sensor Model

For each of the search scenarios in this thesis, the following assumptions are

made about the sensor used by the searcher. First, as mentioned above the sensor

is subject to varying levels of accuracy based on its altitude. Additionally, this

sensor returns a binary value with 1 indicating that a target is present in the

scanned area and a 0 otherwise. The event of sensing at node n in T will be

referred to as Zn where Zn = 1 indicates a positive reading and Zn = 0 indicates

a negative reading. This sensor is also subject to both false positives (returns a

1 when no target is present) and missed detections (returns a 0 when a target

is actually there). The chance of a false positive will be referred to as α and

the chance of missed detections as β. Both of these rates vary depending on the

depth of the sensor reading in T which is related to the altitude of the searcher.
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Additionally these probabilities will be referred to as:

Pr[Zn = 1|Xn = 0] = α(d(n))

Pr[Zn = 0|Xn = 1] = β(d(n))

Where d(n) is the depth of node n. Additionally, the sensor does not change

its accuracy based on the number of targets present in the scanned area. Lastly,

the quadtree is structured in such a way that sensor readings at a node scan the

area covered by the node and thus each of its children. Refer to the figure 3.3 for

a graphic on multi level sensing.

Figure 3.3: Multi Level Sensing. The dot at the top of the figure represents

scanning at the root of the tree T . At this location the entire search region A is

visible. The other dots represent scan locations deeper in the tree. Take note that

by going deeper into the tree the size of the area scanned is reduced by a factor

of 4 for each level.
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3.5 Environment and Prior Belief Representation

For each of the search scenarios below, we assume that the search environment

A can be divided into a grid of cells and each of these cells can contain at most

one target. Additionally, the searcher is given a prior probability distribution over

this grid that indicates the probability that a target is located in each of the cells

in the environment. The searcher takes this prior distribution and converts it to a

quadtree based on the rules described in the following sections. Using this initial

prior, also referred to as a belief, the probabilities for the random variables Xn at

each node can be initialized. Lastly, the tree can be compressed using a technique

that will be described in a later section.

3.6 The Type1 Scenario

One way to use the probabilistic quadtree structure is in a scenario where the

searcher is looking for at most a single target in an environment. This scenario

will be referred to as Type1 and its associated probabilistic quadtree as a Type1

PQ. The single target assumption creates dependencies between the leaves of the

quadtree because if the target is not in one node then it must be in another or

outside of the environment. For this case, an additional node that cannot be

sensed is added to the tree which represents the event that the target is outside

of the search region. This node will be referred to as the null node and the

probability of a target being in this node as p∅.

p∅ = 1−
∑
l∈L(T )

pl

3.6.1 Belief Representation

Each node in the tree represents the probability that the one target is located

with the area covered by the node. This means the node at the root of the tree
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indicates the probability that the target is present in the overall search area. This

idea works for all internal nodes and yields the property that the probability that

any node in the tree contains a target is the sum of the probabilities stored in its

children.

pn =
∑
c∈C(n)

pc ∀n ∈ IN (T ) (3.1)

An example Type1 quadtree can be seen in Fig 3.4

Depth 1

Depth 2

Figure 3.4: Type1 Probabilistic Quadtree: In the above figure, it is the case that

there is a 100% chance that a target is located within the entire search region.

This probability is then divided as the tree goes down levels in depth. Also, in

this case the quadtree is shown to be fully expanded to depth 3.
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3.6.2 Integrating Sensor Readings: Top Down

In the original Type1 work [9], the tree was updated using a top down strategy

with Bayesian estimation:

ptn = Pr[Xn = 1|Z1, ..., Zt]

The worked built on the equations by T.H. Chung in [8]. These equations are

included and explained below:

Φ(Zt
n) = (1− Zt

n)(1− α(n)) + Zt
nα(n)

Ψ(Zt
n) = (1− Zt

n)β(n) + Zt
n(1− β(n))

Θ(i) =

 Ψ(Zt
n) : n = i

Φ(Zt
n) : n 6= i

Note that the above equations are for the case where the searcher is working on a

uniform grid and not on a probabilistic quad tree. The n in the above equations

refers to the cell in the grid being sensed. Φ indicates the probability of a correct

no detection in the case Zt
n is 0 and the probability of a false positive in the case

Zt
n is 1. Ψ indicates the probability that a detection was missed when Zt

n is 0 and

the probability a detection was correctly called when Zt
n is 1. Θ represents the

sensor model of the searcher and allows the correct values to be used depending

if the cell being updated is within the area covered by n. Different values are

used because of the correlations between cells due to the Type1 assumption. For

example, if Zn = 1 is read in a cell n different from the one being updated, cell

i, then the sensor reading should be considered as a false positive when updating

cell i with Bayes rule Pr[Xi = 1|Zn = 1]. Since it is assumed that there is only

one target within the environment that sensor reading must have been a false

positive if Xi = 1 with i 6= n. However, if i = n then the cells are the same and

Pr[Xi = 1|Zn = 1] represents the probability of a correct detection. With the
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above formulas a Bayesian update can be written in a general sense for any cell i

given a sensor reading Zt
n.

pti =
Θ(Zt

n)pt−1
i

Φ(Zt
n)(1− pti) + Ψ(Zt

n)pti
(3.2)

By expanding on these definitions, the Type1 probability updates after re-

ceiving a sensor reading Zn at node n can be done with the following top down

strategy.

1. First, update the scanned node n using Eq. (3.2)

2. Next, this probability can be propagated downwards to its children c pro-

portionally using the following relationship:

ptc = pt−1
n +

(
pt−1
c

pt−1
n

)
δp ∀c ∈ C(n)

where

δp = ptn − pt−1
n

Propagating in this manner is done because it assigns credit for the sensor

reading proportionally based on the existing children probabilities. This

rule is applied recursively for each child until all leaves descendant from n

are updated.

3. Then update all leaf nodes in T that were not updated by the previous step.

They are updated using the case of Θ(i) where i 6= n.

4. Lastly, update all internal nodes in T using the parent child relationship

Eq. (3.1).

3.6.3 Integrating Sensor Readings: Bottom Up

This thesis proposes doing all updates in a completely bottom up manner. The

new update method is introduced because it can better handle the Type2 case
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that will be described in sections below. In the Type1 case the update results

in the same probabilities as the top down approach. If one is to assume that

at most only one target is present in the entire quadtree area, correlations occur

between nodes in the tree. This is because if there is an object in one area of the

environment it cannot be located in any other area as well. Sensor readings can

be integrated into a Type1 PQ as follows assuming a sensor reading z at node n:

1. First, use Bayes rule to update the leaf nodes i of the tree in the sensing

area of the searcher.

Pr[Xi = 1|Zn = z] =
Pr[Zn = z|Xi = 1] Pr[Xi = 1]

Pr[Zn = z]
(3.3)

Pr[Zn = z|Xi = 1] is the sensor model for the searcher and indicates the

probability of either getting a correct detection or a missed detection.

2. Next, use Bayes rule to update the leaf nodes o and the null node of the

tree not in the sensing area of the searcher.

Pr[Xo = 1|Zn = z] =
Pr[Zn = z|Xo = 1] Pr[Xo = 1]

Pr[Zn = z]
(3.4)

In this case, Pr[Zn = z|Xo = 1] is the probability that the sensor incorrectly

returned a detection or correctly indicated no detection.

3. Using the total probability theorem, Pr[Zn = z] is equal to

Pr[Zn = z] = Pr[Zn = z|Xn = 1] Pr[Xn = 1]+Pr[Zn = z|Xn = 0] Pr[Xn = 0]

(3.5)

Also note that Pr[Xn = 0] = 1 − Pr[Xn = 1] since Xn is a binary random

variable.

4. Finally, propagate the changes in all of the leaf nodes up the their parents

under the assumption that the probability of the parent node is the sum of

its children.
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All Type1 experiments were done using a bottom up approach unless stated

otherwise

Refer to Algorithm 1 for a summary on the update process.

Algorithm 1: Type1Update

Input: probabilistic quadtree T , sensed node n, sensor reading z

inside← S(n) ∩ L(T )

outside← L(T ) \ inside

foreach i ∈ inside do

Update pi using Eq. (3.3)

foreach o ∈ outside do

Update po using Eq. (3.4)

internal← T \ L(T ) //ordered deepest first

foreach i ∈ internal do

Update pi using Eq. (3.1)

3.6.4 Determining Where to Search

The objective function that the searchers would like to minimize is the expected

time to detect the target in the environment. The optimal way to compute this

value is to try all sensing sequences and determine which one identifies the target

with the most certainty the fastest. Unfortunately, this method is intractable so

heuristic methods must be used. One way to reduce the computational burden is

to use a greedy strategy and compute the best node for the next time step only

without explicitly accounting for what may happen in the future. With these

adjustments to the problem there are a variety of ways to determine where to

search next. The first method that was applied to probabilistic quadtrees was to

use a function based on the probability stored in each node [9]. A quality function

was devised that divided each nodes probability by the distance the searcher would

need to travel to get to this node. The idea behind this method is that it tries to
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drive the searcher to areas with high probability of containing an intruder, while

also balancing travel cost and the benefits of hierarchical sensing. The exact

formula was first described in [9] and is included here:

J(n′) ,
pn′4d(n′)

cost(n, n′)
, n, n′ ∈ N (T ) (3.6)

where d is returns the depth of a node. This objective function J can be computed

in constant time. The next node n′ can then be selected by taking the argmax of

the objective function J above.

n′ = argmax
n

J(n)

Note that using this method it takes linear time in the size of the tree to

compute the next search location.

Alternatively, one can instead search nodes where the highest amount of ex-

pected information will be gained. This allows the searcher to find areas where it

can reduce its uncertainty about the environment the most.

J , I(n′), n′ ∈ N (T ) (3.7)

Using concepts from information theory, the expected information gain I can be

computed as follows:

I(n) = H(T )− EZn [H(T |Zn)]

where H(T ) represents the entropy of T , EZn is the expectation with respect

to possible sensor readings Zn, and H(T |Zn) represents the entropy of T after

the inclusion of sensor reading Zn. It can be shown that the entropy of a Type1

probabilistic quadtree is equal to the following:

H(T ) = −p∅ log2 p∅ −
∑

n∈L(T )

pn log2 pn (3.8)

This formula is simply the entropy of a random variable with k different values

where in this case k is the number of possible target locations. In the tree, the
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target must be located in one its leaves or the null cell outside of it. Since the

target can only be in one of those locations, only k options are possible. The

formula for the entropy of a random variable Y with k outcomes {y1, y2, ...yk} is

included below.

H(Y ) = −
k∑
i=1

pi log pi

When computing the information gained by scanning a node, the entropy after

the scan must be calculated. If the formula above is used then it takes linear

time to compute this updated entropy and thus quadratic time to compute the

information gain for all nodes in the tree. However, for the Type1 case with some

manipulation the expected information gained by scanning at each node for all

nodes in the tree can be computed in linear time rather than quadratic. This is a

contribution of the thesis and is explored in greater detail in the next subsection.

The last method used for Type1 is a balance of information gain and distance.

The searcher weighs the expected information gain from scanning a node with its

distance away from the searcher using the formula below:

J ,

[
γ

I(n′)

maxn?∈N (T )I(n?)
− (1− γ)

D(n, n′)

maxn?∈N (T )D(n?, n′)

]
, n′ ∈ N (T ) (3.9)

Where D is a function that returns the euclidean distance between the center

of two nodes and γ is a factor that weights the importance of information gain

and distance. The idea behind this formula is to encourage the searcher to scan

areas that are close to it. Since the searcher has limited search time it has to

balance the trade off for traveling far to get lots of information and traveling a

shorter distance to get less. The exact value for γ can be tuned depending on the

importance of distance.

For completeness, non myopic techniques (i.e. techniques also considering

future actions) were explored, but in our brief testing did not seem to yield much

better search performance and required significantly more computation time to

evaluate.
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3.6.5 Expected Information Gain in Linear time

When deciding where to sense next the expected information gain must be

computed for each node using the formula below.

I(n) = H(T )− EZn [H(T |Zn)]

where EZn is the expectation with respect to the value Zn sensed when scanning

node n, and H(T ) is the entropy of T defined as

H(T ) = −p∅ log2 p∅ −
∑

n∈L(T )

pn log2 pn

Because of the correlations between leaf nodes in T , when computing H(T |Zn)

one must compute new probability values for all nodes in T . This probability

update requires O(|N (T )|) operations and thus the naive approach to computing

H(T |Zn) requires linear time. Since this computation has to be done for every

node in T the required complexity is O(|N (T )|2). It is possible to reduce this

complexity by exploiting properties of the PQ structure. We do this by first

rewriting the entropy of the tree after a scan in two parts. One part containing

all sensing locations covered by a scan and those outside of the sensing region.

H(T |Zn) = −
∑

i∈In(T )

p′i log2 p
′
i −

∑
i∈On(T )

p′i log2 p
′
i

Where p′i is the probability of a target being located in node i after a scan at node

n, In(T ) is the set of leaves of T that are within the region covered by node n and

On(T ) is the set of leaves of T that are outside of the region covered by node n.

The null node p∅ is also considered to be part of the outside set. By using Bayes

rule, the probability at node i after a scan can be computed as

p′i =
Pr[Zn = z|Xi = 1] Pr[Xi = 1]

Pr[Zn = z]

From the section above about bottom up updates, it was shown that Pr[Zn =

z|Xi = 1] has different meanings and values depending if the node being updated
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is inside or outside of the sensing region.

Pr[Zn = z|Xi = 1] = Pr[Zn = z|Xn = 1], ∀i ∈ In(T )

Pr[Zn = z|Xi = 1] = Pr[Zn = z|Xn = 0], ∀i ∈ On(T )

One situation is where node i is within the sensing area which means this is the

probability that the sensor returns a correct detection or it misses the detection.

This case will be captured by the constant ηn

ηn =
Pr[Zn = z|Xi = 1]

Pr[Zn = z]
=

Pr[Zn = z|Xn = 1]

Pr[Zn = z]
, ∀i ∈ In(T )

The other case is when node i is outside of the sensed area. This means that

Pr[Zn = z|Xi = 1] represents the probability of a correct no detection and a false

positive. This case will be captured by the constant ζ

ζn =
Pr[Zn = z|Xi = 1]

Pr[Zn = z]
=

Pr[Zn = z|Xn = 0]

Pr[Zn = z]
, ∀i ∈ On(T )

In both cases when applying Bayes rule, this update can be considered to be a

multiplication of one of the constants above times the probability that node i

contains a target. Thus two situations arise:

The updated node may be inside the scanned area

p′i = ηnpi ∀i ∈ In(T )

or outside of it

p′i = ζnpi ∀i ∈ On(T )

By substituting these values into the equation above the following result is ob-

tained:

H(T |Zn) = −
∑

i∈In(T )

ηnpi log2(ηnpi)−
∑

i∈On(T )

ζnpi log2(ζnpi)
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By using the property that log(ab) = log(a) + log(b)

H(T |Zn) =−
∑

i∈In(T )

[ηnpi log2(ηn) + ηnpi log2(pi)]

−
∑

i∈On(T )

[ζnpi log2(ζn) + ζnpi log2(pi)]

This can be divided further into a sum of 4 terms

H(T |Zn) =− ηn log2(ηn)
∑

i∈In(T )

pi − ηn
∑

i∈In(T )

pi log2(pi)

− ζn log2(ζn)
∑

i∈On(T )

pi − ζn
∑

i∈On(T )

pi log2(pi)

At this point, two of the sums can replaced with quantities that are known before

the update. The sum of the probabilities pi inside the sensing region is the same as

the probability that the target is located in node being sensed. This is true because

of the Type1 assumption that only 1 target is present in the entire search region.

Since scanned regions correspond to nodes on the quadtree, this probability sum

can be replaced with the value pn assuming the scan occurs at node n.

H(T |Zn) =− ηn log2(ηn)pn − ηn
∑
In(T )

pi log2(pi)

− ζn log2(ζn)(1− pn)− ζn
∑
On(T )

pi log2(pi)

The outside sum was replaced as well since the probability that a target is found

outside a node must be 1 − pn because the target is either inside or outside of

node n. The remaining sums can also be replaced in a similar manner by pre

computing possible values for the sums. This means that they can be computed

before evaluating the information gain at each node. These values can be handled

similarly to probabilities in a Type1 tree. By defining a new term for leaf nodes

in the tree:

hi = pi log2(pi) ∀i ∈ L(T )
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Substituting this into the above equation yields

H(T |Zn) =− ηn log2(ηn)pn − ηn
∑
In(T )

hi

− ζn log2(ζn)(1− pn)− ζn
∑
On(T )

hi

In order to remove the remaining sums, the values of hi can be precomputed for

internal nodes. This is done by defining

hi =
∑
c∈C(i)

hc ∀i ∈ IN (T )

for all internal nodes. This means that the values of hi can be computed for all

nodes in the tree in linear time in the size of the tree before any information gain

computations take place. One way to compute hi for all nodes in linear time

is to use a simple recursive algorithm 2 starting from the root of the tree. The

algorithm works by first computing h for each leaf. Then each internal node gets

its h value set to the sum of its children’s h values. Computing the h values in

this way requires visiting each node in the tree one time, resulting in a linear

computation for the values of h in T .

Algorithm 2: Compute h

Input: probabilistic quadtree node i

if i ∈ L(T ) then

hi ← pi log2(pi)

else

hi ← 0

foreach c ∈ C(i) do

hi ← hi + Compute h(c)

Using the computed h values above, the entropy equation can be simplified

further. The sums of hi can be replaced by applying similar logic as in the pi

case. The main difference is that the sum over the outside regions is now equal to
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−H(T )− hn because the sum over all leaf hi values is equal the negative entropy

of the tree. The portion of entropy outside must be whatever portion that is left

over after removing the portion covered by hn. This yields the final equation for

computing the entropy given a sensor reading at node n

H(T |Zn) = −ηn [log2(ηn)pn + hn]− ζn [log2(ζn)(1− pn)− (H(T ) + hn)] (3.10)

The resulting equation yields a computation that can be done in constant

time for each node in the quadtree. By using this technique, the node maximizing

expected information gain can be determined in linear time using Algorithm 3.

Algorithm 3: Compute InformationGain

Input: probabilistic quadtree T

Compute H(T ) using Eq. (3.8)

Compute hn ∀n ∈ N (T ) using Algorithm 2

Compute H(T |Zn = z) ∀n ∈ N (T ), ∀z ∈ {0, 1} using Eq. (3.10)

Compute I(n) = H(T )− EZn [H(T |Zn)] ∀n ∈ N (T ), ∀z ∈ {0, 1}

Return I

In Algorithm 3, each step operates in O(k) where k is the number of nodes in

the probabilistic quadtree T . Thus the entire method takes O(k) time to compute

the expected information gain from scanning at any node inside of T .

3.6.6 Expanding the Tree

In our tests, the searcher would only add new nodes to its quadtree when

receiving a sensor reading at a leaf node indicating a target was present. To add

new nodes, the searcher marks the leaf node as internal and adds 4 children to

this node. It is assumed that none of these new children are more likely than any

of the others to contain a target so their probabilities are each initialized to:

pc =
pn
4
∀c ∈ C(n) (3.11)
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3.6.7 Stopping the Search

In the Type1 case, searchers will continue searching until a cell at the maximum

depth of the quadtree contains a probability that is above a given threshold. This

threshold could be set to 1 if it is desired that the searcher searches for the

maximum mission duration. In general, this threshold represents the confidence

required for the searcher to stop its search.

3.6.8 Algorithm

Algorithm 4: Type1 Searcher

Input: prior belief distribution

T ← constructTree(prior)

while not searchDone do

Compute J(n) ∀n ∈ N (T ) using Eq. (3.9)

n′ ← argmaxn∈N (T ) J(n)

Travel To n′

z ← Scan(n′)

Type1Update(T , n′, z) using Algorithm 1

if z = 1 ∧ depth(n) < D then

Add 4 new children to T each with probability pn
4

. See Eq. (3.11)

foreach n ∈ L(T ) do

if depth(n) == D ∧ pn > threshold then

SearchDone

Report n

Algorithm 4 is formed by putting together the pieces from the previous sub-

sections and provides a method to search on a PQ. First the searcher constructs

a tree based on the provided prior target distribution. Then as long as the search

is not done the searcher computes a good sensing location. It then moves to this
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location, senses, and integrates this reading into its PQ. Once the sensor read-

ing is integrated into the searcher’s tree, the searcher decides if it has found the

target with enough certainty. If the searcher is confident enough, it can stop the

search. Otherwise, it continues by picking a next sensing location and repeating

the process. Note that the searcher must find the target at the deepest level in

the tree.

3.7 The Type2 Scenario

In another scenario that we call Type2, the searcher is searching an area with

an unknown number of targets and assumes that each cell of the environment

is independent from each other. Since each cell is independent, the additional

null node that was added in Type1 for the case where the target is outside of

environment is not needed. This is because the tree no longer represents the

possible location for a single target and thus the probabilities no longer sum to 1.

3.7.1 Belief Representation

The above Type1 methods can be extended to work in the case of multiple

targets. The first change is that nodes in the tree store the probability that at least

one target is present in the area. Also, since the probabilities for each child are

independent from each other and each child may contain a target the probability

of a parent node can be determined using the following formula:

pn = 1−
∏
c∈C(n)

(1− pc) ∀n ∈ IN (T ) (3.12)

This formula states that the probability that a parent node contains at least one

target is equal to 1 minus the probability that all of its children nodes are empty.
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3.7.2 Integrating Sensor Readings: Top Down

In the first Type2 paper [7], sensor readings were propagated downwards when

sensing occurred at an internal node. First, the probability of the scanned internal

node would be updated using the same Bayes rule formula as Type1 Eq.(3.2).

Then the probability change would be propagated uniformly to its children using

the following ideas:

Let qn = 1 − pn and qn = q1q2q3q4 where qi represents the probability that

child i is empty. Assume that q′n is the probability that node n is empty after a

scan at node n. It follows that q′n = qkn for some value k. Where k is the power

needed to raise qn to the new probability after applying Bayes rule. This value k

is useful because it allows propagation of probability changes downwards in the

tree. It also means that

q′n = qkn

q′n = [q1q2q3q4]k

q′n = qk1q
k
2q

k
3q

k
4

Meaning that each child’s probably after an update can be set to q′i = qki .

These probability changes can be propagated all the way down to the leaves in

this manner and then propagated back up to the root of the tree using the parent

child relationships mentioned above (3.12).

3.7.3 Integrating Sensor Readings: Bottom Up

By using a bottom up approach, the update formula can be very similar to

Type1 except that in the Type2 scenario only the leaves in the tree that are

under the scan are updated rather than all leaves in the tree. This is because in

the Type2 case there is no longer a correlation between leaf nodes. The following
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formula can be used to update the scanned leaf nodes i after a sensor reading:

Pr[Xi = 1|Zn = z] =
Pr[Zn = z|Xi = 1] Pr[Xi = 1]

Pr[Zn = z]
(3.13)

Pr[Zn = z|Xi = 1] is the sensor model for the searcher and indicates the probabil-

ity of either getting a correct detection or a missed detection. Unlike the Type1

case the outside leaves do not need to be updated since they are independent from

those scanned. These probability changes are then propagated back upwards us-

ing the parent child relationship mentioned in the section above. The advantage

of the bottom up update approach is that it uses properties of the Type2 PQ to

perform the update rather than making the uniform assumption that is made for

top down updates when propagating changes downward. An additional advantage

is that the bottom up update method proves a more conservative change in the

probabilities. When using the top down update method the probabilities tend to

jump quickly to the extremes, 0 or 1, even though the sensor cannot be sure which

cell contains or does not contain a target. An example of how the probabilities

change in the two update methods is shown in Figure 3.5.

.91

.50 .30.70 .10

.99

.73 .49.90 .18

.94

.55 .33.76 .11

Tree Before Top Down Update Bottom Up Update

Figure 3.5: Update Example. This figure shows an example update on Type2 PQ

with 5 nodes. The sensor reading occurs at the root of the tree with α = 0.1 and

β = 0.1. The probabilities are rounded for display.

All Type2 and patrolling experiments were done using a bottom up approach

unless stated otherwise
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Algorithm 5 provides a brief method for updating nodes in a Type2 PQ after

a sensor reading.

Algorithm 5: Type2Update

Input: probabilistic quadtree T , sensed node n, sensor reading z

inside← S(n) ∩ L(T )

foreach i ∈ inside do

Update pi using Eq. (3.13)

internal← T \ L(T ) //ordered deepest first

foreach i ∈ internal do

Update pi using Eq. (3.12)

3.7.4 Determining Where to Search

In our tests, only the information gain based method was used to search in

the Type2 case. Searching based only on probability is more difficult because if

the searcher favored an area with high probability it would find one target and

continually sense that node since it would have the highest chance of containing

a target. Once the searcher has identified a target it should not continue to scan

that cell since other cells need to be explored. One can get around this problem by

assigning thresholds for when to ignore cells, but the entropy based methods get

around this problem without needing to tune such parameters. This is because

entropy based methods already favor searching areas with the most uncertainty.

As in the Type1 case, the information gain for scanning at node n in a Type2 PQ

can be computed as

I(n) = H(T )− EZn [H(T |Zn)]

The main difference from the Type1 case is in the way the entropy of the tree is

calculated. For a Type2 tree the entropy is equal to

H(T ) = −
∑
l∈L(T )

[pl log2 pl + (1− pl) log2(1− pl)]
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This entropy is the sum of the entropies of the individual independent leaf binary

random variables. Note that the information gain calculation for all nodes cannot

be done in linear time as in the Type1 scenario. In short, the strategy used for

pre computing in the Type1 scenario fails due to the log2(1 − pl) term. Instead,

when calculating the information gain for scanning at a node, the entropy must

be calculated using the equation above which takes linear time. Thus resulting in

a O(|N (T )|2) computation for calculating the information gain for every node in

the tree.

3.7.5 Expanding the Tree

Much like the Type1 case the tree is only expanded when a positive reading

occurs. The difference is how the probabilities for the children nodes are assigned.

We again assume that no child node is more likely to contain a target. This yields

4 new children each with the probability:

pc = 1− 4
√

1− pn (3.14)

3.7.6 Stopping the Search

Unlike the Type1 case, the number of intruders in the environment is unknown

so the searcher cannot stop once it has found all the targets. Instead, the searcher

is allowed to stop once it has reached a certain confidence about its knowledge of

the environment. To achieve this, the stopping criterion used is the one proposed

in [27]. Let U be defined as:

U(T ) =

∑
l∈L(T ) H(l)

|L(T )|Hmax

(3.15)

Where H is the entropy defined above and Hmax is the largest occurring en-

tropy in the leaves of the tree. The search ends when the searcher runs out of time

or the entropy for each leaf falls below εU(T ). By decreasing ε, the searcher can
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be forced to search for more time before ending its search. This stopping criterion

prevents the searcher from having leaf nodes with entropies that are much higher

than other leaves.

3.7.7 Declaring Targets

Rather than use a threshold method as in the Type1 case we use a cost based

approach to determine if a target is present at a node.

For each node, a binary decision must be made Dn indicating if a target is

present Dn = 1 or no target Dn = 0.

With this formulation, the cost associated with making a decision at node n

can be formulated as

Cn = Pr[Dn = 1|Xi = 0] Pr[Xi = 0]C10

+ Pr[Dn = 0|Xi = 1] Pr[Xi = 1]C01

+ Pr[Dn = 0|Xi = 0] Pr[Xi = 0]C00

+ Pr[Dn = 1|Xi = 1] Pr[Xi = 1]C11.

(3.16)

Where Cij is the cost to the searcher when decision Dn = i is made when

Xn = j. For the simplest case of only one sensor reading Dn = 0 should be chosen

when the following is true [20]

Pr[Z|Xn = 0]

Pr[Z|Xn = 1]
>

(C11 − C01) Pr[Xn = 1]

(C00 − C10) Pr[Xn = 0]
(3.17)

Dn = 1 should be selected otherwise. In our case, many sensor readings are taken

over the course of the mission. Let Z1
n, ...., Z

m
n represent the sequence of m sensor

readings over a node n. The above decision rule can be changed to the following.

Pr[Zm
n |Xn = 0]

Pr[Zm
n |Xn = 1]

>
(C11 − C01) Pr[Xn = 1|Z1

n, ..., Z
m−1
n ]

(C00 − C10) Pr[Xn = 0|Z1
n, ..., Z

m−1
n ]

. (3.18)

Rather than compute this value at the end of a search mission, one can show

that it is simpler to compute the decision after each sensor reading using 3.17.
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This removes the need to remember each individual sensor reading and allows the

searcher to have a decision at any point during the mission.

3.7.8 Algorithm

Algorithm 6: Type2 Searcher

Input: prior belief distribution

T ← constructTree(prior)

while not searchDone do

Compute J(n) ∀n ∈ N (T ) using Eq. (3.9)

n′ ← argmaxn∈N (T ) J(n)

Travel To n′

z ← Scan(n′)

Type2Update(T , n′, z) using Algorithm. 5

if depth(n) = D then

Update Decision for node n using Eq. (3.17)

if z = 1 ∧ depth(n) < D then

Add 4 new children to T each with probability pn
4

. See Eq. (3.14)

Compute U(T ) using Eq. (3.15)

SearchDone ← true

foreach n ∈ L(T ) do

if −pn log2 pn − (1− pn) log2(1− pn) > εU(T ) then

SearchDone ← false

Report leaves at depth D with Dn = 1

Algorithm 6 shows the general search algorithm for the Type2 scenario formed

by putting together all the pieces in the previous sub sections. The algorithm

works similar to the Type1 case in that the searcher computes the best node to

sense, travels to it, reads from its sensor, and integrates the reading into its PQ.

The difference is that the decision variables are updated after each sensor reading

and the value of U is computed and compared to each leaf node to determine if
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the search should continue.

3.8 Patrolling Scenario

By expanding on the Type2 scenario, we can also introduce the notion of

intruders that come in to the environment during the mission. In this scenario,

it is the job of the searcher to locate these intruders as quickly as possible to

reduce the damage or loss in an area. For this case the PQ is modified to include

a few new pieces of information for each node: loss and detrimental. The added

loss values allow the searcher to consider some nodes as more important than

others and the detrimental informs the searcher about the rate that intruders are

entering a particular node. Both these values will be described in greater detail

in the next section.

3.8.1 Formulation and objective

The following derivations in this subsection originate from [2]. It is assumed

in the patrolling scenario that the search region A is divided up into cells that

correspond to regions covered by the leaf nodes in a fully expanded quadtree.

Each of these cells in the environment has an associated loss which is a penalty

that is paid each time step that an intruder is in that cell. Let l be a function

that maps a cell to its loss value. Let another function a indicate if a target is in

cell c at time t. Over the time period [0,T] one can write the accumulated loss as

ρ =
T∑
t=0

∑
c∈A

a(c, t)l(c)

It is the goal of the searcher to minimize this function by identifying targets and

deciding when to remove them from the environment. In addition to a loss value,

each cell in the environment has an associated probability that an intruder will

enter the area. Let πc be the probability of having an intruder enter cell c within
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one unit of time. This intruders appear into cell c without travelling and do not

move once they enter the environment. Additionally, once an intruder enters the

environment it does not leave until removed by the searcher. The searcher must

pay a cost to remove targets so it will only attempt to remove them once it is

certain enough about their presence. Also, note that once the searcher decides to

remove a target the node can be considered clear of any intruders as removal is

assumed to not fail. The value of π for each node in the quadtree can then be

computed by multiplying the probably that no attacks occur in any of the cells

contained within node n

πn = 1−
∏

c∈R(n)

(1− πc)

This means that the probability of an intruder being in any node within the

probabilistic quadtree changes over time. This is done by computing 1 minus the

probability that the node in the tree remains empty over ∆t units of time. To

compute the probability of the node remaining empty, multiply its probability of

being empty times the chance a target does not enter for each time step. Thus,

over ∆t units of time the probability in a node changes to

pt+∆t
n = 1− (1− ptn)(1− πn)∆t. (3.19)

3.8.2 Determining Where to Search

In this scenario, methods based completely on entropy do not work without

modification. This is because the searcher may spend most of its time reducing

the uncertainty in the PQ and never be sure enough of a particular intruder

location. This constant attempt to reduce uncertainty can prevent the searcher

from removing any intruders and thus can cause the searcher to pay a large penalty

during the mission. To combat this, the searcher needs to scan in areas that are

likely to contain an intruder. One proposed strategy in this domain is searching

areas weighted by loss, probability, and area [2]. First define a function j which

40



measures the value of a node n

j(n) =
l(n)µ(n)

A(n)

where µ(n) is the expected number of targets in node n and A(n) is the area of

the region associated with node n. Using this function, a new objective function

weighted by the distance D can be written

J , γ
j(n′)

maxn?∈N (T )j(n?)
− (1− γ)

D(n, n′)

maxn?∈N (T )D(n?, n′)
(3.20)

The benefit of weighing by distance is to encourage the searcher to look at

nearby nodes rather then potentially travelling far to scan a slightly better node.

This reduction in time spent travelling is intended to help increase the amount

of time the searcher can spend making sensor reads and removing targets. In

this thesis, we also propose another search method based on weighing probability,

entropy, and distance. The idea is that internal nodes will be scored based on their

entropy and leaf nodes will be scored by their probability. This allows the searcher

to consider areas inside the tree where it can scan to gain lots of information, while

also allowing it to sometimes scan leaves with high probability and remove any

intruders at those cells. By tuning the weights, one can control how much the

searcher favors exploring versus trying to remove intruders. The formula used is

shown below:

J ,γ

[
ω

P (n′)

maxn?∈N (T )P (n?)
+ (1− ω)

H(n′)

maxn?∈N (T )H(n?)

]
− (1− γ)

D(n, n′)

maxn?∈N (T )D(n?, n′)

(3.21)

n′ ∈ N (T ), ω ∈ [0, 1], γ ∈ [0, 1]

Where ω controls how much the searcher favors gathering information versus

removing targets and γ controls the importance of distance. The other values in

the equation are

P (n) =

 pnln : n ∈ L(T )

0 : otherwise
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H(n) =

 ln [−pn log2 pn − (1− pn) log2(1− pn)] : n ∈ IN (T )

0 : otherwise

3.8.3 Expanding the Tree

Tree expansion is done identically to the Type2 scenario.

3.8.4 Stopping the Search

In the patrolling scenario, the searcher continues searching for the entire mis-

sion duration because it assumed that a target can enter the environment at any

moment and the number of intruders is potentially unlimited.
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3.8.5 Algorithm

Algorithm 7: Patrolling Searcher

Input: prior belief distribution

T ← constructTree(prior)

while not searchDone do

Compute J(n) ∀n ∈ N (T ) using Eq. (3.21)

n′ ← argmaxn∈N (T ) J(n)

Travel To n′

z ← Scan(n′)

Type2Update(T , n′, z) using Algorithm. 5

Detrimental Update: pn ∀n ∈ N (T ) using Eq.(3.19)

if depth(n) = D then

Update Decision for node n using Eq. (3.18)

if Dn = 1 then

Attempt to remove intruder at n

if z = 1 ∧ depth(n) < D then

Add 4 new children to T each with probability pn
4

. See Eq. (3.14)

Algorithm 7 shows the method used to control the patrolling searcher formed

by putting together all the pieces in the previous sub sections. It behaves similar

to the Type2 scenario with a few modifications. First after performing a Type2

update the detrimental effect must be accounted for. This increases the probability

that intruders are inside of the nodes in the PQ. Additionally, if a decision value

is ever 1 for a leaf node in the tree at the maximum depth then the searcher will

remove any intruder in the node from the environment.
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3.9 Probabilistic Quadtree Compression

Compression of a probabilistic quadtree can be done in several ways. The first

proposed method in [9] utilizes the idea of disparity of a node where

disparity(n) = maxc∈C(n)pc −minc∈C(n)pc

The goal of disparity is to remove nodes where the probability values differ greatly.

The idea is that areas with smaller differences lose less information when com-

pressed in the PQ structure. The method compresses a tree by first building a full

tree given an initial belief distribution. Then nodes with the lowest disparity are

removed until the tree is of the desired size. An alternative approach is proposed

in this thesis that considers all children of a node rather than just its min and

max. First take an initial prior and construct the full quadtree for that prior.

Then as long as the tree contains more than the desired amount of nodes, greedily

remove nodes that impact the error the least. More explicitly the error of a node

n is defined as follows:

Error(n) =
∑
l∈I(n)

(ExpandedProb(n, l)− pl)2 (3.22)

Where I(n) is the set of leaves that are descendants of node n. If two nodes

share the same error the node with the greater depth in the tree is removed. The

function ExpandProb returns the probability that would be in leaf l if node n was

split evenly to the same depth as l. For the Type1 case the expanded probability

is calculated as:

ExpandedProb(n, l) =
pn

4 ∗ [depth(l)− depth(n)]

Where as in the Type2 or patrolling case it is:

ExpandedProb(n, l) = (1− pn)−4∗[depth(l)−depth(n)]

Note that since the above method is greedy it will not return the optimal

compression of the probabilistic quadtree, but it worked well enough in practice.
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The method also has the benefit or working in either of the Type1, Type2, and

patrolling cases. The only difference is in the way the probabilities of the expanded

tree are computed.

Algorithm 8: TreeCompression

Input: probabilistic quadtree T , maximum number of nodes k

foreach n ∈ N (T ) do

Compute Error(n) using Eq. (3.22)

T ′ ← T

while |T ′| > k do

n← argmaxn∈IN (T ) Error(n)

T ′ ← T ′ \ C(n)

return T ′

Example compression results for the Type1 PQ in Figure 3.6 be seen in Figure

3.7 and Figure 3.8. Note that in this case the results are very similar for the two

methods.

Figure 3.6: A full tree with 5461 Nodes
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Figure 3.7: Compression using the error based approach with 400 and 100 nodes

respectively

Figure 3.8: Compression using the disparity based approach with 400 and 100

nodes respectively
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CHAPTER 4

Multi-Agent Strategies

All of the above tree scenarios can be expanded to handle the case of mul-

tiple searchers in the environment. The main difficulty is determining how they

should coordinate. On one side of the spectrum there is the idea of a single con-

troller which knows all information about the searchers and makes decisions for

all searchers. This controller has the most information and can potentially yield

the best performance. The downside is the solution requires full communication

and is less resilient to failure due to its reliance on a single controlling agent. If

the controlling agent fails then the entire search mission is over. At the other end

of the spectrum is a fully distributed solution where the searchers each run their

own controller and do not communicate with one another.

4.1 Multi-Agent Type1

4.1.1 Independent Searchers

The simplest multi-agent search strategy is to have each searcher preform the

search independently. This means that no information is shared between the

searchers. The search mission ends as soon as at least one of the searchers has

identified the location of the target within a confidence threshold. This strategy

is used as a baseline for other controllers because it is the simplest method for

scaling to multiple searchers and can be improved in various ways.
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4.1.2 Single Controllers

Alternatively, a few single controller strategies were tested to see how much

performance can be improved using a centralized controller. This meant that one

agent was controlling the actions of the other agents and it could then coordinate

the searchers efforts intelligently. By incorporating knowledge of other searchers

readings and locations, the search effort can be spread out more effectively and

reduce wasted scans. For each of the single controllers discussed in this thesis,

searchers were never assigned the same sensing location as another searcher to

prevent wasted search effort. Each of the following three strategies were imple-

mented:

• One controller would wait to give searchers new goals until all searchers

reached their goal. When assigning new locations, it selected the top r goals

where r is the number of robots and assigned them to team members. One

should note that these goal locations may overlap and thus not be the true

optimal assignment of the r searchers.

• In order to reduce the time wasted by searchers waiting for the others to

finish, an additional controller was introduced that would immediately as-

sign a new goal to a searcher once it finished a scan. This new goal could

not be the same as any of the other searchers.

• The last controller performs a full re plan whenever any searcher completes a

scan. This causes each searcher to take advantage of every scan and causes

any searcher in flight to potentially reconsider their goal if a better goal

location is now available.

It is likely possible to improve on these controllers further, but they served as

target performances for the other more distributed controllers.
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4.1.3 Partitioning Based Controllers

One simple way to divide the work among the searchers is to partition the

search area and assign searchers to particular regions. The advantage of this

method is that the searchers do not need to communicate during the mission

and can still divide up the search effort. In the Type1 senario, partitioning is

done by assigning searchers to a sub tree of the original quadtree used in the

single searcher Type1 controller. For cases where the number of searchers is not

a power of four, a searcher can be assigned to multiple sub trees. Similar to

the multi-agent strategies above the mission ends once any one of the searchers

find the target with enough confidence. The downside of this method is that

without communication and a more complicated control scheme the searchers’

search regions do not change as the mission progresses. Since the target can only

be in one of the search regions, this means that eventually search effort will be

wasted because most of the searchers are stuck searching areas with a very low

probability of finding the target. In order to alleviate this issue, repartitioning

via communication can be introduced to their controllers, but it is not explored

in this thesis.

4.1.4 Communicating Searchers

Another strategy without partitioning is to allow the searchers to communicate

with each other. This was done by allowing searchers within a given radius to

receive information whenever a nearby searcher performs a scan. Information

passed included the scan result and its next goal location. This allows the searchers

to incorporate the data of others and consider the locations of other searchers so

the search effort is not wasted by sensing the same nodes as each other. In

the experimental section of this thesis, the influence of communication radius on

search performance is evaluated. Additionally, experiments were done to test the
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importance of sharing location versus sharing scan information.

4.2 Multi-Agent Type2

Given that the leaf nodes of a Type2 tree are independent the scenario lends

itself very well to partitioning if no information can be shared between searchers.

If searchers are able to communicate, one way to take advantage of this is to

repartition throughout the mission such that the searchers better cover areas

where little information is known; however, no experiments with repartitioning

were explored in this thesis.

4.3 Multi-Agent Patrolling

4.3.1 Independent Searchers

Similar to the Type1 case mentioned above, patrolling tests were done with

searchers that shared no information between each other and patrolled the envi-

ronment independently.

4.3.2 Partitioning Methods

More advanced partitioning was attempted for the patrolling problem. An in-

teger linear programming optimization problem was solved to determine optimum

partitions for searchers based on a given loss. The equations below were derived

by Nicola Basilico and are included here for completeness. Note that in this form

of portioning the searchers are each given their own quadtree to search and that

the areas covered by these trees can potentially overlap.

Assumptions:

• q ∈ Q quadtree roots, each one characterized by an altitude h(q)
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• g ∈ G grid cells, each one corresponding to a leaf of the quadtree and

characterized by a loss l(g)

• γ(q, g) = 1 if g falls in the visibility region of q

• r ∈ R set of robots with |R| = k

Decision variables

• xq,r, binary, equal to 1 iff robot r operates on the quadtree with root in q

• yg,r, binary, equal to 1 iff robot r’s quadtree has a leaf in g

max
∑
g∈G

u(g)

s.t.

∑
q∈Q

xq,r = 1 ∀r ∈ R (4.1)∑
r∈R

yg,r ≥ 1 ∀g ∈ G|l(g) > 0 (4.2)∑
r∈R

xq,r ≤ 1 ∀q ∈ Q (4.3)

yg,r ≥ xq,r ∀r ∈ R, g ∈ G, q ∈ Q, γ(q, g) = 1 (4.4)

yg,r ≤
∑

q∈Q:γ(q,g)=1

xq,r ∀r ∈ R, g ∈ G (4.5)

u(g) =
∑
r∈R

∑
q∈Q:γ(q,g)=1

xq,r
l(g)

h(q)
(4.6)

The first constraint provides the restriction that each searcher should only

have 1 tree root. This prevents searchers from being assigned to multiple search

partitions. The second constraint imposes that every cell with non zero loss should

be covered by at least one of the searchers. One could relax this constraint a bit

by having the searchers cover all nodes with loss greater than some constant k
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rather than 0. The third constraint states that no searchers can share the same

location for the root of their PQs. The fourth and fifth constraints bind x and

y together. In the fourth constraint, it assigns the y variables to 1 for all the

leaves of the quadtree q for robot r. The fifth constraint states that if y is 1

then it must be visible by one of the robot roots. The last constraint is the main

function being optimized which tries to maximize the loss covered while keeping

the overall area small by reducing the objective value based on altitude of the PQ

root location. Example partitions output from this formulation can be seen later

in the experiments chapter.
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CHAPTER 5

Experiments

5.1 Matlab Testing Framework

All of the experiments below were done using custom code developed in Mat-

lab. The software simulates each time tick of the search missions based on an

initial configuration. Both sensor readings and searcher movement are controlled

by the Matlab simulation. Within the simulation it is also assumed that the

searchers have perfect localization and can fly to their targets in a straight line

without hitting obstacles. The software was designed to be flexible and allow for

many different mission types and configurations to be tested.

5.2 General Test Settings

For each of the tests below the search trees were allowed to have a maximum

depth of 9. This means that the leaves of the fully extended quadtrees corre-

sponded to a uniform grid with 256x256 cells. Note that the root of the quadtree

is considered to be depth 1.

5.3 Common Type1 Settings

Each of the Type1 tests used the following configuration settings unless speci-

fied otherwise. Leaves in the tree were assumed to be of unit size with side lengths

of 1. This means that the overall size of the search region was a square with sides
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256 units long. Altitudes in the tree increased by powers of two starting from 2 at

the lowest depth. The sensor accuracy was relatively poor and had performance

characteristics shown in Figure 5.1. The sensor profile was chosen in a way that

the accuracy increased as the depth in the tree increased. The performance was

considered to be linear, but other profiles could be used.
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Figure 5.1: Searcher initial belief distribution

As a reminder, α and β are the false positive and missed detection rates of the

sensor respectively. When determining when to stop, the searcher had to obtain

a probability in a leaf node with at a value of at least 0.95. The length of a search

mission was set to 15,000 units of time. In all simulations, the searcher is able to

move 1 unit of distance in 1 unit of time. Additionally, sensing requires 1 unit of

time.
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5.4 Type1: Objective Functions

5.4.1 Experiment Configuration

The goal of this experiment was to test the performance of the various objective

functions for the Type1 PQ. Each of the following objective functions were tested

against two different intruder distributions: the original high probability based

objective function (Eq. (3.6)), information gain (Eq. (3.7)), and information

gain combined with distance(Eq. (3.9)). In the weighted case, information gain

accounted for 80% of the objective function, while distance accounted for the other

20%. Changing this number may improve the performance, but other values were

not explored for this test. For half of the tests, target locations were distributed

based on the same probability distribution as the searcher’s initial prior and in

the other half the targets are placed uniformly in the environment. For both test

types, a Gaussian prior centered near the origin was provided to the searcher (see

Figure 5.2). Which means that for half the tests the searcher is misinformed.

0
50

100
150

200
250

300

0

100

200

300
0

0.01

0.02

0.03

0.04

Figure 5.2: Searcher initial belief distribution

For the uniform target placement 256 missions were run, while in the case
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where targets matched the prior 100 missions were run. In both cases, the results

were obtained by taking average of all performed runs.

5.4.2 Results

Type MTTD Correct Detections Out of Time

Probability(3.6) 11504 90 162

IG(3.7) 5288 251 5

IG + Distance(3.9) 4082 254 1

Table 5.1: Results from running 256 missions with a uniform target placement.

MTTD (Mean Time To Detection) represents the time till the searcher found

the target over the missions. Note that MTTD also includes the mission times

where the searcher ran out of time. Correct detections are the number of missions

where the searcher identified the target location and out of time is the number of

missions where the searcher ran out of time before deciding on a target location.

Type MTTD Correct Detections Out of Time

Probability(3.6) 5537 86 14

IG(3.7) 2295 100 0

IG + Distance(3.9) 1902 100 0

Table 5.2: Results from running 100 missions with a target placement based on

prior probability distribution given to the searcher. The other columns have the

same meaning as Table 5.1

In both cases (Tables 5.1 and 5.2), information gain performed better than

the previous objective function based purely on probability and distance. One

should also note that in the case where the prior did not match the placement of

targets the original probability based method ran out of time over 50% of the time.

Whereas the information gain based methods very infrequently ran out of time.
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This seems to indicate that the information gain methods are better at handling

scenarios where bad information is given to the searcher. Also, one can see that

objective function that weighed distance with information gain performed better

than information gain alone. It is probable that by tweaking the weighting value

between the two the results could be improved further.

5.5 Type1: Multi-Agent

5.5.1 Experiment Configuration

The first set of multi-agent testing was done using a Gaussian prior centered

at the middle of the environment. For these experiments the target placement

did not match the prior and were placed uniformly in the environment similar to

the previous Type1 Experiment. Agents factored in distance when selecting the

next target using a weighting between information gain and distance. Information

gain accounted for 80% of the node value, while distance accounted for the other

20%. 256 missions were ran with a single target placed uniformly in the environ-

ment. Additionally, tests were run for varying numbers of searchers to measure

a method’s ability to scale up to larger numbers of agents. This experimental

configuration was used on each of the following methods:

1. Fully independent searchers

2. Single Controller with replanning only when all searchers reach their goal

3. Single Controller where individual searchers re plan once they reach their

goal

4. Single Controller where all searchers are given a new goal destination when

any scan is made.

5. Partitioned Searchers each using their own independent planning.
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Note that each of the above methods is discussed in greater detail in the chapter

on multi-agent search.

5.5.2 Results
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Figure 5.3: MTTD for the various methods over 256 runs per method per searcher

amount. The Wait all controller only has 3 samples because its performance was

deemed too poor to run for additional searchers. The partitioning planner was

tested with 2 and 4 searchers since this number mapped well to partitioning by

sub trees.

The differences in the controller performances can be seen in Figure 5.3. The

completely independent strategy scales poorly as the number of robots increases

where as the single controllers are able to scale and perform better. The single
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controller that waits for each searcher to finish its assigned task tends to not do

as well since it wastes search effort while searchers are waiting on each other to

finish. The method where every searcher receives a new goal on a scan works

the best, but requires more communication effort especially for larger numbers of

robots since whenever one reaches their goal all searchers must get a new goal.

While partitioning the searchers did not out perform the better single controllers,

it worked better than the independent case without requiring communication be-

tween searchers. The naive partitioning case may be dangerous however because if

the searcher assigned to the region with the target malfunctions then no searcher

will be able to locate the target. In cases where the searchers may have a high rate

of failure and communication is not easily available, a more independent based

approach may be required.

5.6 Type1: Information Sharing Tests

5.6.1 Experiment Configuration

Additional experiments were run to measure the importance of sharing goal

positions versus sharing sensor readings. Using the same configuration as above,

we ran one set of missions where the searchers used independent controllers, but

shared their goal positions with each other. The controllers would then avoid pick-

ing the same goal as another searcher. Overlapping nodes were allowed. Another

set of missions were run where the searchers would share their sensor readings

with each other, but not their goal locations. The sensor readings were shared

by sharing the area sensed rather than the specific node. The searchers could

integrate these readings by expanding their trees till their trees contained a node

with the same area. Note that for these experiments all the searchers shared the

same tree root location.
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5.6.2 Results
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Figure 5.4: Average mean time to detection for the different sharing types over

256 runs per method per searcher amount.

The results in Figure 5.4 show that sharing location alone does not tend to

benefit the searchers. This makes some sense as sharing location only prevents

searchers from sensing the exact same node in the quadtree. Since each searcher

starts in different locations, the chances of them sensing the same node very often

are low. Sharing sensor readings helped the searchers find their targets more

quickly, but not as fast as when both location and sensor readings were shared.

This is possibly because when sensor readings are shared the searchers will have

the same probabilities in their PQ. Thus it is more likely that robots will go to the

same nodes in the tree as they share the same posterior probability distribution

for the target location.
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5.7 Type1: Communicating Searchers

5.7.1 Experiment Configuration

Another Type1 test was designed to test the effect of communication range

on the performance of the searchers. We ran missions for each of the following

communication ranges: 30%, 25%, 20%, 15%, and 10% of the diagonal of the

environment. In our simulations, searchers would communicate only once after

they had scanned and would broadcast both the scan result and their goal loca-

tion to all nearby searchers. No relaying of information took place and messages

were assumed to be successfully delivered as long as the searchers were within

communication range of each other. No modeling of dropped messages or signal

strength were done in these tests. Results for these experiments are on the next

page.
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5.7.2 Results
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Figure 5.5: Average mean time to detection for various communication ranges

over 256 runs per range per searcher

Refering to Figure 5.5, a communication radius of 30% worked almost as well

as a full 100% radius. Additionally, as expected performance degraded as the

communication radius decreased. Also note that by even enabling a small amount

of communication over a short radius (as little as 10%) provides good performance

increases over the no communication case. This is especially true as the number

of searchers increases.

62



5.8 Type1: Data Transmission

5.8.1 Experiment Configuration

In order to evaluate the usefulness of a centralized controller, the amount of

information passed between the controller and agents was measured. The con-

troller considers sending a goal position to a searcher to be one message and also

one message when it receives a sensor reading from a searcher.

5.8.2 Results
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Figure 5.6: Average number of messages passed over 256 runs per controller type

per searcher amount.

The interesting result with Figure 5.6 is that the amount of data transmitted

for the single replan controller does not increase much as the number of searchers
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is increased. This is not true for the complete replan controller and the amount of

data required increases quickly as more searchers are added. It is possible when

implementing a single controller system that these data costs may be prohibitive

and the performance improvement of the single replan controller is not justified.

5.9 Common Type2 Settings

For the Type2 experiments, the size of the environment is the same as the

Type1 tests above. Additionally the same sensor performance from the Type1

experiments was used. The prior in Figure 5.7 was provided to all Type2 searchers.

In these experiments, targets were placed based on the prior distribution. The

prior was used to test the searchers ability to cope with targets that may be spread

out in separate regions of the environment.
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Figure 5.7: Type2 prior target distribution
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5.10 Type2: Top Down vs Bottom Up Updates

5.10.1 Experiment Configuration

Using the initial belief prior from above, the performance of the two update

methods was compared. 100 experiments were run each with a random number

of targets placed within the environment based on the prior distribution. The

number of targets ranged uniformly from 2 to 7. Note that an additional set of

100 tests was performed with the sensor accuracy increased by 2x in order to see

if the methods differed.

5.10.2 Results

Type MTTD Accuracy Total False Positives

Top Down 6868 0.87 3

Bottom Up 5735 0.81 3

Top Down x2 2743 0.90 25

Bottom Up x2 2636 0.86 19

Table 5.3: Data in this table was collected over 100 runs. MTTD represents the

mean time to detection over the 100 runs where accuracy represents the number

of targets successfully located divided by the total number of targets over all

missions. The x2 signifies that the missions were run with a sensor with alpha

and beta reduced by half.

The results in Table 5.3 indicate that methods seemed to give very similar

performance. The main difference may be that the bottom up approach had a bit

fewer false positives than the alternative top down approach and also a shorter

mission time, but with lower accuracy. The accuracy for both update types could

likely be improved by modifying the confidence needed to terminate a mission.

65



5.11 Type2: Effects of Gamma

5.11.1 Experiment Configuration

To test the importance of weighting by distance in the Type2 scenario, several

missions were run with varying values of gamma in Eq. (3.9)

5.11.2 Results
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Figure 5.8: Mean time to mission end over 100 runs for varying values of gamma.

One can see in Figure 5.8 that by decreasing gamma a greater emphasis is

placed on nearby nodes and the searcher is able to finish its mission quicker as

less time is spent traveling. However, if gamma is decreased too low the searcher

will put too much emphasis on close by nodes and not enough on those providing

information, causing the search mission to take longer.
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Figure 5.9: Mean average correctly identified targets as a percentage over 100

runs for varying values of gamma.

Note that in Figure 5.9 that the accuracy remains relatively constant for all

values of gamma. This idea of balancing gamma is very similar to the idea of

exploration versus exploitation in AI. In both cases, a parameter is tuned in order

to control how eager the searcher is to take a risk and travel to new locations

versus exploiting the more easily available locations.

5.12 Type2: Stop Criterion Tests

5.12.1 Experiment Configuration

In order to test the stop criterion with Type2, several tests were run with vary-

ing values for epsilon. Refer to the section of when to stop for Type2, Eq. (3.15),

and Algorithm 6
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5.12.2 Results
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Figure 5.10: Mean time to mission end over 100 runs for varying values of epsilon.
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Figure 5.11: Mean average correctly identified targets as a percentage over 100

runs for varying values of epsilon.

It is clear in Figure 5.10 that by increasing epsilon the searcher has to be less

confident about the environment and thus can stop its search earlier. This reduced
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confidence predictably reduces the searchers ability to successfully identify targets

(see Figure 5.11). For instances where a high degree of confidence is needed,

epsilon values at least under 0.7 should be used.

5.13 Type2: Multi-Agent Search

5.13.1 Experiment Configuration

These experiments compared the performance of completely independent Type2

searching versus partitioning the area. No communication is shared between any

of the searchers during the mission. Different from the Type1 independent case the

search mission is considered to be over once all of the searchers have terminated

their search.

5.13.2 Results
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Figure 5.12: Mean time to mission end over 100 runs for varying amounts of

searchers. Patrolling was only tested with 2 and 4 searchers.
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Figure 5.13: Accuracy over the 100 missions run for varying amounts of searchers.

Accuracy is the total number of correctly detected targets divided by the total

number of targets. Patrolling was only tested with 2 and 4 searchers.
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Figure 5.14: Total number of false positives over 100 runs for varying amounts of

searchers. Patrolling was only tested with 2 and 4 searchers.
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For fully independent searchers when increasing the number of searchers, the

search time eventually stops increasing (Figure 5.12). This is because the search

ends once all of the searchers are done searching, thus search time is controlled by

the slowest searcher. Importantly, the search accuracy can be increased by using

more searchers (Figure 5.13). The downside is that the number of false positives

tends to rise as the number of searchers is increased (Figure 5.14). Additionally,

as mentioned in the multi-agent chapter partitioning tends to work very well for

the Type2 scenario.

5.14 Patrolling: Objective Functions

5.14.1 Experiment Configuration

This test was designed to measure performance of the density based patrolling

function (Eq. (3.20) versus Entropy/Prob based method (Eq. (3.21) described

earlier in the thesis. The search region was the same size as the experiments above.

The loss function contained 3 peaks each with varying values of importance and is

shown in Figure 5.15. The goal of this loss function was to challenge the searcher

with different regions of importance. This requires the searcher to move from

region to region when necessary.

Figure 5.15: This is the loss function provided to patrolling searchers
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100 missions were run where in each 100 targets were injected into the environ-

ment throughout the course of the mission and the performance of the searchers

was measured in the accrued loss from those injected targets. Addtionally, the

mission lengths for the patrolling tests were increased to 25,000.

5.14.2 Results
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Figure 5.16: The average loss as a function of the percent of mission duration.

The results are from an averaging of 100 missions

The results from Figure 5.16 show the the new method works well and is able

to keep the loss to much lower values. One explanation for this result is that the

searcher takes advantage of its ability to scan at multiple altitudes.
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Figure 5.17: The results show the frequency that a particular depth in the tree

was scanned over 100 patrolling missions.

When looking at the scan frequencies in Figure 5.17, the new objective function

tends to scan more around depth 7 where as the density based obj function spends

a large portion of its scans at depth 9.

5.15 Patrolling: Multi-Agent

5.15.1 Experiment Configuration

For a team of searchers, two strategies were used. One where the searchers were

completely independent from each other and another where they were partitioned

using the optimization method described in the earlier chapter. The computed

partitions are shown in the figures on the next page.
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Figure 5.18: 2 Searchers Figure 5.19: 3 Searchers

Figure 5.20: 4 Searchers Figure 5.21: 5 Searchers
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5.15.2 Results
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Figure 5.22: Average loss for the multi-agent missions as a function of the per-

centage of mission completion. Dashed lines represent patrolling missions with

partitioned searchers and the solid lines represent fully independent searchers

The results in Figure 5.22 seem to indicate that partitioning the environment

does not yield very strong performance benefits. In the case of 3 searchers, the

performance was actually much worse which seems to indicate that either the

partition for 3 searchers is not very good or the partition negatively interacts

with the objective function somehow. For the remaining number of searchers,

the performance was mostly the same. This hints that there is potentially some

sort of implicit partitioning of the work done by the independent searchers. One

hypothesis is that the independent searchers “communicate” with each other by

removing targets from the environment. Once a target is removed, other searchers

will not waste effort by sensing in the same area since they will not detect the

removed intruder. This idea is explored in the experiment in the next section.
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5.16 Patrolling: Environmental Influence

5.16.1 Experiment Configuration

One possible explanation for the good performance of independent searchers

in the patrolling scenario is that there is some form of implicit communication

through the environment. This occurs because once a searcher identifies a target

and removes it from the area the other searchers will not detect this target when

sensing the same location. To get around this, the above experiment is changed

such that targets removed by one searcher can still be seen by other searchers.

However, once a target has been “removed” by at least one searcher its presence

is no longer counted towards the total penalty of the search team. This allows the

results to be compared with those from the previous experiment.

5.16.2 Results
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Figure 5.23: Average loss as a function of the percentage of mission completion

for both environmental sharing and no sharing for varying number of independent

searchers.
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Figure 5.24: Difference in average loss between sharing and no sharing as a func-

tion of the percentage of mission completion for varying number of independent

searchers. A value of 2 means that no sharing has a loss of 2x sharing.

As expected, the performance degrades with these changes and the amount at

which this occurs increases as the number of searchers is increased (Figure 5.23).

This is because more effort is wasted searching the same locations over and over

again. The plots in Figure 5.24 indicate how many times worse the methods

performed with these changes.

77



0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

% mission length

A
ve

ra
ge

 L
os

s

Patrolling Environment Sharing

 

NoShare 2

NoShare 3
NoShare 4

NoShare 5

Share 2

Share 3
Share 4

Share 5

Figure 5.25: Average loss as a function of the percentage of mission completion

for both environmental sharing and no sharing for varying number of partitioned

searchers.
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Figure 5.26: Difference in average loss between sharing and no sharing as a func-

tion of the percentage of mission completion for varying number of partitioned

searchers. A value of 2 means that no sharing has a loss of 2x sharing.
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When applying the environment changes the partitioning method suffers less

than the independent searchers (Figure 5.25 and Figure 5.26). This is likely

because there is less overlap between their search regions. These results show

that the independent searchers benefit more from this environment sharing and

this potentially allows them to perform well without direct communication.

5.17 Experimental Discussion

Each of the above experiments is included within this work to show that the

probabilistic quadtree is a powerful framework for hierarchical search when using

sensors with uncertainty. When considering the performance of the algorithms

above it helps to compare them to the case where the searcher is forced to search

on a uniform grid. In the above experiments, the trees used had a maximum depth

of 9 which means their leaves correspond to a uniform grid of size 256 by 256

cells. With this environment the uniform grid searcher has to look at up to 65,536

possible locations to locate its target. The amount of time it would take to scan

each of these locations once is far greater than the total time available to the above

searchers. In the above tests, the searchers were given 15,000 time steps in the

Type1 and Type2 tests, and 25,000 time steps in the patrolling tests. The speed

at which the hierarchical methods are able to locate targets with an inaccurate

sensor demonstrates their power. Another benefit of the quadtree representations

is that the amount of space required to represent the searchers belief is much fewer

than that of the uniform grid. The majority of the experiments above started with

trees using around 100 nodes and ended with trees with around 150 nodes in the

Type1 case and 350 in the Type2 case. These numbers are significantly lower than

the 65,536 possible cells at the lowest depth.

Additionally, the results shed some light on the performance of multi-agent

systems using quadtree representations. The results seem to show that while us-
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ing fully independent searchers can be a viable strategy, the usefulness of such a

method diminishes as more searchers are added. When the number of searchers

gets larger it becomes more important for coordination to take place. One al-

ternative to coordination is partitioning of the environment. This strategy was

shown to work well in some cases, but did not seem to work extremely well in the

patrolling case. Static partitioning has the advantage of using no communication

between searchers, but appears to need good partition selections to function well.
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CHAPTER 6

Conclusions

In this work, we have improved and evaluated the effectiveness of a hierarchical

probabilistic search structure. The probabilistic quadtree is a structure that has

been shown to work in several cases including: search for a single target, search

for multiple targets, and patrolling for intruders. Additionally, it was shown that

the method can be extended to work in the case of multiple search agents.

The major contributions of this work come from both theoretical findings and

experimental results. In terms of theory, this thesis provided a method to reduce

the complexity of the Type1 objective function from O(|N (T )|2) to O(|N (T )|).

Additionally, it provided a new way to perform the Bayesian updates to the PQ

structure after sensor readings. This new bottom up approach allows the Type2

updates to be done precisely rather than using the approximate top down tech-

nique. Also the work included a new objective function for the patrolling scenario

which was shown to provide much better performance over the original density

based formulation. Lastly, the bulk of the experimental work dealt with teams of

agents working on PQ’s. The experimental results indicate that in general without

partitioning or communication between searchers performance increases diminish

as more searchers are added.

In terms of future work, there are several directions one could take. This thesis

only touched on the possibilities for multi-agent cooperation using probabilistic

quadtrees. One could investigate more complicated and complete single controllers

or even look into creating sophisticated distributed controllers. The single searcher
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scenario also has many possible areas for improvement. Each of the proposed

methods in this paper largely used myopic or greedy strategies for selecting which

areas to search. One could spend time looking into ways to account for future

sensor scans. Additionally, one could possibly find different objective functions

that improve further those presented in this work. The sensor model could also be

modified to allow sensors with varying accuracy based on the number of targets

present. A challenging direction is to consider the case where targets within the

environment are assumed to be moving based on a known motion model. With

a moving target, the tree would need modifications to allow it to track targets

effectively. Finally, one could also attempt to extend the work to different space

partitionings such as triangulations and even partitions with overlapping regions.

Based on the experimental results Probabilistic Quadtree’s are an effective

search structure with plenty of research potential.
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