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2013



c© Copyright by
Görkem Erinç
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Abstract of the Dissertation

Appearance-Based Navigation, Localization,
Mapping, and Map Merging for Heterogeneous

Teams of Robots

by

Görkem Erinç

Spatial awareness is a vital component for most autonomous robots operating
in unstructured environments. Appearance-based maps are emerging as an
important class of spatial representations for robots. Requiring only a cam-
era instead of an expensive sensor like a laser range finder, appearance-based
maps provide a suitable world model to human perception and offer a natural
way to exchange information between robots and humans. In this dissertation,
we embrace this representation and present a framework that provides navi-
gation, localization, mapping, and map merging capabilities to heterogeneous
multi-robot systems using exclusively monocular vision. Our first contribution
is integrating different ideas from separately proposed solutions into a robust
appearance-based localization and mapping framework that does not suffer
from the individual issues tied to the original proposed methods. Next, we
introduce a novel visual navigation algorithm that steers a robot between two
images through the shortest possible path. Thanks to its invariance to changes
in the tilt angle and the elevation of the cameras, the images collected by an-
other robot with a totally different morphology and camera placement can be
used for navigation. Furthermore, we tackle the problem of merging together
two or more appearance-based maps independently built by robots operat-
ing in the same environment, and propose an anytime algorithm aiming to
quickly identify the more advantageous parts to merge. Noting the lack of any
evaluation criteria for appearance-based maps, we introduce our task specific
quality metric that measures the utility of a map with respect to three major
robotic tasks: localization, mapping, and navigation. Additionally, in order to
measure the quality of merged appearance-based maps, and the performance
of the merging algorithm, we propose the use of algebraic connectivity, a con-
cept which we borrowed from graph theory. Finally, we introduce a machine
learning based WiFi localization technique which we later embrace as the core
of our novel heterogeneous map merging algorithm. All algorithms introduced
in this dissertation are validated on real robots.
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CHAPTER 1

Introduction

Robotics evolving from an industrial driven technology into a science that creates so-
lutions to ease every aspect of daily life has started shaping the future. From robotic
museum guides, mine sweeping military robots, Mars explorers to urban search and
rescue robots, a variety of robots have already been introduced into different areas.
Within 30 years of time their physical capabilities have made a tremendous jump. In
1986 when Honda introduced E0, the first of their famous E-series humanoid robots,
it was an outstanding achievement that finally a two-legged robot was able to walk in
a straight line even if its motion was discrete and boringly slow. Today, the technol-
ogy reached to a point that robots like Asimo or BigDog can perform many complex
tasks with their fast, dynamic, and stable motions. Some may even argue that robots
like Petman resemble a human more than a robot. While it is a pure speculation
whether these robots would pass a hypothetical Turing test designed for physical
appearance and behavior, it is evident that robotic platforms are getting better in
every aspect of their performance. Not only their physical but also their computa-
tional capabilities have improved thanks to the advances both in computer science
research and sensor technologies. Years after Deep Blue’s legendary win against the
reigning World Chess Champion, Gary Kasparov, today scientists channel their en-
ergy to solve much more challenging problems than chess. Watson, for instance,
was designed by IBM as a question answering machine with interconnected complex
modules each focusing on subjects like information retrieval, natural language pro-
cessing, and machine learning. Watson’s capabilities were tested in Jeopardy! where
it competed against two of the most successful contestants on the show and Watson
left the stage with a clear victory.

These extraordinary pieces of technology are the indications, if not proofs, that
we are coming to a future in which Rosie from The Jetsons will not be a fictional
character anymore. However, despite all the efforts and advancements, the dream
of robots becoming a part of our daily lives as shared by Bill Gates in his article A
Robot in Every Home [54] does not seem feasible at least for the near future. One of
the main obstacles to realize this envisioned future is financial. It should come as no
surprise that sophisticated robots equipped with high-tech actuators and sensors like
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the ones mentioned above are very expensive for an average consumer. Indeed, that
is one of the main reasons why we only see this level of advanced technology either
in research labs with substantial funding in place or as a part of a team of a defense
contractor. In order for the general public to welcome coexistence with robots,
first of all, robots need to have an affordable retail price tag. Therefore, inexpensive
production becomes a necessity which entails inexpensive sensors, low computational
power and inexpensive hardware. Today, due to these limitations consumer robotics
follows a temporary trend that favors simple and specialized robots rather than highly
sophisticated robots capable of solving many different tasks. With the success story
of iRobot Create, it became clear that robots with simple functionality executed
robustly have a higher chance of successfully dominating today’s market.

Whether it is a robot designed to accomplish a specific task or a complex one
integrating multi-functionality into one body, they need to be designed to be able to
coexist with humans in human-made environments. More importantly, they should
be able to interact with people and the environment. Perception and autonomy are
the key concepts for this interaction and it is therefore very important that they
perceive the world similarly and possess some level of autonomy.

Perception opens the doors to reasoning, acting and intelligence by defining the
ways to collect information from the surroundings. Cameras providing the closest
experience to human perception are the most suitable sensors that robots can use
to extract similar information from the environment. With the increasing interest in
vision-based robotics several studies showed that the robots can use the perception
realized by stereo cameras [152, 115], omnidirectional cameras [16, 164] or monoc-
ular cameras [145, 160, 120, 81] for navigation, mapping, place recognition, object
recognition and manipulation. Among those, monocular cameras fits our vision of
affordable robots due to their simplicity and cheap price.

Domestic environments possessing highly complex and dynamic natures propose
several challenges for the robots to operate autonomously. Full autonomy requires
the robot to be able to explore an unknown environment, build a map of it in order
to use the map for future planning tasks and localize itself in this partially explored
map. Studies for this very well defined problem, Simultaneous Localization and
Mapping (SLAM), focused on addressing challenging issues such as data associa-
tion, loop closing, and noisy sensors as well as finding a better representation of the
world, a better map. The significant portion of the research efforts have been de-
voted to represent the world by employing a metric model of the robot’s workspace.
In these approaches the robot creates an occupancy grid model of the world with
metric information where each cell of the grid is labeled with the probability of being
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occupied by an object. This model is mainly concerned about metric coordinates
of itself and other objects in the environment. Laser range scanners are one of the
most commonly used sensors in these SLAM solutions due to their high precision.
Nevertheless, it suffers from its high price and does not fit into our vision of vast
production of robots. On the other hand, one could argue that it is possible to
perform most missions without the precise knowledge of the robot’s position and
orientation. This is, indeed, the case for many living beings when they navigate
in complex environments. This point of view is captured by topological maps. The
simplified representation of the world based on some topology is closer how humans
interpret their environment, and therefore, it is easier to integrate common concepts
into this world representation. It is also generally assumed that humans adopt a
partially hierarchical representation of spatial organizations [122, 72]. Applying the
same idea into robot localization and mapping problems brings several advantages.
With additional layers of abstractions the resulting hierarchical topological world
representation captures both necessary physical information for the robot to navi-
gate and localize and also provides a cognitive framework enriched with semantic
information which can be used for human-robot communication.

Appearance-based maps which have recently attracted attention of the robotics
community due to their suitability for topological maps constitute the first steps
towards this direction. An appearance-based map can basically, yet incompletely,
be defined as an image network. These representations provide a more suitable
world model to human perception and offer a natural way to exchange information
between robots and humans due to their entanglement with imagery. Moreover, the
only sensor required to create an appearance-based map is a camera. With current
webcam prices dropping below $20 mark, this model aligns to our inexpensive sensor
vision. These vision based solutions work on image space and do not necessarily need
metric localization for mapping or navigation purposes. In other words, localization
and mapping is realized in appearance space. Focusing on camera-only systems,
odometry data is not used for localization and mapping purposes. This holds special
importance for systems where there is no odometry information available or odometry
is very difficult to estimate as in human motion. In situations where humans are
involved such as first responders in urban search and rescue or children in child-care,
SLAM can be addressed by appearance-based methods since they only focus on the
sensor model and observations and not on the motion model.

It is evident that a complex task manageable by a single robot could be even more
effectively executed by a collaborative multi-robot system. Robot teams are more
robust to failures and can solve a task in less time. Moreover, there is an obvious need
for collecting spatially distributed information acquired by teams of robots physically
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operating in a shared environment. With respect to the SLAM problem, the spatial
awareness can be greatly enhanced by fusing multiple maps independently created
by each robot into a single spatial model. This fusion of data produced by different
sources not only is more informative but also prevents redundancy in the team, e.g.,
mapping a part of the environment that is already mapped by another robot in the
team. After multiple maps have been combined together and the result has been
shared, each of the robots that contributed one of the partial maps is then equipped
with a more comprehensive spatial model. The merged map can then enable robots
to individually perform tasks they would otherwise not be able to accomplish, like
for example safely navigating to a part of the environment they have not explored.

Information fusion with respect to map merging has been studied and solutions
are proposed for topological maps [78, 140] and occupancy grid maps [12, 20, 135].
However, merging appearance-based maps is an outstanding problem and deserves
attention. Furthermore, additional contributions should be done in order to make it
possible to merge appearance-based maps from heterogeneous multi-robot systems
because within the current appearance-based navigation frameworks in the litera-
ture it is not possible to integrate visual information collected by different cameras
attached to different robots into one map and still keep the navigation feasible.

The value of merging independently generated maps together becomes especially
apparent after devastating disasters like the earthquake in Japan in 2011 which took
nearly 16000 lives and caused the meltdown of 3 nuclear reactors. Despite Japan’s
long-lasting technological leadership in the field of robotics, they did not have a robot
capable of measuring the extent of the radiation leak from the nuclear plant. Luckily,
QinetiQ and iRobot, two leading robotics companies, lent a small army of their robots
to the cause. Robots with different morphologies, sensors, operational capabilities,
knowledge representations, and spatial representations had to work towards the same
goal and operate in the same environment. In these critical operations robots are
usually used as tools to provide valuable information to humans who act as the
decision maker and the actual consumer of the collected data and maps. It is expected
that different robot teams will provide data and maps in different formats. Hence, an
algorithm that can merge these multiple partial heterogeneous models into a single
model can vastly improve the quality and utilization of the collected information
especially when considering each model’s strengths and weaknesses.

The inherent challenge of merging heterogeneous maps together arises from the
fact that each of these maps, by definition, has its own spatial model and they lack
a common representation. We believe that WiFi signals which are omnipresent in
today’s world can serve as the missing component in the attempt of solving heteroge-

4



neous map merging problem. These WiFi signals can be measured and recorded using
a WiFi card. We believe that it is safe to assume that regardless of the type of map
it generates, every robot carries a WiFi card on board to communicate with its team
members and the base station. The idea is then whenever a robot creates any type
of map (occupancy grid, topological, or appearance-based) it also records the WiFi
signatures along with the data it stores in the map, i.e., producing an overlapping
WiFi map of the environment it is mapping. With this respect, merging hetero-
geneous maps together boils down to finding partial correspondences between their
WiFi maps and then fusing the heterogeneous information associated with matching
WiFi signatures. Referring back to the nuclear reactor disaster scenario, this would
allow the operators to send a small number of heavily equipped robust mobile robots
with accurate occupancy grid map generating capabilities along with multiple cheap
flying robots with cameras into the facility and visualize all the information in a
single map.

1.1 Dissertation Contributions

In this dissertation, focusing on indoor environments we make contributions in five
major research areas in the field of robotics. First, we introduce our novel visual
navigation algorithm that steers a robot between two images through the shortest
possible path. The algorithm presented in Chapter 3 targets mobile robots equipped
with a monocular pan-camera and is invariant to changes in the tilt angle and the
elevation of the camera. Due to these unique properties, images collected by an-
other robot with a totally different morphology and camera placement can be used
for navigation. This fact opens the doors to the possibility of gathering all images
captured by an heterogeneous team of robots, and sharing them among all mem-
bers of the team so that they not only have increased spatial awareness but also
more candidate locations to navigate. Second, in Chapter 4 we focus on how these
collection of images can be formalized into a spatial model, the appearance-based
map. As we will discuss in Chapter 2, appearance-based maps are not novel and
in the literature there are solutions proposed for appearance-based localization and
mapping problem targeting single robots equipped with monocular vision. Our con-
tribution here lies in demonstrating that these separately proposed methods can be
integrated in a way that they constitute the basis of a robust system which does
not suffer from the individual issues tied to the original proposed methods. We also
integrate visual navigation algorithm into the framework and present navigation re-
sults in Chapter 4. Third, we propose a novel anytime algorithm to merge multiple
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appearance-based maps together in Chapter 5. With this algorithm robots exploring
the same environment can now merge their partial maps into a single map providing
a more complete spatial model. Fourth, noting the lack of any evaluation criteria for
appearance-based map, we introduce our task specific quality metric that measures
the utility of the map with respect three major robotic tasks: localization, mapping,
and navigation. Additionally, in order to measure the quality of merged appearance-
based maps, and the performance of the merging algorithm, we propose the use of
algebraic connectivity, a concept which we borrowed from graph theory. Fifth, in
Chapter 6 we present our novel machine learning based heterogeneous map merging
algorithm which uses WiFi signals as the common layer among different map types.
We cast the idea of matching WiFi signals as a WiFi-based localization problem
and present indoor and outdoor localization and map merging results in the same
chapter. We then conclude the dissertation with final comments in Chapter 7 and
discuss the possible directions that the research presented here may go.
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CHAPTER 2

Related Work

2.1 Visual Navigation

With a vast literature on the subject, visual servoing, i.e., the use of computer vi-
sion data as feedback to control the motion of a robot, is one of the most studied
problems in computer vision. More recently, the area has attracted significant at-
tention as technology have made real-time execution of computationally demanding
visual servoing algorithms possible. At the same time, robust methods for real-world
scenarios have gradually enabled progress on realistic problems in terms of com-
plexity. A comprehensive introduction on the topic is presented by Chaumette and
Hutchinson [24, 25, 26].

There are two distinct situations to be considered. The camera can be attached to
the robot end-effector observing the target (eye-in-hand) or fixed in the world observ-
ing both the robot and the target (eye-to-hand). These two schemes have technical
differences and in general, one configuration is not better than the other since the
choice depends on the application. The main difference is that eye-in-hand configu-
ration has a partial but precise sight of the scene whereas the eye-to-hand camera has
a less precise but global sight of it. Also different type of information extracted from
perceived images such as points, lines, corners, or regions can be used as feedback,
which leads to a varied spectrum of solutions. Among these vision-based navigation
solutions, traditionally, most of them are dedicated to Autonomous Ground Vehicles
(AGV), but recently, visual navigation is gaining more popularity among researchers
working on Unmanned Aerial Vehicles (UAV). The variety of proposed solutions
also extend to the areas they applied to, such as surveillance, patrolling, search and
rescue, real-time monitoring, outdoor and indoor building inspection, and mapping.
Desouza and Kak [35] and building on that work Bonin-Font et al. [15] published a
detailed survey of visual navigation algorithms for mobile robots. Their taxonomy
classifies algorithms mainly into two categories, map-based and mapless, and build-
ing on the definition of a map being either as metric or topological, appearance-based
methods are categorized under mapless methods. However, as mentioned earlier in
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Chapter 1 we advocate going beyond the traditional definition of a map and define
any data structure that is used for localization and is build either online or offline and
possibly updated during the navigation as a map. Within this respect, navigation al-
gorithms using view sequences or appearance-based maps are considered map-based
approaches. Hence, hereby we prefer to divide visual navigation algorithms into two
main categories: position based visual servoing (PBVS) and image-based visual ser-
voing (IBVS) as presented in [24]; while still borrowing some of the categories from
their taxonomy.

The two main approaches in visual servoing, PBVS and IBVS differ in terms of
their error definitions. In PBVS methods the vision sensor is considered as a 3D
sensor so the 3D information captured from the scene along with the camera model
is used to estimate the pose of the target in the Cartesian space with respect to
the camera coordinate frame. In other words, keeping the focus on the 3D pose
information, the error is defined as the difference between the desired and current
robot or camera poses, while in IBVS, the vision sensor is treated as a 2D sensor
since IBVS control objective and also control laws are directly expressed in the image
feature parameter space. Within this respect, the latter is more robust with respect to
uncertainties and disturbances on the robot model as well as the camera calibration
error [81, 43]. Position based methods require online computation of target pose
with respect to the camera. Computing that pose from a set of measurements in
one image necessitates the camera intrinsic parameters and the 3D model of the
object observed to be known. However, this is hardly a limitation of the approach
since in the literature there are algorithms that estimate camera parameters online
[151, 33] during navigation. IBVS algorithms, on the other hand, do not need a priori
knowledge of the 3D structure of the scene. However, there are also some drawbacks
to be considered for IBVS methods. One of the main disadvantages of IBVS is that
when the displacement between the current and the target image is too large, the
camera may reach a local minimum or may cross a singularity of the image Jacobian,
also known as interaction matrix. Additionally, the feature depths are unknown in a
pure IBVS framework, and must be estimated during servoing in order to compute
the interaction matrix. Thus, only local stability can be guaranteed for most IBVS
schemes [111].

2.1.1 PBVS methods

Position-based control algorithms use the pose of the camera with respect to some
reference coordinate frame to compute the pose of the target and required actions
to reach there. These algorithms generally fall into two categories: map-using sys-
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tems and map-building systems. While map-using navigation systems need to be
provided with a complete map of the environment before the navigation task starts,
map-building navigation systems explore the environment and automatically build
a map of it before they use it in the subsequent navigation stage. Other systems
that fall within this category are able to self-localize in the local map they build
simultaneously during the navigation. Typically, all of these algorithms utilize ei-
ther 3D feature maps, occupancy grid maps, or a combination of them as the map
representation.

The idea of extracting range data and depth measurements from images to be used
for navigation and obstacle avoidance originates from the aim of using vision in an
analogous way to ultrasound sensors. Once the obstacles are identified, the distance
between the robot and the obstacle is computed in world coordinates. This approach,
also called visual sonar, is adopted by Martens et al. [117] in their ARTMAP neu-
ral network based framework where sonar data and visual information from a single
camera are fused together to obtain a more complete perception of the environment
and actual metric distances to obstacles are computed based on the primitive yet
very successful image-based distance computation algorithm by Horswill [75]. The
distance computation algorithm is designed around the ideas that with the assump-
tion that the carpet is always textureless, any area with visual texture should be
an obstacle and if most obstacles touch the floor and the floor is roughly flat, then
obstacles higher in the image are further away.

Veloso et al. [97, 45] presented a new visual sonar-based navigation strategy for
the RoboCup [91] competition in mind where teams of Sony AIBO robots compete
in the game of soccer. The vision module integrates domain specic knowledge and
segments color images into known objects like floor, other robots, goals and the
ball, and other unknown objects. A radial model of robot’s vicinity is created after
range and angle to all object are computed. Using this model and contour following
techniques, the robot can avoid obstacles not only in its field of view but also where
it is not currently looking.

Visual sonar concept is also used by Martin [118] to extract depth information
from single camera images of indoor environments. A supervised learning framework
is employed and images obtained in the training phase are labeled for the location
of obstacles. Given labeled images, a genetic algorithm is used to automatically
discover best monocular vision algorithm to detect ground boundaries of obstacles.
These algorithms are then combined with a reactive obstacle avoidance algorithm
originally developed for sonar.
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All of these methods are designed with the assumption that the system will oper-
ate under constant floor color and lighting conditions. However, these assumptions
severely limit the algorithms useability and performance in more realistic scenarios.
Hence, more sophisticated methods use feature descriptors instead of color based ob-
stacle boundary identifiers like the work presented by Se et al. [148, 147, 149]. The
authors introduce a vision-based SLAM algorithm for a triclops camera system that
used their own wide baseline matching technique. SIFT features extracted from im-
ages from these three cameras are combined with epipolar and disparity constraints.
Matching features in subsequent views are identified by maintaining a database of lo-
cated SIFT landmarks, which is is incrementally updated over time so that it adapts
to dynamic environments. 3D world coordinates of these features are then estimated
using the pixel positions of the matches, and the camera intrinsic parameters. Later,
a least-squares minimization technique is applied on matching features in order to
compute an accurate camera ego-motion which is used to correct possible localiza-
tion errors. Elinas et al. [40] used the resulting 3D feature map and accompanying
underlying occupancy grid map to autonomously navigate a robotic waiter in an
indoor setting. With the goal of finding the shortest, but also the safest path, the
navigation algorithm is designed as a combination of two path planning algorithms
to allow the robot to navigate efficiently without getting stuck in cluttered areas.
In clear areas, a shortest path planner algorithm is executed with a fixed distance
constraint from obstacles, while in cluttered areas, a potential field planner takes
over to avoid getting stuck.

More recently, Tomono [158] proposed a high density visual navigation system
targeting indoor environments. Based on stored object models created offline, the
algorithm performs online shape reconstruction and object recognition to estimate 3D
locations of the objects during the navigation stage using monocular camera imagery
accompanied by data captured by the on-board laser range finder. Assuming known
camera intrinsic parameters, the author estimates the camera motion from the image
sequence based on a structure-from-motion technique presented in [157].

One of the classic vision based localization, mapping and navigation approaches
is presented by Wooden [166] for Learning Applied to Ground Robots (LAGR).
After stereo depth maps are generated by matching small patches in two images
from two calibrated cameras, the actual 3D position of image points are calculated
through the transformation matrix deduced from the geometrical characteristics of
the camera. The resulting stereo depth map provides a good estimate of the terrain,
but needs some post-processing for safe navigation. First, the derivative of the map
is computed in order to avoid too steep terrain and detect abrupt changes in slope,
which may indicate trees or rocks. Then, to smooth some of the variation and
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decrease the resolution of the map, the derivative map is transformed into a cost
map, which is the average of the transformed derivative measurements over a fixed
sized square region. Places where there is no derivative measurement, a high cost
is assigned causing the robot to tend towards flatter parts of the environment. The
robot is navigated by following a sparse set of waypoints provided by the A∗ based
path planning algorithm applied on the resulting cost map. Since running a global
search using the planner may be too slow for real-time requirements, the planner only
performs its search over the square region bounded by where the robot has terrain
information so that the robot can start navigating using the initial waypoints. The
list of waypoints are revised as planner broadens its search and updates the final
path.

The commercial vSLAM system by Karlsson et al. [86] builds a connected map of
recognizable locations using the odometry and extracted SIFT features. Extracted
SIFT features are transformed into 3D landmarks using the visual front-end by
Goncalves et al. [60]. A motion model via a combination of a particle filter [165, 61]
and Extended Kalman Filter (EKF) [84] is utilized to continuously track the location
of the robot in a two-bedroom apartment setting, while the estimated location of the
robot is used for navigation. Similarly, Danesi et al [32] proposed a visual servoing
algorithm also targeting 3D feature maps. 3D coordinates of extracted local invari-
ant features are estimated via EKF and computed values are merged into a general
3D feature map which is used by the vision-based controller presented in [86] to steer
the vehicle between frames.

2.1.2 IBVS methods

One early work in IBVS was proposed by Matsumoto et al. [119] where they proposed
a view-based navigation method using the feedback from a monocular camera. The
approach is motivated by sequence of images memorized during a training run and
recorded directional relations between stored images. The memorized view sequence
can be only used to follow the exact same trajectory by navigating between image
pairs by executing recorded actions. However, the actions are specifically designed for
corridor like environments and are too primitive. Moreover, due to the simplicity of
the method and the assumption that the error between views should be a smooth and
monotonic function, the algorithm does not generalize and fails to address navigation
problems in complex environments. Building on this work, Jones et al. [3] defined a
series of control rules based on the correlation peak-patterns. However, the algorithm
still suffers from the simplistic and error-prone pixel by pixel view comparison step.
The solution presented by Ohno et al. [133] is similar but faster than Jones’ since
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it saves memory and computational time by using only vertical lines from templates
and online images to do the matching.

An interesting approach developed by Santos-Victor et al. [144] emulates the
bees’ flying behavior. The system moves in a corridor using two cameras to perceive
the environment, one camera on each side of the robot, pointing to the walls. Just
like bees the robot navigates centered in a corridor by computing the differences in
optical flow from the images of both sides and measuring the difference of velocities
with respect to both walls. If velocities are different, it moves to the wall whose
image changes with minor velocity. Otherwise, goes straight in the center of the
corridor. The main problem of this technique is that the walls need to be textured
enough to present an optimum optical flow computation.

The paper by Kosnar et al. [93] attacking the problem of visual topological
mapping for outdoor environments requires constant path color for visual naviga-
tion. Cross sections on the road are represented as vertices in the graph and vertex
matching is realized by comparing the number of outgoing edges and their azimuths.
With these assumptions this method is designed for very specific environments and
the presented servoing method cannot be generalized for more realistic scenarios.

Inspired by the concept called Ego-Sphere first proposed by Albus [2], Kawamura
et al. introduced the egocentric representations, Sensory Ego-Sphere (SES) and
Landmark Ego-Sphere (LES) [82]. Authors defined the SES as the memory structure
representing the robots perception of its current local environment and the LES as the
expected state of the world at the target position. They both represent the objects
and events around the robot by only using their angular distributions relative to
the robot. A navigation algorithm based on these special Ego-Spheres is proposed
[87, 88]. The presented algorithm used a simplified structure where 3D shape of the
Ego-Sphere is projected onto the equatorial plane of the sphere, resulting in a 2D
representation. At each step of the navigation, heading is computed by comparing
the two egocentric representations without explicitly requiring range information.

More advance IBVS control implementations involve the computation of the im-
age Jacobian which represents the differential relationship between the scene frame
and the camera frame. The most common approach to generate the control signal for
the robots is the use of a simple proportional control where the error is premultiplied
with the pseudo-inverse of the Jacobian matrix before it is fed into the controller
[136, 68].

In general, IBVS algorithms suffer from the singularity problem in the compu-
tation of image Jacobian matrix like in the algorithm presented by Hoffmann et al.
[74]. Hence, to compensate these shortcomings algorithms entirely based on epipolar
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geometry are introduced [41, 28, 113, 32, 150].

Maohai and colleagues [112] proposed an algorithm that uses the coordinates of
image features and epipolar constraints which are well studied in the field of multi-
view geometry. The algorithm employs the Random Sample Consensus (RANSAC)
[52] method to find the robust estimation of the fundamental matrix which can be
calculated with only five matches thanks to their assumption that the motion of the
robot is restricted to a plane. The disadvantage of this method is that due to the
loss of depth information in the image capturing process, translation can only be
recovered up to a scale factor. Therefore, odometry information is used to estimate
the ratio constant. The same epipolar geometry based approach is used by Booij et
al. [16] to navigate a robot with an omnidirectional camera in an appearance based
topological map. The prior knowledge that positions of the cameras do not differ in
height and the relative rotation only occur around the vertical axis is incorporated
by restricting the essential matrix which enables its computation with only four
matchings. The desired heading to navigate from the current image to the target
image is computed from the translational information extracted from the essential
matrix. The experimental results showed that the robot did not drive the exact
trajectory that was driven while taking the dataset; indeed, it used a shorter path.

Lin et al. [100] presented a homography matrix based visual servoing method.
Homography matrix is approximated by a simpler form of affine transformation and
motion control rules for forward translation and rotation are defined on the affine
transformation matrix. A similar study was performed by Santos-Victor et al. [145]
whose work is restricted to navigating in corridors and environments alike. Since
the presented visual navigation algorithm is based on vanishing point, the method
fails in environments with large open spaces. Other examples of homography based
servoing were reported in [142, 169, 137, 64].

In [28, 114, 113] Mariottini and colleagues solve the the navigation problem for
a non-holonomic robot based on epipolar geometry. Their work focuses on a single
robot approach and assumes the robot navigates using a data structure based upon
formerly collected data. Due to the non-holonomic constraints, the produced path
significantly deviates from the shortest one between current and goal positions.

Similarly, epipolar geometry based navigation algorithms for holonomic [29] and
nonholonomic [104] robots are proposed. These approaches do not require any 3D
distance computations since the control is based directly on the trajectory of the
epipoles. Specifically, in [29] the authors introduce mobile robot control laws as a
part of their visual servoing framework exploiting the epipolar geometry from object
profiles and epipolar tangencies but without solving any correspondence problem.
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Finally, there are also methods that combine the advantages of both worlds like
the hybrid switched system approach proposed by Gans and Hutchinson [53]. The
proposed algorithm switches between two controllers designed for IBVS and PBVS
based on the availability of visual features. Comparing to IBVS approaches, the
algorithm needs more time to converge due to the fact that the image error may
increase during the time the controller is in PBVS mode minimizing position based
error. The biggest problem with this method is that the global stability is not guar-
anteed and the potential issues due to the local minima as pointed out by Chaumette
[23] are not considered in this approach.

2.2 Vision-based Localization and Mapping

Early appearance-based approaches like the one presented by Matsumoto et al. [120]
modeled the environment as a sequence of images where localization and mapping
problems are solved independently. The map is created in a supervised setting and
given a map, a query image is localized to a recorded view that has the minimum ac-
cumulated error computed by pixel-by-pixel image intensity level comparison. How-
ever, the proposed simple similarity function is not invariant to scaling, orientation,
or partial overlaps.

The papers by Se et al. [148, 147, 149] present a vision-based SLAM algorithm
for a three-camera system. 3D coordinates of extracted SIFT features are used
for mapping and localization. In order to eliminate false feature matchings, each
feature in the database carries statistical information regarding its lifetime, number
of occurrences, etc. and this information is used to measure the validity of that
feature. Similarly, there are several studies [112, 86] representing the world by a
spatial map that contains 3D feature coordinates. The work proposed by Danesi et
al. [32] relies on a hybrid (metric and topological) map built on visual cues. Within
the topological map, images represent nodes in the graph and edges represent feasible
paths that the robot can traverse by the PBVS controller presented in [86]. The 3D
coordinates of the extracted features are estimated via EKF and encoded in the
metric map.

After Lowe [105] introduced SIFT in 2004 and successfully demonstrated that
they can be used to robustly differentiate images from one another, more sophisti-
cated appearance-based algorithms has started to emerge. Valgren and colleagues
[164] proposed an incremental topological mapping algorithm for robots with omni-
directional cameras. In this approach, a node in the map is a collection of sequential
images that are considered similar enough where the similarity is defined as sufficient
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number of feature matches. However, due to the lack of geometrical constraints the
algorithm carries a high risk of misclassification. The links, on the other hand, are
created after processing the affinity matrix that theoretically stores every possible
image comparisons. In order to prevent the quadratic growth of the search space
they proposed a random sampling algorithm with a linear complexity. Nevertheless,
the paper does not provide any solutions how to efficiently store and use the affinity
matrix with very large number of images. Differently, Mulligan and Grudic [131]
proposed a semi-supervised learning technique to segment image sequences into a
topological map by clustering on low dimensional manifolds in sensor space.

Jeong and Lee [83] proposed a new vision-based SLAM technique where salient
image features are detected and tracked through the image sequence captured by a
single camera looking upward. Compared with the conventional frontal view system,
the ceiling vision has advantage in tracking, since it involves only rotation and affine
transform without scale change. Perceptual aliasing, however, is the main issue since
ceiling imagery mostly is featureless and has substantial repetitions.

More recently, Lin et al. [100] proposed a two-stage place recognition system in
which an offline learning stage should take place before online recognition can be
used. Focusing on the localization aspect, the paper does not provide any mapping
algorithm. Similarly to the other works in the literature [112, 162] localization to
one of the images stored in the learning stage is implemented by comparing the
features from the current image to the features in the database using a kd-tree based
approximate nearest neighbor search algorithm.

Zivkovic and colleagues [16, 173, 175, 176] presented an appearance-based topo-
logical mapping algorithm. Without any metric information the method builds an
appearance graph using SIFT features and uses geometric constraints for image com-
parison. In addition, they use a graph partitioning method to cluster vertices in the
appearance graph and construct a high-level map. However, the algorithm requires
the number of clusters to be known in advance. Besides this assumption, they use a
fixed assignment of vertices to the clusters that limits the algorithm’s adaptivity to
the changes in the environment.

One of the few systems where vision is used in the context of metric and topologi-
cal mapping is described in a few recent papers by Kr̈ose and colleagues [16, 174, 177],
where the robot however relies on an omnidirectional camera. Comparing to the
monocular vision, the use of omnidirectional images greatly simplifies the problem,
because thanks to their rotational invariance omnidirectional images can be associ-
ated with the position where they have been acquired, disregarding the robot heading.
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2.3 Map Merging

In this section we will cover the proposed solutions for the map merging problem.
Map merging research in general has been limited and most related works appeared
relatively recently when compared to the mapping literature. In particular, most
of the research efforts have been devoted to solve the problem of merging metric
maps, either feature-based or occupancy grid. Carpin et al. [22, 12] proposed a map
merging algorithm that utilizes an optimization framework to compute the optimal
transformation between two occupancy grid maps. This approach is later amelio-
rated into real-time merging algorithm that using Hough spectrum tracks multiple
hypothesis to cope with ambiguities [20, 21]. Similar ideas have been recently pro-
posed in [56, 55].

Former research is much more limited when it comes to topological map merging
or appearance-based map merging. A general solution to the problem of topological
map merging is proposed by Huang and Beevers [78, 79, 11]. The algorithm identifies
common subgraphs using a vertex clustering method based on the SVD of the covari-
ance matrix. Each pair of common subgraphs becomes a putative solution candidate
for merging. Exploiting the knowledge integrated into the graph structure such as
the degree of vertices and edge properties, the candidates that pass a geometrical
test are considered as valid solutions. The main problem with this approach is its
computational complexity since it has been shown that maximal common subgraph
problem is computationally intractable [85]. Additionally, this approach due to its
generality, does not provide methods to use it for appearance-based graphs which
have some specific properties that should be preserved such as the feature correlations
used for visual servoing.

Another study published by Ferreira et al. [46] addresses the problem for merg-
ing topological paths annotated with images and range scans. In particular, they
proposed a two-step approach to find overlaps in view sequences and stitch them to-
gether into a generic topological map. Tentative overlaps are first discovered from the
similarity matrix built by pairwise comparisons of all images and identified overlaps
are merged together after they are verified based on the idea that matched similar
vertices should also have similar neighbors. One disadvantage of the method is that
merging procedure does not start until after the similarity matrix is built by pairwise
comparisons of all images and local alignments are found. Hence, the algorithm is
clearly offline and its performance suffers as the number of images increases.

Ho and Newman [73] proposed a system in which an algorithm to identify match-
ing subsequent images between two maps is implemented. They also process the
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similarity matrix and apply a modified version of Smith-Waterman algorithm [154]
to find local alignments. The proposed method similarly does not scale well with
respect to the number of images due to the dependency on the creation of full simi-
larity matrix. One of the few multi-robot visual localization and mapping studies is
presented by Hajjdiab and Laganiere [64]. In this paper each robot equipped with
a monocular camera starts from an unknown location and incrementally builds a
local visual map of the environment with the ability to localize itself in the map. In
the case of an overlap between any two robots, images from both maps are stitched
together using inter-image homography and the resulting joint map is utilized by
both robots. However, the merged map is not suitable for a visual servoing approach
that is based on the movements of epipoles like the ones presented in [41, 113].

The problem of merging appearance-based maps is not addressed yet. The very
first solution to this problem we proposed in [42] will be presented in Chapter 5.
Similarly, all former attempts have considered instances where all maps to be merged
are of the same type. Heterogeneous maps, on the other hand, in general have
scarcely been considered, although never in the context of merging, in [32, 132, 167].
In Chapter 6 to the best of our knowledge we will introduce the first heterogeneous
map merging algorithm.

2.4 Wifi Localization

As mentioned in Chapter 1 our heterogeneous map merging algorithm uses WiFi
maps as a common layer and the correspondences between maps are identified by
localizing WiFi signatures from one map in another. We will present the details of
our proposed WiFi localization algorithm in Section 6.3. Hence, in this section we
will review the state of the art in WiFi localization. The utilization of wireless signals
transmitted from Access Points (APs) or home-made sensors has enjoyed great inter-
est from the robotics community, in particular for its applicability to the localization
problem. In this area, the application of data-driven methods has prevailed thanks to
two distinct but popular approaches. First, the signal modeling approach attempts
to understand, through collected data, how the signal propagates under different
conditions, and the goal is to generate a signal model that can then be exploited
for localization. In some sense, the signal model provides an estimation that can be
compared to current signal readings to infer a robot’s position. Second, the signal
mapping approach directly uses collected data by combining spatial coordinates with
wireless signal strengths to create maps from which a robot can localize. The result-
ing WiFi map can then be utilized by robots to localize based on current wireless
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readings. Since signals are distorted due to “typical wave phenomena like diffraction,
scattering, reflection, and absorption” [17], practical implementations of signal mod-
eling are not yet available for unknown environments since they need to be trained
in similar conditions to what will be encountered (i.e., they require at least some a
priori information about the environment) [171]. Moreover, it has been shown in [76]
that a signal strength map should yield better localization results than a parametric
model. Consequently, the rest of this section highlights related works regarding the
mapping approach, which we employ for our algorithm. A comprehensive study on
signal modeling techniques is presented by Goldsmith [59].

Signal mapping can be divided into a training and a localization phase. During
the training phase, signal mapping techniques tie a spatial coordinate with a set
of observed signal strengths from different APs, essentially creating a signal map.
This mapping process is repeated until the entire environment, or a particular region
of interest, is covered and results in a WiFi map. The training phase is generally
performed offline and can be acquired by a human instead of a robot [95, 47]. In fact
every cited publications in this section performs the training phase offline. Given a
new set of observed signal strengths acquired at an unknown position, the goal of
WiFi localization is to use the map acquired during training to retrieve the correct
spatial coordinate. A variety of methods have been devised to solve this problem,
with two of the earliest solutions being nearest neighbor searches [7] and histograms
of signal strengths for each AP [168]. Analysis of the distribution of signal strength
readings suggested that they are normally distributed [76, 51], paving the way to
an abundance of Gaussian-based techniques that attempt to model the inevitable
variance in signal strength readings.

The first Gaussian-based solution to WiFi localization [76], which we subsequently
call the Gaussian Model, consists in fitting a Gaussian distribution for each location
and each AP, using data acquired during the training phase. Once the Gaussian
distributions have been computed, an unknown location described by a new set
of observed signal strengths can be determined using the Gaussians’ Probability
Density Function (PDF). Its simplicity, speed, and good accuracy have made it,
even to this day, one of the most popular WiFi localization techniques [76, 95, 13].
Other popular Gaussian-based algorithms for WiFi localization involve Gaussian
Processes (GP), whether they are used directly [48, 38], within a Latent Variable
Model framework [47], or improved upon to create a new algorithm called WiFi
GraphSLAM [77]. Gaussian Processes and their variants are very promising since
they attempt to establish the correlation’s strength between training data points
(e.g., points close together should have similar observations), making them especially
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suited for regression. Unfortunately, they require a long parameter optimization step
[38] that makes them difficult to use in scenarios where real-time operation is required
and computational power limited.

For completeness, we mention that WiFi localization can be cast as a machine
learning problem and, consequently, any algorithm capable of classification or re-
gression could be exploited for WiFi localization. For example, logistic regression,
multinomial logit, neural networks, and boosting could all be utilized to solve the
WiFi localization problem. In the literature, however, only Support Vector Machines
(SVMs) [161] and Random Forests [8] were shown to perform well in terms of accu-
racy. Whereas SVMs suffer from slow training sessions, Random Forests are fast to
train, can localize quickly, and are very accurate, currently making them the best
candidate for online WiFi localization in unknown environments [8].

The accuracy of all the methods described in this section has been significantly
increased by taking into account a robot’s inherent temporal and spatial coherence
over time using Hidden Markov Models (HMMs) [95, 37] or MCL [76, 13]. Using its
state transitions, an HMM places probabilistic restrictions regarding which states a
robot can move to. The HMM essentially corrects potentially wrong WiFi localiza-
tion that would result in impossible robot motion for a given time step (unless the
robot was kidnapped). Although HMMs for the purpose of WiFi localization work
both in theory and practice, they are often created manually due to the difficulty
of accurately inferring them automatically. MCL combines a robot’s motion model
with a measurement model derived from one of the aforementioned WiFi localiza-
tion techniques. Similarly to HMMs, the robot’s motion model adds robustness to
the WiFi localization by reducing the probability for robot locations that cannot be
predicted by its motion model. Conversely to HMMs, however, MCL does not need
environment-dependent information or a human in-the-loop. The manual creation of
HMMs is evidently not suitable for online WiFi localization and we consequently pre-
fer the MCL approach to correct WiFi localization errors as a robot moves through
an environment.
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CHAPTER 3

Visual Navigation

Visual navigation is evidently one of the most fundamental building blocks of a het-
erogeneous multi-robot system operating in an unknown environment relying solely
on visual sensors. In this chapter building upon different contributions made in
the past in the fields of computer vision, mapping, and visual servoing, we present
the first steps towards the implementation of this vision. Focusing our attention to
domestic environments and mobile platforms with limited computational power, we
describe how it is possible to implement an image-based visual servoing strategy that
steers a non-holonomic mobile robot equipped with a monocular camera so that its
currently perceived image matches a given target view. In addition to proposing this
novel algorithm, we extend the single robot visual navigation framework to multi-
robot heterogeneous systems. Even though this step is conceptually the last one, i.e.,
it is executed after a set of images is collected and organized into an appearance-
based map, its discussion is presented first since it introduces some concepts related
to camera geometry that will be used later on. The results presented in this chapter
have been published in [41].

3.1 Problem Formulation

In this section we first describe the system where our vision-based controller is used.
After explaining the camera model we utilized, we overview some topics in multi-view
geometry that constitute the fundamentals of the presented navigation algorithm.

3.1.1 System Model

We consider a set of N robots moving on a plane with with non-holonomic motion
constraints which we model each robot as a unicycle. It is assumed each robot in
the system is equipped with a pan actuated monocular camera that can be turned
to a desired direction. The state of each robot is a vector in R4 and is defined as
[x y θ φ]T , where x and y are the Cartesian coordinates of the center of the robot, θ is
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the orientation of the robot with respect to x axis of the world coordinate frame, and
φ is the orientation of the camera with respect to the robot’s heading. Without loss
of generality, we assume that the camera is placed concentrically with the robot at
a prefixed elevation, and is tilted by an arbitrary known angle. The general formula
for the kinematic model of a differential drive robot is the following.

ẋ
ẏ

θ̇

φ̇

 =


cos θ 0 0
sin θ 0 0

0 1 0
0 0 1


 u1

u2

u3

 (3.1)

The input vector for the system is U = [u1 u2 u3]T ∈ R3 specifying translational
speed (u1), rotational speed (u2), and the rotational speed for the camera (u3).

3.1.2 Camera Model

In our setup all robots are equipped with monocular cameras with a limited field
of view and we adopt the ideal pinhole camera model as the imaging model due to
its simplicity. It is an idealization of the thin lens model in a way that it describes
the camera aperture as a point and defines a mapping between the coordinates of a
3D point and its projection onto the image plane. Let the center of projection be
the origin of an Euclidean coordinate system which we denote as the optical center
or camera center and its z axis as the optical or principal axis. The plane z = f
perpendicular to this axis is the image plane and the intersection point of the image
plane with the optical axis is called the principal point.

Under the pinhole camera model, a point in space with coordinates X = [X, Y, Z]T

is mapped to the point x = [x, y]T on the image plane where a line joining the point
X to the optical center meets the image plane. As can be seen in Figure 3.1 the
coordinates of X and x are related by the so-called ideal perspective projection

x =

[
x
y

]
=
f

Z

[
X
Y

]
(3.2)

where f denotes the focal length of the camera. In homogeneous coordinates, it can
be written as

Z

 x
y
1

 =

 f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 (3.3)
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Figure 3.1: Pinhole camera geometry is illustrated where C represents the optical
center and p the principal point. The image of the point X is the point x at the
intersection of the ray going through the optical center and the image place at a
distance f from the optical center.

Since the depth of the point x, Z, is usually unknown, it can be simply written
as an arbitrary positive scalar λ ∈ R+. With the decomposition of the above matrix,
we get

λx =

 f 0 0
0 f 0
0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0

X (3.4)

We define two matrices as

Kf =

 f 0 0
0 f 0
0 0 1

 ∈ R3x3, Φ0 =

 1 0 0 0
0 1 0 0
0 0 1 0

 ∈ R3x4 (3.5)

To summarize, using the above notation, the overall geometric model of an ideal
camera reduces to

λx = KfΦ0X (3.6)

The equation 3.6 is derived based on a specific choice of reference frame centered
at the optical center with one axis aligned with the optical axis. However, in prac-
tice digital cameras obtain their measurements in terms of pixel values (i,j) with
the origin of the image coordinate frame located at the upper-left corner of the im-
age. Therefore, the relationship between the pixel array and image coordinate frame
should be specified. Due to the unit differences between two coordinate systems,
we first need to find the scaling factor for each axis to convert metric units to pixel
coordinates. If [xs, ys] is the scaled version corresponding to pixel coordinates, and
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sx and sy are the computed scaling factors, then the transformation can be written
as the following [

xs
ys

]
=

[
sx 0
0 sy

] [
x
y

]
(3.7)

For most of the cameras, each pixel in the sensor array is square so we can usually
assume sx = sy.

pixel coordinates

Sx

Sy

x

y

(0,0)

y
x
zo

normalized coordinates

Figure 3.2: Transformation from normalized coordinates to coordinates in pixels.

Next, we need to translate the origin of the reference frame to the upper-left
corner of the image since xs and ys are still specified relative to the principal point.
Given ox and oy are the pixel coordinates of the principal point relative to the image
reference frame, the actual image coordinates [x′, y′]T are described as following

x′ = xs + ox,
y′ = ys + oy

(3.8)

In practice, pixels may not be exactly rectangular so a more general form of the
scaling matrix includes a skew factor, sθ. The overall transformation then takes the
general form

x′ =

 x′

y′

1

 =

 sx sθ ox
0 sy oy
0 0 1

 x
y
1

 (3.9)
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Finally, if we combine the projection model described in Equation 3.4 with the
translation and scaling, we get the complete transformation formulation in homo-
geneous coordinates between a 3D point in camera frame and its corresponding
reflection in the image frame in pixel coordinates.

λ

 x′

y′

1

 =

 sx sθ ox
0 sy oy
0 0 1

 f 0 0
0 f 0
0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0



X
Y
Z
1

 (3.10)

Here the standard projection matrix Φ0 defines a perspective projection with
respect to a normalized coordinate system as if the focal length was equal to 1. Then,
a pair of transformations that depend on the parameters of the camera is applied to
get the final pixel coordinates. These camera parameter related transformations are
combined into a 3 × 3 intrinsic parameter matrix K, also known as the calibration
matrix.

K = KsKf =

 sx sθ ox
0 sy oy
0 0 1

 f 0 0
0 f 0
0 0 1

 =

 fsx fsθ ox
0 fsy oy
0 0 1

 (3.11)

Currently, most of the high-end cameras used in robotics applications come with
all the required information about their intrinsic parameters to fill the calibration
matrix. However, due to the small differences occurring during the camera and
lens production processes, this information may not be accurate enough for some
vision applications. In the most extreme case, none of these parameters are known
in advance which is the case with most of the webcams available in the market.
Nevertheless, the intrinsic parameters of a camera can be estimated through a pro-
cedure called calibration as described in [70]. Given a set of images captured by the
camera, the calibration can be done either manually by identifying the projection of
the same 3D point in all images or automatically by employing a feature extraction
and matching algorithm as demonstrated in [101]. In our system, for simplicity, we
assume that all the robots have identical cameras and their calibration matrices are
known and equal.

3.1.3 Epipolar Geometry

As mentioned in the previous section, the goal of any visual navigation algorithm is
to steer a robot between two images. More precisely, given an initial and a target
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image, a sequence of waypoints that would lead the robot from the initial camera
pose to the final camera pose needs to be determined. If the initial and target camera
poses could be extracted, assuming the robot has other means of localization, the
whole problem would reduce to a path planning/tracking problem. Hence, it is
essential to understand the geometric relationship between two images and study
the properties of multi-view geometry some of which are exploited by our navigation
algorithm. Here we will describe some of the building blocks of the geometry of two
views, known as epipolar geometry.

With reference to Figure 3.3, let us consider two cameras whose relative displace-
ment is given by a rototranslation (R, T ), where R ∈ SO(3) is a rotation matrix,
and T ∈ R3 a translation vector. Let K be the common intrinsic camera parameter
matrix. The first camera position will be indicated as the actual camera position,
while the second is the desired camera position (hence the subscripts used in the
following).

( R, T )

OO

p

l l
x

x

ee

a

epipolar lines

epipolar plane

d

a

a

a

d

d

d

Figure 3.3: Two projections xa and xd of a 3D point p from two perspective points.
The frame on the left is associated with the actual camera position, while the frame
on the right indicates the desired camera position. The intersection of the line
connecting camera optical centers, Oa and Od, with the two image planes determines
the two epipoles ea and ed.

The line connecting the centers of the reference frames associated with the two
cameras is called principal line or baseline, and let ea and ed be the intersections of
the principal line with the image planes of the first and second camera, respectively.
Points ea and ed are called epipoles. The horizontal coordinate of ea in the actual
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image plane will be indicated as eau, and a similar notation is used for ed. The line l
connecting the epipole to the projection of point p on the image plane x is the epipolar
line. By definition it is evident that the point on the image plane corresponding to
p is restricted to the epipolar line. In other words, the epipolar line in the desired
image ld is the projection of the ray from the point p through the camera center
of the actual camera Oa. The projective mapping xa 7→ ld from points to lines is
represented by the fundamental matrix F which is computed as the following

F = KT T̂RK−1 (3.12)

where T̂ is the skew-symmetric matrix associated with the translation vector T . The
geometric and arithmetic derivation of the fundamental matrix can be found in [65].

For any point xa in the actual image, the corresponding epipolar line is ld = Fxa.
Similarly, l = F Txd represents the epipolar line corresponding to xd in the desired
image. Since xd lies on the epipolar line ld = Fxa, we get xTd ld = 0. In other words,
for two cameras with non-coincident centers, the fundamental matrix is the unique
3× 3 rank-2 homogeneous matrix that satisfies

xTdFxa = 0 (3.13)

for any pair of corresponding points xa ↔ xd in the two images.

The epipolar line ld = Fxa also contains the epipole ed. Thus ed satisfies ed
T ld =

(ed
TF )xa = 0 for all xa. Similarly, xd(Fea) = 0. It follows that the epipoles are in

the left and right null spaces of the fundamental matrix.

ed
TF = 0

Fea = 0

Hence, given F the epipoles can be computed. It is however immediate to realize that
knowledge of F , or of the epipoles, does not imply that the transformation (R, T )
can be retrieved. As evident from Figure 3.3, epipoles are invariant for translations
along the principal line.

The fundamental matrix F can be computed using various algorithms known in
literature like the ones described in [65, 109] and it requires knowledge of a certain
number of matching features between two images taken by the cameras. The simplest
method among them is the eight-point algorithm introduced by Longuet-Higgins
[103] which requires eight point correspondences between two images. The problem
with this approach is that the least-squares solution of the homogeneous linear system
of equations is suboptimal in the presence of noise in image coordinates. In theory,
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the matrix formed from the corresponding points should have one singular value
equal to zero with the rest of them being non-zero. In practice, however, if more than
eight correspondences are used to solve for F or the image coordinates are affected by
various types of noise, some of the non-zero singular values can become small relative
to the larger ones and there may not be a well-defined singular value which can be
identified as approximately zero. Hartley [66] showed that this problem is mainly
caused by the poor distribution of the homogeneous image coordinates in their space
and proposed the normalized eight-point algorithm that produces a better estimate
of the fundamental matrix than the one would have been obtained by estimating from
the un-normalized coordinates. There are also other more complex methods which
due to their nonlinear minimization may produce better results such as Levenberg-
Marquardt algorithm [98, 116] based algebraic error minimization technique [67] or
the Maximum Likelihood Estimation (MLE) based the Gold Standard Method [109]
that minimizes the geometric distance which corresponds to the reprojection error.

The quality of the estimated fundamental matrix can be measured using an error
metric. One obvious choice is to compute the reprojection error which corresponds
to the geometric distance ∑

i

‖xi − x̂i‖2
2 + ‖x̂′i − x′i‖

2
2 (3.14)

where xi ↔ x′i are the point correspondences, and x̂i and x̂′i are the estimated
correspondences that satisfy x̂′i

TFx̂i = 0 for a rank-2 matrix F . However, instead of
computing a set of subsidiary variables, namely the estimated correspondences, we
can take a first-order approximation to the reprojection error, called the Sampson
distance which only involves the elements of F . Sampson distance is defined as∑

i

(x′i
TFxi)

2

(Fxi)2
1 + (Fxi)2

2 + (F Tx′i)
2
1 + (F Tx′i)

2
2

(3.15)

where (Fxi)
2
j represents the square of j-th element of the vector Fxi.

Another alternative is to use symmetric epipolar distance defined as∑
i

d(x′i, Fxi)
2 + d(xi, F

Tx′i)
2 (3.16)

where the function d returns the distance in pixels between a point and a line. The
error is the sum of squared distances between every single matching point and its
corresponding epipolar line in the other image. However, as shown by Zhang [170]
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minimizing Sampson distance outperforms this cost function. More detailed discus-
sion on different choices of cost functions and algorithms to estimate the fundamental
matrix can be found in [159, 109, 65].

Independent of the method used to compute the fundamental matrix, the prob-
lem of noise affecting the image coordinates of the correspondences plays a vital
role in the accuracy of the estimation, and in practice, the source of inaccuracy is
not only the noise, but also possible false point correspondences used as the input
to these estimation algorithms. Thus, to minimize the effects of these false point
matches, RANdom SAmple Consensus (RANSAC) [52] method is utilized. The ba-
sic assumption behind the RANSAC algorithm is that the data we try to explain
with a mathematical model contains inliers (data that fit the model) along with
some outliers (data that cannot be explain with the model) cause either by noise or
faulty observations. Being a non-deterministic algorithm, RANSAC iteratively sub-
samples the data and computes the error between the (usually small) data and the
model. The idea is that as more iterations are executed, the probability of getting a
dataset containing only inliers increases which results in a better estimation of the
parameters of the mathematical model that fits this data.

Algorithm 1 estimateFundamentalMatrix()

1: for n = 1→ N do
2: Xs ←RandomSample(X, 8) {randomly selects 8 correspondences}
3: F ←NormalizedEightPointAlg(Xs)
4: S ← ∅, Sbest ← ∅
5: for all (x, x′) ∈ X do
6: d←SampsonDistance((x, x′), F )
7: if d ≤ ε then
8: S ← S ∪ (x, x′)
9: end if

10: end for
11: if size(S) > size(Sbest) then
12: Fbest ← F
13: Sbest ← S
14: end if
15: end for
16: F ←NonlinearEstimation(Sbest)

We integrate RANSAC with normalized eight-point algorithm to get a more
robust estimation of the fundamental matrix which, in pseudo-code, presented in
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Algorithm 1. At every iteration of RANSAC, first, a random sample of 8 correspon-
dences are selected. Then, using normalized eight-point algorithm the best fitted
fundamental matrix is computed and the error between the estimated F and this
subset is calculated using Equation 3.15. Next, inliers which are point correspon-
dences supporting F are identified among all tentative point matches. A match
(xi, x

′
i) is said to be supportive of the F if its Sampson distance is less than ε, a

preset pixel threshold. These steps are repeated for a number of iterations which can
be determined adaptively and the F with the largest number of supporters is chosen
as the best fundamental matrix and its supporting matches are identified as final
inliers. Finally, the F is re-estimated from all correspondences classified as inliers.
For this last step, in order to make use of all the correspondences we iteratively
minimize the Sampson distance using a more sophisticated nonlinear approach like
the Levenberg-Marquardt algorithm.

3.2 Navigation Algorithm for Heterogeneous Multi-Robot
Systems

3.2.1 Single Robot Navigation

Mariottini et al. [113] proposed a two-stage method that controls a non-holonomic
robot equipped with a fixed camera. Given the actual camera position, and a desired
camera position specified as a target view, their control schema moves the robot so
that the actual image eventually matches the desired image solving the visual navi-
gation problem illustrated in Figure 3.4. Due to the non-holonomic constraints, the
produced path significantly deviates from the shortest one between the current and
goal poses. Given that the system model we formerly assumed allows for rotations in
place and includes an additional degree of freedom for the camera that allows us to
rotate the camera around its vertical axis, we extend their approach into a four-stage
control schema which is more articulated but produces the shortest possible motion.

The four-step visual navigation strategy targeting pan camera equipped robot
systems is described in the following. Due to the simplicity of the kinematics of the
system and the fact that the overall navigation algorithm is decomposed into four
independent steps, without loss of generality, we employed proportional controllers
and their parameters are tuned manually. In practice one can use more sophisticated
approaches, such as PID controllers, and their parameters can be tuned using Ziegler-
Nichols method [172]. The ki factors are the proportional gains of the proportional
controllers used in the various steps. The algorithm proceeds to next step when the
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Figure 3.4: Illustration of the visual navigation problem.

error defined for the current step falls below a preset value. Figure 3.5 provides a
graphical illustration of the four step approach. Four steps are listed as following.

1. From the initial configuration, applying the control law U = [0,−k1eau, 0]T the
actual epipole’s horizontal coordinate eau is brought to 0. The desired behavior
is that the robot rotates around its z axis towards the target configuration. At
the end of this step, the robot’s heading will be aligned with the principal line.

2. Keeping the robot fixed in place, the camera will be rotated to align the actual
camera coordinate frame with the desired camera configuration. The control
law brings the horizontal coordinate of the actual epipole eau to the horizontal
coordinate of the desired epipole edu: U = [0, 0,−k2 (eau − edu)]

T .

3. In the first two steps the epipoles are locked to appropriate values to produce
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the desired behaviors. Additionally, a relative translation of the image planes
along the baseline cannot be derived from the epipoles. Thus, an additional
source of feedback is needed. In this step we use feature match based error
as feedback. The error Errpix is defined as the maximum error between the
horizontal image coordinates of matched features. The control law for this step
is the following: U = [−k3Errpix, 0, 0]T . As the error goes to zero, the robot
approaches the desired robot position while moving along the baseline. During
this motion the actual camera heading is kept aligned with the desired camera
configuration. At the end of this step the robot will be at the desired location
and the camera will have the same view.

4. If it is desired to match the robot’s heading with the camera heading, then
in the last step the robot should be rotated so that the angle between its
heading and the camera orientation goes to zero. Since the camera is attached
to the robot, its rotation also affects the camera. Thus, the camera rotates
simultaneously in order to compensate the rotation of the robot. The resulting
control law is defined as U = [0,−k4Errpix,−k5φ]T .

Figure 3.5: Four steps needed to bring the robot to the desired position specified by
a target view is described.

The proposed approach works well if the target robot configuration is in the field
of view of the initial camera configuration. Otherwise, in step-1 when the robot
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turns toward the target position, the cameras may lose the overlap in their observed
scenes and the number of common features therefore may fall below the required
number to robustly estimate the epipoles. For instance, consider the inverse problem
of navigating from the goal position to the initial position in Figure 3.5. Please note
that the omni-directional camera based systems are not affected by this problem
since their field of view is 360◦ so their acquired observation through the camera is
independent from the heading of the robot. On the other hand, our epipole-based
visual servoing approach working on a monocular camera suffers from this issue since
it does not directly consider the area of the overlap between two images or the number
of feature matches. Hence, in the current implementation, we first test the target
position to see if it lies in the field of view of the initial camera configuration. If it
is in the field of view the described algorithm is applied which results in the near-
optimal robot motion. Otherwise, the method presented by Mariottini [113] can be
applied which keeps the scene under common surveillance with a cost of increasing
the path traveled by the robot.

3.2.2 Multi-Robot Navigation

Up to now we assumed that the target image is taken from the same camera by the
same robot that tries to reach it. Even though this assumption is valid for most
of the current robotics applications like a robot building and using its own map,
the value of integrating robots with different capabilities to create a multi-robot
heterogeneous system is incontrovertible. Based on this idea, we extend our visual
navigation algorithm so that it provides a viable control strategy that is independent
of utilized camera configuration. In other words, a target image captured by a certain
robot can be used by a different mobile platform for navigation purposes. This ability
greatly enhances the utility of the system. For the moment we assume the robots
are equipped with same cameras, i.e. same intrinsic camera parameters, however,
full heterogeneity with the usage of different cameras can be achieved by utilizing an
automatic intrinsic parameter estimation algorithm like the one described by Liu and
Hubbold [101]. Changing the elevation of the camera only shifts the projection of
the observed scene along the vertical axis of the image plane and does not have any
effect on horizontal coordinates of the image pixels. Since the navigation algorithm
is designed based on the u-coordinates of the epipoles, the elevation of cameras does
not affect the movement of eau and edu. Thus, the proposed navigation algorithm can
be used for heterogeneous robot teams having cameras at different heights. Another
factor that plays an important role on how the scenery is perceived is the tilt angle
of the camera. In a heterogeneous team of robots some robots may have cameras
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tilted to a different angle than the rest of the team, or a single robot may capture
images by tilting its camera to get better angles of perception during the course of
its navigation. However, as the tilt angle between two cameras differs, the locations
of the epipoles change. Hence, we introduce another layer to our control strategy to
make navigation possible between images taken by cameras with different tilt angles.
The intuition behind this extension is that we want to know how the image would
look like if the actual camera position had the same tilt angle as the desired camera
position (or viceversa). In that case, the estimated image could be used as the target
image and the navigation algorithm could be applied without much change since the
tilt angles of both cameras would be the same. In order to create this image we first
back-project each image into normalized image coordinates from pixel coordinates,
then virtually rotate the desired camera to the same tilt angle of the actual camera,
and finally project the image again to pixel coordinates as observed from the rotated
camera. The idea is explained in more detail below as a 3-step procedure. Since we
are only interested in the extracted features, we slightly abuse the terminology and
refer to the union of the extracted features as the image. Let It be the target image
defined as It =

⋃
pi where pi is an extracted feature from the image with coordinates

[ui vi]
T in the image plane. We recall that the intrinsic parameter matrix K can be

decomposed as K = KsKf as shown in Equation 3.11. For each feature pi in the
target image we apply the following transformations:

1. The feature pi = [ui vi]
T is first transformed into ppix = [ui vi 1]T defined in

homogeneous pixel coordinates. Then, we back-project it to normalized image
coordinates by using Ks

pimg = K−1
s ppix. (3.17)

After the feature is transformed into normalized image plane, the z coordinate
is set to the focal length of the camera

p′img =

 1 0 0
0 1 0
0 0 f

 pimg. (3.18)

2. Next, in order to simulate the perception from the virtually rotated camera,
we rotate the point around the camera center with Rψ where R is the rotation
matrix defined around the camera’s x axis and ψ is the tilt angle between the
two cameras

prot = Rψ p
′
img. (3.19)
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At the end of the this step we achieve the normalized image coordinates of the
feature as it would be perceived from the target camera if it had the same tilt
angle of the actual camera.

3. In the last step we project the feature onto the CCD of our virtual camera
and get the pixel coordinates we look for. The projected feature should be
normalized in order to get the correct pixel values

p′pix = KsKf prot. (3.20)

The tilt-correction process is summarized in Figure 3.6. Once all features are
transformed into their new pixel coordinates, the resulting image can be used as the
target image and the navigation algorithm can be applied.

3.3 Results

3.3.1 Simulation

The four step navigation algorithm described in the previous section is first sim-
ulated in MATLAB. The environment is modeled by random 3D points posing as
actual correspondences of visual features. The desired camera configuration is also
randomly chosen with the constraint that enforces a minimum number of visible
features. Among the places from which the desired camera configuration is in the
field of view, the actual camera configuration is randomly selected in a way that at
least 50% of the features are seen by both cameras. Both cameras take 320 × 240
pixel images and their configurations vary in terms of 3D coordinates and pan and
tilt angles.

The 3D scene is projected into virtual image planes and the feature correspon-
dence problem is assumed to be solved. Image coordinates of the features are pro-
jected to zero tilt angle configuration for both cameras using the projection algo-
rithm introduced in Section 3.2.2. The resulting feature sets are used to compute
the fundamental matrix and the epipoles. The necessary inputs are calculated by
the algorithm described in Section 3.2.1. A sample run representing the overall error
behaviors is shown in Figures 3.7 and 3.8. In this run two cameras share 43 feature
correspondences and the target camera configuration differs from the actual camera
configuration by 30◦ tilt and 12.5◦ pan angle. As can be seen in Figure 3.7, in the
first two steps of the algorithm both epipoles converge to zero. Then, as the robot
moves along the baseline, the pixel error defined as the maximum distance between
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Figure 3.6: The first row represents the feature extraction process. In the first step
feature points are back-projected and pimg is computed. Then, points are rotated by
ψ around x axis of the camera as illustrated in the second step and projected back
to achieve the desired effect.
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Figure 3.7: Simulation results of a random run shows the error profiles for each stage
of the navigation algorithm.

feature matches in pixel coordinates also zeros out. In the fourth step both the robot
and the camera rotate to minimize different error functions. It can be noted that in
the sub-figure showing the pixel error due to robot rotation, the error first increases
and then converges to zero. The reason for this overshoot is the fact that k4 and k5

setting the reaction speed for the robot and the camera, respectively, are not tuned
perfectly. However, in none of our simulations the error reached to a critical value
causing to lose the overlap between the target and perceived images. With a faster
controller cycle and better parameter tuning, this overshoot can be minimized.

The overall position and angular errors between the actual and desired camera
configurations are plotted during four-steps of the navigation algorithm in Figure
3.8. Since the robot’s translational speed stays at zero during the first two steps, the
distance error does not change. The error then zeros out in the third step when the
robot moves along the baseline. On the other hand, angular error reaches its desired
value at the end of second step.
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Figure 3.8: Each dotted vertical line corresponds to a transitions to the next stage.
a) Distance error profile through four stages of navigation algorithm is plotted. b)
Angular error between the actual and desired camera headings is shown.

3.3.2 Implementation on a Multi-Robot System

The proposed system has been implemented on a multi-robot system consisting of
two platforms shown in Figure 3.9. The first one is the P3AT platform produced
by Activemedia. The other is the iRobot Create robotic platform designed as an
in-house autonomous robot. Onboard the Create we have installed an eBox 3854
compact PC. The platform is equipped with an 800MHz fanless VIA EDEN-N pro-
cessor, a 4GB flash drive, 256Mb of RAM, and an 802.11 wireless board. The PC runs
a standard Linux distribution, and is directly powered from the robot battery. On
the other hand, P3AT robot is commanded by a standard laptop equipped with an
1.8GHz CPU and 512MB of RAM. Both robots are equipped with a Philips webcam
operating at a resolution of 320× 240 pixels mounted on a Phidget servo providing
the needed additional degree of freedom for rotating the camera. It is evident that
the two robots have a very different morphology and cameras are placed at different
elevations and different tilt angles. The robustness of the visual navigation algorithm
has been demonstrated in a multi-robot framework in an office environment.

Initially each robot is driven through an arbitrary trajectory, and a set of images
are automatically captured by the robots’ monocular cameras. A random image is
selected among collected images and used as the target view. Each robot is then
placed on an arbitrary location close the place where the target view is captured and
takes an image from this location which is treated as the initial image. Given these
initial and target images, the visual navigation algorithm generates the control inputs
and steers the robot to the target location. This procedure is repeated a total of 40
times and a representative set of results of this experiment is shown in Figures 3.10
to 3.13. The top row corresponds to the initial image whereas the target image is
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shown in the middle row. The bottom row presents the final image that the robot
captured when the navigation algorithm declared that the target location is reached.
Figures 3.10 and 3.11 refer to the first part of the experiment where the target image
is captured by the same robot executing the navigation algorithm, P3AT and Create
respectively. Even though most of the trials resulted in remarkable results, some of
these trials converged to non-optimal solutions as can be seen in second column of
Figure 3.10 and first column of Figure 3.11. This behavior was not observed in the
simulation results and is caused by the false feature correspondences computed by
the feature matching algorithm which will be described in Section 4.4. Due to these
false matches, the fundamental matrix sometimes could not be calculated correctly
even though RANSAC algorithm is used to identify and discard these outliers as
previously described in Algorithm 1. Hence, the epipoles computed as the right and
left null vectors of F carried some error which resulted in providing the robot with
the wrong control inputs.

Figure 3.9: The two robots used to test the navigation algorithm in a heterogeneous
framework. On the left: an iRobot Create platform; on the right: a P3AT robot.

In the second part of the experiment we tested the capabilities of the navigation
algorithm for the case where the target image is captured by a different robot than
the one using it for navigation. In Figure 3.13 P3AT is navigating to a target image
captured by the Create robot while Figure 3.12 presents the results of the opposite
setup, i.e., Create navigating towards an image taken by P3AT. With its tilt angle
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Figure 3.10: Results of the visual navigation algorithm tested on the Create robot.
Top row: Initial image taken before starting to navigate. Middle row: Target image
captured in an independent run by the Create robot. Bottom row: Final image taken
after the navigation algorithm declares that target view is reached.

correction mechanism summarized in Figure 3.6 the navigation algorithm minimizes
the error defined in the horizontal component of the epipoles which accounts for tilt
and elevation differences, respectively. However, due to the difference in elevation
and tilt angle of cameras, it is not always possible to reach the same perspective of
the target image. Some of these cases where the final image is not as close to the
target view as the rest of the results can be seen in Figure 3.12, especially in the
trial shown in the second column. In order to perceive the boxes on the right bottom
corner of the target image as the same size, Create needs to come closer to those
boxes. However, since the Create robot is much closer to the ground than the P3AT,
moving towards them would put those boxes out of the field of view of the camera.

3.4 Conclusions

We presented a novel visual servoing algorithm based on epipolar geometry ex-
tracted from images perceived by the robot. Focusing on mobile robots equipped
with monocular cameras, the algorithm solves the navigation problem in four steps
through which it steers a robot towards a target image using the shortest possible
path between its current and target pose. This novel algorithm by design supports
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Figure 3.11: Results of the visual navigation algorithm tested on the P3AT robot.
Top row: Initial image taken before starting to navigate. Middle row: Target image
captured in an independent run by the P3AT robot. Bottom row: Final image taken
after the navigation algorithm declares that target view is reached.

heterogeneity with respect to the pose and configuration of the camera. In other
words, a robot can navigate to an image captured by a different robot even if two
robots have a very different morphology and cameras are placed at different ele-
vations and different tilt angles. This important feature of the proposed method
extends the utility of the algorithm beyond a single robot visual navigation frame-
work and allows it to be used by heterogeneous multi-robot systems. The proposed
approach has been implemented and validated both in simulation and on a team of
two robots, effectively demonstrating the power of the proposed system. The idea
of servoing to an image captured by another robot can be generalized to using a
visual map created by another robot for navigation which we will focus on in the
next section.

The proposed system can be extended in various directions. Firstly, on the practi-
cal side, the tradeoff between speed of execution and precision should be investigated
to evaluate the effects of moving the robots at higher velocities at the cost of occa-
sionally losing localization or missing some of the steps in the navigation strategy.
Secondly, the stability of the proposed four-step servoing algorithm should be studied
and how to choose the control parameters to guarantee the convergence of designed
errors at each step should be explored. Finally, we believe that the last missing ele-
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Figure 3.12: The Create robot is navigating towards an image taken by the P3At
robot. Top row: Initial image taken by Create before starting to navigate. Middle
row: Target image captured in an independent run by the P3AT robot. Bottom row:
Final image taken by Create after it declares that target view is reached.

ment is the ability to sense if the robot is going to lose the overlap between current
and the target images during the first servoing step, i.e., rotating the camera towards
the target camera location. In that case the system should switch from its servoing
algorithm that is optimal in terms of travel distance to an algorithm that focuses on
maintaining the overlap at the expense of increased path length. With the addition
of these mission critical features the robustness of the proposed navigation algorithm
can be increased substantially.
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Figure 3.13: The P3AT robot is navigating towards an image taken by the Create
robot. Top row: Initial image taken by P3AT before starting to navigate. Middle
row: Target image captured in an independent run by the Create robot. Bottom
row: Final image taken by P3AT after it declares that target view is reached.
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CHAPTER 4

Appearance-Based Localization and Mapping

The Simultaneous Localization and Mapping (SLAM) algorithms furnish robots with
a vital feature that allows them to localize and navigate in unknown environments.
One of the biggest problems in SLAM is loop closure, i.e., revisiting a previously
mapped location and associating it with another one already visited. When metric
maps are used, loop closure usually requires a computationally expensive backprop-
agation process. Appearance-based maps, on the other hand, provide a simple but
powerful solution to this problem. In contrast to metric SLAM techniques, with-
out the need of explicit positioning of the robot, places can be recognized via their
appearances. In other words, matching and connecting two parts of the map is as
simple as creating an edge in between. Appearance-based maps are also suitable
for resource-limited robots which need to solve the SLAM problem without the aid
of good sensors like laser range scanners. Since no metric information is required
to build or utilize appearance-based maps, no other sensor than a simple camera is
needed. Even though the proposed framework can also be used with other type of
cameras like omni-directional cameras, here we focus our attention to on monocular
cameras to integrate the visual navigation algorithm presented in Chapter 3.

After we give a formal definition of appearance-based maps in Section 4.1 and de-
scribe the adopted image representation in Section 4.2, we present the data structures
used in our technique in Section 4.3. The proposed appearance-based framework re-
quires an offline training phase which will be presented in the same section. Even
though it seems like a drawback of the approach, training is a onetime procedure and
is independent of the robot utilizing it or environment being mapped. Appearance-
based localization and mapping techniques are discussed in detail in Section 4.4
and 4.5, respectively. The basics of the proposed appearance-based localization and
mapping system as well as the prerequisite training process are illustrated as a block
diagram in Figure 4.1. Next, in Section 4.6 we demonstrate how appearance-based
maps can be used for path planning and visual navigation. Finally, we conclude
the chapter after we introduce our task specific quality metric in Section 4.7 which
measures the utility of the built appearance-based map with respect to three major
robotic tasks: localization, mapping, and navigation.
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Figure 4.1: Overview of dictionary learning, map building and localization proce-
dures are presented.

4.1 Definition

In formerly published work there exists no unified definition of appearance-based
map. The one we embrace here is aligned with most literature, but includes also
some ad-hoc features aiming to enable autonomous navigation via image-based vi-
sual servoing algorithm described in Section 3.2. We define an appearance-based
map as an undirected weighted graph M = (V,E,w) in which every vertex v ∈ V
represents an image acquired by a camera at a certain position in the workspace.
In systems using omnidirectional cameras, thanks to the rotational invariance of the
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images, the configuration space of the camera is two dimensional, i.e., only x and y
coordinates are relevant. For the case of monocular cameras, instead, the orienta-
tion of the camera is also important. Therefore, each vertex is intrinsically related
to the position and orientation of the camera capturing the image. However, it is
important to note that this or any other any metric information is not encoded in
the appearance-based map structure. An edge eij ∈ E connects two distinct ver-
tices vi, vj ∈ V whenever the associated images are sufficiently similar according to a
given similarity metric S : V × V → R. Different metrics can be used and edges are
therefore parametric with respect to the used metric. In Section 4.4 we will describe
the image similarity metric we use in our implementation. An edge is added between
vi and vj whenever S(vi, vj) > Tmin, where Tmin is a metric dependent threshold.
The weight w of an edge is set to the similarity between the vertices it connects,
w(eij) = S(vi, vj).

It is worth noting that Tmin not only plays a role in defining when an edge should
be added between two vertices, but it will also influence the behavior of the merging
algorithm, as explained in Chapter 5. However, according to our experience, the
choice of its value should be mainly driven by the requirement of providing enough
features to ensure robust navigation between two images using the visual servoing
algorithm we discussed in Chapter 3. The Tmin value we outlined above reflects the
characteristics of the test environment, of the cameras we used, of the resolution of
the captured images, of the chosen feature descriptor, and of the robotic platform
used to navigate in the environment. Evidently, in a different scenario the user
should adjust the value based on preliminary experiments aimed at identifying the
sensitivity of Tmin to the navigation algorithm used.

Figure 4.2 shows an illustrative example of appearance-based maps.

4.2 Image Representation

It is obviously impractical to store raw images to determine similarities between ver-
tices and then ultimately build the graph. Therefore, each image is represented as
a set of robust local image features characterizing the scene captured by the image.
In the literature there are several feature detector algorithms such as Scale Invariant
Feature Transform (SIFT) [105], Harris affine region detector [124], KanadeLucas-
Tomasi (KLT) [107], Speeded Up Robust Features (SURF) [10]. Among them we
have chosen SIFT descriptors due to their outstanding performance on distinctive-
ness and robustness against competing algorithms [125, 9]. SIFT descriptors are the
collection of feature vectors extracted from an image where each feature is invari-

45



Figure 4.2: A simple appearance-based map with edges inserted between sufficiently
similar images.

ant to image translation, scaling, and rotation, partially invariant to illumination
changes and robust to local geometric distortion. These descriptors are created as
a result of a four stage filtering algorithm. First, all scales and image locations are
searched by using a difference-of-Gaussian functions to identify scale-space extrema
which correspond to potential interest points. At each candidate location, a detailed
model is fit to determine location and scale. After low contrast candidate points and
edge response points along edges are discarded, remaining candidates are assigned
as keypoints. This step ensures stability of keypoints for matching and recognition.
Then, dominant orientations are assigned to each keypoint location based on local
image gradient directions. All future operations are performed on image data that
has been transformed relative to the assigned orientation, scale, and location for each
feature, thereby providing invariance to these transformations. Finally, the local im-
age gradients’ magnitudes and orientations are measured at the selected scale in the
region around each keypoint. These are weighted by a Gaussian window and then
accumulated into orientation histograms summarizing the contents over subregions.
The resulting orientation histograms represent the SIFT descriptors and allow for
signicant levels of local shape distortion and change in illumination. In his seminal
paper Lowe [105] experimentally shows that orientation histograms of size 128 per-
forms the best. Therefore, in our implementation we employ an open-source library
by Hess [71] and use 128 dimensional SIFT features. Further details on construction
process of SIFT descriptors and their characteristics can be found in [105]. A sample
image with extracted SIFT features is shown in Figure 4.3.
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Figure 4.3: Sample image with extracted SIFT features

4.3 Data Structures and Training

Due to its efficient matching process and scalability, we use the image search en-
gine developed by Sivic and Zisserman [153] as the base of our Bag-of-Words (BoW)
method. An image in BoW approach is modeled as a document with some words.
After the feature extraction process described in the previous section, each image is
already converted into a collection of SIFT features. However, using these features
directly as words has several disadvantages like the increased size of the dictionary,
decreased robustness due to the inclusion of noise, and increased redundancy. There-
fore, they are quantized into visual words. Quantization is obtained by k-means
clustering performed on the descriptors from a number of training images. Focusing
on indoor environments, we extracted over 20 million SIFT features from random
indoor images obtained from online image repositories [69, 108, 138, 139, 4]. Some
examples of these images can be seen in Figure 4.4. After various tests we determined
that 50K words (clusters) offer a good compromise between speed and accuracy, so
we fixed the number of clusters to this value. The centers of the learned clusters
are then defined as the dictionary, also known as the codebook, where the number
of clusters corresponds to the size of the dictionary. This computationally expensive
offline training procedure is only applied once and the resulting static dictionary
is preloaded to all robots performing appearance-based localization and mapping.
Robots can then encode their visual perception with words from the same dictio-
nary. This aspect plays an important role in the map merging algorithm, as we will
describe in the next chapter. It is also worth noting that no images from the envi-
ronment used to test our algorithm were included in the training set. Despite this,
robots preloaded with this static dictionary perform mapping and localization tasks

47



Figure 4.4: A representative set of random training images collected from online
repositories

successfully, as we will discuss in Section 4.6. With the idea that words that are
too common among the training images will not help differentiating query images,
the top 5% of the most common words is discarded. The dictionary includes also
an inverted index that is incrementally updated when new images are added to the
map. The inverted index associates every word to the list of images in which the
word is seen, together with the x, y coordinates in the image plane.

4.4 Localization in Appearance-Based Maps

Given an appearance-based map M = (V,E,w) and a query image Iq, we want to
find the most similar image in V . This step is needed for both map building and map
merging. The algorithm should either return the most similar image, or determine
that no sufficiently similar image exists in the map. Localization proceeds as follows.
Starting from Iq we extract the set of SIFT features Fq. For every feature f qi ∈ Fq,
the closest word in the dictionary is determined. Given that we opted for a SIFT
implementation, matching is performed using the L2 norm in R128. Kd-trees do not
provide speedup over exhaustive search for spaces with 10 or more dimensions for
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exact solutions, therefore striving for real time performance we use an approximate
nearest neighbor solution [130]. After every feature has been matched to the closest
word, a sparse appearance vector ψq is built. The appearance vector ψq records every
word in the dictionary matched to the features extracted from Iq. Then, by using
ψq and the inverted index each word appeared in the query image casts a vote for
all images in the map that also contain this word. When normalized, the histogram
of accumulated votes defines a probability distribution over all images in the map.
As a result of this voting procedure, all images sharing one or more features with Iq
are identified as candidate matches. The number of votes indicating the number of
common features defines the formerly introduced similarity metric S.

One of disadvantages of BoW approach is that it ignores the spatial relationships
among the visual words, which is very important in image representations. Moreover,
the number of feature matches computed through the voting scheme can be affected
by outliers due to quantization effects in word clustering and to the approximation
in finding the nearest neighbor. Therefore, as final step a robust estimation of the
multi-view geometry that links these images is performed by utilizing the RANSAC
based algorithm presented in Algorithm 1. For each candidate image, the best fitting
fundamental matrix is computed and matching feature pairs supporting this matrix
are identified. These supporting feature matches are also tested for spatial consis-
tency as described in [153]. Based on the idea that matching regions in compared
images should have a similar spatial agreement, the algorithm eliminates feature
matches that do not comply with the spatial layout of the neighboring matches in
the query and target images. If the number of remaining feature matches still ex-
ceeds a threshold Tmin, the image is considered as a match. We set this threshold to
15, i.e., the minimum number of matches required to robustly navigate between two
images using the navigation algorithm we presented in Section 3.2. Among all can-
didate images that pass this geometric verification test, the image with the largest
number of matches is chosen to be the most similar and considered as the most likely
location in the map. If there exist no image candidate with at least Tmin matches, the
algorithm terminates indicating no similar image was found. The overall localization
procedure is described in Figure 4.1.

The described majority voting schema is compared with the common pairwise
image matching method [16] and the results are shown in Figure 4.5. The pairwise
method, instead of using a centralized dictionary or a database of features, extracts
features from each image and compares them with the features from every other
image in the appearance-based map. In order to reduce the computational cost of
matching, a kd-tree is constructed from the features of each image. In this perfor-
mance comparison analysis, appearance-based maps with different number of images
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Figure 4.5: Appearance-based graphs constructed for different number of images are
used to run 500 localizations to random query images. The graph shows the overall
time spent by the presented majority voting schema and two pairwise image compar-
ison methods, pairwise where for each localization instance kd-trees for all images
are constructed from scratch and precomputed where kd-trees are precomputed and
used throughout all localization calls.

are generated and a random query image is localized in the resulting map. The
plots in Figure 4.5 correspond to the overall time to compute 500 localizations which
includes the kd-tree construction time for pairwise matching approach. Addition-
ally, we also show the overall time for pairwise method in case where kd-trees are
precomputed. As can be seen in the figure, the difference between storing the kd-
trees in advance or re-constructing them for each localization attempt takes only a
small percentage of the overall time required. In other words, the performance of the
pairwise approach suffers more from the localization step of high number of image-
image comparisons. The figure also concludes that the majority voting approach
outperforms pairwise matching methods.
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4.5 Appearance-Based Map Building

Mapping is the process of iteratively acquiring new images and updating the appearance-
based map, if needed. Given a new image In, the process starts by running the
formerly described localization algorithm. Localization returns either a set of similar
images, or an empty set if no sufficiently similar image is found in the map. If no
image is returned, then In is inserted into the map because the robot has discov-
ered a new location that has no connection with any previous image. If localization
returns a set of similar images, then image similarity is used to determine whether
In should be inserted. If Is is one of the returned images and S(In, Is) > Tmax,
then Is is considered too similar to In and it will not be inserted because it is not
sufficiently informative. Otherwise, the image is added to the map and edges are
added between the new vertex and all similar images identified by the localization
algorithm. By rejecting the insertion of similar images into the map, we prevent
the map from growing too much (in terms of images) when the robot revisits the
same area numerous times. Figure 4.6 shows some snapshots of the mapping process
along with the Graphical User Interface (GUI) we designed. The system can build
appearance-based maps in real-time. Using a non-optimized C++ implementation it
takes around 0.6 seconds to process a single image of size 320× 240, including image
capturing, feature extraction, global localization, and map update.

4.6 Planning and Navigation on Appearance-Based Maps

Appearance-based maps with their underlying weighted graph structure provide a
suitable framework for most path planning algorithms such as depth-first search,
Dijsktra, and A*. Given the current image and a goal image, the planning algorithm
returns a series of vertices, when followed, guides the robots from its current vertex to
the goal vertex. In this section we focus on the utility of appearance-based maps from
path planning and navigation perspective and present our path planning algorithm
supported with previously introduced visual navigation method in Algorithm 2.

Given a goal image Ig the algorithms first searches that image in the appearance-
based map using the previously described localization procedure (line 3). If it fails
in locating the goal image in the map, the image is inserted into the map as a new
vertex and that vertex is set as the target location (line 5). In order to determine its
current position with respect to the appearance-based map, the robot localizes itself
in the map by searching for the vertex with highest similarity to its actual view Ia
(line 4). Similarly, if there exist no image that is sufficiently similar to the actual

51



(a) t = 1.5 mins (b) t = 2.6 mins

(c) t = 8.3 mins (d) t = 9.2 mins

Figure 4.6: Some snapshots taken while the robot builds an appearance-based map
using the BoW method are presented. The last captured image is displayed at the
top right corner of the GUI while matched images are shown at the bottom right
corner. Vertices corresponding to query and matched images are shown in green and
blue, respectively. Note that the occupancy grid map overlaid with images is shown
for display purposes only and not used by the robot.

image, the actual image is added to the map as a new vertex (line 6). If either the
goal image or the actual image is captured at a location not covered by map and
hence fails to create any edges with the vertices in the map due to non-sufficient
similarity, the path planning algorithm terminates by declaring that the map does
not contain a valid path between these two images (line 8). Otherwise, once the
vertices corresponding to both actual and goal images are identified in the map,
the optimal path connecting these vertices is determined using Dijsktra’s algorithm
(line 10). Since Dijsktra’s algorithm minimizes the cost of the path, edges in the
graph should be labeled with a distance measure. The distance between vertices
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is defined as dissimilarity between images associated with them where non-existing
edges indicate infinite dissimilarity. The distance is calculated as reciprocal of the
edge weight which represents the similarity, 1

wij
. Due to the dissimilarity-based cost

function, the computed path favors navigating through images with high number of
feature matches and avoids places where features change rapidly. It is important
to note that the computed path is not necessarily the shortest path in Euclidean
space since the planning takes place in the appearance space. If during the planning
process the overall distance or the time it takes to navigate the path needs to be
optimized, the weights need to be assigned accordingly.

After the path is computed as a sequence of vertices (line 10), the planner assigns
the next vertex in the path as the waypoint and executes the visual navigation
algorithm that steers the robot to that vertex (lines 11-16). In other words, the
robot advances in the path one vertex at a time until it reaches the goal vertex.

Algorithm 2 Navigate(Ia,Ig)

1: Fg ← extractFeatures(Ig)
2: Fa ← extractFeatures(Ia)
3: vg ← localize(Fg)
4: va ← localize(Fa)
5: if vg = NULL then vg ← insertToMap(Fg)
6: if va = NULL then va ← insertToMap(Fa)
7: if vg = NULL or va = NULL then
8: return FAILURE
9: else

10: P ← Dijkstra(va,vg)
11: vi ← popFront(P )
12: repeat
13: vj ← popFront(P )
14: visualNavigate(vi, vj)
15: i← j
16: until P not empty
17: return SUCCESS
18: end if

The proposed algorithm is tested in an indoor scenario using the same team of
robots with different morphologies presented in Section 3.3. Each robot is teleoper-
ated through an arbitrary trajectory, and collected a sequence of images. For each
set of images an appearance-based map is built using the map building algorithm
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described in the previous section. Each robot is then placed on an arbitrary loca-
tion in the vicinity of the area covered during the map building phase so that the
initial view of the robot will be similar to at least one of vertices in the map. The
target view, on the other hand, is assigned by randomly choosing an image from
the map. Given these initial and target images, the planner algorithm returns the
sequence of images each robot needs to follow in order to reach the target location.
The resulting path is followed by navigating from one image to the next using the
visual navigation algorithm presented in Section 3.2. However, due to the noise in
feature coordinate estimations and outliers in feature matches, the computed actions
to steer the robot between images are subject to error and the computed epipoles
are not as smooth as observed in simulation. Thus, by applying error-prone actions
computed based on the noisy data, the robot might get lost, i.e., the number of
common features between the current view and any image in the map falls below
the minimum similarity threshold Tmin. Whenever this phenomenon happens, the
robot first assumes the failure is due to the delay in communication between the
controller and the actuators, and scans its local environment for re-localization by
rotating its camera. In the trials with Create, where this type of failure is commonly
observed, this method successfully re-localized the robot in the graph. On the con-
trary, the P3AT robot never lost its sight in our trials. Only in one occasion where
sufficient overlap between the actual and the goal image could not be recovered by
the camera rotation, the Create declared itself lost and started a global localization
procedure. The robot successfully localized itself in the graph by creating an edge to
the next waypoint in the path and reached the target image by navigating through
the remaining waypoints.

In these experiments robots not only navigated in their own maps but also in
maps created by other morphologically different robot. Figure 4.7 presents the path
followed in a sample run where the traversed distance is roughly 30 meters. The
resulting appearance graph consists of 42 vertices. We remind that the path is
only for visualization purposes since the proposed method does not use any metric
information. Some of the images captured by P3AT and used to build an appearance-
based map are shown in the top row of Figure 4.8. More precisely, those are the
images associated with the six vertices outlined along the path. The middle row
shows the corresponding view obtained by the P3AT robot while navigating to reach
in sequence those waypoints. The last row instead shows the final images captured
by the iRobot Create when it thinks the corresponding waypoint is reached. As can
be seen in the last images of both sequences, despite their perceptual differences both
robots successfully reached the target location.
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Figure 4.7: The path illustrates the followed trajectory during the map building
process. Circles indicate some of the vertices created in the appearance graph and
the associated images images are presented in Figure 4.8. Robots start from the
bottom vertex on the right and navigate to the top vertex in the middle along the
depicted path.

4.7 Quality Assessment of Appearance-Based Maps

In the previous section we presented our appearance-based map building algorithm
which consisted of several components such as feature extraction, feature match-
ing, vertex matching, similarity detection, and edge insertion. The map building
algorithm is designed to be modular with respect to these independent components.
Evidently, one module can be replaced with a completely different one as long as
its input-output relationship is kept intact. For instance, one may prefer SURF de-
scriptors over SIFT descriptors due to their computational advantages. In that case
even if the same set of images are used to build the map, the features extracted from
these images as well as the number of feature matches will be different which will
result in a totally different edge set, hence a different map. In order to analytically
determine the effectiveness of that module in the map building algorithm, a map can
be build for each alternative method by only replacing that specific module, keeping
the rest of the building framework the same, and inputting the same image set as
illustrated in Figure 4.9. The quality of the resulting maps needs to be evaluated
and the module creating a map with higher quality should be chosen. Similarly, by
using the same set of images different appearance-based maps can be built by chang-
ing only the parameters used in the map build procedure and an evaluation criteria
is needed to measure the quality of these maps in order to establish the optimum
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Figure 4.8: With reference to Figure 4.7, the top row shows the images collected
by P3AT while building the appearance-based map. Then middle row shows the
corresponding view of the P3AT robot upon reaching those waypoints, while the
bottom row shows the corresponding views for the iRobot Create.

parameter set. Alternatively, this map benchmark can be used to evaluate the maps
built by different agents equipped with the same map building algorithm navigating
in the same environment as shown in Figure 4.10.

ALG 1

ALG 2

Figure 4.9: The effectiveness of one part of the map building algorithm can be
measured by evaluating the resulting maps.

The topic of objective quality evaluation has been one of the most neglected areas
in robotics community even though it is generally agreed that robotics researchers
are in great need of objective quality measures to evaluate the impact of the count-
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ALG 1

ALG 1

Figure 4.10: Different agents using the same map building algorithm can generated
different maps in the same environment and a good map evaluation metric should
be able to measure the quality of these maps.

less ideas proposed in this quickly growing field. To date, for most problems it is
impossible to compare two different solutions according to widely accepted criteria.
The peculiar nature of robotics research also undermines the experimental replica-
tion of published results. However, given the recent dramatic changes in information
technology, it is nowadays possible and needed to converge towards accepted per-
formance measures, and to disseminate experimental data so that these assessments
can be performed and repeated by an arbitrary third party.

The intrinsic purpose of a map evaluation metric is to measure the quality of
different maps and determine which map is the best in general or in terms of some
specific criteria. As previously mentioned the maps to be evaluated can be generated
by different agents using different algorithms. Focusing on the goal of creating a
generic appearance-based map benchmark, we present evaluation criteria measuring
the quality of a map independently of the algorithm used to build it. Hence, during
the evaluation of a map the building blocks of the map creation algorithm are treated
as black boxes, and the metric is designed in a way that minimizes the effects of
these building blocks. Furthermore, instead of aiming to measure a map’s overall
goodness, we introduce a set of task-based performance evaluation criteria to measure
the usefulness of the map with respect to each individual task and its successful
execution.
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4.7.1 Evaluation of Visual Maps

The ideal quality-assessment of a map would be performed by comparing it to the
ground truth, i.e. the real value of the variable to be estimated. However, in most
cases ground truth might not be easily accessible, or it may be time consuming
to acquire. This is a well-known problem for any kind of map. Even if it can be
measured, since every device is entailed with a non-zero error, only the most accurate
estimate can be used as the ground truth. In other words, it is not always possible to
acquire a good model of the environment to be used as ground truth. Depending on
the type of the map different kind of data have been used for the estimation of the
ground truth. For instance, the coordinates of features are used as ground truth in
the comparison of feature maps; whereas, occupancy grid maps mostly utilized blue
prints or hand-drawn sketches, and more recently post-processed point clouds of laser
range finder sensors. Approaches based on appearance graphs, on the other hand,
sample 3D environments with 2D images, and it is therefore impractical to generate a
map of all possible views serving as ground truth. In fact, the real environment is the
only source which can be used as ground truth. Hence, the quality of an appearance
graph can be best measured by evaluating how well it captures the desired properties
of the environment it models.

A map by definition is a representation of the environment, and therefore, it may
be natural to conclude that the map with most resemblance has the utmost quality.
However, this point of view skips the basic motivation behind the need of a map,
i.e. its utilization for the successful completion of a given task. A robot creates
some form of an internal representation of the environment as a tool to successfully
achieve its assigned mission. Thus, for the map to be most useful to the robot, it
has to offer enough information to complete the assignment. Consider for example
a robot performing inside a warehouse whose task is to quickly navigate between
target locations revealed during the mission. One cannot rule out the possibility
that a robot using a map with good geometric accuracy, but possibly cumbersome,
may be outperformed by one using a model with an inferior geometric accuracy but
easier to process.

With this motivation, we advocate that the assessment shall not be detached
form the task at hand. Despite the fact that this statement may seem fairly trivial,
in the context of occupancy grid maps one faces a significant amount of scholar work
where maps are most often treated as images, and therefore contrasted and evaluated
using algorithms and metrics that have little to do with the ultimate task the maps
are needed for. On the contrary, we propose three task-centric evaluation criteria,
namely localization, navigation, and planning. The performance of a map in terms of
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localization is measured by the amount of information captured from the environment
and the accuracy of this information. The planning metric favors instead maps with
high connectivity and measures the validity of these connections. The navigation
criterion, on the other hand, computes the robustness and stability associated with
the paths that a robot will extract from the map. In the following sections we explain
each of these metrics in more detail and exemplify how the proposed metric work on
a set of appearance based maps. In order to capture a broader spectrum of maps
in this comparative analysis, a P3AT robot equipped with a monocular camera is
teleoperated in our research lab at UC Merced twice resulting in image sequences
from two independent runs. These images are fed as the input to our map creation
algorithm described in Section 4.5. The paths followed during these runs and the
test runs are shown in Figure 4.11. A total of 1064 test images are collected during
these runs. The test image sequence is divided into three subpaths with different
colors as shown in Figure 4.11.
Image collection for map building Image collection for testing

(a) (b)

Run 1 
Run 2 
Run 3

Map 1 
Map 2

(a) Image collection for map building

Image collection for map building Image collection for testing

(a) (b)

Run 1 
Run 2 
Run 3

Map 1 
Map 2

(b) Image collection for testing

Figure 4.11: a) The paths followed by the robot during the map building processes
are shown. b) Three paths followed to collect test images are shown.

In order to increase heterogeneity, different parameters are used while building
the two maps. In the first run (represented in blue in Figure 4.11), a higher image
capturing frequency is used resulting in map M1 with a larger number of images.
Furthermore, comparing to the second map M2, a more conservative approach is
taken in the image retrieval algorithm by increasing the required number of feature
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matches for an image in the map to be matched with a query image. As a result two
very different appearance graphs are created.

4.7.1.1 Localization

The ability to estimate its own position is one of the very fundamental robot abilities
enabling the successful completion of a variety of tasks. Hence, it is very important
that an evaluation algorithm measures the quality of a map with respect to its
usefulness for localization. Unlike in metric maps, localization in appearance graphs
is realized by finding within the map the image most similar to the one perceived
by the robot when it needs to localize itself. The robot is declared lost if it cannot
localize itself to any image in the map.

The utility of the map with respect to localization is measured by the robot’s
localization performance using that map. A good metric should assign high utility
to maps providing good localization. The goodness of localization in appearance
graphs can be defined in two ways: 1) coverage 2) accuracy.

Coverage: The coverage metric measures the amount of information in the en-
vironment captured by the images in the appearance graph. It is evident that the
coverage grows as the number of vertices in the map increases. For a map fixed
number of vertices, however, maximum coverage can be achieved by minimizing the
perceptual overlap between images. In other words, we prefer maps with vertices
spread in the environment as much as possible as shown in Figure 4.12.

Figure 4.12: Vertices of two appearance-based maps with low (left) and high (right)
coverage are overlayed on the occupancy grid map of the environment.
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To this end, we propose to use a large set of pictures captured at random locations
in the environment where the map is created as inputs to the localization algorithm
where each of these images is localized to the most similar location in the appearance-
based map. It is important to recall that if the similarity between the query and the
most similar image in the map falls below a preset similarity threshold as described
in Section 4.4, the localization attempt is declared as unsuccessful. The idea is that if
the environment is covered very well by the images in the map, the algorithm should
be able to localize successfully most of the query images which then translates into
a high coverage score. On the contrary, if there are no images capturing some part
of the environment, the query images from that part of the environment cannot be
localized to any of the images in the map and coverage score is decreased.

It can be easily concluded that this method of evaluation of a map’s merit de-
pends on the performance of the localization algorithm, and more specifically, the
image matching function as its core component. However, even the most success-
ful image retrieval algorithms have suboptimal performances. In other words, the
image retrieval algorithm used for localization can return an invalid image/feature
matching resulting in wrong localization. The erroneous localization ratio, therefore,
depends on the performance of the image retrieval algorithm and less on the quality
of the map being evaluated. In order to minimize the effect of the image retrieval
algorithm on the quality score of the map, false image matches should be identified
and discarded for each localization attempt. Since there exist no ground truth data
stating which image matches are valid, each image match has to be visually verified
by the person evaluating the map. Due to the simplicity of an image match veri-
fication task to humans, we believe at this point no subjectivity is introduced into
the evaluation. This way false positives are eliminated. In order to also account for
false negatives, a human should verify if a query image has actually a corresponding
image in the map that the image retrieval algorithm could not locate. This task,
however, is not trivial and unlike comparing just two images to detect a false posi-
tive, it requires to go through all test images and the images in the map. Hence, we
choose the best possible image retrieval algorithm and think it as a black-box that
behaves like an independent external source introducing this noise in terms of false
negative image matches. Due to the fact that this algorithm affects both of the maps
being evaluated, no bias is introduced into quality evaluation and this impractical
human verification step can be avoided.

Having set the scene, the coverage of a map is defined as the percentage of
successful localizations:

lcov =
Lsuccess
Ltotal

. (4.1)
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Accuracy: Localization accuracy, on the other hand, describes the closeness of
the estimated location to the real location of the robot. From the appearance graph
perspective the robot will benefit from an accurate localization when the returned and
query image look alike. Since similarity between images is encoded by the number of
matched features, the accuracy has a positive correlation with the number of correct
feature matches. Besides sharing features originating from the same objects in the
environment, in similar images these objects should appear in close proximity in
terms of image coordinates. In order to capture this idea, the localization accuracy
of a query image is defined as the reciprocal of the localization error which is the
average distance between corresponding features’ image coordinates

erracc =

N∑
i=1

d (ai, qi)

N
(4.2)

where d is the Euclidean distance function, a and q are corresponding features from
the retrieved and query image respectively, and N is the number of feature matches
between these two images. Then, the reciprocal of the average accuracy error, erracc,
of all queries is assigned as the overall localization accuracy of the map, lacc. Figure
4.13 and 4.14 illustrates examples of high and low accuracy, respectively. As can be
seen in these figures, for similar pair of images the distance between matched features
in image space is lower than the ones that are less similar.

Figure 4.13: A matched image pair with high visual accuracy

In order to compare two maps, M1 and M2, with respect to coverage and accuracy,
n = 10 images are chosen randomly for each test run. Each image is fed as the
query image into the image retrieval algorithm and successful localization in the
map is declared if the algorithm can match that image within the map and the user
visually verifies it. For each successful localization, coverage ratio is increased and the
accuracy of the match is calculated. Some examples of successful localizations along
with their accuracies are shown in Figure 4.15. This procedure is repeated m = 10
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Figure 4.14: A matched image pair with low visual accuracy

times and the average scores are returned as the result of the evaluation of appearance
maps in terms of localization task which are presented in Table 4.1. As expected, M1

with 148 vertices incurred in higher localization accuracy when compared to M2 with
99 vertices due to the higher probability of containing an image similar to a random
image. On the other hand, in terms of localization coverage, M1 scored almost the
same in the first two test runs whereas M2 scored almost twice as M1 in the third
test run. As it can be seen in Figure 4.11a, the two paths followed to collect images
to build maps are almost identical except the small loop in the second map. The
images in the third run were collected while the robot was traversing in the middle
of the lab following the opposite direction of the map generation runs. Therefore,
images pointing the opposite direction did not match to any of the images in M1,
whereas they matched the images captured while the robot was making a full turn.

Table 4.1: Localization quality of 3 sample runs

Run1 Run2 Run3
lcov lacc lcov lacc lcov lacc

M1 0.52 0.037 0.78 0.029 0.22 0.046
M2 0.50 0.023 0.77 0.030 0.37 0.027

Both the localization accuracy and coverage metrics favor appearance graphs with
large number of vertices since the probability of having a similar image for a random
query image increases with the number of images in the map. On the other hand, if
the number of vertices in the map are limited due to the amount of data that can
be stored, then a map consisting of images taken all around the environment will be
preferred since it will reduce the number of times the robot gets lost. However, when
the robot localizes itself, the localization will have less accuracy for a random query
image since the images are spread around and perceptual overlap is minimal. Thus,
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Figure 4.15: Sample image matches are shown. The top row contains query images
whereas the retrieved images are shown in the bottom row. Localization accuracy
computed for these matches are: 0.052, 0.020, 0.014 (left-right)

for a fixed number of vertices allowed in the map, there is a balance between accuracy
and coverage. It is also important to note that neither accuracy nor coverage metrics
consider the edges in the graph, but they both focus exclusively on the amount of
information captured by the images encoded in the vertices.

4.7.1.2 Planning

In order to reach full autonomy, robots need to choose their actions by themselves.
Planning can be realized using the so-called state space which provides an abstraction
of the overall system. Similarly, an appearance graph with vertices corresponding to
states and edges corresponding to actions can be used for path planning, i.e., finding
the shortest path in the appearance space between two nodes in the graph. It is
important to recall that the resulting path will not be the shortest path in Euclidean
space, but instead in appearance space. In the literature there are several search
algorithms which work directly on undirected weighted graphs such as Dijkstra’s
algorithm [36]. The time complexity of any planning algorithm working on graphs
will increase with the number of vertices and edges. Hence, from the perspective of
planning efficiency, maps with less vertices and edges will be preferred. Furthermore,
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the number of extracted features are correlated with the number of vertices and
have a direct effect on the running time of the planner since most of the image
matching algorithms utilize nearest neighbor search in the high dimensional feature
space. Hence, it can be concluded that the amount of data required to store the
map is an indication of its performance in planning tasks, and data size comparison
should be a part of the general map evaluation process. Table 4.2 summarizes the
elements of the maps we are comparing where ‖V ‖,‖E‖, and ‖D‖ are the number
of vertices, edges, and features, respectively and the amount of data in megabytes
required to store them into the disk. As mentioned in the previous section, the first
map benefits from having more vertices and obtained a higher score in localization
accuracy. Theoretically, a map with infinite number of images should have the utmost
accuracy. On the other hand, this map gaining high scores from one side loses
performance in planning tasks due to high number of vertices and associated features.

Table 4.2: Amount of data captured within maps

‖V ‖ ‖E‖ ‖D‖ dataSize(MB)
M1 148 1396 24487 2.43
M2 99 408 15824 1.56

Nevertheless, the reduction in the number of vertices and edges may cause the
planning algorithm to compute a suboptimal solution while also negatively affecting
localization and navigation. One solution for this problem is to define additional
layers of abstractions on the appearance graph by adding different hierarchies in
which meta vertices consist of partial graphs from lower layers. This way the planning
can take place in higher levels with less vertices and edges and the solutions can be
followed to lower layers during the implementation stage. However, here set our
focus on single layer appearance graphs.

From a connectivity point of view for planning tasks, it is important that a map
is well connected and contains a good representation of passages between places.
Such a map will have a higher utilization rate than a map which reflects an accurate
and detailed representation of the environment in general, but also includes an edge
between two images of two places that are in fact physically separated. Hence, a
metric to measure the usefulness of a map with respect to path planning should
consider the ability to plan paths that are valid in the real environment. Inspired
by the work of Collins et al. [31], we would like to measure the validity of the paths
in a map by comparing paths generated within both the appearance graph and the
actual environment.
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(a) Appearance-based map (b) Grid map of the actual environment

Figure 4.16: The path connecting two images of interest denoted with red circles
is shown in the appearance-based map (a) while the same images are shown in
the occupancy grid map of the actual environment (b). The dotted line shows the
separation of two physically disconnected regions of the environment. This figure
an example of a valid path in the appearance-based map which, however, is indeed
invalid in the actual environment, i.e., connecting two physically disconnected places.

In this test, representing the exactness of the map, the ratio of paths that are
valid in the map, but invalid in the real environment will be calculated. An example
of such a case is illustrated in Figure 4.16. To measure the ratio of these paths,
also known as false positives, two connected vertices are randomly selected from the
appearance-based graph. Then, it is tested whether two places identified from these
images are actually connected in the real environment. The physical connectivity
assessment can be performed by teleoperating the robot which constructed the map
from one place to another. If, however, the robot cannot be teleoperated due the
limited physical access to the environment, this verification step can be simulated
using the kinematic equations of the robot and the blue prints or the occupancy
grid map of the environment. Visual inspection emerges as a good alternative in
case none of these options are possible. Even though one can argue that the visual
inspection introduces some subjectivity into the metric, for robots with well-known
kinematics and structured environments it is expected that it will provide an accurate
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approximation. A generated path failing this test is identified as a false positive. The
false positive ratio is then estimated by repeatedly generating random paths in the
appearance-based map and counting the ones that fail the connectivity test. The
problem is that in order to detect a false positive path the map should contain images
captured in disconnected parts of the environment. However, a map generated from
a single run will not have such images since the robot will only be able to travel
between physically connected places. Hence, there will be no false positives for such
maps.

The value of this metric becomes apparent only when evaluating maps that are
the results of a multi-robot map merging process. In a scenario where robots create
local maps of different floors of a building, they can exchange information wirelessly
without the necessity to share the same physical environment. The merged map, on
the other hand, may contain links between similar images, even though they might
belong to physically disconnected parts of the environment. This metric, measuring
the ratio of such paths, i.e. false positives, can be used to evaluate the exactness of
these merged maps from the planning point of view.

Alternatively, as proposed in [31] to measure the quality of metric maps, a map
can also be evaluated in terms of completeness by the ratio of the paths that actually
exist in the environment, but are not captured in the map, i.e., false negatives as
shown in Figure 4.17. Borrowing the same idea that we used to compute false positive
paths, two images from the map are randomly selected and a graph search algorithm
is used to find a path connecting these two images. If this path cannot be computed
due to the fact that two images lie in disconnected components of the graph, but
the path exists in the real environment, the path will be declared as a false negative.
The ratio of false negatives will reflect the inability of the planner to find a valid
path using the map.

One could argue that two random images should be randomly selected from the
environment instead of the map if the completeness of the map is to be measured.
However, in that case, first, each random image sampled from the environment should
be localized in the map. As stated in Section 4.7.1.1, this localization procedure
measures the coverage of the map and may result in failure either due to low coverage
score or due to the failure of the localization algorithm to find the valid match in
the map. Therefore, to measure the utility of each task independently, query images
are sampled from the images in the map. Applying this criterion in the selection
of query images, this metric, however, will return zero false negative scores for any
appearance graph consisting of only one connected segment since there will always
be a path between any two vertices of the graph.
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(a) Appearance-based map (b) Grid map of the actual environment

Figure 4.17: Two images of interest denoted with red circles are shown in the
appearance-based map (a) while the path connecting these two images shown in
the occupancy grid map of the actual environment (b). The dotted line shows the
separation of two physically disconnected regions of the environment. This figure
an example of a valid path in the actual environment which is not captured by the
appearance-based map covering the same environment.

The ratio of the number of false negatives to the total number of path computing
requests also shows the connectivity of the map. Instead of counting the number
of disconnected components in the map, this score considers the size of each dis-
connected component. For instance, failing to create an edge between second and
third vertex has much less effect than failing it between two vertices from two large
disconnected graphs.

In order to measure the completeness of the maps with respect to their potential
planning utilization, n = 10 image pairs are randomly selected from the maps. Then,
Dijkstra’s algorithm is applied to find a path connecting these two images where the
reciprocal of the number of matching features is used as the cost for each subsequent
image pair along the path. Repeating this procedure m = 10 times, the total number
of false negatives are counted. The second map, M2, is fully connected and therefore
gets a full completeness score. On the other hand, M1 has multiple connected com-
ponents and therefore gets non-zero false negatives. In order to demonstrate how
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this metric behaves in the presence of only few edges, the parameter Tmin is used
to set the minimum number of feature matches required to declare two images as a
match. The increase in the threshold results in a map with edges only between very
similar images. Due to this decrease in connectivity the false negative ratio increases
as shown in Figure 4.18. The sudden jump between Tmin = 30 and Tmin = 40 is the
result of losing connectivity in the middle of the path causing the map to split into
two large components. Therefore, the probability of randomly selecting both vertices
from the same connected subgraph decreases drastically.
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Figure 4.18: The effect of the number of feature correspondences to declare an image
match, Tmin, on the number of false negatives of path validity test is shown.

4.7.1.3 Navigation

Navigation, defined as the ability to reach an assigned target location from the
robot’s current position, is another fundamental level of competence that is greatly
influenced by the available spatial model.

The navigability of a map can be measured by computing the stability and ro-
bustness of its internal paths from a robot navigation perspective. However, assessing
the quality of all internal paths within a map is feasible due to the high number of
possibilities. Thus, we embrace a randomized approach and apply the metric only
to a randomly selected subset of internal paths. Since most of the proposed visual
navigation algorithms as presented in Chapter 2 base their servoing algorithm on
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multi-view geometry or more specifically on the fundamental matrix, we grasp the
idea of measuring the quality of the fundamental matrix, F , between consecutive
images in each path. Given a pair of consecutive images their corresponding features
are extracted. Then, a RANSAC algorithm as described in Section 3.1.3 is utilized to
compute the fundamental matrix based on a number of randomly selected tentative
feature matches.

The average error of the fundamental matrix along the path is computed and
returned as navigation error of the path. The overall navigation score of the map
is then assigned as the reciprocal of the average navigation error of all randomly
created paths. By design this metric favors maps which use a more conservative
approach by only creating edges between very similar images which indeed fits our
initial goal of rewarding such maps since they provide a safer medium to navigate
in the environment. In order to show this effect, navigability metric is applied on
the maps built in the previous section by changing the threshold responsible for
determining when an edge is created. Figure 4.19 presents the trend of this error as
the edge selection procedure gets more selective. As expected, the more similarity is
required to create an edge, the lower navigation error is obtained for that map.
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Figure 4.19: The effect of the number of feature correspondences to declare an image
match, Tmin, on the average navigation error of randomly selected paths is shown.
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4.8 Conclusions

We have presented a system capable of incrementally building an appearance-based
map from scratch. The system is designed based on the idea that robots can map an
environment and localize in it simultaneously. This is due to the fact that localization
and mapping procedures are designed to be entangled to each other. At every step
when robot captures an image to localize itself, the results of its localization call
can be used to update the map as described in Section 4.5. Both localization and
mapping algorithms run in real-time using a laptop with standard computational
power. It is evident that the computational time is dependent on the resolution
of the images used to generate the map and for high resolution images of feature
rich environments more computational power may be required to run the system in
real-time.

The training procedure entangled with the BoW approach is shown to be non-
sensitive to the training images since we used visual words extracted from random
indoor images to create the dictionary which we later used to map the Engineering
Building of UC Merced and successfully localized in it. It is once again important to
note that no images from the environments we mapped and localized are included in
the training images.

An appearance-based map, in general, can be used for localization and also to
plan a path that can be followed by a robot using an image based visual servoing
algorithm. An interesting feature of the system we propose is that the map can be
utilized by a set of heterogeneous robots, i.e., it can be shared among the members of
an heterogeneous multi-robot team. The proposed approach has been implemented
and validated both on a team of two robots, effectively demonstrating the power of
the proposed system.

In this chapter we also introduced a metric to measure the performance of
appearance-based maps with respect to different tasks. These metrics focusing on
different aspects of the map may not agree on one final map being the best for all
tasks, but will measure the map’s specific task-based performance. However, these
objective measures should be repeatable so that other researchers can reproduce the
same experiments to compare published results with their own algorithms. Since
the real environment is used as ground truth and providing access to it is not feasi-
ble, the data that is used in the computation of the performance metrics should be
shared in an online public repository. First of all, images that are captured during
the navigation of the robot are needed in order to generate a map of the environ-
ment. Different map creation algorithms can be tested on this image set and then
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evaluated by the task based measures proposed in this chapter. In addition to this
image set, the computation of the localization metric needs images captured at ran-
dom locations in the environment. The planning metric, on the other hand, requires
the information whether there is actually a physical path in the real environment
between the locations encoded in the randomly selected images from the map. This
information can be captured in a binary connectivity matrix which stores all pos-
sible image combinations. Each element in this matrix stores true if two images
corresponding to this element are physically connected, and false otherwise. Simi-
larly, in order to count false negatives to calculate the planning metric, we need to
know whether random images from the environment are physically connected. In
summary, in order to make visual map generation and benchmarking possible even
without the privilege of accessing the real environment, we believe that the following
elements should be made available to third parties: 1) the image set collected by
the robot along its path; 2) random test images captured in the same environment;
3) their connectivity matrices. Only then the experiments can be repeated and the
performance of map generation algorithms can be compared.
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CHAPTER 5

Appearance-Based Map Merging

We consider the problem of merging multiple appearance-based maps independently
created by robots exploring the same unknown environment. Spatial awareness is
one of the fundamental abilities for mobile robots, and the ability to fuse multiple
maps into a single spatial model greatly enhances the utility of multi-robot systems.
While autonomous map building has attracted enormous attention in the last two
decades, map merging has emerged only recently and fewer results are available.
Map merging is here defined as the process of combining multiple maps that have
been independently built by different robots. This is different from cooperative
mapping, where multiple robots concurrently and continuously contribute their data
to a single map. Note that map merging is an incremental and online process, i.e.,
in general maps are not necessarily merged together when the mission is over, but
rather while they are still being built. For example, robots exchange and merge their
maps when they are within communication range [92], but during the remaining part
of their mission they operate independently and possibly continue to improve their
spatial models individually. Previously, solutions for merging occupancy grid maps
[12, 20, 21, 56, 55], feature maps [5, 6, 135, 96, 34], and topological maps [46, 80] have
been proposed. However, the problem of combining multiple appearance-based maps
has not been considered before, and here we present the first solution to this problem.
Given that appearance-based maps are represented by graphs, our method aims to
identify edges connecting vertices belonging to different maps. Stated differently, it
aims to find pairs of similar images in disjoint maps, where the concept of similarity
is defined in Section 4.

A problem inherently related to map merging is the evaluation of results. Two
maps can be merged in countless ways, so the problem of quantitatively measuring the
quality of a merged map immediately arises. Unsurprisingly, this is an open problem
and no well-accepted metric exists, as witnessed by recent special issues and projects
devoted to robot benchmarking [110]. We therefore put forward a criterion based on
algebraic connectivity specially developed for appearance-based maps. The original
contributions we offer in this chapter are the following.
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• We propose and analyze the use of algebraic connectivity as a metric to measure
the quality of multiple appearance-based maps merged together.

• We introduce an anytime appearance-based map merging algorithm that quickly
identifies edges leading to the largest gain in terms of algebraic connectivity.
Given that the problem of determining edges leading to the largest increase in
algebraic connectivity is known to be NP-hard [129], the algorithm we propose
necessarily produces a suboptimal solution. The algorithm is anytime. In other
words, it iteratively discovers and adds new edges, and outputs a partial, yet
valid solution if stopped before completing its computation which eventually
yields to a complete solution.

• The algorithm and the metric are experimentally validated by merging appearance-
based maps autonomously built by mobile robots navigating indoor. Experi-
mental findings reveal that our proposed method quickly determines the most
convenient edges to add, and according to an anytime paradigm, eventually
determines all edges that could be added.

The results presented in this chapter have been published in [42].

5.1 Problem Formulation

In this section we will define the problem description of the map merging problem.
Given two appearance-based maps M1 = (V1, E1, w1) and M2 = (V2, E2, w2), deter-
mine a merged map Mm = (Vm, Em, wm) with Vm = V1∪V2, and Em = E1∪E2∪Ec,
where Ec ⊆ V1 × V2 is the set of edges connecting images in V1 with images in V2.
Evidently, wm are the weights induced by the image similarity function S. A simple
illustration of map merging concept is shown in Figure 5.1. We require that every
edge in the merged map still satisfies the condition S(vi, vj) > Tmin introduced in
Chapter 4. This is trivially true for edges coming from E1 and E2, but must also
hold for edges in Ec discovered during the merging process. From our point of view
the very purpose of map merging is to enable robots to navigate and reach areas
discovered by other robots (for example, using the image-based methods described
in [41, 113]). Therefore, our emphasis is on finding edges in Ec connecting the two
maps and enabling navigation. From the definition it is evident that the merged map
Mm retains all images originally included in M1 and M2 as well as their edges. The
value of merging is given by the novel edges discovered in Ec that link the two graphs
together. Given the definition of Ec and its constraints, it is apparent that one could
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evaluate image similarity for every couple of images in V1, V2 and add edges whenever
their similarity exceeds Tmin. This brute-force approach will discover the largest pos-
sible set, E∗c , and will be further discussed in an later section. However, brute-force
search is clearly time consuming and we are interested in faster alternatives that will
output sets of edges that are subsets of E∗c .

Map 1 Map 2

Merged

Figure 5.1: Given two simple maps, the merged map is created by inserting new
inter-map edges to the union of both maps.

We conclude this section noting that the problem statement considers only the
case where two maps are merged, but the idea can naturally be extended when more
than two maps need to be combined. Indeed, after introducing our appearance-based
map merging algorithm focusing on pairwise merging in Section 5.3.1, we present the
extended version of the algorithm that merges multiple maps in Section 5.3.2. In
order to assess the performance of the proposed method and prove that it works
better than the state-of-the-art methods, a metric that measures the quality of the
merged maps needs to be defined. Hence, before continuing to the discussion on the
merging algorithm, in the next section we propose a method to measure merging
quality that relies exclusively on graph properties.
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5.2 Measuring the Quality of Merged Maps

In Section 4.7, we addressed the problem of defining mapping metrics particularly
for appearance-based maps and proposed a set of task-based performance evaluation
criteria to measure the quality of appearance-based maps independently from the
algorithm used to build them. Here, we are concerned with a slightly different
problem, i.e., assessing the quality of merged maps. Referring to the problem stated
in the previous section, for a given instance of the map merging problem two different
algorithms may produce two sets of connecting edges, say E ′c ⊂ E∗c and E ′′c ⊂ E∗c . We
are therefore interested in a criterion to establish in a quantitative way which one is
better. It is important to note that when two or more maps are merged together, the
resulting map is also an appearance-based map and still possesses all the properties
of appearance-based maps. Thus, its quality with respect to a particular task can be
measured using the evaluation criteria presented in Section 4.7. The traits that define
a good appearance-based map, however, do not necessarily determine the quality of
the merged map, the merging process, or the performance of the merging algorithm.
The quality of the merging process becomes especially important when maps are
merged using anytime algorithms. In order to compare the performance of map
merging algorithms, the quality of intermediate maps need to be measured. So that
even if the final merged maps generated by two anytime algorithms are the same,
i.e., E ′c = E ′′c , we can choose the algorithm that creates a better map in the early
stages of the merging process. We maintain that the main attribute that defines the
goodness of a merged appearance-based map is entanglement. Informally speaking,
entanglement is the amount of effort needed to split the merged map back into two
separate maps. Given two solutions to the merging problem, we prefer the one with
higher entanglement.

5.2.1 Defining Entanglement in Terms of Connectivity

The concept of entanglement can be formalized in different ways. Edge connectivity
e(G) is a commonly used metric to measure the connectivity of graphs and is defined
as the minimum number of edges to be removed to get two separate components. In
a map merging scenario where vertices are preserved and interconnecting edges are
added this metric offers poor results. For example, for a well connected graph with
just a single vertex of degree 1, e(G) = 1. Even tough inserting edges will improve
the graph’s overall connectivity (and then utility in terms of navigation), its edge
connectivity will not change until one of the inserted edges is connected to the vertex
with degree 1 as illustrated in Figure 5.2. Based on this and similar observations,
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(a) (b)

Figure 5.2: a) A sample graph with an edge connectivity of 1 is illustrated. b) The
connectivity of the graph is bolstered with the addition of few edges, but its edge
connectivity remains unchanged.

we maintain that algebraic connectivity is a better measure to assess the quality of
map merging in the appearance-based domain.

Introduced in the seminal work by Fiedler [49], algebraic connectivity is a spectral
property of the graph widely used to measure robustness and connectivity. Algebraic
connectivity carries more information about the structure of the graph and is a more
useful measure than edge connectivity. For instance, edge connectivity of all trees
is equal to one, whereas the algebraic connectivity of a star is higher than that
of a path as can be seen in Figure 5.3 which displays some examples of simple
graphs and substantiates our preference over edge connectivity. In the following we
therefore recall its formal definition, describe some of its important properties which
substantiate our preference over edge connectivity. We emphasize that our choice for
this metric is based on some of its well known properties, and we are not aiming at
unveiling new properties for this well studied mathematical object.

5.2.2 Algebraic Connectivity

Let G = (V,E) be an undirected graph with n vertices. The adjacency matrix, A, of
G is a symmetric n×n matrix where n is the number of vertices, and Aij = 1 if there
is an edge between vi and vj and Aij = 0 otherwise. The Laplacian matrix L(G)
is defined as L = D − A where D is the n × n diagonal matrix of vertex degrees.
The second smallest eigenvalue of L, λ2(L), is called algebraic connectivity and is
usually indicated as α(G). The algebraic connectivity and its properties play a very
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Figure 5.3: The figure shows edge connectivity e(G) and algebraic connectivity α(G)
for different elementary graph topologies. It is evident that edge connectivity does
not differentiates between significantly different graphs, like chain, star, and tree.

important role on solving a wide variety of problems both in graph theory, such as
the expanding properties of graphs, isoperimetric number, genus and other invariants
of graphs, and in combinatorial optimization such as the problem of certain flowing
process, the maximum cut problem and the traveling salesman problem [50, 127, 128].

5.2.2.1 Properties of Algebraic Connectivity

Various properties of algebraic connectivity have been discovered [49, 50] and a sub-
stantial amount of research [1, 14, 44, 49, 50, 57, 63, 90, 94, 106, 123] has been
devoted to finding tight upper and lower bounds on the algebraic connectivity in the
case of simple graphs1. Here we will only cover a few of the important properties
that are related to the underlying graph structure of appearance-based maps and
the map merging process. For the rest of this section, unless stated otherwise, let
G = (V,E) be a simple connected graph with order of n = |V | and size of m = |E|,
dj be the degree of the jth vertex, and δ(G) be the minimum vertex degree of G.

The algebraic connectivity is related to the sparsity of cuts2 in the graph. That is,
a graph with large algebraic connectivity cannot have very sparse cuts and therefore
requires great effort to be partitions, i.e highly entangled. The algebraic connectivity
of a graph is also an indication of the number of connected components it contains.

1A simple graph, also called a strict graph [163], is an unweighted, undirected graph containing
no graph loops or multiple edges [58].

2The sparsity of a cut that bipartitions a simple graph is defined as the ratio of the number of
edges across the cut divided by the number of vertices in the smaller half of the partition.
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Since Dii = ΣjAij, it follows that all rows and columns of the Laplacian sum to
zero, and hence that the vector 1=(1,1,1. . . ) is always an eigenvector of L with
corresponding eigenvalue 0. More precisely, the multiplicity of the value 0 as en
eigenvalue of L is equal to the number of connected components of G [30]. Thus, we
have α(G) = λ2(L) > 0 if and only if G is connected.

Lemma 1. [49] If G1 = (V,E1) and G2 = (V,E2) are edge-disjoint graphs with the
same set of vertices then

α(G1) + α(G2) ≤ α(G1 ∪G2)

Hence, α(G) is a non-decreasing function for graphs with the same set of vertices, i.e.,
α(G1) ≤ α(G2) if α(G1) ⊆ α(G2). Furthermore, α(G) is a monotonically increasing
function of the edge set. That is if E1 ⊆ E2, then α(G1) ≤ α(G2). Therefore,
the more edges the merging algorithm inserts, the more connected the graph, and
the higher algebraic connectivity will be. This concludes that E∗c is optimal when
algebraic connectivity is the considered metric.

Lemma 2. Following the previous property, let G1 arise from G by removing k
vertices from G and all adjacent edges. Then

α(G1) ≥ α(G)− k

Lemma 3. [49] For a complete graph3 Gn with n vertices α(Gn) = n

Lemma 4. [49] If G is a non-complete graph with n vertices, then α(G) ≤ n− 2

Lemma 5. [49] It is also known that for a non-complete graph G, algebraic connectiv-
ity defines a lower bound on both the vertex, υ(G), and edge connectivity, e(G) where
edge connectivity is upper bounded by the minimum degree of the graph, delta(G).

α(G) ≤ υ(G) ≤ e(G) ≤ δ(G)

Moreover, as shown in [99, 126], α(G) is lower bounded by a function of edge con-
nectivity.

α(G) ≥ 2e(G)
(

1− cos
π

n

)
3A complete graph is a graph in which each pair of graph vertices is connected by an edge.
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Lemma 6. In [63], Guixian shows that a simple connected graph G = (V,E) order of
n is bounded below both by a monotonic function of squared sum of all vertex degrees

α(G) ≥
2m−

√
(n− 2)

(
(n− 1)

∑
i∈V

d2
i + 2m (n− 2m− 1)

)
n− 1

and the minimum degree of the graph.

α(G) ≥ 2δ(G)− n+ 2

Therefore, edges that bolster connections between weakly connected vertices and hence
increase the minimum degree yield larger improvements in algebraic connectivity.

Lemma 7. As proven by Mohar in [126], if G is a simple graph with n vertices and
m edges and D is its diameter4, then we have

α(G) ≥ 4

nD

Similarly, Lu et al. [106] showed that

α(G) ≥ 2n

2 + (n2 − n− 2m)D

In other words, algebraic connectivity is bounded below by the diameter of the graph.
Thus, algebraic connectivity may be elevated by creating edges between distant vertices
and decreasing the diameter of the graph.

All these properties relate to the characteristics that a quality measure for map
merging algorithms should have. It therefore appears that algebraic connectivity
is a promising criterion and we embrace it to measure the quality of merged maps
and evaluate the performance of merging algorithms. Figure 5.4 illustrates some
examples as the embodiment of the properties presented here and aims at showing
how algebraic connectivity changes when edges are added between different vertices
of the graphs being connected. Graphs associated with the appearance-based maps
considered in this chapter include thousands of vertices and edges and are evidently
much more complex. However, similar effects in terms of variations of algebraic
connectivity are observed when edges are added between vertices that are peripheral
or more internal to the graph. These changes in algebraic connectivity justify the
that will be later on observed in Figure 5.7 when discussing the experimental results.

4The diameter of a graph is defined as the greatest distance between any pair of vertices.
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Figure 5.4: Variations in algebraic connectivity when different edges are added be-
tween two star shaped graphs being merged.

5.3 Merging Algorithm

5.3.1 Merging Two Maps

Let M1 = (V1, E1, w1) and M2 = (V2, E2, w2) be two appearance-based maps in-
dependently created by two robots running the algorithm described in Section 4.5.
Without loss of generality let |V1| ≥ |V2|. As explained in Section 5.1, our focus
is on determining the set Ec, i.e., edges connecting vertices in V1 with vertices in
V2. The motivation behind this idea is that these connections are needed to take
advantage from maps created by other robots. In particular, with no connectivity
between its own map and the new one, a robot will not be able to use image-based
visual servoing to reach locations discovered by the other robot. In the following we
present a centralized solution, i.e., we assume all computation is performed by one
robot, but the proposed method can be easily distributed to share the workload.

To put our algorithm in perspective, it is useful to first consider a brute-force
solution. Edges in Ec can be determined by brute-force by repeatedly calling the
localization algorithm to localize every vertex in v ∈ V2 inside map M1. Localiza-
tion returns the set of images whose similarity with v exceeds the given threshold
Tmin. This approach therefore identifies all edges that can be added between M1

and M2. Since algebraic connectivity is a monotonic function of the set of edges,
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this algorithm is optimal with respect to the algebraic connectivity metric formerly
introduced. However, its performance is evidently unsatisfactory from the point of
view of required time. Nevertheless, it provides a useful yardstick to evaluate the
performance of the solution we propose.

A fundamental aspect to consider is that algebraic connectivity will be maxi-
mized only after adding all possible edges in Ec. Therefore, if the goal is to optimize
this performance metric there is not much one can do to outperform the brute force
approach. But a key observation to develop a more efficient method is that most
edges make only marginal contributions to algebraic connectivity, while just a few
yield large gains [89]. Our goal is therefore to develop an anytime algorithm that
quickly determines a subset of Ec yielding a large increase in algebraic connectivity
and eventually reaching the optimal value returned by the brute-force method. The
algorithm QuickConnect that we describe in the following aims to test and insert
edges yielding large gains early in the process, and to postpone performing com-
putationally expensive multi-view geometry and spatial consistency tests for edges
giving only marginal increments. The algorithm is therefore anytime in the sense
that even when it is stopped before it has processed all its input, it still produces
a valid solution. Moreover, if it is allowed to run to completion, it determines the
optimal solution and the quality of the solution it produces is a monotonic function
of the time spent. The problem of identifying edges yielding the largest increase
in algebraic connectivity is NP-hard [129] and the method we propose is therefore
necessarily suboptimal.

Algorithm 3 sketches the pseudocode for QuickConnect. The algorithm consists
of two phases, i.e., exploration (Line 1-11) and refinement (Line 12-15). Explo-
ration works towards quickly identifying the most similar images from both maps
and adding edges in a selective nature. We only add an edge if at least one of its
source and target vertices is not connected by an earlier inter-map edge inserted
during the exploration phase. The goal is to create only the essential connections
between most similar vertices, and postpone the validation and insertion of the re-
maining edges. After most important edges are created between similar vertices,
refinement starts and all edges not processed during exploration are considered. Ac-
cording to this idea, QuickConnect eventually discovers all possible connections, but
ideally the most relevant ones are identified early on during the exploration process.

Exploration is based on the incremental construction of a similarity matrix R
where rij stores a score (vote) between image vi ∈ V1 and vj ∈ V2. The score is
the number of common features between vi and vj and R is incrementally built as
follows. A priority queue W is initialized with all dictionary words appearing at least
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Algorithm 3 QuickConnect(M1 = (V1, E1, w1),M2 = (V2, E2, w2))

1: W ← InitializeQueue(M2)
2: R,L← null
3: Ec ← ∅
4: repeat
5: d← W .pop front()
6: P ← getVotes(M1,M2,d)
7: E ← update(R,P )
8: if !E.empty() then
9: L← processEdges(E,W ,L,Ec)

10: end if
11: until W .empty()
12: L← sort(L)
13: for all e in L do
14: insertEdge(e,Ec)
15: end for
16: return Ec

once among images in map M2 (Algorithm 3, Line 1). All words are initially assigned
the same priority. Then, all words in W are sequentially dequeued. For every word
d a vote vector P is computed. Images in M2 which contain this word cast a vote
for all images in M1 that also have this word in their appearance vectors (Line 6),
and the similarity matrix R is then updated with the integration of new votes (Line
7). While updating R a list of candidate edges E is also created. A candidate edge
between vi and vj is added to E as soon as rij exceeds Tmin. Every candidate edge
is then processed by the algorithm processEdges described in Algorithm 4.

Algorithm processEdges inserts a new edge in Ec only if at least one of its source
and target vertices does not share an earlier discovered edge with a vertex in M2

(Algorithm 4, Line 2). If the edge is added, then both vertices it connects are
suspended from inserting any more edges until the end of exploration phase (Line
4 - 5). All edges connected to an already processed vertex are taken into a waiting
list L that will be processed during the refinement stage (Line 10). In order to
improve the performance of exploration, we also alter the priority of queue W based
on the following locality observation. Due to the fact that only the images with high
similarity are connected by an edge, a word seen by an image is likely to be visible by
its adjacent images in the graph. Therefore, by casting votes from this word we can
identify new edges originating from these neighbor vertices. To implement this idea,
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Algorithm 4 processEdges(List E, Queue W , List L)

1: for all e in E do
2: if !isProcessed(e.source) OR !isProcessed(e.target) then
3: insertEdge(e,Ec)
4: setProcessed(e.source, true)
5: setProcessed(e.target, true)
6: Q1← getWords(e.source)
7: Q2← getWords(e.target)
8: W .reorder(Q1 ∪Q2)
9: else

10: L.push back(e)
11: end if
12: end for
13: return L

once a similar image is found we increase the priorities of the words it contains (Line
8) so that if they are not processed yet, they move to the top of the word priority
queue and become the next in the list to be processed.

When all the words are processed and the similarity matrix is completely filled,
the refinement stage starts (Algorithm 3 Line 12 - 15). Exploiting the fact that a
monotonic function of the minimum vertex degree and the squared sum of all vertex
degrees provide lower bounds on algebraic connectivity as shown in Section 5.2.2, we
aim to improve the minimum vertex degree (and then algebraic connectivity) early
in the map merging process. Therefore, identified edge candidates are sorted with
respect to the minimum degree of the two vertices it connects. Finally, edges are
inserted sequentially starting from the ones connecting vertices with least number of
adjacent vertices.

Figure 5.5 shows an example of result for the map merging process implemented
by the algorithm just described. Figure 5.5a and 5.5b displays two maps indepen-
dently built by two robots exploring different parts of the Science and Engineering
building at UC Merced. Note that vertices of the graph have been correctly placed
in the blueprint of the building because the robots used for this experiment are also
equipped with a laser range finder, and we run a localization algorithm together with
the known map to accurately determine where pictures are taken. This information
is however used only for display purposes and for performance analysis, but is not
available to the merging algorithm. Figure 5.5c shows the resulting merged map.
In this case too, the merged graph Mm is overlaid to the blueprint to evidence the
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Figure 5.5: The top two panels show two appearance-based maps independently
built by two robots exploring different parts of the same environment. The last
figure shows the merged map and the detail shows some of the edges (red) discovered
during the merging process and linking the two maps together.

coverage of the merged map, but this is just for display purposes. The reader will
notice that if the maps are used for navigation via visual servoing the merged map
is much more useful than the individual ones because thanks to its discovered edges
(see detail in the bottom one) a robot will be able to go from the start to the goal
location, whereas none of the individual maps would allow that.
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5.3.2 Merging Multiple Maps

In the previous section we addressed the problem of merging two maps. The pre-
sented method can be easily extended to solve the problem of merging n appearance-
based maps. The map merging problem description presented in Section 5.1 can be
generalized as follows. Given a set of N appearance maps M = {M1, ...,MN} where
Mi = (Vi, Ei, wi), compute a merged map Mm = (Vm, Em, wm) with Vm =

⋃
Vi, and

Em =
⋃
Ei ∪ Ec, where Ec =

⋃
Eij
c with 1 ≤ i, j ≤ N , and Eij

c ⊆ Vi × Vj is the set
of edges connecting images in Vi with images in Vj. Note that, as in the previous
description, the merged map includes all vertices from all maps and we focus on
creating new edges between images from different maps.

One approach to merging multiple maps is to merge two of them, merge the
resulting map with a third, and so on, until all input maps are merged together. This
sequential pairwise merging method merges a pair of maps at a time and creates in-
between merged maps after each step. However, the intermediate solutions provided
by this approach do not capture the connectivity of all maps until the very last step.
In other words, during all but the last step there is at least one map not involved in
the merging process, and because of this map the number of connected components
within Mm is greater than one. Hence, the algorithm is not strictly anytime because
algebraic connectivity remains zero until merging with the last map starts.

To overcome this limitation, and restore the desirable anytime feature, we intro-
duce QuickConnect-simultaneous, an efficient parallel merging algorithm that over-
comes the disadvantages of sequential merging approach. In the exploration phase,
the algorithm incrementally constructs NR similarity matrices in parallel, where
NR =

(
N
2

)
= N(N − 1)/2, i.e., one similarity matrix for each pair of maps. For

each word being processed, the algorithm first identifies images that contain this
word from the first pair of maps and casts votes into their similarity matrix as de-
scribed in Algorithm 3. Then, the same procedure is repeated for the remaining map
pairs and the corresponding similarity matrices are filled with the votes for the same
word. When all map pairs cast their votes into their similarity matrices, this word is
labeled as processed and the next one in the priority queue is selected. A candidate
edge is identified whenever the score of an image pair exceeds Tmin in any of the
similarity matrices, and the edge is inserted according to the processEdges routine
described in Algorithm 4. Thanks to this parallel voting schema, from the very be-
ginning edges between all map pairs are created simultaneously. All the remaining
identified but not inserted edges from all map pairs are sorted by their vertex degree
in an increasing order and inserted during the refinement phase starting with the
one that has the minimum degree.
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5.4 Results

In this section we present a comparative evaluation of the proposed map merging
algorithm. First, we show results on merging two maps together and then at the end
of this section we present the results of multi-map merging case. Brute-force merg-
ing sets the baseline for our comparisons because it eventually reaches the highest
possible algebraic connectivity of the merged map. However, the trend to reach the
maximum strongly depends on the sequence it follows in selecting couples of vertices
to try adding edges between them. Algebraic connectivity may quickly increase if
the merging algorithm finds good vertices and edges early in the process, but it may
also be the case that good attempts are made only later on in the process. Therefore,
if the goal is to assess the performance of brute-force from an anytime standpoint,
the algorithm should be tested on a large set of highly diverse maps. On the other
hand, having only a limited number of datasets available, we compare our algorithm
against a randomized brute-force method, BruteUniform, that randomly selects cou-
ples of images from M1 and M2 using a uniform distribution, and we consider its
average performance over repeated runs. As an additional term of comparison, we
introduce DegreeMin, a variant of the randomized brute-force method that samples
vertices from M2 with a mass distribution inversely proportional to their degree. The
rationale behind DegreeMin is trying to bias the search towards vertices with low
degrees in order to possibly obtain large gains in algebraic connectivity, as outlined
in section 5.3.1.

To test these algorithms, various appearance-based maps with a number of ver-
tices ranging from a few hundreds to several thousands are built by a P3AT mobile
robot equipped with a monocular camera using the map building algorithm de-
scribed in Section 4.5. Various combinations of these maps are merged using these
algorithms and a representative sample of these results are shown in Figure 5.6. The
first 5 columns correspond to map pairs built in one side of the engineering build-
ing at UC Merced (research labs), whereas the remaining columns correspond to
maps built on a different side of the building featuring a significantly different layout
(administrative wing).

The goal is to evaluate the algorithm on realistic and heterogeneous datasets. For
different map pairs we present the quality of merging (i.e., algebraic connectivity)
after 10% of the time required by the brute-force approach to complete its processing.
The rationale behind this evaluation criterion is to embrace an anytime viewpoint
and assess how different algorithms will perform when stopped early. The results for
the randomized algorithms (randomized brute-force and DegreeMin) are the average
of 20 runs. The chart shows that QuickConnect outperforms the other two methods,
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Figure 5.6: The chart contrasts algebraic connectivity when merging is stopped at
10% of the time required by brute-force algorithm to complete its exhaustive search.
Results are shown for a representative selection of merged maps and three different
algorithms are compared: QuickConnect, DegreeMin, and BruteUniform. Error bars
representing one standard deviation are shown for randomized algorithms. Note that
since algebraic connectivity varies for different map couples, we display a normalized
value corresponding to the percent of the maximum value.

reaching above 90% of the maximum possible algebraic connectivity within 10% of
total time. It is also notable that DegreeMin with its heuristic that favors minimum
degree vertices performs better than randomized brute-force.

The temporal evolution of the merging process for a subset of representative map
pairs from Figure 5.6 is shown in Figure 5.7. Note that all algorithms eventually reach
the same maximum algebraic connectivity by adding all possible edges. However,
QuickConnect achieves a steeper quality gain with its selective insertion process
during the exploration phase. For instance, during the merging of the map pair shown
in Figure 5.7a the exploration phase inserting only 247 edges in 1.5 seconds improves
the quality up to 96% while it takes around 24 and 40 seconds and 2112 and 3989
edges to reach the same level of quality for DegreeMin and brute-force, respectively.
On the other hand, the refinement stage adds almost 15 times more edges than
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Figure 5.7: Normalized algebraic connectivity of four pairs of merged maps as a
function of time for the three algorithms are presented.

the exploration phase to only improve the connectivity by 4%. Similar trends are
observed in the rest of the dataset as can be seen in Figure 5.7. These charts
experimentally support the claim that the exploration stage successfully identifies
the small portion of edges that substantially increase algebraic connectivity.

In Figure 5.8 we show a further analysis of the changes in algebraic connectivity
for the last map merging example shown in Figure 5.7. The figure analyzes the spikes
in algebraic connectivity observed during the exploration stage of QuickConnect. For
each of the three major increases we show the edges identified and inserted.
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Figure 5.8: Inserted edges corresponding to three major spikes in algebraic connec-
tivity are shown along with the vertices they connect.

It is also important to note that in its exploration stage, QuickConnect identifies
the edges connecting the most similar images between two maps. This trend can be
seen in Figure 5.9, where a closeup view of the aforementioned merging process is
shown. This characteristic of the proposed algorithm is the main desired property
of a compression algorithm that unifies similar vertices in both maps. Hence, this
framework could easily be extended to a system that merges maps by not only adding
new edges but also unifying vertices. Nevertheless, the effects of such unification on
the quality and robustness of the map in terms of algebraic connectivity warrants
much further investigation.

When multiple maps created by teams of robots need to to be merged, it is
important to maintain the same performance displayed by the pairwise matching
algorithm. Thus, we evaluated the performance of the generalized version of the
proposed merging algorithm, QuickConnect-simultaneous, on the same datasets. For
comparison purposes we also devised modified versions of previously presented meth-
ods: BruteUniform-simultaneous and DegreeMin-simultaneous which randomly sam-
ple vertices from the set of all vertices, Vm, uniformly and with a mass distribution
inversely proportional to their vertex degree, respectively. Additionally, the stan-
dard sequential pairwise merging approach described in Section 5.3.2 is applied to all
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Figure 5.9: Weights, i.e., similarity of connecting images, of the identified edges for
two of the representative merging processes are plotted for three algorithms for the
duration of the exploration phase of QuickConnect.

pairwise merging algorithms resulting in three new merging methods: QuickConnect-
pairwise, BruteUniform-pairwise, and DegreeMin-pairwise. However, as mentioned
in Section 5.3.2, in sequential pairwise merging the algebraic connectivity remains
equal to zero until the very last map is merged. Therefore, presenting the quality of
merging captured by each algorithm within 10% of total time as in Figure 5.6 would
negatively affect sequential pairwise merging methods. To counter this fact, for each
algorithm the time required to reach 90% of the overall quality is recorded and the
results are shown in Figure 5.10. Again, for randomized methods the results are the
averages of 20 runs.

As shown in Figure 5.10, QuickConnect-simultaneous, taking advantage of its
parallel voting schema, creates edges between vertices from different map pairs, and
therefore, outperforms all other algorithms for all merged maps. The ranking for the
rest of the algorithms is not consistent. QuickConnect-pairwise in general achieves
higher performance than its closest competitor DegreeMin-simultaneous with the
exception of second and last group in Figure 5.10. However, its performance depends
on the ratio of the duration of last merging step to the overall merging time, and
cannot be generalized since until the last step the algebraic connectivity stays at
zero due to the map being disconnected. Therefore, the performance of sequential
pairwise merging algorithms suffers more when the number of maps to be merged
increases, as in the last group where 4 maps are merged together.
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Figure 5.10: A representative selection of maps are merged together using simultane-
ous and pairwise merging algorithms. The cart shows the normalized time required
to reach 90% of the total quality.

Furthermore, it can be noted that for some of the merged maps (4th, 5th, and 6th

group) pairwise versions of DegreeMin and BruteUniform performed better than the
simultaneous versions of the same methods. The reason behind this phenomenon is
that there was an isolated connection with high algebraic connectivity value, i.e., an
edge between two vertices with no similarity among any of the neighboring vertices,
that is discovered and created during the first pairwise merging step. Later, since this
important connection is already created when this intermediate map is connected to
the third map, the algebraic connectivity immediately reached very high values. On
the other hand, in the simultaneous approach this edge may be identified and created
anytime during the merging process which on average causes a lower quality increase
comparing to the sequential pairwise merging methods.

Finally, it is important to note that we assumed that all computation is performed
on one robot, but the proposed merging algorithm and the randomized methods
can be easily parallelized by distributing the workload among all the robots with
available computational power. Nevertheless, since all merging methods mentioned
here will benefit from the same performance gain, even though the merging process
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will be completed faster, the algebraic connectivity trends presented in Figure 5.7
and the relative performances of merging algorithms will not change. In other words,
QuickConnect will still outperform the other two merging algorithms.

5.5 Conclusions

In this chapter we have investigated the problem of merging appearance-based maps,
an underexplored topic that is very relevant in the area of multi-robot systems. Not-
ing that there is a lack of well established criteria to evaluate the quality of a merging
algorithm operating on appearance-based maps, we have put forward algebraic con-
nectivity and explained why it is a promising criterion to assess the value of a map
merging algorithm. Motivated by this metric, we have developed QuickConnect, an
anytime algorithm that discovers important vertices and edges early on during the
process. The method we have proposed has been integrated into the end-to-end sys-
tem that creates appearance based maps in real-time using the bag of words approach
as described in Chapter 4. The goodness of the method we proposed has been exper-
imentally assessed by processing various maps we produced with the aforementioned
method, and we verified that even if stopped early during the process, QuickConnect
offering a convenient tradeoff yields better results when compared with the brute-
force algorithm. More precisely, we observed a 10-90 ratio, i.e., by spending only 10%
of the time it is possible to get about 90% of the benefits. We have also explored how
pairwise merging can be extended to handle the case when multiple maps need to be
combined together and introduced QuickConnect-simultaneous, an efficient parallel
merging algorithm that overcomes the disadvantages of sequential merging approach.
This more generic merging algorithm while preserving the anytime nature of its pre-
decessor, overcomes the limitations of the brute-force method and yields the best
results.
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CHAPTER 6

Heterogeneous Map Merging

In the previous chapter we emphasized the importance of merging multiple maps
into a single spatial model to increase spatial awareness of multi-robot systems, and
proposed a map merging algorithm that is tailored to appearance-based maps and
focused on their graph properties. While merging same type of maps provides valu-
able information especially to robots when they are the ones utilizing those maps, in
situations requiring the acquisition of spatial models by a coordinated heterogeneous
robot team such as urban search and rescue, patrolling, and explorations tasks, the
need for heterogeneous map merging becomes apparent. Each robot member of these
teams is usually manufactured differently, with different operational capabilities, sen-
sors, and data output which makes it much harder to fuse data and acquire a single
spatial model. In these tasks, robots are often used as tools to provide informa-
tion to humans, who then decide the proper course of action given that information.
Evidently, the ability to merge together multiple heterogeneous partial models can
greatly improve the overall utility of the collected information.

The heterogeneous map merging problem has the inherent challenge that differ-
ent spatial models lack, by definition, a common representation. To remedy this
problem, we rely on the ubiquitous presence of WiFi signals in today’s environments
and assume that every robot, regardless of the type of map they produce, is equipped
with a WiFi card. We believe this is a safe assumption considering that robot teams
will need to communicate amongst each other and the base station. As each robot
explores the environment, the Wireless Signal Strength (WSS) of all Access Points
(APs) in range is recorded. This data is then used to create a WiFi map online
and update it with every new WSS reading as will be described in the next section.
Our heterogeneous map merging algorithm uses WiFi maps as a substrate to com-
bine models relying on different representations. Maps of different types can then be
merged into a single model by matching one portion of a map in another map using
our WiFi classification-based localizer which we will present in Section 6.3. Although
the algorithm we propose extends to other map types, we focus our discussion on
occupancy grid and appearance-based maps. Our solution consists of three main
steps. First, the overlap between the heterogeneous maps being merged is deter-
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mined. Second, metric correspondences between overlapping parts are established.
Third, the merging is improved by exploiting the structural properties inherent to
graph-based maps. In this chapter we offer the following contributions.

• we propose a novel clustering algorithm that allows the acquisition of the WiFi
map to be performed online, without having to stop the robot to collect WiFi
readings or having a priori access to the environment;

• we introduce, to the best of our knowledge, the most complete and accurate
WiFi localizer which we then utilize at the core of our map merging algorithm;

• we compute the amount of map overlap between multiple heterogeneous maps
by casting the problem as One Class Classification;

• we develop, to the best of our knowledge, the first system capable of merging
heterogeneous maps;

• we outline crucial design choices with respect to the algorithm’s applicability
and performance;

• we evaluate and compare numerous algorithms across different datasets.

6.1 Problem Formulation

As aforementioned, we focus on merging occupancy grid and appearance-based maps,
but the approach is generic and supports merging different types of maps as long as
WSS are collected during the map building process. Regardless of the map’s type
being considered, an observation Zi = [z1

i , z
2
i , . . . , z

a
i ] is acquired using a WiFi card,

where a denotes the total number of APs seen throughout the environment. Each
zki is the WSS of the k-th AP, measured in the number of decibels relative to one
milliwatt (dBm), unless the AP cannot be seen from a particular location, in which
case we set zki = −100. Although we measure the signal strength as dBm, other
measures such as the signal-to-noise ratio have been shown to work well for WiFi
localization [95, 8]. Each observation Zi is linked to a label L̂i representing either a
Cartesian point Ĉi = [Xi, Yi] in the case of an occupancy grid map or an image Ii
for an appearance-based map. All acquired observations and their labels are then
collected into a set T̂ = ∪mi=1{L̂i, Zi} where m is the total number of observations.

In an attempt to model the noise in WSS readings and increase the robust-
ness of the algorithm, we partition the m WiFi readings using their labels L̂ =
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Figure 6.1: Illustrative examples for the three different types of maps presented in
this paper. a) WiFi map: illustrative representation of the WiFi readings for 57 APs,
superimposed on the map. The size of each ring represents the AP’s signal strength
(the bigger, the better) and each color indicates a unique AP. b) occupancy grid map
c) appearance-based map

{L̂1, L̂2, . . . , L̂m} into c clusters L = {L1, L2, . . . , Lc} with (c ≤ m). In appearance-
based maps, labels that represent vertices in the graph need to be clustered. For each
image L̂i = Ii, a cluster labeled as Li = L̂i is created (c = m) centering at the vertex
it corresponds to and its observation Zi along with all observations from its 1-hop
neighbors are assigned to this cluster Zi = {Zi ∪ Zj ∀j | eij ∈ E}. Consequently,
each cluster contains WiFi readings collected from locations where similar images
can be captured. On the other hand, for occupancy grid maps, WiFi observations
are clustered based on their Cartesian coordinates using the clustering algorithm
described in the next section.

For each cluster we store its label Li along with a vector of observations located
inside the cluster Zi = {Z1

i , Z
2
i , . . . , Z

si
i } where si is the total number of observations

inside cluster i. Put differently, si observations are made for cluster i, whose label is
Li. It is worthwhile to note that the clusters may not and do not need to be uniform
(i.e., si is not necessarily equal to sj ∀i,j : i 6= j). In other words, the number of
observations for one cluster can be different than the number of observations for
another cluster. The WiFi map can mathematically be represented as a set T of
observations and their labels, T = ∪ci=1{Li,Zi}. Figure 6.1 shows examples of the
different types of maps presented herein.

Finally, we define the heterogeneous map merging problem as follows. Given
two maps M1 and M2, their corresponding WiFi maps T1 and T2 with the list of
corresponding labels L1 = {L1

1, L
1
2, . . . , L

1
c1
} and L2 = {L2

1, L
2
2, . . . , L

2
c2
} where c1 and

c2 are the number of clusters in T1 and T2, determine the mapping f : {L1 ∪ ∅} ↔
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{L2 ∪ ∅} so that each label in L1 matches a label in L2. For the sake of simplicity,
the problem statement considers only the case where two maps are merged and,
without loss of generality, we describe the process for merging an occupancy grid map
M1 = MOCC with an appearance-based map M2 = MAPP . The idea can naturally
be extended to multiple maps by merging them in pairs, other types of map (e.g.,
topological), and identical map types (e.g., merging two appearance-based maps).
In the case considered in this chapter, merging these two maps narrows down to
assigning a Cartesian coordinate to each image in the appearance-based map using
the WiFi localization technique which will be described in Section 6.3. The merged
map will consequently consist of images overlaid on the occupancy grid map with
edges connecting the similar ones. Please note that the list of labels extracted from
the WiFi maps are extended with the empty set. The reason is that the maps do not
necessarily fully overlap and, therefore, some labels in one map do not necessarily
match a label in the other map.

6.2 Clustering

Focusing on partitioning WiFi readings with Cartesian labels we need a clustering
algorithm that groups spatially close points together which then will be used by the
WiFi localization algorithm to determine matching labels. One of the most common
clustering methods is k-means [102]. This method aims at creating optimal cluster
boundaries such that each cluster contains all the points closest to its centroid.
This methodology fails to address some vital aspects required for successful WiFi
signal classification. First, the algorithm does not guarantee a minimum number of
points within each cluster. The number of observations per location encompasses an
important tradeoff since the higher the si, the better the noise model but longer the
mapping process. The minimum number of observations per location smin should
not be less than a preset value in order to reach the targeted average classification
error. Furthermore, we do not want observations acquired at locations that are
far away from each other to be grouped in the same cluster. By increasing the
number of clusters k the average cluster diameter can be decreased. The maximum
cluster diameter dmax, however, cannot be controlled and depends on several other
parameters such as the initialization method and data distribution. The total number
of clusters c is another parameter that is crucial for successful localization, hence
successful merging. Evidently, the number of clusters is proportional to the size of
the explored area and the WiFi readings’ density. It also defines the average distance
between the clusters’ centers, which has a direct effect on the localization accuracy
that we analyze in Section 6.3.1.
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The non-uniform binary split algorithm [146] (also known as bisecting divisive
partitioning or hierarchical clustering) addresses these issues at the expense of opti-
mality. Specifically, it is possible for the binary split algorithm to create clusters in
which some points are actually closer to a neighboring centroid. The method starts
with one cluster containing all of the data and recursively bipartitions the cluster
with largest distortion into two sub-clusters until the required number of clusters is
reached. The method essentially structures clustering into a hierarchical binary tree.
Our modified version of the algorithm uses k-means clustering with k = 2 to split
the data into two partitions. More importantly, instead of fixing the final number
of clusters, we define a stopping condition for splitting a branch in the binary tree.
According to this condition, we split a cluster c into two clusters c1 and c2 only if
its diameter is greater than dmax. If both new clusters contain at least smin points,
they take their place in the binary tree and recursive partitioning continues. Oth-
erwise, the new clusters c1 and c2 are ignored, the original cluster is kept, and the
corresponding branch in the tree stops splitting. These conditions guarantee that
after the final iteration of the algorithm we have at least smin observations in each
cluster and the diameter of a cluster only exceeds dmax in parts of the environment
where not enough WSS readings were acquired.

Even though the algorithm is fast, taking less than 4 seconds to cluster over 1000
points, it is an offline clustering algorithm by design, i.e., it requires all observations
available before starting the partitioning process. More importantly, observations ac-
quired after the clustering is performed and WiFi map is created need to be processed
and placed into appropriate clusters. These new observations need to be clustered
without altering the cluster assignments of existing observations that have already
been used by WiFi classification algorithm. Hence, we need an online clustering al-
gorithm that makes hard decisions with respect to the clusters’ boundaries. In other
words, once a boundary is set between two clusters, it cannot be modified and the
cluster is fixed.

Our online clustering algorithm is designed around this principle and is built based
on the idea of growing multiple clusters until they encompass enough observations,
in which case the clusters are fixed. Consequently, each cluster can be in one of two
states describing whether the cluster’s boundary is fixed or growing. For each new
Cartesian-observation pair Ĉi, Zi, we identify the centroid Cp of its closest cluster p

and compute the Euclidean distance g between Ĉi and Cp. There are two cases to
take into account, depending on the cluster’s state. First, if cluster c is fixed and
the distance g is less than a pre-defined maximum radius gmax, then the observation
Zi is directly added to cluster c. Otherwise (if g ≥ gmax), a new growing cluster
is started with observation Zi. Second, if cluster p is growing the observation Zi
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Figure 6.2: Illustrative representation of the clustering algorithm in indoor and out-
door environments, superimposed on corresponding occupancy grid map and Google
map, respectively. The different clusters are represented by different colors and each
encompass a varying number of WiFi observations.

is added to p. The growing clusters are converted to fixed clusters by performing
a binary split on them. More specifically, growing clusters are split using k-means
clustering with k = 2, resulting into two clusters c1 and c2. Both new clusters are
fixed if they each encompass at least smin observations within a radius of gmax from
the cluster’s center. When either of those conditions fail, the new clusters c1 and
c2 are ignored and the original cluster p keeps growing. This algorithm guarantees
that each growing cluster will have at least a minimum number of observations per
cluster smin. Figure 6.2 shows a visual representation of the resulting clusters for a
path followed in indoor and outdoor environments.

6.3 WiFi Localization and Mapping

At the core of our heterogeneous map merging algorithm lies the ability to match
labels. In other words, given a label L2

i we would like to find a matching label, L1
j from

the other map using corresponding observations, i.e., WiFi readings. This problem is
known as WiFi localization and as presented in Section 2.4 localization problems have
been extensively studied and a variety of solutions have been proposed, each assuming
different robotic platforms and scenarios. Given the sensory constraints imposed on
robots due to various reasons such as weight, space, or budgetary limitations, WiFi
localization solutions exploit wireless signals from APs that have become omnipresent
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in today’s urban infrastructure. In general, wireless signals are notoriously difficult
to work with due to non-linear fading, obstructions, and multipath effects, but WiFi
localization algorithm offers its share of advantages. Indeed, WiFi APs are uniquely
identifiable, can be used indoor or outdoor, and are already part of the environment
in which we would like to localize. Additionally, transmitted signals are available
to anyone within range, allowing robots to exploit APs without ever connecting to
them. The WiFi localization problem has seen some limited success over the last
decade, but the lack of comparisons between solutions and strict constraints imposed
by previously published algorithms render its application to real-world scenarios
inadequate. In particular, the approaches are always offline, requiring earlier access
to the environment for the WiFi map to be determined, and the robot often has to
stop when collecting WiFi signal strengths at discrete locations, contributing to the
reason the approaches are offline. From map merging perspective, offline algorithms
require the robots to first stop and build their WiFi maps before attempting to
merge them together, eventually delaying the creation of the merged map. In this
section, after describing how WiFi maps are built, we present our solutions for these
outstanding issues, providing the most complete and accurate WiFi localizer to date.
More specifically, we offer the following contributions

• we localize using WiFi by casting the localization as a machine learning clas-
sification problem, the learning of which is solved in real-time thanks to an
Online Random Forest;

• we contrast our method with six published algorithms, accounting for both
real-time and offline performances;

• we propose a novel regression algorithm that builds upon the best classification
algorithm;

• we develop an end-to-end Monte Carlo Localization (MCL) algorithm built
upon the Online Random Forest and supported with odometry for robustness;

• we outline crucial design choices with respect to the algorithm’s applicability
to unknown environments and real-time performance;

• we establish the power of our WiFi localizer by assessing its strengths across
different datasets that cover kilometers of indoor and outdoor environments.

Some of the results presented here have been published in [8].
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6.3.1 Classification

6.3.1.1 Description

Figure 6.1a gives a good qualitative indication that it is possible to differentiate be-
tween different locations by only considering signal strengths received from APs. We
start developing the WiFi localizer by casting it as a machine learning classification
problem. Mathematically, given a WiFi map T and an observation Z = [z1, . . . , za],
we produce a function f : Z → p by using T as training data. Function f takes Z
and returns the location p which corresponds to label Lp in T . We note that casting
the problem in such manner is a simplification, since a robot needs to be positioned
exactly at one of the locations in the training data in order for f to return the exact
coordinate Cp (i.e., classification does not perform interpolation or regression). Solv-
ing the classification problem is nevertheless an important step since the effectiveness
of various algorithms can be evaluated and applied to build a better localizer, as will
be shown in the next sections. Computing f from T can be achieved using different
techniques and to the best of our knowledge, no comparison has been made in the
literature to find the best performing algorithm. Consequently, we implement a total
of seven algorithms: Nearest Neighbor Search, Gaussian Model, Gaussian Processes,
Support Vector Machine, Decision Tree, Random Forest, and Online Random Forest.
Next we present each algorithm in the context of our problem’s definition.

6.3.1.2 Classification Algorithms

Nearest Neighbor Search[7]: The nearest neighbor search does not require any
processing of the training data, T . Instead, the distance between all the points in
T and a new observation Z is computed, yielding to m distances. The location p
that the observation returning the minimum distance belongs to is then assigned as
the location of the new observation. The only necessary decision for this algorithm
involves the choice of one of the numerous proposed distance formulas (e.g., Eu-
clidean, Mahalanobis, City Block, Chebychev, Cosine). We use Euclidean distance
to rigorously follow the algorithm presented in [7].

Gaussian Model[76, 95, 13]: The Gaussian model technique, proposed in the
robotics literature, attempts to model the inherent noise of signal strength read-
ings through a Gaussian distribution. For each location p and for each AP k the
mean and standard deviation of the signal strength readings are computed from all
observations acquired at that location, yielding to µkp and σkp , respectively. This
means that a total of c× a Gaussian distributions are calculated. The location, p, of
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a new observation, Z, is derived using the Gaussian’s probability density function:

arg max
p

[
a∏
k=1

1

σkp
√

2π
exp

(
−

(zk − µkp)2

2(σkp)2

)]
Gaussian Processes[48, 38]: Conversely to the Gaussian Model, which describes
a probability distribution in the space of signal strength readings, zki , a Gaussian
Process defines the probability distribution in the space of Cartesian positions, Ci.
In other words, the Gaussian Model and Gaussian Process algorithms are different in
that they essentially compute P (C|Z) and P (Z|C), respectively. Instead of directly
computing the means and covariances for the Gaussian distributions, a kernel func-
tion κ is exploited to compute the covariances. Although there are many potential
choices for the covariance kernel function, we replicate the works of Ferris et al. [48]
and Duvallet et al. [38] by using the squared exponential kernel

κ(Ci, Cj) = σ2
f exp

(
−|Ci − Cj|

2

2l2

)
where Ci and Cj are two Cartesian locations, σ2

f is the signal variance, and l is
a scaling factor that determines the correlation’s strength between Ci and Cj. In
some sense, the kernel function determines the correlation between values located at
different points. Assuming that the signal strength observations have additive noise
represented by a zero-meaned Gaussian distribution whose variance is σ2

n, we can
compute the covariance matrix using the formula

cov(zki , z
k
j ) =

{
κ(Ci, Cj) + σ2

n if i = j
κ(Ci, Cj) if i 6= j

In matrix form, the covariance equation can be re-written as

cov(zk) = K + σ2
nI

where zk is the linear combination of all signal strength readings for AP k and
across all clusters, K is the matrix representation of the kernel function evaluated
for all i and j, and I is the identity matrix. As the covariance equations suggest, a
separate Gaussian Process needs to be computed for each AP k. When used to solve
a classification problem, the location C ∈ T corresponding to a new observation Z
is computed from

C = arg max
C

[
a∏
k=1

1

σkc
√

2π
exp

(
−(zk − µkc )2

2(σkc )2

)]
µkc = kc

T cov(zk)−1zk

σkc = κ(C,C)− kc
T cov(zk)−1kc
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where kc is a vector of covariances between location C and each location Ci inside
the training data T . Although the aforementioned equations solve a classification
problem, Gaussian Processes are better suited for regression problems and fit very
well with MCL algorithms. Indeed, an hypothesized robot location C (not necessarily
in T ) accompanied with an observation Z can probabilistically be evaluated using

P (Z|C) =
a∏
k=1

1

σkc
√

2π
exp

(
−(zk − µkc )2

2(σkc )2

)
.

It is worthwhile to note that Gaussian Processes rely on three parameters (i.e., σ2
f , l,

and σ2
n) that greatly affect the prediction accuracies of the algorithm. Fortunately,

these parameters can be learned directly from the training data T by maximizing
the log likelihood of the predictions, using the trained observations and conditioned
on the three parameters [141].

Support Vector Machine[161]: Support vector machines work by constructing a
set of hyperplanes in such a way that they perfectly divide two data classes (i.e., they
perform binary classification). Generating the hyperplanes is essentially an optimiza-
tion problem that maximizes the distance between the hyperplanes and the nearest
training point of either class. Although initially designed as a linear classifier, the
usage of kernels (e.g., polynomial, Gaussian) enables non-linear classification. Since
our training data T comes from c distinct locations, we use a support vector machine
variant that works for multiple classes. We chose the one-versus-one approach due to
its structure that allows us to train for new classes online. In this approach we build
binary classifiers which distinguish between every pair of classes. This essentially
creates a set of c × (c − 1) binary classification problems, each of which is solved
using the standard support vector machine algorithm with a Gaussian kernel. Once
all the support vector machines are trained, we can localize given a new observation
Z by evaluating its high-dimensional position with respect to the hyperplanes, for
each support vector machine p. The class p is chosen by the support vector machine
that classifies Z with the greatest distance from its hyperplanes.

Decision Tree[19]: A decision tree is a binary tree constructed automatically from
the training data T . Each node of the tree corresponds to a decision made on one of
the input parameters, zkp , that divides the node’s data into two new subsets, one for
each of the node’s sub-trees, in such a way that the same target variables, p, are in
the same subsets. The process is iterated in a top-down structure, working from the
root (whose data subset is T ) down to the leaves, and stops when each node’s data
subset contains one and only one target variable or when adding new nodes becomes
ineffective. Various formulas have been proposed to compute the “best” partitioning
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of a node’s data subset, the most popular of which being the Gini coefficient, the
twoing rule, and the information gain. After experimental assessments, we found
the choice of partitioning criterion insignificant in terms of localization accuracy and
use, arbitrarily, the Gini coefficient. In order to classify a new observation Z, the
appropriate parameter zi is compared at each node, the decision of which dictates
which branch is taken - a step that is repeated until a leaf is reached. The target
variable p at the leaf is the location of the robot.

Random Forest[18]: Random forests are an ensemble of decision trees built to
reduce over fitting behaviors often observed in single decision trees. This is achieved
by creating a set of F trees, as described in the previous paragraph, each with
a different starting dataset, T ′, selected randomly with replacement from the full
training data T . An additional difference comes from the node splitting process,
which is performed by considering a random set of q input parameters as opposed to
all of them. The partitioning criterion is still used, but only the q randomly selected
parameters are considered. In order to classify a new observation Z, it is processed
by each of the F trees, resulting in F output variables, some of which may be the
same. In some sense, each decision tree in the forest votes for an output variable and
the one with the most votes is chosen as the location of the robot. The number of
trees d encompasses a tradeoff between speed and accuracy.

Online Random Forest: The RF unfortunately assumes that the entire training
data T is available a-priori, an assumption that does not hold for real-time WiFi
localization. Similarly to [143], we modify the RF algorithm, creating an Online
Random Forest (ORF) that learns from incremental updates to the training data
T , in an online fashion. We describe our ORF algorithm with respect to its offline
counter-part. Specifically, a RF is an ensemble of F decision trees built to reduce
over-fitting behaviors often observed in single decision trees. Each tree f is created
from a subset T ′, selected randomly with replacement from the full training data T .
Every time a new node is created, a random set of decisions d(Z) > θ are created,
the best one of which is used to split the node. The process of generating decisions
is the same for RF and ORF. As shown in Algorithm 5 we update the trees every
time we receive a new observation-label pair (Z, Li) where each label is linked to the
Cartesian coordinate of corresponding cluster center.

Each tree is updated one by one (line 1) and a Poisson distribution with parameter
λ = 1 models the incremental arrival of new data (line 2). The Poisson distribution
essentially mimics the random selection with replacement of the RF training data.
The integer k is drawn from the Poisson distribution and dictates the number of times
that the tree will take into account the observation-label pair (Z, Li). Please note
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Algorithm 5 ORF-Update(Z, Li)

1: for f ← 1 to F do
2: for k ← 1 to Poisson(1) do
3: l = navigateToLeaf(Z)
4: updateLeaf(l, Z, Li)
5: if shouldSplit(l) then
6: arg maxd∈D 4Gini(l, d)
7: createChildren(l, d)
8: end if
9: end for

10: if k ← 0 then OOBEt ← updateOOBE(t, Z, Li)
11: if x drawn from Bernoulli(OOBEt) then rebuildTree(t)
12: end for

that k can be 0 or greater than 1, mimicking an observation that was not sampled
or sampled multiple times, respectively. The choice of a Poisson distribution comes
from Oza et al. [134] who proved convergence to the offline approach. Since each
node does not have access to all of the training data, we use the observation Z to
navigate through the tree, reaching a leaf l (line 3). We add the new observation-label
pair Z-Li to the leaf l (line 4). So far, the algorithm simply updates the amount of
data encompassed by each node of each tree in the ORF. We decide when the leaves
should split using the shouldSplit function (line 5), whose pseudo-code is given in
Algorithm 6. When choosing whether or not to split a node, we take into account
two parameters. First, the leaf needs to possess observations representing at least
two different clusters. Since we know that the clusters will come in sequentially from
the Online Clustering, we want to make sure that we do not split a node whose data
only account for one cluster. Second, we only want to split the node if the splitting
criterion gain with respect to a decision d, 4Gini(l, d), has increased “significantly”.
The extent to which the gain should increase is dictated by parameter α. If the
choice of splitting the node is made (line 5), the best decision d ∈ D is determined
(line 6) and exploited to split the leaf, creating left and right children nodes (line 7).
The newly-created children are imparted with the data of their parent node so that
they can classify directly, without new observations.

In order to make the ORF more robust, we add the capability of removing and
reconstructing bad trees in the forest. In other words, we want to add the capability
of unlearning old information that might not reflect any longer the overall data
distribution. To do so, we exploit the observation-label pairs that were not trained
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Algorithm 6 shouldSplit(l)

1: b← true
2: if difClusters(l) < 2 then b← false
3: if 4Gini(l, d) < α ∀d ∈ D then b← false
4: return b

as part of the tree, called Out-Of-Box (OOB) samples. From these samples, which
only occur when k = 0, we can compute the OOB Error (OOBE) for each tree (line
10). In some sense, the OOBE, which is analogous to cross validation, supplies a
quantitative measure of a tree’s performance. By evaluating this measure, we can
infer when a tree becomes less and less useful, in which case we destroy it and rebuild
it from scratch using the generic RF tree building algorithm. To decide whether or
not a tree should be discarded (line 11), we sample x from a Bernoulli distribution
whose parameter p is set to the OOBE. The sample x is either 1 or 0 and indicates
if the tree should be discarded. The Bernoulli distribution essentially models the
probability of discarding a tree, where the probability is inversely proportional to
the OOBE. It is important to note that reconstructing one tree in the entire forest
does not significantly damage the algorithm’s performance, yet allows the forest to
adapt over time.

6.3.1.3 Results

The experimental results of the WiFi localizer cast as a classification problem greatly
influenced our algorithmic design choices for the end-to-end WiFi localization algo-
rithm. Therefore, we present the results before continuing with the algorithm’s
description. In addition to the seven aforementioned algorithms, we run experiments
on a set of six different datasets, each representing distinctive environments and oper-
ating conditions. Table 6.1 provides detailed information for each of the six datasets.
As can be seen from the table, we acquired two datasets, UCM and Merced, repre-
senting indoor and outdoor environments. The remaining four datasets, RICE, CMU,
USC, and HKUST, were made publicly available by the authors of [95], [27], [76], and
[39], respectively. The datasets differ tremendously in terms of environment’s type
(e.g., indoor, outdoor), WiFi map acquisition process (e.g., offline, online), mapping
agent (e.g., robot, human), localization technique used to infer the Cartesian co-
ordinates Ci (e.g., SLAM, GPS, manual labeling, laser-based MCL), wireless signal
metric (e.g., dBm, SNR), approximate size of the environment covered, total number
of clusters (c), average distance between clusters, minimum number of observations
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per cluster, and total number of APs discovered (a). As a group, these datasets
exemplify a wide range of operating conditions and provide the most extensive set
of WiFi localization experiments to date. Since this set of experimental results is
purely meant to evaluate the Online Random Forest against other algorithms and
across different datasets, all of the data presented in this section was acquired by
a single robot and processed offline. The more realistic scenarios involving robots
mapping and localizing in real-time are presented in the next section.

UCM Merced RICE CMU USC HKUST
Source In-House In-House Public Public Public Public
Environment Indoor Outdoor Indoor Indoor Indoor Indoor
Map Acquisition Offline Online Offline Offline Online1 Offline
Mapping Agent Robot Robot Human Human Robot Human
Localization SLAM GPS Manual Manual MCL Manual
Signal Metric dBm dBm SNR SNR dBm dBm
Length Covered 150m 1.5km 1.5km 300m 100m 100m
No. of Clusters, p 156 720 506 209 120 106
Clusters’ Distance 0.89m 1.96m 3.33m 1.58m 0.69m 1.00m
min si ∈ Ai 20 7 100 32 20 25

No. of APs, a 48 231 57 152 4 144

Table 6.1: Detailed information about the datasets used for the classification exper-
iments. Each column corresponds to a dataset, with each row representing a specific
characteristic of the dataset.

We start by analyzing each algorithm’s accuracy as a function of the number
of readings taken at each location, s, a plot of which is shown in Figure 6.3. The
training and classification data are randomly sampled 50 different times from UCM
dataset for each experiment in order to remove any potential bias from a single
sample. Presented results are averages of those 50 samples and we omit error bars
in our graphs since the results’ standard deviation were all similar and insignificant.
Since our goal is to ultimately be able to map unknown environments in real-time,
the data acquisition needs to be efficient. It takes on average 411ms to get signal
strength readings from all the APs in range so we want to minimize s. As expected,
Figure 6.3 shows a tradeoff between the algorithms’ localization accuracy and the
number of readings used during the training phase. Since we want to limit the time
it takes to gather the training data, setting the number of readings per location to 3
(s = 3) provides a good compromise between speed and accuracy, especially since the
graph shows an horizontal asymptote starting at or around that point for the best
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algorithms. As such, the rest of the results presented in the paper will be performed
using 3 readings per location. All the algorithms, except the Decision Tree, reached
an average classification error below 1m with 3 readings per location. Furthermore,
the Gaussian based techniques, as expected, performed badly when 1 reading is used
per location since in that case the training data does not contain enough variance to
model, i.e., σ = 0.

1 2 3 4 5 6 7 8

0.5

1.5

2.5

Readings per Location

A
ve

ra
g

e 
C

la
ss

if
ic

at
io

n
 E

rr
o

r 
(m

)

 

 

Decision Tree
Gaussian Process
Nearest Neighbor Search
Support Vector Machine
Gaussian Model
Online Random Forest
Random Forest

Figure 6.3: Average classification error, in meters, for each classification algorithm
as a function of increasing number of readings per location.

Figure 6.4 shows the cumulative probability of classifying a location within the
error margin indicated on the x-axis. This figure corroborates the findings of Figure
6.3, showing that the best algorithm is the Random Forest, which had never been
exploited in the context of WiFi localization. Moreover, the Random Forest can
localize a new observation, Z, to the exact location (i.e., zero margin of error) 88.58%
of the time.

The average classification error of each algorithm and each dataset is shown in
Figure 6.5. As can be seen from the figure, both Random Forests are consistently
more accurate than the other algorithms, regardless of the dataset and, consequently,
environment used. The Online Random Forest is only marginally worst than its of-
fline counterpart; 7.39% on average. Compared with the other algorithms, the Online
Random Forest is, on average, 15.96%, 103.24%, 301.26%, 475.99%, and 1400.71%
better than the previously published WiFi localization algorithms (Gaussian Model,
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Figure 6.4: Cumulative probability of classification with respect to the error margin.

Nearest Neighbor Search, Support Vector Machine, Gaussian Process, and Decision
Tree, respectively). It is also worth mentioning that the Rice dataset uses signal to
interference ratios for their observations as opposed to signal strengths. Although
both measures are loosely related, this indicates that the classification algorithms
are both general and robust. These important findings indicate that the proposed
Online Random Forest is data- and environment-independent and that we are not
biased or over-fitting our datasets. Please note that for the indoor environments
(i.e., UC Merced and Rice), the average classification accuracy is proportional to the
average distance between clusters. As seen in Figure 6.5, the outdoor environment is
the most challenging, due to the large distances between APs, prominent multi-path
effects, and size of the environment.

Since we are focusing on online WiFi map building, we briefly describe each
method with respect to its online capabilities. We “convert” the Random Forest to
an online version by re-training it from scratch every time a new cluster is created.
This is evidently time consuming, as will be shown in this section, but provides a
very accurate baseline to compare against. The multi-class SVM can be trained in a
one-against-one or one-against-all methodology. Since the one-against-all technique
does not allow for online learning (unless training is performed from scratch for every
new cluster), we use the one-against-one technique. Assuming we have discovered c
clusters that were already trained one-against-one, a new cluster will require training
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Figure 6.5: Average classification error, in meters, for each classification algorithm
executed on the UCM, Merced, RICE, CMU, USC, and HKUST datasets.

c new SVMs. Evidently, the number of observations grows over time and so does the
SVM training time. The Gaussian Model and Nearest Neighbor Search are already
capable of running online. Since the Gaussian Model computes a set of Gaussian
distributions for each cluster independently of any other clusters, we can simply wait
to get a new cluster before computing its distribution. The Nearest Neighbor Search
does not have a training phase and is consequently online by default.

The time that each algorithm takes to incrementally add a new cluster into the
WiFi map is computed and the resulting training times are shown in Figure 6.6,
where the number of clusters are progressively increased from 20 to 100 as the robot
explores the map. It is important to note that 100 clusters accounts for a small
map covering an area ranging from 100 to 300 square meters and that is the reason
why the training process takes this little time in this example. Figure 6.6 does
not include the Nearest Neighbor Search since it does not require a training phase.
Similarly, training time for the Gaussian Process is omitted since it takes too long
to train for online applications (i.e., an average of 4.75 minutes for 100 clusters).
The figure clearly shows that both the Random Forest and Support Vector Machine
take too much time to train, especially since they grow linearly and exponentially,
respectively, as the number of clusters increases. On the other hand, the Gaussian
Model and Online Random Forest add new clusters to a trained map in constant
time, with speeds of 27.4ms and 2.5ms, respectively.
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Figure 6.6: Average training time, in seconds, as the clusters increase during explo-
ration. The Nearest Neighbor Search is omitted since it does not need training. The
Gaussian Process is also omitted since it takes too long: 4.75 minutes on average for
100 clusters.

Not only is the training time important for real-world scenarios, but so is the
classification time. Indeed, it does not matter how fast WiFi maps can be created,
if they take minutes to be exploited. Figure 6.7 shows, for each algorithm, the
average time to classify 10 observations. Both the Gaussian Process and Support
Vector Machine algorithms are omitted due to their slow classification speeds of
3.05s and 9.07s, respectively, for maps containing 100 clusters. The trends for the
remaining algorithms are approximately constant, except for the Gaussian Model
which is linear. Once again, the Online Random Forest provides the fastest option,
along with the Nearest Neighbor Search.

6.3.2 Regresion

Although the results of the classification algorithms are very encouraging, they do
not depict a real world scenario, where locations explored by one robot, upon which
the WiFi map is created, will surely be different than those explored by other robots.
Consequently, we re-cast the WiFi localizer as a regression problem, where some in-
ference is performed to generate Cartesian coordinates for locations that are not
encompassed in the training data. Although typical off-the-shelf regression algo-
rithms (e.g., Neural Network, Radial Basis Functions, Support Vector Regression)
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Figure 6.7: Average time, in milliseconds, it takes to classify 10 observations, as the
number of clusters increases during robot exploration. The Gaussian Process and
Support Vector Machine algorithms are omitted because they take too much time
relative to the other algorithms (i.e., 3.05 and 9.07 seconds, on average, for a map
size of 100 clusters).

might seem like a good choice initially, they get corrupted by the nature of our train-
ing data, the majority of which depicts unseen APs (i.e., zap = −100). In addition, it
would be wise to exploit the good results exhibited by the classification algorithms.
We consequently design our own regression algorithm that builds upon the best on-
line classification algorithm: the Online Random Forest. In addition to providing
one of the best classification results, the Online Random Forest is appealing due to
its voting scheme, which can be interpreted as P (p|Z), for each p ∈ T .

Our regression algorithm is based on a Gaussian Mixture Model (GMM) [121]
described in Algorithm 7. The GMM is introduced to non-linearly propagate, in the
two-dimensional Cartesian space, results acquired from the Online Random Forest.
More specifically, we build a GMM comprised of c (number of clusters) mixture
components (line 1). Each mixture component corresponds to a cluster p and is
constructed from a Gaussian distribution with a mean µ(p) (line 2), corresponding
to the Cartesian coordinates of the cluster center of p, covariance Σ(p) (line 3), and
mixture weights φ(p) that are acquired directly from the Online Random Forest’s
voting scheme (line 4). Line 4 highlights the key difference between the classification
and regression methodologies, which arises from the fact that taking the mode of
the Online Random Forest’s results, as is done in classification, discards valuable
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information that is instead exploited in our regression algorithm. In some sense, the
mixture weights are proportional to the Online Random Forest’s belief of being at
location p given the observation Z (i.e., φ(p) = P (p|Z)).

Algorithm 7 Construct-GMM(Z)

1: for p← 1 to c do
2: µ(p)← Cp
3: Σ(p)← σ2I
4: φ(p)← P (p|Z)←Online-Random-Forest-Prediction(Z)
5: end for
6: return gmm←Build-GMM(µ, Σ, φ)

Algorithm 8 provides pseudo-code for the rest of the regression algorithm. Once
the GMM is built (line 1), a couple of approaches are available, the most popular of
which consists in taking the weighted mean of the model or drawing samples from the
GMM with probability φ(p) and computing the samples’ weighted mean. However,
applying regression directly on the model puts too much emphasis on the Online
Random Forest classification results and does not provide a fail-safe mechanism for
misclassifications. Thus, instead of sampling from the GMM, our regression algo-
rithm uses a k Nearest Neighbor Search (line 2) to provide k samples that are not
only dependent on the observation Z, but also come from a different model than the
Online Random Forest. This is a crucial step that adds robustness to the algorithm
by combining two of the presented classification algorithms. In other words, where
and when one algorithm might fail, the other might succeed. The choice of the Near-
est Neighbor Search for this step (as opposed to the Gaussian Model or the Support
Vector Machine) comes from the fact that s times more samples can be drawn from
it (a total of s × c, as opposed to c). The returned Cartesian coordinate (line 3) is
finally calculated as the weighted mean of the k Nearest Neighbors, where the weight
of each Nearest Neighbor is set from the Probability Distribution Function (PDF) of
the GMM.

Algorithm 8 Regression(gmm, T , Z)

1: nn←k-NN(T , Z, k)

2: Ĉ ←
∑k

i=1 nni × PDF(gmm,nni)∑k
i=1 PDF(gmm,nni)

3: return Ĉ
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The entire regression algorithm requires two parameters to be set, σ (Algorithm
7) and k (Algorithm 8). σ dictates how much the Gaussian components influence
each other and should be approximately set to the distance between WiFi readings
in the training data. k should be as high as possible in order to provide a lot of
samples, yet low enough not to incorporate “neighbors” that are too far away. We
have found setting k to 25% of all the observations in T (i.e., k = 0.25× s× c) to be
a good solution for this tradeoff.

Given a new observation Z, the regression essentially maps a three-dimensional
surface to the X-Y Cartesian space of the environment, where the higher the sur-
face’s Z-value the more probable the X-Y location. A representative snapshot of the
process is shown in Figure 6.8, highlighting an important behavior of the presented
regression algorithm. Indeed, the algorithm is not only capable of generating Carte-
sian coordinates that were not part of the initial training data, but also takes into
consideration neighboring votes from the Random Forest classification. In the fig-
ure, the highest Random Forest vote (represented by ‘*’) is somewhat isolated and,
consequently, its neighbors do not contribute to the overall surface. The region close
to the actual robot’s location (denoted by ‘+’), however, is comprised of many local
neighbors whose combined votes outweigh those of the Random Forest classification,
resulting in a better regression estimation (symbolized by ‘x’).

Figure 6.8: Regression example, showing the PDF of the GMM overlaid on top of a
section the environment’s map. The markers +, x, and * represent the ground truth,
regression, and random forest classification locations, respectively.
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6.3.2.1 Results

In order to evaluate the accuracy of the regression algorithm, it is necessary to gather
new data that will mimic a robot exploring the environment not constrained to the
locations covered by the training data T . Consequently, we perform 10 new runs (Ni)
in the same environment covered by UCM dataset and utilize the same dataset for
training, assuming no prior knowledge of the locations covered by T . In other words,
while the training data (T ) and the new data (N) approximately cover the same
environment, they are not acquired at the same Cartesian coordinates. As such, this
experiment provides a direct measure of the regression algorithm’s strength. The two
datasets, T and N , were taken at different dates and times making the regression
problem even more difficult since additional noise is likely not to be modeled by the
training data, T . For evaluation purposes, we manually record the robot’s ground
truth position at discrete locations so that we can quantitatively evaluate the re-
gression algorithm. Figure 6.9 shows the average accuracy (from the 10 runs and 50
random samples used for training) of presented classification algorithms compared
against the regression algorithm. Not surprisingly, the regression algorithm works
very well by outperforming the Nearest Neighbor Search, Gaussian Process, Ran-
dom Forest, Online Random Forest, Support Vector Machine, Gaussian Model, and
Decision Tree algorithms by 39.33%, 40.86%, 42.38%, 43.27%, 51.67%, 61.16%, and
109.65%, respectively. We conclude this section by mentioning that the regression
algorithm only takes 131ms to localize.

6.3.3 Monte Carlo Localization

Although the regression algorithm clearly improves the WiFi localizer’s accuracy
for real-world scenarios, further improvements can be obtained by taking into ac-
count the spatial and temporal constraints implicitly imposed by robot motion. For
robot exploration, where the robot is unlikely to move drastically from one posi-
tion to another, we want to exploit the fact that a robot’s position and observation
should be coherent within small time steps. In other words, the classification and
regression algorithms discussed so far solve the localization problem without taking
into consideration the robot’s previous location, or, more precisely the probability
distribution of the robot’s previous location. Specifically, we use an Monte Carlo
Localization (MCL), also known as particle filter localization, algorithm, built from
the standard implementation presented by Thrun et al. [156], with a couple of mod-
ifications. Given a map of the environment, the algorithm estimates the pose of a
robot as it moves and senses the environment. With its non-parametric represen-
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Figure 6.9: Average regression error, in meters, comparing all classification algo-
rithms (left) and the proposed regression algorithm (right).

tation it approximates the probability distribution over the space of possible poses
by a particle filter where each particle represents a possible state. When the robot
moves and makes new observations, the particles are resampled based on recursive
Bayesian estimation. MCL particularly performs well for situations where the belief
is multimodal which usually is the case for indoor environments due to perceptual
aliasing.

We adopt the same motion model, which exploits the translational and rotational
velocities of the robot, in [156]. The measurement model is, evidently, different since
it needs to take into account the aforementioned Online Random Forest based re-
gression results. Given a particle with Cartesian coordinate C and a new observation
Z, the measurement model computes the probability P (C|Z). The pseudo-code is
presented in Algorithm 9 and shows the effectiveness of our GMM implementation
(line 1), which can seamlessly transition from regression to MCL. Indeed, each par-
ticle i (line 2) is assigned a weight proportional to the probability of being at the
particle’s state given a WiFi observation Z. Thanks to the GMM, the particle’s
weight is easily retrieved by using the PDF (line 3).

In addition to the measurement model, we modify the particles’ initialization
procedure. Instead of randomly or uniformly sampling the particles’ state and giving
each particle an equal weight, we force the robot to collect a new WiFi reading, Z,
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Algorithm 9 Measurement-Model(Z)

1: gmm← Construct-GMM(Z) // See Algorithm 7
2: for i← 1 to n do
3: i.weight ← PDF(gmm, i.state(X,Y ))
4: end for

and initialize the particles using that observation, as shown in Algorithm 10. We
start by constructing the GMM (line 1) and, for each particle in our filter (line 2),
sample a data point from the GMM that will serve as the particle’s X,Y state (line 3).
Since WiFi signal strengths cannot infer the robot’s rotation, we randomly sample
the particle’s θ state (line 4). The particles’ weight is calculated from the GMM’s
PDF (line 5). In order to add robustness to the previously mentioned problem with
robots’ rotations, we pick the v best particles (line 7) and add y new particles that
are the same as v but have y different θ states each randomly sampled between 0
and 2π (line 8). Since we have augmented the total number of particles, we finalize
our particle initialization by keeping the best n particles (line 9).

Algorithm 10 Initialize-Particles(Z)

1: gmm← Construct-GMM(Z) // See Algorithm 7
2: for i← 1 to n do
3: i.state(X,Y ) ← sample(gmm)
4: i.state(θ) ← rand(0 to 2π)
5: i.weight ← PDF(gmm, i.state(X,Y ))
6: end for
7: for all i within the top v weights do
8: Add y particles ny where

ny ← m, and
ny.state(θ) ← randy(0 to 2π)

9: end for
10: Select the |m| particles with highest weights

6.3.3.1 Results

In this section, we evaluate our MCL algorithm, running with 5000 particles, on the
indoor UC Merced and outdoor Merced datasets. Please note that since we do not
have physical access to the areas where other datasets are generated, we cannot use
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the MCL on the rest of the datasets.

The robots explored the UC Merced and Merced environments and localized
strictly exploiting WiFi signal strengths readings within our algorithmic framework.
In order to quantitatively analyze the MCL, an LRF and GPS receiver are mounted
on the robots for the indoor and outdoor scenarios, respectively. Please note that
these two sensors are only meant to generate pseudo-ground-truth and are not used
as part of the WiFi localization. The indoor and outdoor environments are explored
10 and 5 different times, respectively. For each exploration, the MCL is performed 50
times to account for the random nature of the MCL. After each measurement model
update, we localize the robot by computing the weighted mean of the particles and
compute the error between the MCL and pseudo-ground-truth (SLAM or GPS).
The average error for the 50 trials of the 10 indoor and 5 outdoor explorations are
0.61 meters and 1.02 meters, respectively, with a low average standard deviation of
below 1cm for both datasets. The algorithm runs in real-time on a consumer laptop,
where the motion and measurement models take, on average, 13.50ms and 195.19ms,
respectively.

Comparing these results to an offline LRF SLAM algorithm [62], which produces
an average error of 0.27m for indoor UCM dataset, we observe a compelling trade-
off between accuracy and sensor payload (or price) when using the proposed WiFi
localizer. Figure 6.10 provides a visualization of 3 outdoor runs while the other 2
runs are not omitted due to redundant visual overlap. An illustrative example of a
partial run of the indoor experiment is shown in Figure 6.11.

6.4 Merging Algorithm

Our map merging algorithm consists of three main components, as shown in Figure
6.12. Given an occupancy grid and an appearance-based map, we first deduce the
amount of map overlap by identifying and separating the labels that map to the
empty set (i.e., Li → ∅). In the second stage, for each of the remaining labels in the
appearance-based map Li ∈ L2 the probably distribution over the set of labels in
the occupancy grid map L1 is computed. The most similar Cartesian label can be
determined using the probability distribution. Such an estimation, however, would
be solely based on the WiFi readings linked to each vertex in the appearance-based
map. In the last step, we use the additional information inherently encoded by the
appearance-based map’s edges to refine the probability distribution and improve the
precision of the estimate by applying regression in the space of Cartesian labels.
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Figure 6.10: Three non-overlapping localized outdoor runs showing the output of the
WiFi localizer (line) and GPS receiver (crosses) on top of Google Maps.

6.4.1 Map Overlap Estimation

The issue of determining map overlap is a One-Class Classification (OCC) problem,
whose aim is to distinguish one class of objects from all other possible objects. In the
context of map merging using WSS, we assume that observations in T1 represent one
class of objects (i.e., the metric map) and we want to classify unknown observations
inside T2 (i.e., the appearance-based map) to see whether or not they belong to T1.
With principles related to outlier detection, OCC has stimulated the design of many
algorithms. Since these algorithms are often data-dependent, we have implemented
and contrasted five alternatives. Interested readers are directed to [155] for a more
detailed survey.

6.4.1.1 OCC Algorithms

One-Class Support Vector Machine (OC SVM): OC SVM is a modified version
of the two-class SVM where only one class is necessary for training. Similarly to
SVM, a kernel function maps the training data into a feature space. The origin of
that feature space is then treated as the only member of the “second” class and the
techniques of a binary SVM classifier can be applied to produce a hyperplane that
maximizes the functional margin. For the kernel of the OC SVM, we use a Gaussian
Radial Basis Function that requires a parameter h describing the bandwidth of the
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Figure 6.11: Localized run showing the output of LRF SLAM (straight line), the
WiFi localizer (dotted line), and Ground Truth (circles).

kernel. Once the OC SVM is trained on the first map’s data T1, a new observation
Zi ∈ T2 is classified by computing its relation to the hyperplane, f(Zi) = (w ·
Φ(Zi)) − ρ, where f(x) represents the hyperplane equation, w is the normal vector
to the hyperplane, Φ(x) describes the kernel function, and ρ corresponds to the
hyperplane’s offset. If f(Zi) > 0 then Zi ∈ T1 ∩ T2 and if f(Zi) < 0 then Zi /∈ T1.

Principal Component Analysis (PCA): PCA orthogonally projects a dataset
from one subspace to another while retaining as much variance into as few compo-
nents as possible. PCA is generally utilized in the context of dimensionality reduc-
tion, but it can also be used as a classification and noise reduction technique. PCA
in the context of OCC is performed as follows. First, the training data T1 is used
to compute the a components, of which only the x < a with the greatest variance
are retained. The x components are then used to project the training data into a
lower dimensional subspace, resulting in T̃1. A new observation to classify Zi ∈ T2 is
projected into the same subspace (resulting in Z̃i) and the Euclidean distance to the
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Figure 6.12: Flowchart describing three stages of heterogeneous map merging algo-
rithm.

nearest point in T̃1 is computed by D(Z̃i). If D(Z̃i) < d, where d is a pre-computed
distance threshold, we deduce that Zi ∈ T1 ∩ T2 (otherwise, Zi /∈ T1).

k-Means: the k-means algorithm for OCC attempts to characterize the training
data T1 as a set of similar objects. The observations of the first map T1 are partitioned
into a set of k clusters that can then be exploited to classify unknown observations.
The k cluster centers are consequently a-dimensional objects. An observation to
classify Zi ∈ T2 is compared against its closest cluster center, where the Euclidean
distance between the two is given by D(Zi). The new observation is considered part
of the first map (i.e., Zi ∈ T1 ∩ T2) when D(Zi) < d (otherwise, Zi /∈ T1), where d is
a pre-determined distance threshold.

Nearest Neighbors Ratio (NN Ratio): the NN ratio is a modification of
the simple NN search, where the distances of the NN and second-NN are compared.
Since NN searches operate directly in the space of the training data T1, they possess
the distinct advantage of not requiring a training phase. To classify a new observa-
tion Zi ∈ T2, its two NN ZN1, ZN2 ∈ T1 are computed, along with their Euclidean
distances D(ZN1) and D(ZN2). If D(ZN1)/D(ZN2) < d, where d is a pre-computed
ratio threshold, then we can assert that Zi ∈ T1 ∩ T2 (otherwise, Zi /∈ T1).

Gaussian Model: this method models the density of the training data by fitting
a Gaussian distribution. More specifically, the mean µ and covariance matrix Σ are
computed from the occupancy grid map data T1 to construct a multivariate Gaussian.
The number of dimensions of the Gaussian is equal to a. To determine whether a new
observation Zi ∈ T2 is part of the first map, we evaluate the Gaussian’s Probability
Density Function (PDF), ϕµ,Σ(Zi), and compare the results against a PDF threshold,
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Figure 6.13: Classification accuracy for each OCC algorithm, as the number of obser-
vations per location is increased. The data presented is the average of 50 experiments.

d. We conclude that Zi ∈ T1 ∩ T2 when ϕµ,Σ(Zi) > d and that Zi /∈ T1 otherwise.

6.4.1.2 Results

We compare the classification accuracy of each algorithm to determine the best one
to be used for map overlap estimation function. The results presented here are
based on UCM dataset presented in Table 6.1. To investigate the potential effects
of the number of observations per location on the algorithms’ accuracy, the robot
was stopped at pre-determined intervals and a total of 20 observations were recorded
for each location. The entire map is divided in two, with 50% representing positive
examples and the rest representing negative examples. Out of the positive examples,
the algorithms are trained on 50% of the data so that the remaining 50% is used
for classification, along with 50% of the data representing negative examples (i.e.,
we have the same number of positive and negative examples to classify). Due to the
random nature of some OCC algorithms and potential bias towards certain datasets,
we randomize the training and classification datasets and run the experiments 50
times.

Figure 6.13 shows the results of the experiments performed. OC SVM clearly
separates itself from the other algorithms, with a classification accuracy of over 90%
with very few readings per location. Comparatively, OC SVM is on average 6.49%,
20.17%, 23.74%, and 26.99% more accurate than PCA, k-Means, NN Ratio, and
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the Gaussian Model, respectively. All of the algorithms are extremely fast, taking,
in the worst case, 100ms and 20ms to train on the entire dataset and classify 100
observations, respectively.

Unfortunately, all these OCC algorithms rely on various parameters and clas-
sification results are highly-dependent on them. More specifically, it is necessary
appropriately set the bandwidth kernel h for the OC SVM, the number of compo-
nents x and the threshold d for PCA, the number of clusters k and the threshold d
for k-means, the ratio threshold d for the NN Ratio, and the PDF threshold d for the
Gaussian Model. To determine each of these parameters, we use process that relies
on the cross-validation of the parameters by using a different dataset. As our cross-
validation dataset TO we used the outdoor Merced dataset with details presented in
Table 6.1. Similarly to the process we described above to evaluate the performance
of each algorithm, the cross-validation dataset is equally divided into positive and
negative test cases and 50% of the positive test cases are reserved for training with
the remaining 50% being allocated, along with 50% of the negative test cases, for
classification. Using this data decomposition, we learn each parameter using a brute-
force approach, where the parameters are sampled uniformly within their respective
logical ranges. We train each OCC algorithm with a parameter sample on the train-
ing data of TO and attempt to classify the data reserved for classification. Since
we have ground truth, we can then compute the number of correct classifications.
The process is repeated for all parameter samples and the one that yields the highest
classification accuracy is retained. Table 6.2 summarizes computed parameters. This
process, which only needs to be performed once, assumes that the dataset TO is a
good representation of the datasets that will be used by OCC algorithms. We have
experimentally verified this assumption for the best performing algorithm, OC SVM.
The classification accuracies for both indoor and outdoor datasets are computed for
varying kernel bandwidth. As can be seen in Figure 6.14 they exhibit similar trends
and the accuracy peaks around the same kernel bandwidth value. In other words,
the parameter estimated using one dataset can be used on another dataset. The
optimality of the computed parameter value can also be seen by the false positive
and false negative ratio curves of the outdoor data classification results which is pre-
sented in Figure 6.15. Estimated parameter value corresponds to the point where
the summation of false negatives and false positives reaches its global minimum.
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OC SVM PCA k-means NN Ratio Gaussian Model
h x d k d d d

57.74 0.79 4.49 37 48.96 0.97 0.00

Table 6.2: Optimal parameters of OCC algorithms computed using outdoor Merced
dataset.

Figure 6.14: Classification accuracies of OC SVM performed on both indoor and
outdoor datasets for varying kernel bandwidth.

6.4.2 Probability Distribution Function

Once the map overlap is estimated, using OC SVM, the best OCC algorithm exhib-
ited in the previous section, the labels that belong to the overlapping regions of the
maps, Li 6−→ ∅, are considered for merging. Building upon the results presented
in Section 6.3 which shows that it is possible to differentiate between different lo-
cations by only considering WSS readings received from APs, these identified labels
are matched via their associated WiFi readings using our WiFi localization algo-
rithm. More precisely, we compute a function f : Zi ∈ T2 → L1

j from the data in
the WiFi map T1. Function f takes an observation Zi = [z1

i , . . . , z
a
i ] tied to L2

i in
the appearance-based map and returns the matching label in the grid map, L1

j , from
which we can look up the Cartesian label Cj. In order to compute f from the training
data T1, we use the Online Random Forest (ORF), which is shown to provide the
best localization results among all online classification algorithms. Using the ORF
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Figure 6.15: The percentages of false negatives (fn), false positives (fp), and their
summation (fn+fp) are plotted for outdoor data as the kernel bandwidth for OC
SVM algorithm is increased.

with 250 trees, WSS readings of all overlapping images in the appearance-based map
Zi ∈ T2 are classified in T1 and their matching labels L1

j in the grid map are deter-
mined. After the classification phase, we apply the regression algorithm described
in Section 6.3.2 in order to define the probability distribution over the set of labels
P (L1

j = L2
i |Zi) where Zi ∈ T2. A Gaussian Mixture Model (GMM) representing this

probability distribution function is built using the procedure presented Algorithm 7.

6.4.3 Edge-based Refinement and Regression

After we generate a GMM for each image in the appearance-based map, a Cartesian
coordinate in the occupancy grid map can be assigned each image. However, this
single-shot localization approach only focuses on the WiFi readings associated with
vertices and it can be greatly improved by including the extra information inher-
ently encoded in the edges. As described in Section 4.1, edges of appearance-based
maps symbolize similarity between connected images. Based on the idea that simi-
lar images should be captured from the same area in the environment, the position
estimate of an image can be fine-tuned using its neighbors. The power of this local
consistency approach is evident when one image is misclassified while the position
of all its neighbors are correctly estimated. To address this and similar issues, we
create, for each image Ii, an aggregated GMM g̃i that combines each of i’s 1-hop
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neighbor’s GMMs gi. The contribution of each neighbor is weighted with the edge’s
weight that encodes their image similarity. In other words, the more similar the
neighbor, the higher its contribution to the aggregated probability distribution. The
neighbor’s GMM is combined with the GMM of image i and the resulting distribution
is normalized.

While it is evident that including information from correctly localized neighbors
improves the accuracy, the contribution of a misclassified neighbor to the aggregated
GMM still creates a negative impact on regression results. With the same motivation
that each image should not be localized far away from its similar neighbors, we
introduce an iterative process that enforces local consistency among the images in the
appearance-based map. The refinement process described in Algorithm 11 is based
on the idea that any two correctly localized neighbors should lie within a maximum
distance rmax of each other. To estimate this variable we compute the distances
between every pair of images using initial estimations from the regression algorithm
and set rmax = 3σ where σ is the standard deviation of the distance distribution. The
iterative algorithm is bootstrapped with the initial positions estimated by applying
regression for each image Ii (line 2-4). The aggregated GMM g̃i associated with each
image i in the appearance-based map (line 5) takes into account all of its neighbors
(line 6). If any Gaussian mixture component’s mean (line 7) is located at a distance
of more than rmax away from i’s estimated position, the mixture component of g̃i is
removed (line 8). Once all GMMs are pruned, a new set of locations is computed
by running the regression algorithm on the updated GMMs (line 2-4). This iterative
refinement process continues until convergence (i.e., the mean difference between
previous and new location estimations drops below a threshold ε).

6.4.4 Results

To evaluate the accuracy of proposed map merging algorithm two P3AT robots were
used. One was equipped with a LMS200 laser range finder and other only with a
Logitech C910 webcam. Both explored the first floor of the Engineering building
at UC Merced in 3 independent runs covering a total distance of over 1 km. Each
robot generated either an appearance-based map using the map building algorithm
presented in Section 4.5 or an occupancy grid map by employing the SLAM algorithm
[62] depending on the hardware they are equipped with. Both robots collected WiFi
observations Zi from a total of 75 unique APs (a = 75) using their WiFi cards.
Appearance-based maps are composed of 234 images in average where a single WiFi
reading is attached to each image. In the occupancy grid maps over 1000 WiFi
readings per map are partitioned into an average of 229 clusters whose centers’
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Algorithm 11 Refinement

1: repeat
2: for i← 1 to c2 do
3: Ĉi ←Regression(g̃i, T1, Zi ∈ T2)
4: end for
5: for i← 1 to c2 do
6: for all In ∈ Neighbors(Ii) do
7: for j ← 1 to c1 do
8: if dist(Ĉj,Ĉn) ≥ rmax then g̃i(φj) = 0
9: end for

10: end for
11: end for
12: until convergence
13: return Ĉ

Cartesian coordinates are used as WiFi map labels.

6.4.4.1 Full Map Merge

Each appearance-based map is merged with each occupancy grid map after the map
overlap is computed using OC SVM algorithm with an accuracy of over 99% in
average. For the images that are classified as a part of the occupancy grid map, a
Cartesian coordinate is assigned as described in Section 6.4.3. An illustrative example
of merged map with full overlap where all the images are correctly assigned to a
position estimate is shown in Figure 6.16. To account for the randomness associated
with RF training process, we merged each map pair 10 times. The average error of
all 90 trials is 1.21 meters with σ = 1.09. The overall heterogeneous map merging
algorithm including the map overlap computations takes in average 129 seconds to
merge two moderate size maps.

6.4.4.2 Partial Map Merge

To demonstrate the true potential of the proposed merging algorithm, we fused an
appearance-based map MA with two smaller non-overlapping occupancy grid maps
M1

O and M2
O created in addition to the ones described above. Two grid maps with an

unknown transformation between their coordinate frames provide no additional infor-
mation when used together. For instance, a robot using these maps cannot navigate

127



from one to another. However, when the appearance-based map is merged with these
maps, it creates the needed link between them so that the merged map carries more
value either to the operator or the robot utilizing it. This representative example is
illustrated in Figure 6.17 where on the left the appearance-based map is drawn using
the graphviz software and grid maps created by navigating in the top and bottom
portions of the environment depicted in Figure 6.16 are presented on the right. Note
that with no information on relative transformations between their local coordinate
frames, the maps are placed at an arbitrary position while the orientations are set
by their corresponding drawing software, gmapping and graphviz. To determine the
overlap between maps, OC SVM is trained for each occupancy grid map and each
image in MA is classified as either in-M1

O, in-M2
O, or non-matching. The correct

classification accuracies for M1
O and M2

O are 97.54% and 99.01%, respectively.The
Cartesian coordinates of the images are then computed and they are placed to their
estimated locations in their matching grid map while still being connected to their
appearance-based map neighbors through their edges. The vertices of MA shown in
green in Figure 6.17 correspond to images captured in the hallway connecting two
grid maps which is not visible in any of them. These vertices are successfully identi-
fied as non-matching and constitute a critical part of the merged map by holding all
three individual maps connected. The accuracy of localized images is 1.06 meters in
average and merging process takes less than 45 seconds.

6.5 Conclusions

In this chapter we have presented a system that, to the best of our knowledge, is the
the first that can successfully merge together heterogeneous spatial models. Even
though the presented framework is generic and can be used to merge other types of
maps together, we channeled our attention specifically into merging occupancy grid
maps with appearance-based maps. To remedy the lack of a common representation,
we proposed to use WiFi signals as a common substrate. WiFi signals omnipresent in
today’s environments coupled with robots carrying WiFi cards to communicate with
other team members or the base station makes it possible for robots to collect WSS
readings while creating their maps whether it is an appearance-based or an occupancy
grid map. Within this respect, maps accompanied with a WiFi map can be merged
using an algorithm that, instead of correlating parts of these heterogeneous maps,
matches WiFi signals and stitches their corresponding counterparts in the actual
maps. We have proposed a state-of-the-art WiFi localization and mapping algorithm
that is capable of localizing accurately and running in real-time as a solution to this
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problem. Our algorithm solves major problems found in other WiFi localizers, since
it does not require robots to stop when acquiring WSS readings and can build WiFi
maps incrementally as part of an online process. The claims made throughout the
chapter are substantiated by a comprehensive set of experiments analyzing 7 different
algorithms across 6 datasets accounting for over 3.5 kilometers of indoor and outdoor
exploration. Together, all of the experiments provide compelling evidence regarding
the robustness of our approach.

The maps to be merged, however, does not necessarily hundred percent over-
lap with each other. Thus, we employed and tested contemporary machine learning
algorithms to determine the overlap between maps. Our proposed map overlap es-
timation algorithm has been experimentally evaluated with various maps generated
from aforementioned datasets.

Using these two modules, i.e., WiFi localization and map overlap estimation,
overlapping vertices of appearance-based map can be matched to Cartesian locations
in the occupancy grid map. In order to improve the accuracy we introduced an
iterative local refinement process which exploits the valuable information encoded
in the edges of the appearance-based maps. Our proposed system is validated using
various occupancy grid and appearance-based maps built in real-world conditions,
the results of which confirm its strengths. In the future, the system can be extended
to include a wider variety of map types such as topological and feature based maps.
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Figure 6.16: An appearance-based map is merged with an occupancy grid map after
OCC algorithm correctly estimated 100% overlap between two maps.
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Figure 6.17: A representative example showing an appearance-based map (left)
merged with two occupancy grid maps (right) is presented.
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CHAPTER 7

Conclusions

In this dissertation, we presented an appearance-based localization and mapping
framework and demonstrated both its localization and mapping capabilities using a
heterogeneous team of sensor deprived robots only equipped with cameras. Sharing
the dream of fully autonomous inexpensive consumer robots in every house, we ad-
vocate that along with localization and mapping, one of the most crucial tasks any
robot should be able to perform is navigation. With this in mind, we proposed a novel
visual servoing algorithm. The major advantage of the algorithm is that it can steer
robots to target images captured by another robot which does not necessarily share
the same morphology or the camera placement. This important feature of the pro-
posed servoing technique enables the robots to navigate not only in appearance-based
maps created by other robots but also in ones generated from a set of images collec-
tively acquired by a team of heterogeneous robots. There are two main ways that a
multi-robot system can create a map collectively: centralized and decentralized. We
embrace the decentralized distributed approach and propose an appearance-based
map merging algorithm. In a scenario where two robots are exploring an unknown
environment, once they are in communication range, they can merge their partial
maps in order to create and share a more complete spatial model of the environment.
It is a complete anytime algorithm that creates important connections between maps
earlier in the merging process so that if it gets interrupted, the gist of the overall
connectivity will be already captured in the merged map. We also extended the
algorithm to merge multiple appearance-based maps simultaneously which provides
a substantial performance improvement over the baseline sequential pairwise merg-
ing algorithm. Furthermore, we proposed the use of algebraic connectivity, a well
studied concept in graph theory, to measure the quality of merged appearance-based
maps and the performance of merging algorithm.

In any robot team each individual member may be equipped with a different set
of sensors and utilizing a different spatial model. In order to capture this hetero-
geneity in the spatial representations used among the members of the robot team
we introduced a novel generic map merging algorithm which exploits the WiFi sig-
nals omnipresent in today’s environments. More precisely, the algorithm requires
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the robots to a create a WiFi map along with their own spatial representation and
merges these heterogeneous models by using WiFi maps as the common substrate.
The merging problem then boils down to merging WiFi maps by matching WSS
readings. We presented a novel machine learning based WiFi localizer as the so-
lution to this problem and demonstrated its accuracy and speed on a large set of
datasets.

We are envisioning several possible directions that the presented framework can
be extended to in the future. First of all, the visual servoing algorithm currently
assumes that cameras used to capture initial and goal images are the same. How-
ever, it is very possible that even the robots in the same team may have different
cameras. With this idea in mind, the algorithm can be generalized to accommodate
different camera models and image resolutions. Another valuable addition would
be in the appearance-based map merging algorithm. What concerns the merging
of appearance-base maps, we disregarded merging of common vertices and primar-
ily focused on creating interconnecting edges since without their insertion the maps
would remain as separate entities with no utilization value. Nevertheless, by merging
vertices common in both maps to be merged the resulting appearance-based map can
be compressed and the redundancy in the map will be eliminated. This process can
be as simple as identifying vertices that are very highly similar and removing all but
one from the map. This type of compression may cause possible implications such
as disconnectivity in the map and increasing the number of connected components,
and therefore deserves some investigation.

The current appearance-based localization and mapping algorithm works based
on the assumption that the environment is static. However, the inevitable dynamic
nature of the environment causes several problems which a non-adaptive algorithm
cannot cope with. Hence, in order to make it applicable to more realistic scenarios
such as a robot navigating in a domestic environment for a long period of time, the
map should be updated to reflect the dynamism in the environment. We believe this
idea can be implemented by defining a lifetime for every vertex in the map which
decreases as the robot navigates and re-explores the environment. The lifetime of a
vertex will increase every time an image captured by the robot matches to it, meaning
that the visual content encoded in the vertex still exists in the environment. Vertices
with no lifetime left will be removed from the appearance-based map with the idea
that they do not reflect the visual experience of the environment anymore.

The localization algorithm we presented processes each images individually and
localizes it within the appearance map globally. This framework is more suitable
for a scenario where random query images are needed to be localized. However, if
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these images are captured sequentially like in the case of a robot taking images of
the environment it is navigating in, then the temporal coherence between consecu-
tive images can be used to eliminate false matches due to perceptual aliasing and
consequently improve the localization accuracy. This idea can be realized by imple-
menting a Bayes filter such as Monte Carlo Localization, also known as particle filter
localization. The bag of words framework can be used as the measurement model
along with a motion model devised from the robot’s kinematics.

Another promising direction to investigate is the probabilistic hierarchical maps.
The appearance-based maps handling lower level tasks like navigation, mapping, and
localization, unfortunately, do not provide a minimalist structure that is optimized
for computational complexity. A medium size map may contain thousands of ver-
tices. In order to create a similar representation to how humans perceive the world
and achieve an optimal graph complexity, a spatial representation that contains dif-
ferent levels of abstraction is required. Within this respect, the current framework
can be extended to a hierarchical topological mapping approach that contains the
appearance-based in its lowest level and additional levels of abstractions on top of
that. Each abstract level will be created by clustering vertices in the lower level and
assigning them to a meta-vertex, starting from the appearance-based map. An ap-
proximate solution based on spectral clustering can be implemented using a k-means
clustering step to group the vertices in one layer into a meta-vertex in the next level.
Additionally, in order to capture the dynamic nature of the environment, belong-to
relationships of vertices between two hierarchical levels can be defined as probability
distributions over all meta-vertices in the higher hierarchical level. Since each vertex
in the lower level is linked to all meta-vertices in the higher level with a probability,
the map can adapt itself to the changes in the environment by simply updating these
probabilities. The resulting framework will enable the usage of probabilistic plan-
ning tools like Markov Decision Processes. Once the hierarchical topological map is
constructed, the tasks executed in appearance-based maps such as localization and
navigation can be performed in a more efficient way by exploiting the multi-level
structure of the map.
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