
Global Grasp Planning Using Triangular Meshes

Shuo Liu and Stefano Carpin

Abstract— In this paper we present an algorithm to deter-
mine the location of contact points to obtain force closure grasps
on tree dimensional objects. The shape of the object is assumed
to be given by a triangle mesh – a format widely used in CAD
software. Our algorithm can handle an arbitrary number of
contact points and does nor require any prior information about
their initial locations. Through an iterative process, contact
point locations are updated aiming at improving a commonly
used grasp quality metric. The process is global in the sense
that during the process the whole surface of the object can be
explored, and contact point locations can cross sharp edges that
usually represent a problem for optimization algorithms relying
on smooth surface representations. Extensive simulation results
illustrate the performance of the proposed method, outlining
strengths and directions for further research.

I. INTRODUCTION

The ability to perform reliable grasps to restrain ob-
jects used in everyday activities continues to be one of
the capabilities critically missing in today’s robots. If one
embraces the long term vision of developing robots capable
of assisting and interacting with humans to perform everyday
tasks, grasping is one of the missing building blocks. It
has been argued that grasping, manipulation, and speech are
among the most fundamental human abilities unparalleled by
animals [2]. It should then not surprise that many problems
in this area are still open.

The concepts of force and form closure have been exten-
sively used to characterize the different types of grasps one
can perform. Due to its practical importance, in this paper
we focus on force closure. Two fundamental, interrelated
questions arise when considering force closure. The first
is how to determine a set of contact points such that by
applying appropriate forces the object can be restrained.
The second question is how to compare two force closure
grasps. These two questions are linked because in general
there exist multiple sets of contact points that can ensure
force closure, and a criterion to decide which one is better is
necessary. Grasp planning can be seen as a search process in
the space of possible grasps aiming at identifying a solution
maximizing (locally or globally) a given performance metric.
With respect to grasp quality metrics, some criteria have
been proposed and are commonly used and accepted by
researchers and practitioners (see Section II for more details.)

S. Liu and S. Carpin are with the School of Engineering, University of
California, Merced, CA, USA.
This work is supported by the National Institute of Standards and Technol-
ogy under cooperative agreement 70NANB12H143. Any opinions, findings,
and conclusions or recommendations expressed in these materials are those
of the authors and should not be interpreted as representing the official
policies, either expressly or implied, of the funding agencies of the U.S.
Government.

The situation is different on the algorithmic side, in the
sense that while various techniques have been presented, no
single approach became mainstream or widely used. Multi-
ple reasons account for this situation. Besides the intrinsic
difficulty of the problem, there is no canonical representation
for the objects to be grasped, nor agreement on how much
preliminary knowledge should be made available to the grasp
planning system. Another problem slowing progress in the
area is the lack of benchmarks and the persistent inability to
contrast different solutions because most authors do not make
their implementations available to the rest of the community,
or when they do they often use self-developed data formats
or representations. A fair experimental comparison between
different grasping algorithms is to date not possible.

In this paper we present a grasp planner assuming that
objects are represented using triangle meshes. Since our
eventual application is robot aided manufacturing, this rep-
resentation is appropriate because numerous CAD software
packages use this representation in production processes.
Triangle meshes have often been rejected in the past in lieu
of other representations (e.g., superquadrics, or other para-
metric representations) allowing to use optimization methods
requiring smooth surfaces. Triangle meshes, however, can ap-
proximate arbitrarily complex surfaces, including many that
are poorly approximated by superquadrics or patches of other
canonical surfaces. Differently from other methods requiring
the specification of an initial region for the contact points,
our method starts from random placements and iteratively
modifies their positions while exploring various areas of the
surface. The search can be guided by various performance
metrics, including those commonly used for grasp quality
evaluation. In this sense our method is global because during
its search it explores the whole object, while other methods
limit the search in the vicinity of the initial location (see
Section II and V for more details about this aspect). The
reader is however cautioned that global does not mean
that the algorithm achieves the global optimum. In fact, its
solution depends on a randomly chosen initial configuration.
To lower the dependency from this random seed, multiple
initial configurations are preliminarily generated and the
algorithm is eventually started from the most promising one.
Our search method allows to move the contact points across
sharp edges that would normally be an impediment for
other methods. Due to the randomized nature of the method,
the exploration process terminates when a local optimum is
reached. Our experimental validation substantiate our claims,
i.e., we can produce force closure grasps by providing to
the algorithm just a triangular mesh, and during the search
process the position of the contact points crosses boundaries

that normally preclude exploration to other methods. We also
show that our method outperforms a baseline random planner
that has been used when evaluating other planners.

The paper is organized as follows. Related work is dis-
cussed in Section II. In Section III we introduce relevant
notation and concepts to present our algorithm in Section IV.
Results are given in Section V and conclusions are provided
in Section VI.

II. RELATED WORK

Because of its practical importance, grasping has received
a significant amount of attention since the very dawn of
robotics research. For a general introduction on the topic, the
reader is referred to [12], [15]. Literature in grasp planning
is vast and different taxonomies could be considered to
classify the various approaches proposed. Some methods do
not rely on the previous availability of a geometric model
[1], [16] and rather rely on sensorial data collected at run
time. These algorithms typically produce form closure grasps
rather than force closure. To the best of our knowledge,
analytic assessments of the quality of the solutions produced
by these approaches have not been proposed. Other methods
rely on collections of formerly computed grasps for typical
objects. The Columbia Grasp Data Base is probably the most
known dataset supporting these methods [5].

When planning force closure grasps, a common paradigm
is to perform a search in the space of possible configurations
while trying to optimize one of the criteria described in
the following. To this end, it is often assumed that the
boundary of the object is represented using surfaces that can
be analytically described and are smooth, like superquadrics,
planes, spheres, etc. In [8], the authors assume that the object
to be grasped is modeled by superquadrics, and, notably,
include in the grasp planning stage a set of constraints
imposing that the planned grasp can actually be realized by a
given robotic hand. In [18], the authors instead assume that
the surface of the object is represented by a collection of
planes, spheres, and similar entities. Both methods rely on
optimization stages utilizing ideas related to gradient-based
or interior-point methods. A common limitation of these two
approaches that we try to overcome, is that a valid initial
placement for the contact points needs to be given. Moreover,
during the grasp planning process the contact points are
constrained to remain onto the surface where they started.
Therefore in the case of a complex object whose shape is
given by the union of many surfaces, the planning process
does not explore the whole search space, but only a subset
because jumping from one surface to the other is not allowed.
A method based on triangle meshes was recently proposed
in [7]. Their method is based on a hierarchy of triangle
meshes at different resolutions. Another related method is
presented in [6], where the set of possible grasping points
is initially determined sampling in a regular pattern. Our
algorithm could be coupled with these techniques and this is
the subject of future work.

The problem of establishing the quality of a grasp has
been widely considered. The most used metric for force

closure grasps was proposed by Ferrari and Canny in [4] and
aims at rewarding grasps that can resist arbitrary wrenches
while applying minimal forces with the fingers. The reader
is referred to [17] for a review about grasp quality metrics.
The analytic properties of the metric proposed in [4] were
recently studied in great detail in [14], where the authors
determine an efficient criterion to reject grasps not giving
force closure and propose a planning method based on
random grasps. The random planner, however, only returns
force closure grasps, but does not rank them according to
any criterion.

III. PRELIMINARIES AND NOTATION

In this section we shortly recall concepts and notation
relevant for the problem we tackle. Our summary is nec-
essarily short and the reader is referred to [12], [15] for
an in depth discussion. We suppose that the object to be
grasped is a three dimensional rigid body B. To implement
the method presented in section IV, it will be necessary
to assume that the surface of the object is represented
using a triangle mesh, but the concepts presented herein are
independent from the representation. The hand is equipped
with n fingers and we hypothesize that each finger touches
B in a single point. Each contact is modeled using the hard
finger model. Accordingly, a grasp can be represented by the
coordinates of n contact points, p1, . . . ,pn and n contact
forces f1, . . . , fn. The coordinates of p1, . . . ,pn are referred
to a given reference with origin in the center of mass of
B. Coherently with the contact model, to prevent slippage
each force fi must lie within the friction cone Ci defined at
pi. The cone (in particular its opening) encodes information
about the friction coefficient at the contact point, so in the
following we will not explicitly mention friction because this
information is implicitly represented by Ci. Each force fi
produces a contact wrench wi given by

wi =

[
fi

pi × fi

]
. (1)

For computational efficiency it is customary to approxi-
mate Ci using a regular polyhedral cone with m sides (see
Figure 1). We will assume that Ci is normalized, i.e., the
length of the normal ni is one, and approximated using a
regular polyhedron with m sides.

d
j+1
i

d
j
i

pi

ni

d
j−1
i

Fig. 1. A regular polyhedral is used to approximate the friction cone Ci.
ni points inside the object and the opening of the code is defined by the
friction coefficient.

When using this approximation we indicate with dj
i , 1 ≤

i ≤ n, 1 ≤ j ≤ m the jth component used to approximate
the ith friction cone. Force fi can then be written as

fi =

m∑
j=1

αijd
j
i (2)

with αij ≥ 0. Substituting Eq. 2 into Eq. 1 we obtain
an expression leading to the commonly used test for force
closure, i.e.,

wi =

m∑
j=1

αijd
j
i

pi ×
m∑
j=1

αijd
j
i

 =

m∑
j=1

[
αijd

j
i

pi × αijd
j
i

]
=

=

m∑
j=1

αij

[
dj
i

pi × dj
i

]
=

m∑
j=1

αijw
j
i .

The grasp achieves force closure if and only if the origin
of the six dimensional wrench space lies inside the convex
hull (CH) of the set of the nm elementary wrenches wj

i , i.e.,

0 ∈ int CH(wj
i , 1 ≤ i ≤ n, 1 ≤ j ≤ m). (3)

It is well known that the relation given in Eq. 3 is valid in
theory but often not viable in practice, because it may require
the robotic hand to apply arbitrarily large contact forces
to resist a possibly modest external wrench. Quantitative
measures have then been proposed to identify good grasps,
i.e., sets of contact points that can resist external wrenches
without requiring to apply excessively large contact forces.
In the following we use one of the metrics proposed in [4],
i.e., the quality Q of a grasp is defined as the radius of the
largest ball centered at the origin and totally included in the
convex hull of the nm elementary wrenches (see Eq. 3). This
metric corresponds to minimizing the maximum finger force
needed to resist arbitrary external wrenches. Alternatively,
one can also minimize the sum of the finger forces (see [4]).
While the method we present in the following embraces the
first metric, it can be used with the second as well because
it is parametric with respect to the quality measure.

IV. PROPOSED APPROACH

We assume that B is represented using a triangle mesh.
This assumption is consistent with current practices in CAD
software [3]. Let T = {T1, . . . TN} be the set of N triangles
in the mesh. A grasp on B will then associate each of the
n fingers with one of the N triangles. In general, multiple
fingers could be associated with the same triangle, although
this placement will usually not result in a satisfactory grasp.

Our grasp planning method works as follows. An initial
tentative grasp is generated assigning each of the n fingers to
one of the triangles. This assignment can be done randomly,
or incorporating prior knowledge as a bias in the random dis-
tribution. Then, an iterative improvement process is executed
as follows. The positions of n−1 fingers are kept fixed, while
the position of the remaining finger changes to improve Q.
During this phase the position of the finger is not bound

to stay inside the triangle it started from, but it can cross
the boundary and move to one of the neighboring ones. The
ability to move from one triangle to another overcomes some
of the major limitations of other methods. In particular we
are able to cross sharp edges on the boundary of the object.
When it is no longer possible to improve the score of the
grasp by moving that finger, its position becomes fixed and
the same method is applied to another finger. This process
repeats until no further improvements are possible. Each of
the steps necessary to implement this strategy is described
in the following.
Contact point representation. At the core of the method we
propose lies a parametric representation for a generic point
inside an arbitrary triangle. Figure 2 illustrates the idea.

v1

v2

v3

Fig. 2. Any point inside the given triangle can be represented as a
constrained linear combination of v2 − v1 and v3 − v1.

Indicating with v1,v2,v3 the coordinates of the three
vertices of the triangle T referred to a given reference frame,
the coordinates of a generic point p inside T can be written
as

p = α1(v2 − v1) + α2(v3 − v1) (4)

subject to the constraints α1,2 ≥ 0 and α1 + α2 ≤ 1. In the
following, we indicate with pi the contact point of the ith
finger. We furthermore indicate as T (i) ∈ T the triangle
in which pi is located, and let α(i)

1 , α
(i)
2 the coefficients

to obtain pi using Eq. 4. We will also implicitly assume
that the numbering of the vertices in T (i) is unambiguously
determined1 and stored together with T (i).
Score function. The score function Q maps a set of contact
points to a real value. We therefore write Q(p1, . . . ,pn) to
indicate this value.
Local improvement. Let us assume the ith finger is the one
whose contact point position is being modified to increase the
objective function. Its coordinates can then be written using
Eq. 4. Six different vectors µ1, . . . ,µ6 are then computed
as follows to generate six new candidate contact points:

µ1 = (α
(i)
1 + S)(v2 − v1) + α

(i)
2 (v3 − v1) (5)

µ2 = (α
(i)
1 − S)(v2 − v1) + α

(i)
2 (v3 − v1) (6)

µ3 = α
(i)
1 (v2 − v1) + (α

(i)
2 + S)(v3 − v1) (7)

µ4 = α
(i)
1 (v2 − v1) + (α

(i)
2 − S)(v3 − v1) (8)

µ5 = (α
(i)
1 + S)(v2 − v1) + (α

(i)
2 − S)(v3 − v1) (9)

µ6 = (α
(i)
1 − S)(v2 − v1) + (α

(i)
2 + S)(v3 − v1). (10)

1Eq. 4 relies on a precise ordering of the vertices in the triangle. If the
order is changed, the expression is still valid, but the coefficients change.

The parameter S (step size) determines the magnitude
of the local exploration and is iteratively altered during
the computation, according to a schedule described later.
The score function Q is then computed for all grasps
p1, . . . ,pi−1,µj ,pi+1, . . .pn, (1 ≤ j ≤ 6) obtained substi-
tuting pi with µj . If no improvement is obtained, the local
improvement for the ith finger is stopped. Otherwise pi is
replaced by the new point µj achieving the highest value for
the score function and the process continues.

It is evident that there exists combinations of values for
pi and S such that one or more of the new candidate contact
points µj may fall outside the triangle T (i). Assume µj lies
outside T (i). Then, the segment between µj and pi must
cross one of the edges of T (i) and the neighboring triangle
Tk can be univocally2 and efficiently determined, for example
using a doubly-connected edge list data structure [3] (see
Figure 3).

T (i)

Tk

piµj

Fig. 3. When µj is outside T (i), the neighboring triangle Tk can be
efficiently determined.

In this case µj is replaced with a random point inside
Tk. Then, if the score function obtained substituting pi with
µj ∈ Tk is the best among the new candidates, the ith finger
moves to the new triangle, i.e., T (i) is replaced by Tk. T (i)

and Tk are not bound to lie on the same plane, but could be
arbitrarily positioned (e.g., they could lie on two orthogonal
planes.) This feature allows the local improvement phase to
cross boundaries that normally limit the exploration range of
optimization methods relying on smooth surfaces.

Step size update: Eqs. 5-10 depend on the step size
parameter S. The parameter is initially set at 0.5. This choice
is motivated by the constraints on α(i)

1,2 ensuring pi is inside
T (i). A larger value would provide a too strong bias towards
points µj outside T (i), while we strive to balance exploration
inside and outside the triangle. As the process continues, S
decreases according to the formula3 (S′ is the new step)

S′ = S
v − b
|v|

where v is the value of the score function for the newly
determined best grasp, and b is the previous best value.
Therefore, as the magnitude of the improvement decreases,
the new step size decreases too and eventually approaches 0
when v approaches b. In the experimental section we show
that this approach enables the exploration of various triangles
in the given mesh.

2Degenerate cases of course exist, for example if the segment between µj

and pi intersects a vertex of the triangle. Cases like this can be arbitrarily
solved, e.g., randomly selecting one of the edges defining the vertex.

3We use the absolute value of v because in the beginning of the process
it could be the case that the grasp does not yet achieve force closure, and
then v is negative, i.e., it is the distance of the convex hull form the origin.

Algorithmic sketch: Putting all the previous steps together
we obtain algorithms 1 and 2. Algorithm 1 is the high level
control part. It first generates K random grasps and the best
score is set to be the threshold Thr. Then we again generate
random grasps until the score of the grasp is larger than Thr
and use algorithm 2 to improve the score and push it into
a local optimum. We do R random restarts for this phase,
and the grasp with highest score is chosen to be the final
grasp. The process for generating random grasps is extremely
rapid. So the first step which calculates Thr will favor us in
a way that we won’t start the optimization process from a
particularly disadvantageous initial grasp. Higher values of
K are evidently desirable but come at the cost of a longer
preprocessing step. In our experiments we set K to 90 and
R to 10, but the overall performance is not too sensitive to
these parameters, neither in terms of quality of the solution,
nor in terms of time.

Algorithm 1 Global optimization algorithm
1: Data : T = {T1, . . . TN}, n
2: Result : p1, . . . ,pn

3: Thr ← −∞
4: for i← 1 to K do
5: (pr1, ...,prn)← RandomGrasp
6: if Q(pr1, ...,prn) > Thr then
7: Thr ← Q(pr1, ...,prn)
8: Best← −∞
9: S ← 0.5

10: for i← 1 to R do
11: Converged← false
12: while Q(p1, ...,pn) < Thr do
13: (p1, ...,pn ← RandomGrasp
14: repeat
15: RP ← RandomPermutation(1, ..., n)
16: for j ← 1ton do
17: pR(i), vi ← Improve(R(i),p1, . . . ,pn, S)
18: if maxi vi > Best then
19: Best← maxi vi
20: S ← NewStep
21: else
22: Converged← true
23: until Converged = true

It is immediate to show that the algorithm eventually
converges, i.e., it does not get stuck going back and forth
between two sets of contact points. This is true because
the algorithm can never go back to a previously visited
configuration since it moves away from it only when it finds
one with a better score and never goes to a configuration
with an inferior ranking. Hence the algorithm eventually
converges to a local optimum.

V. EXPERIMENTAL RESULTS

In this section we present the results we obtained testing
our algorithm on various objects. The code is written in

Algorithm 2 Local improvement step
1: i,p1, . . . ,pn, S
2: pi, v
3: repeat
4: Compute µ1, . . . ,µ6 from pi and S as in Eq. 5-10
5: for j ← 1 to 6 do
6: if µj /∈ T (i) then
7: Determine triangle Tk neighbor of T (i)

8: µj ←RadomPoint in Tk
9: pi ← argmaxµj ,pi g(p1, . . . ,µj , . . .pn)

10: if needed then
11: Update T (i)

12: until pi does not change anymore
13: v ← g(p1, . . . ,pi, . . .pn)

C++ and relies the qhull4 library to compute the convex
hull of the discretized friction cones needed in the definition
of Q. Our implementation is in no-way optimized, therefore
results involving times should only be considered to compare
the impact of design choices (e.g., dependency between the
time and the complexity of the mesh) and not to gauge the
absolute efficiency of the algorithm. All results discussed in
this section refer to the case where grasps involving 4 contact
points are computed.

Figure 4 shows three of five objects we used. In particular
the first one (referred to as joystick in the following) was
chosen because it replicates one of the test cases used in
[18]. The two objects not shown are a cube and a sphere.
Table I shows the number of triangles in each mesh.

Object # Triangles
Joystick 1134
C shape 96
Teapot 992
Cube 12

Sphere 960

TABLE I
NUMBER OF TRIANGLES IN THE MESHES

Figure 5 displays the result of 100 runs for the teapot and
the joystick objects. Each episode consists of 10 indepen-
dent executions of the algorithm and the planner eventually
returns the best grasp obtained in the 10 restarts. The score on
the y axis is the Q grasp quality metric formerly described.
Evidently, increasing the number of restarts would reduce
variability and increase the average score, but this will come
at the cost of additional time.

Similar trends were obtained for the other objects and are
displayed in tabular form in Table II and III.

It is interesting comparing Table III with Table I because
we see that large variations in the number of triangles in the
mesh do no translate to dramatic changes in computational
time. One can therefore in practice afford to utilize triangular
meshes with a large number of triangles to provide high

4http://www.qhull.org.

0 10 20 30 40 50 60 70 80 90 100
0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

S
c
o
r
e

Episodes − Joystick

0 10 20 30 40 50 60 70 80 90 100
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

S
c
o
r
e

Episodes − Teapot

Fig. 5. Performance on the joystick and teapot objects.

Object Avg. Q Std. Dev. Q
Joystick 0.4432 0.0281
C shape 0.4279 0.0263
Teapot 0.5377 0.0441
Cube 0.3619 0.0376

Sphere 0.6667 0.0260

TABLE II
GRASP QUALITY FOR DIFFERENT OBJECTS. AVERAGES AND STANDARD

DEVIATIONS ARE COMPUTED OVER 100 EPISODES.

fidelity approximations of the object shape. With regard
to computational time, it is important to observe that like
all methods based on independent restarts, this algorithm
can be easily parallelized and take advantage of multi-core
architectures, with each core executing an equal share of the
restarts. Therefore, one can expect a speedup linear in the
number of cores. This is an advantage over strictly sequential
algorithms. All results presented in this section do not
take advantage of the multi-core approach and consequently
displayed times could be easily reduced by a factor of 4 or
8 when run on nowadays entry level multi-core processors.
Additional performance gains could be obtained integrating
our recently developed PQH algorithm to accelerate the
evaluation of the grasp metric Q [9]. These improvements
are left for future work.

Figure 6 illustrates one of the major features of the
algorithm we proposed, namely the ability to move the
contact points between the different parts of an object. The
joystick object was used in [18] and can be defined as the
union of 8 different surfaces: 6 planes to define the cubical
part, one to define the cylinder, and one for the sphere.

Object Avg. T Std. Dev. T
Joystick 8.48 7.6422
C shape 10.17 15.5095
Teapot 8.33 11.4297
Cube 8.09 9.8105

Sphere 3.26 0.8287

TABLE III
TIME SPENT TO COMPUTE GRASPS FOR DIFFERENT OBJECTS. AVERAGES

AND STANDARD DEVIATIONS ARE COMPUTED OVER 100 EPISODES.

Fig. 4. Three of the objects used to test the algorithm. In the following they are referred to as joystick, c shape and teapot. The other two objects are a
cube and a sphere.

Fig. 6. The figure shows the path followed by three contact points for the
testcase joystick (red line). Each contact point starts from the cyan location
and end in the blue point. The path is plotted in red.

To run5 the algorithm described in [18] one has to specify
in which of the 8 surfaces each contact point is initially
located. During the optimization process each contact point
cannot leave the surface it started from. For example, if one
point is initially located on the cylinder, it has to remain on
that surface. Figure 6 instead shows that with our method
the contact points are moved along the parts of the object
spanning different faces. Hence, our planning method is
global because it does not restrict the range of motions for
the contact points. Similar behaviors are observed on the c
shape and the teapot objects, but figures are omitted for lack
of space. Table IV quantitatively substantiate our claim that
the algorithm explores multiple triangles during the search
process. For each object the table shows the average number
of triangles explored by each contact point. Note that the
highest number is always recorded for the fourth contact
point, because the exploration starts from that finger. To
put these numbers into perspective, it is also necessary to
recall that the exploration starts from the best of the initial
K = 100 random grasps and often times this provides a
good enough starting point so that limited exploration is
needed. Moreover, since we are using four contact points,
force closure is reached sooner, whereas with three fingers
more exploration would be needed.

A. Comparison with random sampling

In this last subsection we compare our algorithm with a
baseline planner relying on randomly selected grasps. This
is the same comparison proposed in [7], and we opt for this
approach given the difficulty in obtaining fully functional

5We thank the authors of [18] for having provided us the code imple-
menting their method.

Object Contact # Avg. N Std. Dev. N Max N
Joystick 1 1.42 1.0641 12

2 1.43 1.1661 15
3 1.42 1.1075 9
4 4.68 5.1763 33

C shape 1 1.09 0.6279 5
2 1.10 0.6923 7
3 1.08 0.5962 5
4 2.00 1.9519 21

Teapot 1 1.39 0.9699 8
2 1.40 0.9993 9
3 1.38 0.9674 7
4 4.26 4.2510 28

Cube 1 1.02 0.5224 4
2 1.01 0.4961 4
3 1.02 0.5290 5
4 1.56 1.3320 19

Sphere 1 1.25 0.7925 5
2 1.24 0.8283 8
3 1.33 0.9255 10
4 3.75 3.1650 23

TABLE IV
AVERAGE, STANDARD DEVIATION, AND MAXIMUM NUMBER OF

TRIANGLES (N) EXPLORED BY EACH FINGER DURING THE SEARCH.
DATA IS AVERAGED OVER 100 RUNS.

implementations of third party grasp planners6. As term of
comparison we use the number of grasps evaluated during
the planning process. This is a meaningful metric because
grasp quality evaluation implies the computation of the
convex hull, and this is the most time consuming step. The
randomized grasp planner repeatedly generates one random
grasp and computes its score. It retains the grasp if it is the
best generated so far, otherwise it discards it, and it repeats
the process. This algorithm is anytime, in the sense that the
more time it spends, the higher the quality of the solution it
finds. Figure 7 shows the results, with the red curve showing
our solution and the blue one displaying the random sampler.
Presented data are averages over 100 repeated independent
trials. Note that we stopped our planner after 10 restarts
and on average that required around 3000 grasp evaluations,
whereas we let the randomized planner to continue until 5000
grasps were generated and evaluated. The gap is larger for the
joystick case, where it is evident that the randomized planner
can increase its performance only very slowly. The gap is
narrower for the teapot object, but it is worth observing two

6A freely available implementation of our algorithm is available on
http://robotics.ucmerced.edu.

facts. First, the randomized planner increases its performance
only very slowly and will therefore take a long time to close
the gap even though it is small. Second, although the gap may
be small in absolute terms, it is significant from a practical
point of view, in the sense that even a small increase in the
score metric is important. Finally, it worth observing that the
two curves initially overlap, because our planner also starts
generating 100 random grasps to initialize the optimization
process. The chart shows that the search method we proposed
succeeds in driving the exploration process towards valuable
grasps that cannot be easily reached by random sampling
only.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

Hi
gh
es
t
Sc
or
e

Number of Grasps Evaluated −− Joystick

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

Hi
gh
es
t
Sc
or
e

Number of Grasps Evaluated −− Teapot

Fig. 7. Comparison between the proposed algorithm and a randomized
grasp planner.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a method to plan grasps to obtain force
closure on objects whose surface is represented using a
triangle mesh. The algorithm can plan grasps for an arbitrary
number of contact points and the result is obtained through
an iterative process aiming at optimizing a commonly used
grasp quality function. Besides the triangle mesh, the algo-
rithm does not require any other preliminary information, like
the initial placement for the contact points. Our simulations
outline two major findings. First, the computational time
grows very slowly with the number of triangles in the meshes
and this enables the use of meshes with a large number
of triangles to provide accurate approximations of objects
featuring curved surfaces. We have also demonstrated that
the algorithm is indeed global in the sense that during
the exploration stage the contact points can move through
different patches of the surface, thus overcoming one of
the limitations of methods requiring smooth representations
and imposing constraints on the area to be explored. The
algorithm also clearly outperforms a baseline randomized
planner.
We anticipate a number of improvements for our method.
First, we will integrate a hand compatibility test, similarly
to what has been implemented in [8], so that we can reject
grasps that cannot be physically realized by the robotic hand.
This test can be included during the local improvement step.
Next, in order to expedite the process we will implement

a parallel version of the algorithm, aiming at a speedup
linear in the number of cores utilized. Finally, noticing the
difficulty in providing quantitative comparisons with other
grasping algorithms, we believe it will be important for
the research community to develop benchmark problems,
standardized representations, and canonical implementations
of quality metrics to promote repeatable and comparable
research in this area. Software packages like Graspit! [10]
provide a step in the right direction, but the community
still lacks standardized assessment procedures for repeatable
performance evaluation.

REFERENCES

[1] B. Balaguer and S. Carpin. Efficient grasping of novel objects through
dimensionality reduction. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1279–1285, 2010.

[2] A. Bicchi and V. Kumar. Robotic grasping and manipulation. In
S. Nicosia, B. Sicilano, and A. Bicchi, editors, Ramsete: Articulated
and mobile robots for services and Technology, volume 270 of LNCS,
pages 55–74. Springer, 2001.

[3] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Compu-
tational Geometry. Springer, 3rd edition, 2008.

[4] C. Ferrari and J. Canny. Planning optimal grasps. In Proceedings
of the IEEE International Conference on Robotics and Automation,
pages 2290–2295. IEEE, 1992.

[5] C. Goldfeder, M. Ciocarlie, H. Dang, and P.K. Allen. The Columbia
grasp database. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 1710–1716, 2009.

[6] K. Hang, J.A. Stork, and D. Kragic. Fingertip space for multi-fingered
precision grasping. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1641–1648,
2014.

[7] K. Hang, J.A. Stork, F.T. Pokorny, and D. Kragic. Combinatorial
optimization for hierarchical contact-level grasping. In Proceedings
of the IEEE International Conference on Robotics and Automation,
pages 381–388, 2014.

[8] S. El Khouri, L. Miao, and A. Billard. Bridging the gap: One
shot grasp synthesis approach. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
2027– 2034, 2012.

[9] S. Liu and S. Carpin. Fast grasp quality evaluation with partial
convex hull computation. In Proceedings of the IEEE International
Conference on Robotics and Automation, 2015.

[10] A.T. Miller and P.K. Allen. Graspit! a versatile simulator for robotic
grasping. IEEE Robotics Automation Magazine, 11(4):110–122, 2004.

[11] H. Moravec. The future of robot and human intelligence. Harvard
University Press, 1998.

[12] R.M. Murray, Z. Li, and S.S. Sastry. A mathematical introduction to
robotic manipulation. CRC Press, 1994.

[13] A.M. Okamura, N. Smaby, and M.R. Cutkosky. An overview of
dexterous manipulation. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 255–262, 2000.

[14] F.T. Pokorny and D. Kragic. Classical grasp quality evaluation: New
theory and algorithms. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3493– 3500,
2013.

[15] D. Pratticchizzo and J.C. Trinkle. Grasping. In B. Siciliano and
O. Khatib, editors, Handbook of robotics, chapter 28, pages 671–700.
Springer, 2008.

[16] A. Saxena, J. Driemeyer, and A.Y. Ng. Robotic grasping of novel
objects using vision. International Journal of Robotics Research,
27(2):157–173, 2008.

[17] R. Suárez, M. Roa, and J. Cornella. Grasp quality measures. Techni-
cal Report IOC-DT-P-2006-10, Universitat politècnica de Catalunya,
March 2006.

[18] X. Zhu and J. Wang. Synthesis of force-clousure graspos on 3-D
objects based on Q distance. IEEE Transactions on Robotics and
Automation, 19(4):669–679, 2003.

