
Learning End-Effector Orientations for Novel Object Grasping Tasks

Benjamin Balaguer Stefano Carpin

Abstract— We present a new method to calculate valid end-
effector orientations for grasping tasks. A three-layered hier-
archical supervised machine learning framework is developed
that is both fast and accurate. The algorithm is trained with
a human-in-the-loop in a learn-by-demonstration procedure
where the robot is shown a set of valid end-effector rotations.
Learning is then achieved through a multi-class support vector
machine, orthogonal distance regression, and nearest neighbor
searches. We provide results acquired both offline and on a
humanoid torso and demonstrate the algorithm generalizes well
to objects outside the training data.

I. MOTIVATION AND STATEMENT OF CONTRIBUTION

In this paper we consider the problem of grasping an
unknown object with a robotic hand mounted on an anthro-
pomorphic arm. Due to its fundamental nature, this problem
has received considerable attention in the past. However,
advances in robot hardware and machine learning techniques
have given a new perspective to this challenge. In particular,
a relatively recent paper by Saxena et al. [9] presented an
innovative machine learning method to identify good grasp-
ing points starting from the picture of a previously unseen
object. The method is feature-based: given an object’s image,
feature vectors are used to classify each pixel as being a
good or bad grasping point. Classification is performed using
logistic regression, where the logistic regression coefficients
are learned from a labeled training set containing thousands
of images. More recently, we have demonstrated that this
technique can be accelerated using dimensionality reduction
and executed in real time [1]. In this contribution, we extend
this feature-based approach and consider plan execution.
More precisely, after a pixel is selected as a good grasping
point, one is left with the problem of correctly executing
the grasp at the chosen point. The pixel is associated with
a point pg = (x, y, z)T whose three dimensional Cartesian
coordinates are obtained through stereo camera processing.
Given pg , we address the problem of determining the end-
effector orientation to grasp the object. More formally, indi-
cating with TE the 4 × 4 transformation matrix of the end
effector, the problem is cast as determining a function f :
R3 → SE(3), where SE(3) is the Special Euclidean group
of dimension 3. Evidently, the function f maps points from
a three-dimensional space into elements of a six-dimensional
manifold. Once TE is calculated, inverse kinematics can be
applied to get one or more configurations giving the desired
end-effector pose. Therefore TE is the missing element
to map images of objects to be grasped into joint angles

The authors are with the School of Engineering, University of California,
Merced, USA. This work is partially supported by the NSF under grant
BCS-0821766.

for the robot to grasp the object. If the geometry of the
object to be grasped is known a-priori one may pre-compute
good grasping points and the associated end-effector poses.
However we are here interested in situations where the robot
is lacking this knowledge. For this reason, and in the same
spirit of [1], [9], we propose a learning algorithm to compute
TE . However, since the position component of TE is given
by pg , the paper focuses on the 3× 3 rotation component of
TE .

The rest of the paper is organized as follows. In Section II
we shortly revise related literature. Our proposed algorithm
is detailed in Section III. Section IV describes the robotic
system used to validate our method, and a battery of ex-
periments substantiating its performance. Finally, in section
V we outline the lessons learned and summarize possible
directions for further research.

II. RELATED WORK

Research on grasp planning is divided between model-
based and feature-based algorithms. Model-based techniques
capture the geometric model of the object and match it
against a database labeled with grasps. Conversely, feature-
based techniques attempt to extract features from object
views and match them against a database of features. Model-
based approaches have captivated much of the grasp planning
research but do not scale well to objects not encompassed
by the database, so we will not further discuss them here.

SIFT [7] and SURF [2] are popular feature extraction
methods popular for their scale and rotation invariance.
These feature extraction methods have been applied to
robotic grasping, where a database of objects, encoded by
their corresponding features, is used to determine the location
and rotation of the object the robot wants to grasp. The
success of SIFT/SURF is directly dependent on the object’s
texture and, as such, difficult to extend to novel objects. In [8]
Remazeilles et al. present a feature-based method for visual
servoing. The authors devise a solution for novel objects (i.e.
no information about the objects is known in advance). This
method, however, requires an operator to draw a box around
the object to be grasped. Another approach to feature-based
grasping is presented by Kroemer et al. [4], where an online
learning method is initialized with prior knowledge. Objects
are represented by Early Cognitive Vision descriptors. The
robot is then taught a series of grasps for a given object
by a human. These grasps can be tried by the real robot
and new knowledge about the outcome is incorporated.
Experimental results show the robot quickly dismisses its
observations and comes up with its own grasps, i.e. the active
learning method presented does not put enough importance

on human teaching, which can be thought of as the ultimate
set of positive examples. In our view, the most interesting
publication to solve problems associated with feature-based
grasp planners is by Saxena et al. [9]. The authors introduce
the idea of image features as a representation of good
grasping points learned from massive amounts of synthetic
training data. Fueling an interesting synergy with machine
learning, grasp planners have recently seen some interest in
dimensionality reduction due to the high number of DOFs
encompassed by robots. In [3] the authors exploit the finding
that a two-dimensional subspace accounts for 80 percent of
the variance in hand posture. This lower subspace can then
be exploited to find an accurate pre-grasp, which, in turns, is
used to grasp the object. Their method however is concerned
with finger posture and not hand placement. In [1], we have
ourselves looked into the power of dimensionality reduction
for grasping tasks by modifying [9] to make it more efficient
using feature selection.

III. LEARNING HOW TO GRASP

A. Design Choices

The most severe drawback of feature-based methods pro-
posed so far comes from the fact that they solve half
of the grasping problem. More specifically, given a single
image from a robot camera, the aforementioned algorithm
[9] finds the best grasping point pg = (x, y, z)T . It does
not, however, consider the problem of correctly orientating
the end-effector to maximize the chance of a successful
grasp. Consequently, in this paper we propose a method to
compute an appropriate end-effector rotation. We note the
difficult constraint of developing the algorithm with limited
sensory information, namely the fact that we are using a
single stereo image and do not look at the object from
different angles. Additionally, we emphasize a manipulator-
independent algorithm that is scale, rotation, and translation
invariant for the objects - algorithmic properties that are
central to the algorithm development. Conversely to model-
based techniques, feature-based algorithms solely rely on
images and lack model databases, thus making it very
difficult to use grasp quality measures to predict the goodness
of a grasp plan. We use a supervised machine learning
algorithm, trained using a learn-by-demonstration technique.
We note the inherent difficulty in solving a continuous multi-
variable problem with many-to-many relationships. Indeed,
we have many-to-many mappings since a given image pixel
location can map to different valid wrist orientations, while
the same wrist orientations might map to different image
pixel locations. The biggest obstacle to learning in this con-
text comes from the many-to-many mapping in continuous
space, where most learning algorithms (e.g. radial basis
functions, support vector machines, decision trees, etc...)
deteriorate to a slow nearest neighbor search due to the high
data dimensionality. Therefore we introduce a hierarchical
learning method comprised of an object classification layer,
followed by the calculation of the object’s rotation, and
finalized by a nearest neighbor search to find the best end-
effector orientation. While the details are left to the next

subsections, it is important to note the hierarchical nature
of the approach allows the algorithm to aggressively prune
the search space at run time, which results in a much faster
3-dimensional nearest neighbor search. Furthermore, each
layer of the algorithm was chosen for its attractive tradeoff
between speed and accuracy.

B. Acquiring Training Data

We have made the training data acquisition, which requires
a human-in-the-loop, as automatic as possible. A diverse set
of 6 objects shown in Figure 1 is used for training. For
each object, we account for rotation-invariance by taking
36 images, with each image representing a different rotation
around the axis perpendicular to the plane where they lay.
We take the images uniformly around the full 360-degree
spectrum, thus having one image every 10 degrees. It is
important to mention that when we use the expression
rotation invariance, we are specifically referring to a one-
dimensional rotation (the one around the axis perpendicular
to the table). Even though such definition might seem to be
an over-constraint at first, we point to the fact that typical
household objects can stably stand in just a few ways. Full
3-dimensional rotation-invariance can then be achieved by
acquiring additional images for each of the stable object
positions, a step that we omit for sake of clarity.

Fig. 1. The six objects used to generate training data. In the results, we
refer to each object, from left to right, as a number between 1 and 6.

For each object class c, we have a set of stereo images,
Sc

I , such that Sc
I =

[
Ic
1 , I

c
2 · · · Ic

n

]
where c is an integer

between 1 and 6 and n = 36. The use of a stereo camera
allows for a conversion of images into point clouds which we
label Sc

P , where Sc
P =

[
P c

1 , P
c
2 · · ·P c

n

]
. Each point cloud P c

i

is inherently noisy while including both the object and the
surrounding environment (i.e. the table). We remove the table
from the point cloud by using orthogonal distance regression
to find the best fit plane and removing the points close to
the plane. We then remove any additional noise using a
quartile range denoiser [6]. The two-step denoising process,
an example of which is shown in Figure 2, is fast, requires
no human supervision, and works well in practice. From now
onwards P c

i refers to a denoised point cloud.
We rely on a human showing the robot how to grasp some

objects, the knowledge of which can be exploited by the
robot to grasp both trained and novel objects. We refer to
a trained object as an object used to train the robot and
a novel object as an object not used in the training stage.
Specifically, we put the robotic manipulator in a gravity-
compensated state such that a human can freely move it as
he/she pleases. For each object view, i, for which we have
an image, Ic

i , the human moves the manipulator to a valid
grasp position and the robot configuration, q, is recorded. The

Fig. 2. Graphical representation of the denoising process. The upper-left
image shows the object. The upper-right, lower-left, and lower-right plots
show the unmodified, plane denoising, and outlier denoising point clouds,
respectively.

process is repeated m times, yielding a set of configurations
qc
i,j where j = 1, 2, · · ·m. We introduce the j variable to

denote the fact that for a given image, Ic
i , there exists many

robot configurations with valid grasps throughout the surface
of the object. From a practical standpoint, the human moves
the manipulator into k good grasping positions, covering
as much of the object as possible. This step is the most
time consuming and, consequently, we only record this
information for 12 of the 36 views, uniformly spaced by
30-degree increments. Readers are invited to view videos of
this process on our website1, where the entire data set used
for this paper can also be downloaded.

C. Classifying Objects

We start the hierarchical process by classifying the object
to grasp. We approach the classification problem with a
multi-class SVM [5], for their speed and accuracy. In this
paper, we have 6 discrete categories, one for each of our
trained objects. More specifically, for k classes (k = 6 in our
case) two strategies can be used: 1) one-against-all, where k
SVMs are trained to separate one class from all the others, or
2) one-against-one, where

(
k
2

)
SVMs are trained to separate

each class from another. We chose to use the one-against-one
method, after empirically determining that it produced more
accurate results. For the sake of completeness, we mention
that we use a polynomial kernel for its speed and accuracy
(e.g. 10 times faster than a Gaussian Radial Basis Function
kernel).

The SVM requires a constant-sized feature vector for
training and classifying. Since we want to use point clouds to
differentiate between objects, and each will have a different
number of points, we re-factor the original point clouds,
P c

i , into fixed-sized feature vectors, F c
i . Accounting for

translation-invariance, we generate a new point cloud, P ′ci ,
by subtracting the mean from every point in the cloud. next,
we generate our feature vector by encompassing the object,

1https://robotics.ucmerced.edu/Robotics/Humanoids2010

in image space, into a two-dimensional matrix of fixed sized.
Since objects will vary in size, the matrix is scaled uniformly
to maintain its given size. To be specific, we use a matrix size
of 50×50 which automatically and uniformly scales to any
object size. Each cell in the matrix encompasses a number
of pixels, each of which being a 3-dimensional Cartesian
coordinate in P ′ci . Our feature vector, F c

i , is the average
Cartesian coordinate of all the pixels within each cell. For
our 50×50 grid, we have a feature vector size of 7500 (2500
cells, each comprised of the average Cartesian coordinate).
This encoding accounts for two properties. First, each point
cloud can be encoded with a same-sized feature vector. Sec-
ond, the feature encoding indirectly achieves scale invariance
since the grid automatically adjusts to changes in size. Since
the next components of the hierarchical method depend on
the classification accuracy, we provide results showing the
validity of the SVM classification, before describing the next
stage. In our first experiment we train our algorithm with
all training data except for one, and try to classify the one
that was not included. We repeat this process removing and
classifying a different view every time, until all views have
been classified. With this method we obtained a classification
accuracy of 97.69%.

The next set of experiments are performed to test the
scale, translation, and rotation invariance properties of the
algorithm. This time we acquire new data, with each of
the 6 objects at 10 random locations and rotations. More
specifically, we train the multi-class SVM on the full training
data set and classify the new images. Evidently, this is a
harder experiment due to the translation changes, different
viewpoints from the robot’s perspective which create differ-
ent scales for the objects, and various rotations. Results are
shown in Table I, with an overall classification accuracy of
88.33%. The emphasis of our work is on grasping novel

Actual

Predicted

Object # 1 2 3 4 5 6
1 9 1 0 0 0 0
2 0 9 0 2 0 0
3 0 0 9 0 0 1
4 0 0 0 8 0 0
5 0 0 1 0 9 0
6 1 0 0 0 1 9

TABLE I
CONFUSION MATRIX FOR THE EXPERIMENT PERFORMED ON TRAINED

OBJECTS OF DIFFERENT SCALES, TRANSLATIONS, AND ROTATIONS.

objects, so it is crucial for the algorithm to grasp objects
that are not in the training set. The idea behind novel object
grasping stems from the observation that different objects
can be grasped similarly based on shared geometry. With
our SVM classification we should inherently be able to
detect similar objects and we test our algorithm with the
novel objects shown in Figure 3. For this experiment, we
have chosen novel objects that are fairly similar to the
trained objects, in order to come up with a quantitative
classification success rate. The objects are indeed different
from the trained ones by their texture, size, or geometry. We

point the readers to Section IV for experiments involving
highly different novel objects. For each novel object, we

Fig. 3. The six objects used as novel objects. The row order in which
they are presented corresponds to our expected classification in Figure 1.
We refer to each object, from left to right, as a number between 1 and 6.

acquire 10 images, placed at random locations and rotations,
further testing scale, rotation, and translation invariance. The
SVM is trained on all of the training data and each image
is classified. The result of this experiment is shown in Table
II, which shows an overall classification rate of 85%. Even
though we present the results in a confusion matrix, we
emphasize that results presented are based on our prior belief
of how the novel objects should be classified. In some cases,
this prior belief is evidently correct (e.g. the drill, the spray
bottle, the water bottle, the mug) while, in other cases, it is
not obvious (e.g. the DVD case matching the coffee can and
the shampoo bottle matching the bottle). This observation is
especially evident with the DVD case, which is classified
60% of the time as a coffee can (i.e. our belief, due to
the rectangular nature of both objects) and 40% of the time
as a drill. It is important to note that while our expected
classification rate is at 85%, our grasping success rate will be
better because misclassifying an object will not necessarily
result in a wrong wrist orientation. It simply means that a
different object will be used to find the best wrist orientation.

Actual (Trained)

Predicted (Novel)

Object # 1 2 3 4 5 6
1 6 1 0 1 0 0
2 4 9 0 1 0 0
3 0 0 9 0 1 0
4 0 0 0 8 0 0
5 0 0 0 0 9 0
6 0 0 1 0 0 10

TABLE II
CONFUSION MATRIX FOR THE EXPERIMENT PERFORMED ON NOVEL

OBJECTS OF DIFFERENT SCALES, TRANSLATIONS, AND ROTATIONS.

D. Determining Object Rotation

Thanks to the object classification we can focus on a
single object (i.e. 36 images, 12 of which having the robot
configurations), rather than all of them (i.e. 216 images,
72 of which having hundreds of robot configurations). In
the second stage of the algorithm, we determine the correct
object orientation using the closest matching object in our
training data. We recall that we are only interested in a
one dimensional rotation for reasons described in the Design
Choices section. Based on this assumption, we came up
with a solution involving plane fitting to deduce the most
likely object rotation. More specifically, we exploit the point

clouds to find the best-fit plane, through orthogonal distance
regression, for all of our data. Given two planes with their
normal vectors, N1 for an object in our training data and
N2 for the object to grasp, we calculate the angle between
two, θ = arccos

(
NT

1 N2
||N1||||N2||

)
. This process, an example

of which is shown in Figure 4, is efficient since the plane
fitting can be done offline for the training data. We use this
plane fitting process to find the nearest neighbor, in terms
of rotation, in our training data. We note that we cannot
differentiate objects that are rotated by 180 degrees, since the
best fit planes is the same. We address this issue with image
moments calculated for the left and right sides of our object
image. More specifically, we calculate the first and second
degree image moments, for each side, and use the Root Mean
Square Error (RMSE) between an object in our training set
and the object to grasp. Summarizing, we determine the
object rotation as follows. First, find the angles between the
best-fit planes in our training data and the one to grasp.
Second, find the 6 training objects with the lowest angles
and calculate the RMSE image moments. Then, we choose
the one with the lowest RMSE. We again run an experiment

Fig. 4. Example of the plane fitting process, with point clouds for two
spray bottles (blue and red) along with their equivalent best-fit planes.

to determine the validity of this algorithmic stage before
moving to the next one. For each object class we remove
one object from our training data and try to find its closest
neighbor as per the aforementioned technique. We repeat this
process removing a different object for each class until all of
the views have been processed. Before analyzing the results
encompassed by the histogram displayed in Figure 5, we
note that different object symmetries will result in different
outcomes. There are three possible cases of symmetry to take
into account. First, some objects will be fully symmetric (e.g.
water bottle), and rotations around the axis perpendicular to
the table will not alter the object view. For such objects, the
experiment is meaningless since any rotation would be dealt
the same way by the manipulator. For this reason, we do
not include the water bottle as part of our results. Second,
some objects will be partially symmetric (e.g. coffee can,
bottle, mug), where only rotations that are 180 degrees apart

will result in the same object view. In that case, we cannot
differentiate between rotations that are 180 degrees apart and
can equally use either. Third, some objects will be completely
asymmetric (e.g. drill, mug, spray bottle), where they never
look the same under different rotations and we need to find
the closest match in our training set. We note that the mug
can be either partially symmetric or completely symmetric
depending on whether or not the handle is occluded. Keeping
this information in mind, Figure 5 shows a 87.5% rate of
finding the closest neighbor (the one within a 10 degree
difference) for completely asymmetric objects and a 75%
rate of finding the closest neighbor for partially symmetric
objects (taking into account that a 180 degree rotation yields
the same object view).

Fig. 5. Histogram showing the results in finding the nearest neighbor,
in terms of rotation. The x-axis measures how far, in degrees, the closest
neighbor is from the actual value (i.e. it should be 10 or 180 degrees for
the algorithm to work). The y-axis is the number of trials for which that
value occurred (36 is the maximum value).

E. Calculating End-Effector Rotation

At this point we have found both the closest object
class and its rotation in our training data. We now need
to determine the correct end-effector orientation using the
input pixel location in image space. The difficulty of this
step lies in the fact that we only have example grasps for
30-degree rotation steps (i.e. for 12 of the 36 views). First,
we convert the pixel location into a Cartesian coordinate,
thanks to our stereo camera, and offset it by the point cloud’s
mean M to yield a zero-meaned point L. We then rotate the
point, using a rotation matrix Rz that takes into account the
angle calculated in the previous step. This process generates
a point, L′ = Rz(L − M) + M that is aligned with the
closest object in our training set with grasp examples. After
converting all of the configurations from our training, qc

i,j ,
to Cartesian coordinates, using forward kinematics, we use a
neighbor search in 3 dimensions to find the closest match to
our input point, which will be labeled with a configuration ql.
Using forward kinematics, we convert ql to the end-effector
rotation matrix, Rnn. Last but not least, we need to rotate our
end-effector to match the original object, straightforwardly
achieved by Re = R′z×Rnn, where R′z is the rotation matrix
rotating in the inverse direction of Rz . The resulting end-
effector rotation Re can be used with the input pixel location
pg to form TE . Finally, TE is fed to an inverse kinematics
solver to get the manipulator to grasp the object.

IV. EXPERIMENTAL RESULTS

The robotic platform used to evaluate the proposed al-
gorithm is shown in Figures 6, 7, 8, and 9. George is
a humanoid robotic torso composed of two Barrett arms
mounted sideways. Each arm is equipped with a Barrett
Hand, and the torso is completed by a BumbleBee stereo
camera mounted on two servos allowing for motions about
the yaw and pitch angles. Each arm has 7 degrees of freedom
(four in the arm and three in the wrist), whereas the three
fingered hand provides additional 4 degrees of freedom (one
commanding the spread of the fingers and three controlling
the closure of each finger). All the software computing
inverse and forward kinematics and image acquisition and
processing has been developed in house and is written in
C++. The rest of the algorithm is implemented in MatLab.
We have performed a large amount of experiments, which
we highlight in this section through accuracy measures and
representative pictures. We encourage readers to visit our
aforementioned website for videos showing the experiments
running on our robot in real time. For all the experiments
presented herein, we simply close the fingers of the hand to
grasp the object and count any form-closed grasp as being
correct, regardless of whether or not the object can physically
be picked up (e.g. due to slippage or payload restrictions). In
our first experiment, with examples shown in Figure 6, we
place each of our 6 trained objects at 10 random rotations,
manually input a pixel location, and let the algorithm try to
grasp the object. The overall success rate is 81.66%, where
the bottle, drill, and coffee can had the highest (90%) and
the mug and bottle had the lowest (70%). We repeat our

Fig. 6. Robot grasping trained objects with camera view in each corner.

first experiment (i.e. 6 objects, each with 10 trials) with
novel objects that are fairly similar to those we trained on,
some example of which are shown in Figure 7. Under those
conditions, the accuracy drops to 76.66%, with the highest
accuracy of 100% achieved by the drill and lowest accuracy
of 60% for the shampoo bottle and the DVD case. In an

Fig. 7. Robot grasping novel objects with camera view in each corner.

attempt to further test our algorithm, we have also performed
some experiments with novel objects that are completely
different than those we trained on, as seen in Figure 8. While
we only ran this experiment on 6 objects and 4 trials, we were
impressed with the overall results of 83.33%. Last but not

Fig. 8. Robot grasping novel objects with camera view in each corner.

least, even though all training was done with the right arm,
we ran some experiments grasping with the left arm, to test
the manipulator-independence property of our algorithm. We
only ran the algorithm on 3 objects with 2 trials, as a proof of
concept rather than a full experimental setup, and show some
sample results in Figure 9. We conclude the experimental
section of the paper with Table III, which shows the speed
of the algorithm.

Fig. 9. Left arm grasping objects with camera view in each corner.

Algorithmic Part Time (ms)
Outlier Removal 487.5

Object Classification 103.1
Nearest Neighbor Search 6.5

Wrist Calculation 4.4
Inverse Kinematics 20.0

Total Time 621.5

TABLE III
ALGORITHM SPEED, DIVIDED BY PARTS.

V. CONCLUSIONS

We have presented a novel algorithm aimed at computing
wrist orientations for feature-based grasping algorithms. In
addition to speed, one of the most desirable properties of
the algorithm is that it is manipulator-independent, solely
requiring forward and inverse kinematic solvers. Training
data acquired with one manipulator can even be transferred to
another provided that the forward kinematics of the original
manipulator is known. Finally, the algorithm is capable of
grasping unseen object parts, usually due to self-occlusions,
and works with a single image taken from a stereo camera.
The most important extension would be to incorporate a
grasp quality metric as part of the algorithm to make sure
that stable grasps are generated when the fingers close.

REFERENCES

[1] B. Balaguer and S. Carpin. Efficient grasping of novel objects through
dimensionality reduction. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1279–1285, 2010.

[2] H. Bay, T. Tuytelaars, and L. Gool. Surf: Speeded up robust features.
In European Conference on Computer Vision, pages 404–417, 2006.

[3] M. Ciocarlie and P. Allen. Hand posture subspaces for dexterous robotic
grasping. The International Journal of Robotics Research, 28(7):851–
867, 2009.

[4] O. Froemer, R. Detry, J. Piater, and J. Peters. Active learning using
mean shift optimization for robot grasping. In Int. Conference on
Intelligent Robots and Systems, pages 2610–2615, 2009.

[5] A. Karatzoglou, D. Meyer, and K. Hornik. Support vector machines in
r. Journal of Statistical Software, 15(9):1–28, 2006.

[6] J. Laurikkala, M. Juhola, and E. Kentala. Informal identification of
outliers in medical data. In Fifth International Workshop on Intelligent
Data Analysis in Medicine and Pharmacology IDAMAP, 2000.

[7] D. Lowe. Object recognition from local scale-invariant features.
International Journal of Computer Vision, 60(2):91–110, 2004.

[8] A. Remazeilles, C. Dune, E. Marchand, and C. Leroux. Vision-based
grasping of unknown objects to improve disabled people autonomy. In
Robotics: Science and Systems Manipulation Workshop: Intelligence in
Human Environments, 2008.

[9] A. Saxena, J. Driemeyer, and A.Y. Ng. Robotic grasping of novel
objects using vision. International Journal of Robotics Research,
27(2):157–174, 2008.

