
A Performance Comparison of Three Algorithms
for Proximity Queries relative to Convex Polyhedra

Stefano Carpin
School of Engineering and Science

International University Bremen
Bremen, Germany

Email: s.carpin@iu-bremen.de

Claudio Mirolo
Dept. of Mathematics and Informatics

University of Udine
Udine, Italy

Email: claudio@dimi.uniud.it

Enrico Pagello
Dept. of Information Engineering

University of Padova
Padova, Italy

Email: epv@dei.unipd.it

Abstract— This paper presents a comparative analysis relative
to the experimental performances of an asymptotically fast and
incremental algorithm, recently developed to compute collision
translations for pairs of convex polyhedra. The algorithm may be
worth considering because it solves a proximity problem which
is less widely addressed than distance, as well as because of
its peculiar computation strategy, well suited to work without
initialization, but also endowed with an inherently embedded
mechanism to exploit spatial coherence. Numerical data charac-
terizing the behavior of the algorithm with respect to the com-
plexity of the polyedra have already been discussed elsewhere,
thus here the main focus is on contrasting its performances with
those of two popular algorithms designed to compute distances
between polyhedra. Although the considered “yardsticks” answer
different proximity queries, and although one of the techniques
is meant to deal with general polyhedra, the results presented in
this paper should help to assess the efficacy and potential of the
approach under analysis. All the three algorithms, indeed, share
the same kind of application context; moreover, on the basis
of the asymptotic bounds discussed in the literature, distances
and collision translations require similar computational efforts.
A thorough comparison of the reported query times and, more
significantly, of the corresponding trends seems to show that the
behavior of the novel algorithm is quite interesting, especially
when used without initialization, what should encourage further
work on its peculiar approach.

I. INTRODUCTION

In this paper we analyze the performances of an asymptot-
ically fast algorithm, with additional potential for incremental
computations, designed to solve the following problem: Given
two convex polyhedra P , Q and a direction d, find the collision
translation for P moving in direction d. If P and Q do
not collide, the algorithm returns suitable items proving the
separation for all positions of P along its trajectory. The key
idea characterizing our approach is that the computation of
collision translations for two convex bodies can be reduced
to computation of collision translations for pairs of planar
sections and minimization of a bivariate convex function.

This idea can be exploited to design an algorithm running
in O(log2 n) average time [1], where n is the total number
of vertices, an asymptotic trend which meets that of the best
algorithms proposed to answer similar proximity queries. This
complexity bound refers to computations from scratch, i.e.,
without initialization, when no previous proximity information
is exploited. However, it is quite typical of on-line motion

planning, simulation, animation and CAD problems that a
huge number of proximity tests have to be carried out after
subsequent short movements of the objects in the workspace.
In such situations the performances of the procedures answer-
ing basic queries are crucial, and exploiting the spatial and
temporal coherence can significantly speed up the computa-
tion. Efficient algorithms designed to this purpose are referred
to as incremental algorithms.

The algorithm is worth of interest for two main reasons.
On the one hand, the specific proximity problem we consider
is not as widely addressed as that of distance determination.
On the other hand, the core approach is quite peculiar, suitable
both to work without initialization (computations from scratch)
and to exploit coherence (incremental computations) with the
aid of a mechanism that is inherently embedded in the compu-
tation strategy. The results of various numerical experiments
have already been the subject of some previous work [2], [3]
aimed at characterizing the computational costs in terms of
number of minimization steps and trend of response times, as
well as to estimate the speedup attainable with the incremental
strategy. As yet, however, there were no experimental data for
a comparison with other proposals, what would allow a more
comprehensive understanding of the features of our algorithm.
This is why the focus of this paper is precisely on contrasting
its performances with those of two well known algorithms
designed to compute distances between polyhedra [4], [5].

Although the “yardstick” algorithms are not equivalent, the
results presented in this paper are useful for a first assessment
of the efficacy and potential of the novel approach. All the
three algorithms, indeed, share the same kind of application
frameworks, and answering distance and collision translation
queries appear to require a similar computational effort, as
suggested by the known asymptotic bounds.

Related work

Starting from the early work on the geometric models
of robot workspaces, there has been a steady interest in
proximity measures and properties [6], since the design of
efficient algorithms to answer this kind of queries is generally
thought to be critical to the development of effective tools for
motion planning, as pointed out e.g. in [7], and for a variety
of applications in other fields where the geometry plays an

important role [8]. Several algorithms apply to convex models,
e.g. [9], [10]; in the case of convex polytopes the best solu-
tions of various proximity problems exploit the properties of
hierarchical representations and require O(log2 n) worst-case
time [11]. Some efforts, however, have also been addressed to
more general bodies, e.g. [12], [13].

Since the work by Lin and Canny in the early ’90s [14], the
need to deal with complex settings has fostered research on
incremental algorithms, e.g. [4], [15], [16], [17], among which
it is interesting to mention H-Walk for the capability to adapt to
variable coherence [18]. Another crucial point is the design of
suitable spatial representations to speed up the broad phase,
which is aimed at selecting few pairs of primitive volumes
(e.g., convex polyhedra) for the specific proximity tests. A
representative example of this approach is the application of
kinetic data structures [19]. Other hierarchical representations
based on bounding volumes of simple shape are considered in
several papers, e.g. [8], [20], [21].

Two algorithms are of specific relevance for the analysis
presented here, namely the enhancement of GJK proposed by
Cameron [4] and the distance computation procedure of the
Proximity Query Package developed by Larsen, Gottschalk,
Lin and Manocha [5]. It is quite natural to choose these
algorithms as benchmarks for proximity problems since they
are widely known and have already been compared with other
techniques, e.g. [4], [17], [22], [23].

Organization of the paper

In section II we outline the algorithm for computing colli-
sion translations and its mechanism to exploit coherence. In
section III we introduce the “yardstick” algorithms for the
performance comparison and we motivate the choice. Finally,
the experimental results are summarized in section IV.

II. THE COLLISION TRANSLATION ALGORITHM

The algorithm is based on some previous work on a convex-
minimization approach to determine collision translations [1]
and applies the refinements described in [2], [3].

A. Collision translations and convex minimization

Collision translations for two convex bodies P and Q can
be reduced to minimization of a bivariate convex function
that represents collision translations relative to pairs of planar
sections of P and Q. More formally, we can prove the
following proposition [1]:

Let P , Q be two closed convex regions, d a direction
in the space, {ρ(x)|x ∈ R} and {σ(x)|x ∈ R} two
independent families of parallel planes. Then

ϕ(x, y) = colld(P ∩ ρ(x), Q ∩ σ(y))

is a convex function with a bounded domain in R2.
In the above statement, colld(X, Y) denotes the extent of the
collision translation in direction d for X and Y , i.e., the least
τ ∈ R such that dist({p + τd | p ∈ X}, Y) = 0; ρ(x) and
σ(y) identify the planes by their distances x, y ∈ R from two
independent reference planes. Based on the definition of colld,

Fig. 1. Relationship between collision translations and convex minimization.

also negative values make sense, and colld is undefined only
if there do not exist (positive or negative) displacements of
X in direction d such that X and Y intersect. Clearly, if a
collision translation for P and Q is defined, then its extent is
the minimum of ϕ:

colld(P,Q) = min{ϕ(x, y)|(x, y) ∈ Dom(ϕ)}

and the planar sections corresponding to the point of minimum
contain the contact points.

The meaning of the proposition is also illustrated in figure 1.
It tells us that if we are able to compute collision translations
for pairs of polygons in the space, then we can determine
the collision configuration relative to two convex polyhedra
by standard convex minimization [24]. The next step is to
transform a search problem on a continuous domain into a
search problem on a discrete domain. In [1] the discrete search
domain is the set of rectangles of an isothetic grid. Under
reasonable assumptions, the grid rectangle containing the point
of minimum can be found in O(log n) minimization steps in
the average, where n is the size of the grid. After solving a
few related problems and putting all the pieces together, we
end up with an algorithm that computes collision translations
for pairs of polyhedra with O(n) vertices in O(log2 n) time
in the average and O(log3 n) in the worst case.

B. Improved convex minimization

A deeper characterization of the properties of the convex
function ϕ is introduced in [2]. Since P and Q are polyhedra,
ϕ’s graph is also faceted and its topology projects into a
corresponding polygonal partition of ϕ’s domain. Such a
partition is a more appropriate discrete structure to search
for the point of minimum. For our purposes, however, it is
necessary to extend the partition outside ϕ’s domain, to cover
the whole rectangle {(x, y)|P ∩ ρ(x) 6= ∅ ∧ Q ∩ σ(y) 6= ∅},
representing all possible pairs of planar sections of P and Q. It
is possible to achieve this goal by introducing suitable invariant

input :
two convex polyhedra P ,Q and a direction d ;
if available, the previous solution p and change δ ;

1 M := rectangle of all pairs of planar sections of P , Q ;
2 if p is provided then c := p

3 else c := centroid of M ;
loop

4 s := cut line through c ;
5 cell-shift s to point q ;
6 if q solves the problem then exit ;
7 update M w.r.t. s ;
8 c := centroid of M ;

9 if appropriate, update c w.r.t. Nδ(p)

end ;

output :
collision translation ϕ(q) = colld(P, Q)

Fig. 2. Structure of the collision translation algorithm. For simplicity, the
output refers only to the situations where a collision translation is defined.

properties characterizing the orientation of the cut lines built
in the minimization process, i.e., straight lines perpendicular
to ϕ’s gradient, if drawn through points within the domain,
and straight lines which do not intersect ϕ’s domain, if drawn
through points outside the domain (notice that in a standard
minimization technique, such as the method of centers of
gravity, a convex region containing the point of minimum is
repeatedly shrunk by cutting off a slice at each step with a cut
line through the centroid). In the following, we will refer to
the complete partition mentioned above as the mark of ϕ.

By definition, the orientation of a cut line does not change
if the cut point moves within the same cell of the mark. The
local properties of the convex function ϕ in a neighborhood
of the point (x, y) can be determined from the output of the
algorithm used to detect collisions of the pair of planar sections
P ∩ ρ(x) and Q ∩ σ(y). Given the information on either the
contact or the separation of the planar sections, we can build
a cut line through (x, y) and, in addition, we can find a more
favorable point of the corresponding cell of the mark, i.e., the
point such that the cut line gets closer to the point of minimum.
It is also important to notice that if we are able to find the most
favorable point in a cell, then the whole cell can be discarded
from further consideration. A convenient characterization of
the mark distinguishes three types of cells, relative to the out-
comes of the collision translation algorithm for pairs of planar
sections: (a) edge contact, if a pair of edges of the planar
sections get into contact in a collision configuration; (b) vertex
contact, if a vertex “hits” the interior of a polygonal section in
a collision configuration; (c) separation configuration, if the
planar sections do not collide.

Figure 2 sketches the algorithm designed to compute col-
lision translations for two polyhedra P , Q and a translation
direction d. At line (1) the region M is initialized to represent
the rectangular set of all pairs of planar sections and, when
working without initialization, (3) the centroid c of M is

computed. Then, at each iteration of the minimization loop: (4)
the cut line s through c is computed and (5) shifted to a better
point q in the same cell of the mark; if q is the solution (6)
the algorithm ends; otherwise (7) the region M is updated by
cutting off a slice through s and (8) the centroid is recomputed.
Eventually, q is recognized to be either the point of minimum
or a witness proving that ϕ’s domain is empty. In both cases
the solution is found. We can reasonably estimate that the
average number of minimization steps grows as the logarithm
of the total number of cells C, i.e., k = O(log C), since the
number of cells which overlap with the region M tends to
be proportional to the area of M and about half of the area
of M is discarded at each step. In [2] it is also argued that
k = O(log n) and that, after considering all the subproblems,
the algorithm runs in O(log2 n) time in the average.

C. Exploiting spatial coherence

For a variety of applications a proximity query needs to
be repeatedly asked after short intervals of time, so that two
subsequent answers are expected to be closely related to
each other. In similar situations considerable speedup may
be gained by exploiting the information on the previous
proximity computation. As said before, algorithms designed
to this purpose are referred to as incremental algorithms in the
literature. The very nature of our approach makes it possible
to endow the algorithm with a flexible mechanism to exploit
spatial coherence which rests on a simple idea: during the
minimization process, we can try to focus the search for the
point of minimum in a suitable neighborhood of a previous
solution. In order to implement this idea, we have to address
two problems: (i) how to choose a suitable neighborhood and
(ii) how to recover if the solution happens to lie outside of it.

As to the first problem, the chosen neighborhood is simply
an isothetic square N δ(p) of size 2δ, centered at the previous
solution p, where δ is heuristically related to the changes of
the test configuration (positions and orientations of P , Q and
d; notice that we are not assuming that P is actually moving
in direction d). However, there is no guarantee that the next
solution will fall in this neighborhood and a mechanism for
switching to the standard search strategy must be provided.
A possible technique works as follows. The search starts
at the point p representing the previous solution, but the
minimization region M is initialized as in the from-scratch case
(figure 2). At each step, if the centroid c of the minimization
region does not fall inside the neighborhood N δ(p) centered at
p, we consider the intersection point c∗ between the boundary
of N δ(p) and the straight line segment pc. If c∗ lies in M
then it is chosen as the next cut point; otherwise the next cut
point is the centroid c and we forget the neighborhood.

The incremental behavior of the algorithm is achieved
simply by the operations in lines (2) and (9) of figure 2:
initially (2) the previous solution is chosen as first cut point
and at the end of each iteration (9) the cut point is chosen
as sketched above. It is worth observing that the search focus
can be tuned by means of the parameter δ, which depends on
the actual change of the relative configuration of P , Q and d.

As a consequence, the closer two consecutive configurations
are, the faster the proximity measure can be updated. A
rough estimate of the computational costs can be obtained as
follows. Call θ the ratio between the length δ, measuring the
configuration change, and the initial height of the minimization
region M (for simplicity, suppose that M approximates a
square). The expected number of cells intersecting the neigh-
borhood N δ(p) over the total number C of cells is about
Area(N δ(p))/Area(M) = 4θ2 and then the number k of
iteration steps is proportional to log C − 2 log(1/θ) So, if
the updated solution lies inside N δ(p), the gain with respect
to the standard strategy is of about O(log(1/θ)) iterations in
the average. Since this rough estimate appears to be in good
accordance with the experimental trends [3], this means that
the updated solution falls inside N δ(p) with high probability
and witnesses the important role which coherence may play.

III. ENHANCED GJK AND PQP

We now introduce the “yardstick” algorithms that we have
considered for the performance comparison: the extended GJK
[4] and the distance computation procedure available in the
Proximity Query Package [5]. As said before, the comparison
is not completely fair since these algorithms answer different
proximity queries, being designed to compute distances rather
than collision translations. Moreover, for PQP it is also the
generality of the algorithm that should be taken into account,
since it is not restricted to convex bodies, but in this case we
are also interested in achieving a better understanding of the
power of hierarchical structures as opposed to convexity prop-
erties. Once this is clear, we think that this kind of comparison
can be useful for a first appraisal and will hopefully suggest
possible directions of future work.

A. Enhanced GJK: convex polyhedra and spatial coherence

In [4] Cameron proposes an enhancement of the classical
Gilbert, Johnson and Keerthi’s (GJK) algorithm [9]. The
original GJK algorithm computes the distance between two
convex polyhedra by finding the distance from the origin of
their Minkowski difference, which is a convex set as well and
represents the separation of the given bodies. The algorithm
constructs and maintains a simplex, built from linearly inde-
pendent vertices of the given polyhedra, and iteratively checks
whether it is optimal, i.e. whether it minimizes the distance;
if not, the simplex is updated. The strength of the original
algorithm is the efficiency of these operations.

Cameron has shown that this approach can be improved
by applying a hill climbing technique while looking for a
better simplex. His key observation is that the hill climbing
step can be sped up by providing a suitable starting point,
called a seed. Moreover, the data produced while checking for
optimality can act as good seeds. In practice, the enhanced
GJK algorithm returns the distance in nearly constant time
when small changes in relative configuration arise. Moreover,
Cameron argues that under these hypotheses the behavior of
his refined algorithm tends to be similar to the behavior of the
incremental technique proposed by Lin and Canny [14].

The reason for considering the enhanced GJK algorithm is
twofold. On the one hand, it is very fast in practice, and under
similar conditions with respect to the algorithm for computing
collision translations: the input bodies are indeed restricted to
pairs of convex polyhedra and it is well suited for exploiting
spatial coherence. On the other hand, plenty of experimental
data are already available which compare variants of the GJK
scheme, including the enhanced GJK, with a variety of other
approaches to distance computation [4], [22], [17].

B. PQP: general polyhedra and hierarchical structures

The PQP library implements a set of algorithms discussed
in [5]. More specifically, it can answer three types of queries:
collision (interpenetration) detection, exact separation distance
and approximated separation distance. PQP exploits a bound-
ing volume hierarchy in order to speed up the computation:
each object is bounded by a certain shape for which the
query at hand can be easily answered. The bounding volumes
are organized as hierarchical structures, usually trees, in such
a way that volumes found at deeper levels are smaller and
approximate better the actual shape of (parts of) the object;
eventually, the leaves of such structures represent exactly
the components of the objects. Different kinds of bounding
volumes have been considered in the literature. PQP exploits
oriented bounding boxes for collision detection and swept
spheres for distance computation.

In order to understand correctly the results discussed in this
paper, it is important to notice that PQP’s input models are
described in the very general form referred to as triangle soup.
After all the input triangles of a model have been provided,
PQP builds the suitable hierarchies in a preprocessing step,
and then becomes ready to answer multiple queries. Moreover,
it may be worth noticing that PQP does not exploit spatial
coherence; in other words, each computation restarts from
scratch as if the query were the first one. However, since
PQP is widely known, it is a natural candidate benchmark
in the field of proximity algorithms. Also in this case the
results of experimental comparisons with related tools are
available, as e.g. in [23], where the authors argue that in most
situations PQP’s performances are comparable to the fastest
algorithms. Another reason for considering PQP lies on its
use of hierarchical structures and bounding volumes, which
makes a comparison of the performance trends attainable with
this and other approaches interesting in itself.

IV. EXPERIMENTAL RESULTS

In this section we summarize a detailed analysis of the
results of several thousands of proximity queries planned in
order to test the properties of the algorithms both from scratch
(without initialization) and incrementally (with initialization).
In order to try a meaningful comparison, we have decided
to run the algorithms on exactly the same settings (i.e., same
pairs of polyhedra in the same configurations), where of course
the motion direction was only relevant for computing distance
translations. It may also be noticed that the comparison makes
still sense even if the polyhedra do not collide by moving

one of them in the given direction, since in that case the
algorithm outlined in section II reports suitable information on
the separation of the bodies (a pair of witness points proving
the separation for translations in the given direction).

The input polyhedra are characterized by fairly regular
arrangements of vertices on the surface of ellipsoidal shapes,
in such a way that either almost all the faces are trapezoids or
all are triangles. For both trapezoidal and triangular faces, we
have also considered two situations: one in which the edges
are balanced in length, the other where the faces are very thin
and stretched out. The number of vertices of each polyhedron
varies from about 200 to about 200,000. We will refer to such
number of vertices as to the polyhedron size, and whenever
we speak about query times (qt) we always mean the average
query time of several computations carried out on different
settings where the polyhedra have the same size.

For ease of reference, we denote each algorithm by a suit-
able acronym, namely: CTA (Collision Translation Algorithm)
for the algorithm outlined in section II, EGJK (Extended GJK)
and PQP (Proximity Query Package) for those introduced in
section III. The corresponding programs, implemented in the
languages Pascal, C and C++, have all been processed with the
family of GNU’s compilers and run on a Macintosh platform
PowerPC G5 (Dual 1.8 GHz, 768 MB RAM).

A. Computations from scratch

A first set of experiments is based on about 1,200 different
settings, generated randomly, and was meant to contrast the
performance trends relative to computations from scratch
(without initialization) while increasing the size of the poly-
hedra. The resulting trends for the case of “balanced” edge
lengths can be seen in figure 3, where the x- and y-axes
report in logarithmic scale the size of polyhedra (thousands
of vertices) and the measured qts (milliseconds), respectively.
As expected, the cost of the computations of EGJK grows
linearly with the size of the polyhedra, whereas CTA and
PQP seem to show a sublinear trend, again in accordance
with the theoretical estimates in the case of CTA. In this kind
of situations, the query times of CTA become the lowest when
the polyhedra have about 20,000 vertices or more. Within the
considered complexity range, the ratio of the average query
times qt(EGJK)/qt(CTA) increases from about 1/5 to about
4. The ratio qt(PQP)/qt(CTA) oscillates in a band between
6.5 and 10 for trapezoidal faces and around 5.5 for triangles.

It may be worth observing that the results are different in
the case of “thin-and-stretched” faces, as shown in figure 3.
Independently of the approach, this case turns out to be more
expensive and apparently the performances of PQP do no
longer follow a sublinear trend. With this type of polyhedra the
query-time ratio qt(EGJK)/qt(CTA) raises from about 1/5
to about 14, whereas the ratio qt(PQP)/qt(CTA) jumps over
100. Furthermore, and quite unexpectedly, the qts of CTA are
the lowest when the polyhedra do not collide but get very close
to each other (minimal distance less than 1% of a medium
diameter), as illustrated by the chart in figure 4.

Fig. 3. Trend of the performances for balanced edge lengths (above) and
for thin and stretched faces (below). Abscissae: thousands of vertices per
polyhedron; ordinates: qt in msec.

Fig. 4. Trend of the performances when the polyhedra do not collide by
translation, but move very closed to each other.

B. Incremental Computations

Another set of experiments was meant to contrast the
incremental performances of CTA and EGJK, based on more
than 60 sequences of 100 slightly changing configurations.
In such sequences every next arrangement is obtained by a
short translation and/or a small rotation of a polyhedron. In
these experiments, no significant difference has been revealed
between the cases of “balanced” edge lengths and of “thin-
and-stretched” faces, but the only parameter which turned out
to have affected the query-times rates is the measure δ of the
configuration (see section II-C).

The outcomes of the bulk of the experiments on incremental
computations are summarized in figure 5, where the x- and y-
axes report the size of polyhedra (thousands of vertices) and
the average query-time ratio qt(CTA)/qt(PQP). The four
plots, from top to bottom on the right side of the chart, are
relative to decreasing values of δ (about 1%, 0.5%, 0.25% and
0.13%, respectively, of a medium diameter of the polyhedra:
the qt rates decrease for shorter incremental changes). In the

Fig. 5. Trends of incremental performance rates: the plots are relative
to different values of δ. Abscissae: thousands of vertices per polyhedron;
ordinates: average of qt(CTA)/qt(EGJK).

considered settings for testing incremental computations, the
query times of EGJK have been systematically lower than
those required by CTA, but it may also be observed that the gap
always reduces with the size of the polyhedra, more distinctly
for small values of δ . The reported query-time ratios vary
from about 10 to about 2, where the factor 2 applies to the
case of small δ (about 0.13% of a medium diameter of the
bodies) and complex polyhedra (about 50,000 vertices).

V. CONCLUSIONS

The main focus of this paper has been on an experimental
comparison of the performances relative to an algorithm for
computing collision translations of convex polyhedra and two
well known algorithms for computing distances: extended
GJK and PQP. As already pointed out, in order to interpret
the results of the comparison it is important to take into
account the diversity of scope and features of the techniques,
in particular that PQP applies to general polyhedra.

Based on the results presented in section IV, the most
remarkable feature of our algorithm for computing collision
translations is the low rate of growth of the response time
with respect to an increasing number of vertices of the given
polyhedra. This feature is particularly manifest for compu-
tations from scratch, as shown by the plots referred to in
section IV-A, but also emerges from the trends relative to the
incremental tests summarized in figure 5. However, as far as
the incremental behavior is concerned, our interpretation of
the experimental results is that the algorithm is not as fast
as it could perhaps be, and a refinement of the technique
focusing the search for the point of minimum in the vicinity
of a previous solution may be worth some further work.
More specifically, in the present implementation only a pair
of planar sections is passed forward to the next (incremental)
computation, and not the actual items answering the proximity
query, thus at least one application of the procedure for
answering the proximity query for two polygons is required,
whereas checking those items or their close neighbors could
be enough. Indeed, such an improvement may be effective
since several incremental computations are completed in just
one minimization step, as reported in [3].

REFERENCES

[1] C. Mirolo, “Convex minimization on a grid and applications,” Journal
of Algorithms, vol. 26, no. 2, pp. 209–237, 1998.

[2] C. Mirolo and E. Pagello, “Fast convex minimization to detect collisions
between polyhedra,” in Proc. of the IEEE-RSJ Int. Conf. on Intelligent
Robots and Systems, 2000.

[3] ——, “Flexible exploitation of space coherence to detect collisions of
convex polyhedra,” in Proc. of the IEEE International Conference on
Robotics and Automation, 2001.

[4] S. Cameron, “A comparison of two fast algorithms for computing the
distance between convex polyhedra,” IEEE Trans. on Robotics and
Automation, vol. 13, no. 6, 1997.

[5] E. Larsen, S. Gottshalck, M. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” Department of Computer Science
– University of North Carolina, Tech. Rep. TR99-018, 1999.

[6] M. Lin and S. Gottschalk, “Collision detection between geometric
models: a survey,” in Proc. of the IMA Conf. on Mathematics of Surfaces,
1998.

[7] N. Amato, O. Bayazit, L. D. C. Jones, and D. Vallejo:, “Choosing good
distance metrics and local planners for probabilistic roadmap methods,”
in Proc. of the IEEE Int. Conf. on Robotics and Automation, 1998, pp.
630–637.

[8] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi, “I-collide: An interac-
tive and exact collision detection system for large-scaled environments,”
in Proc. of the ACM Int. 3D Graphics Conference, 1995, pp. 189–196.

[9] E. Gilbert, D. Johnson, and S. Keerthi, “A fast procedure for computing
the distance between complex objects in three-dimensional space,” IEEE
J. of Robotics and Automation, vol. 4, no. 1, pp. 193–203, 1998.

[10] M.-Y. Ju, J.-S. Liu, S.-P. Shian, Y.-R. Chien, K.-S. Hwang, and W.-C.
Lee, “A novel collision detection method based on enclosed ellipsoid,” in
Proc. of the IEEE International Conference on Robotics and Automation,
2001, pp. 2897–2902.

[11] D. Dobkin and D. Kirkpatrick, “Determining the separation of prepro-
cessed polyhedra - a unified approach,” in Proc. of ICALP, ser. LNCS
443, 1990, pp. 400–413.

[12] C. J. Ong, “Properties of penetration between general objects,” in Proc.
IEEE Int. Conf. on Robotics and Automation, 1995, pp. 2293–2298.

[13] F. Thomas, C. Turnbull, L. Ros, and S. Cameron, “Computing signed
distances between free-form objects,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation, 2000, pp. 3713–3718.

[14] M. Lin and J. Canny, “A fast algorithm for incremental distance calcu-
lation,” in Proc. of the IEEE Intl. Conf. on Robotics and Automation,,
1991, pp. 1008–1014.

[15] D. Johnson and E. Cohen, “A framework for efficient minimum dis-
tance computations,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation, 1998, pp. 3678–3684.

[16] Y. Kim, M. Lin, and D. Manocha, “Incremental penetration depth
estimation between convex politopes using dual-space expansion,” IEEE
transactions on visualization and computer graphics, vol. 10, no. 2, pp.
152–163, 2004.

[17] C. Ong and E. Gilbert, “Fast versions of the gilbert-johnson-keerthi dis-
tance algorithm: additional results and comparisons,” IEEE transactions
on robotics and automation, vol. 17, no. 4, pp. 531–539, 2001.

[18] L. Guibas, D. Hsu, and L. Zhang, “A hierarchical method for real-time
distance computation among moving convex bodies,” Computational
geometry: theory and applications, vol. 15, no. 1-3, pp. 51–68, 2000.

[19] L. Guibas, F. Xie, and L. Zhang, “Kinetic collision detection: Algorithms
and experiments,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation, 2001, pp. 2903–2910.

[20] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, “Fast distance queries
with rectangular swept volumes,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation, 2000, pp. 3719–3726.

[21] G. Zachmann, “Minimal hierarchical collision detection,” in Proc. of the
ACM Symposium on virtual reality software and technology, 2002, pp.
121–128.

[22] B. Mirtich, “Fast and robust collision detection,” ACM transactions and
graphics, vol. 17, no. 3, pp. 177–208, 1998.

[23] M. Reggiani, M. Mazzoli, and S. Caselli, “An experimental evaluation
of collision detection packages for robot motion planning,” in Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2002, pp.
2229–2334.

[24] A. Nemirovsky and D. Yudin, Problem Complexity and Method Effi-
ciency in Optimization. Wiley, 1983.

