
Solving Pursuit-evasion Problems with Graph-Clear: an Overview

Andreas Kolling and Stefano Carpin

Abstract— This paper presents an overview of the numerous
results we recently published for the problem of multi-robot
pursuit evasion. We review the Graph-Clear formalism we
introduced, we summarize the variants we studied, and the
main results we derived. Finally, we outline directions for
future research both in Graph-Clear and for pursuit-evasion
and search problems in general.

I. INTRODUCTION

The use of multiple robots for distributed information
collection over large areas has seen an explosive growth in
the last years. This is the result of astounding progress that
has been made in engineering, enabling the development of
robust robots to complete such missions, and sound theoret-
ical results in numerous disciplines that enable the design of
algorithms to control large teams of robots. Such progress
has enabled the consideration of increasingly applicable
scenarios, including border patrol, surveillance of sensitive
areas, and search and rescue. Despite the progress, however,
the problem is far from being solved, and open questions
outnumber by far the problems for which a definitive answer
is known. Particularly, one pressing demand remains: to
develop teams of cooperating agents that are more numerous,
individually less powerful, more resilient as a team, and
possibly accommodating a sliding degree of autonomy.

Motivated by this we have proposed a formal frame-
work aiming to answer some of the fundamental theoretical
questions underpinning above mentioned applications. Our
formalism is concerned with a pursuit-evasion scenario that
models the detection of an arbitrary intruder in an environ-
ment and can provide formal guarantees of capture. Such a
model is particularly suitable for security and rescue scenar-
ios in which target movement is a concern. To accomodate
the requirements of a multi-robot system yet another pursuit
evasion approach was in our opinion needed in order to fill
the following gaps:

• consider robotic agents that have only limited sensing
power. Such robots may be unable to accomplish pow-
erful operations on their own, but may be capable of
more sophisticated actions when properly coordinated;

• formalize the problem using a model that can be applied
to largely different situations, for example prescinding
from the specific details of the operative environment.

These requirements drove the development of Graph-Clear,
a graph-based pursuit-evasion problem.

Andreas Kolling is with the School of Information Sciences, University
of Pittsburgh, PA, USA.

Stefano Carpin is with the School of Engineering, University of Califor-
nia, Merced, CA, USA.

Any graph-based pursuit-evasion strategy, including
Graph-Clear, hinges on the ability to answer two important
questions:

• How to obtain suitable graph representations of an
environment of interest?

• How to relate abstract graph actions to robot algorithms
that are executed by the team of robots?

In our opinion, Graph-Clear finds one of its major strengths
in the intuitive (yet powerful) answers it assumes for the
above questions.

II. STATE OF THE ART FOR GRAPH-CLEAR

In [13] we give precise definitions for Graph-Clear. In
summary, Graph-Clear is a problem defined on a surveillance
graph. A surveillance graph is an undirected graph G =
(V,E, w) where V is a set of vertices, E is a set of edges,
and w is a weight function associating an integer cost to
edges and vertices. Initially G is entirely contaminated. As
commonly assumed in related literature, contamination rep-
resents the possible presence of an intruder. On the contrary,
when it is known that no intruder is located in a certain
element (edge or vertex), the component is labeled as clear.
Contamination is removed using only two action, i.e sweep
and block. A sweep on a vertex clears it. For reasons outline
later, we hypothesize that while a vertex is being cleared
all its incident edges must be blocked. A block on an edge
clears the edge and prevents its recontamination. A strategy
is a sequence of multiple actions that can be carried out
at every step. Contamination spreads immediately through
all vertices and edges that are not blocked and originates
from contaminated vertices and edges. Every action has an
associated cost given by w and the goal of Graph-Clear is to
determine a strategy with minimal cost that clears the graph.

We distinguish two basic types of strategies, those that
are required to be contiguous and those that are not, denoted
as non-contiguous. Contiguity requires all cleared vertices
to form a connected subgraph. In some applications this
provides the team with a safe and connected area in which
one can move and deploy infrastructure. Contiguous strate-
gies turn out to be simpler to compute [8], [13]. Yet, they
are generally more expensive. For edge-searching imposing
contiguity can increase the cost of the strategies almost by
two-fold [3] and from [8] we can construct graphs for which
there is also an increased cost for contiguity for Graph-Clear.

An alternative graph-based pursuit-evasion model that
can be applied in a robotic context is edge-searching and
the edge-searching variant with a node-located intruders as
described in [4]. Applying weights to edge-searching as done
in [2] then leads to graph model that also deals with large

numbers of robots and multiple robots per action. The key
differences between weighted edge-searching and Graph-
Clear are in the requirements imposed for the implementation
of basic operations. To apply edge-searching one needs to
provide implementations for guarding vertices and sliding
along edges, while in Graph-Clear one needs to implement
sweeping vertices and blocking edges. An implementation of
guarding has to guarantee that all intruders in the associated
region for the vertex are detected and furthermore that no
intruder can enter or exit the region undetected. Sweeping
does not require the latter. Instead, in Graph-Clear while
sweeping a vertex we require a block on each edge to
prevent targets from entering or exiting. The consequence
is that some robot algorithms cannot be used for guarding
operations. The example in Fig. 1 uses an algorithm for
detecting targets inside the region of a vertex that does
not satisfy the guarding requirements and is hence not
directly suitable for edge-searching. To satisfy the guarding
requirements one would have to augment the algorithm by
additionally positioning robots at the entrances. Then the cost
of this combined routine becomes a weight in weighted edge-
searching which represents the number of the robots needed
to search the region and to keep entrances covered. But, once
the robots searched the region and hence cleared the vertex
we still have to guard the vertex to prevent recontamination
of its neighbors. In practice this continued guarding after the
actual search does not need to involve any of the robots that
performed the search, but only those covering the entrances.
But in weighted-edge searching we still pay the full cost for
the guarding operation. This is because in edge-searching
guarding of a vertex performs two basic functions, namely
the prevention of spreading of contamination from and to its
neighbors, and additionally the detection of all intruders in
the vertex. One could try to overcome this problem by having
weights on edges represent the cost of entering a vertex,
searching and covering the entrances while the weight on
the vertex only represent the cost of covering the entrances.
But then sliding along an edge costs more than guarding
the vertex. Not only is this unintuitive, but the formulation
of weighted edge-searching from [2] does not allow edge
weights larger than the weight of the adjacent vertex. Finally,
the algorithm presented in [2] turns out not be optimal for
the weighted case as shown in [9].

A. Graph-Clear algorithms

One of the major results we identified while studying
Graph-Clear concerns its intrinsic computational hardness
[13]. In its generality, for a given graph the problem of
determining the solving strategy using the least number
of robots is NP-hard. This limiting result motivates the
study of algorithms on trees that are heuristically obtained
from graphs. Given a surveillance graph, the most trivial
transformation into a surveillance tree is obtained computing
a minimum spanning tree according to a suitably defined
cost, and then permanently blocking the edges not part of
the spanning tree. It is immediate to realize that these cycle-
removing blocks can be lifted as soon as the adjacent vertices

Fig. 1. An example that illustrates how a graph for Graph-Clear can
relate to an actual environment. The environment is shown in grey with its
graph embedded. All weights in this example are equal to one. Connections
between regions that are connected by edges are shown in black. The center
region is the ”eagle” example redrawn from [16]. It can be cleared using
the algorithm from [16] with only one robot and a simple gap sensor with
sufficiently large range. During its execution it recontaminates the top part
of the region and hence cannot guarantee that no target enters the vertex
undetected. We hence need blocks on the edges, i.e. to position sensors on
the black regions. Note that the entire environment can be very large so that
the sensor only satisfies the large range assumption within a vertex.

are cleared, and one also quickly realizes that permanent
blocks can easily lead to suboptimal strategies because of the
constant cost they imply. In general, however, the problem
of converting a graph into a tree in the most favorable way
for a successive Graph-Clear application (possibly coupled
with a dynamical reallocation of the blocks) has not been
sufficiently explored.

Most of the algorithms we derived utilize a directional
label or other structures such as sequences of cuts that are
computed on every edge that captures the cost of clearing
subtrees rooted beyond the edge. The precise meaning of
these quantities is too long to be appropriately described in
this short communication, but their significance can be easily
related to the pursuit-evasion problem at hand, and, most
importantly, can be easily computed. The reader is referred to
the provided references for thorough discussions. Currently,
the following algorithms are available for Graph-Clear:

• suboptimal label-based contiguous strategies on trees
[6], [13] in polynomial time;

• optimal cut-based contiguous strategies on trees [13] in
polynomial time;

• suboptimal label-based non-contiguous strategies on
trees [8] in pseudo-polynomial;

• suboptimal strategies on graphs from strategies on trees
[6] in polynomial time;

• extensions of previous algorithms to strategies for prob-
abilistic actions [10] in polynomial time;

• modification of Graph-Clear that requires a sweep to
also prevent recontamination ([5] Chapter 3).

Hence, the problem of computing optimal contiguous
strategies on trees in polynomial time is solved. It is currently
unclear whether one can compute non-contiguous strategies
in polynomial time and we conjecture that this problem is

in fact pseudo-polynomial [8].
In [4] an improved conversion of strategies from trees

to graphs is proposed. The method tries many different
spanning trees and converts their strategies to the graph,
finally selecting the one with lowest cost. This method can
be probabilistically complete if the strategies on the trees
are computed with certain label-based approaches. The core
ideas can be applied to Graph-Clear as well and the method
from [6] which only selects the minimum spanning tree can
be extended to test many more spanning trees. We conjecture
that this also leads to a probabilistically complete algorithm
to compute contiguous Graph-Clear strategies on graphs.

The modification of Graph-Clear that requires vertex
sweeps to prevent recontamination from Chapter 3 [5] has the
advantage that strategies can require less robots by reducing
the number of blocks that are needed during a sweep. Note
that this is a local reduction and as such a constant difference,
i.e. on very large graphs the savings can be marginal. Yet,
for smaller graphs or when every robot counts it can be of
an advantage if the sweeping routine can guarantee that no
intruder passes through the vertex to previously cleared parts.
It turns out that much of the formalism and algorithms for
trees still hold since in a tree strategy a vertex is always
entered from one edge while all other edges go downward
towards the leaves. Hence during the sweep the robots
blocking the originating edge are not required and those
at the edges to subtrees further down in the tree are only
required directly after the sweep.

B. Extracting graphs

The question of how to obtain a graph representation is
essential to any graph-model of pursuit-evasion if it should be
applied to a robotic context. For Graph-Clear we presented
heuristics in [7] and [5] that rely on a Voronoi Diagram
to identify narrow parts of a two-dimensional environment.
In general, the problem of identifying good graphs for an
environment is difficult and depends on the actual imple-
mentation of the sweep and block actions on a real robot
team. As such the graph extractions, often a partitioning of an
environment, has to take into account the capabilities of the
robots. Fig. 2 shows an example of a partitioning based on
the Voronoi Diagram from [7] and the final graph extracted
from it.

Examples how to extract graphs while relying less on
heuristics are presented in [11], [12], and [5]. Therein an
abstract sensor model, a sweep-line, is defined and robots
are assumed to cover this line with sensors as it sweeps
through and clears an environment. The surveillance graph
is constructed by considering multiple such sweep lines and
associating them to edges and vertices. The strategy is then
used to create a schedule for the movement of all sweep
lines. In [5] (Chapter 4) this problem is discussed in detail.
For this sensor we conjecture that there are optimal graphs
that can be extracted from a two dimensional environment
given by a finite set of convex obstacles. Fig. 3 shows an
example of a surveillance graph extracted as the dual of the

Voronoi Diagram. Extensions of this idea lead to improved
graph extraction as discussed in Chapter 4 of [5].

Fig. 3. An example of a surveillance graph created for Line-Clear. Every
vertex of the surveillance graph corresponds to a vertex of the Voronoi
Diagram.

C. Executing strategies with robot teams

Finally, to demonstrate applicability of Graph-Clear we
executed strategies with real and simulated robots. In [5]
Chapter 6 experiments with two Pioneer P3AT are presented
as well as experiments with a larger number of simulated
robots which are also presented in [12]. For the two Pioneer
P3ATs the graph strategy was converted into paths that are
executed in a coordinated fashion between the two robots.
Fig. 4 shows the environment used.

v7
v6

v5

v4

v3

v1

v2

(a) (b)

Fig. 4. (a) Map of part of the UCM Science and Engineering building
created with a SICK laser. (b) Paths the robots follow to execute a Graph-
Clear strategy.

Strategies can inform the movement of robots in a num-
ber of ways. Since Graph-Clear strategies are essentially
sequences of vertices one first has to move the robots towards
the vertex that is being swept and prior to the sweep set up
the blocks on neighboring edges. Depending on the number
of robots available, one may, usually at earlier steps of the
strategy, also sweep multiple vertices at once. At least at
one step, however, when the maximum number of robots
is required only one vertex can be swept concurrently. For
the Line-Clear problem introduced in [5], [11], [12] a Graph-
Clear strategy is converted into a schedule for moving sweep
lines which are an abstract sensor model that be implemented
with a team of robots at a certain cost. For this a number of

2

4

3

5

22

22

5

2
3

3

5

1

1

2

2

1

1

2

1

1

2

1

2

2

1

1

(a) (b)

Fig. 2. (a) Map of part of the UCM Science and Engineering. (b) Extracted surveillance graph.

robots simply follow the lines so that their joint sensors at
all times cover the entire line.

III. FUTURE DIRECTIONS

In light of the many exciting findings we encountered in
this research, we have identified a few interesting research
directions that in our opinion deserve more attention in
the future. We shall first outline a few precise directions
and then more general areas. For Graph-Clear a number of
open questions persist, although for some of them we have
gathered preliminary evidence suggesting concrete research
directions:

• optimal non-contiguous strategies on graphs (probably
pseudo-polynomial);

• probabilistically complete anytime algorithm for con-
tiguous strategies on graphs;

• extension of probabilistic sensing model from Graph-
Clear to edge-searching;

• NP-hardness of Graph-Clear on planar graphs (Conjec-
ture: yes).

Most of these are rather technical and strictly related to our
previous findings for Graph-Clear. A more general paradigm
shift concerns the optimization being performed. In all out
studies we have targeted the problem of minimizing the
number of robots needed to implement a solving strategy
(and possibly also to maximize the detection probability
in the probabilistic version). Rather different results can be
anticipated when one aims to optimize something different,
like for example distance travelled (or energy), time to
completion, and so on.

For the more general problem of pursuit evasion and
search, we instead put forward the following general issues:

• Realizing there is a third dimension. Most scholar
publications have considered situations where pursuers
and evaders move in planar environments, while only
limited research has considered situations where motion
in three dimensions is allowed. Following the develop-

ments observed in numerous other sectors of robotic
research, this seems to be an unavoidable evolution.

• The other side matters. Pursuit-evasion has been al-
most invariably intended as the problem of coordinating
the motion of pursuers whereas intruders have been
often assumed to move randomly, stationary, or moving
accordingly to unknown patterns. The other side of the
game is no less interesting, but it has been scarcely
addressed [1], [14], [15] Not only there are many
situations where it may be valuable to remain covert
during the mission (wildlife observation, behind the
lines operations, etc), but this may also shed some light
into the intrinsic limitations, or strengths, of pursuit
strategies. Moreover, smart evasion strategies may be
adopted as benchmark problems to test the effectiveness
of pursuit strategies (see next point).

• Comparing apples with apples. One of the reasons
behind the proliferation of numerous slightly different
formalisms for pursuit evasion is also the lack of
broadly accepted benchmark problems. This shortcom-
ing is surely common in many robotic applications,
but may probably be easier to overcome for problems
involving search and pursuit. The availability of bench-
mark problems will trigger the possibility to compare
different solutions not only on a analytical basis, but
also numerically.

• Correctness by design. Many of pursuit-evasion and
search applications are vital in the literal sense of the
word. For a given pursuit strategy, designing a dis-
tributed robot controller that satisfies the specifications
by design is of paramount importance. A fertile cross-
fertilization with hybrid systems theory seems to be the
path to follow, even though only limited attempts have
been reported up to now. [17].

• Interactive strategies. Strategies are generally global
and pre-computed. Changes in the environment or
agents that participate in the execution of a search
schedule may cause unexpected change. Adapting to

such change will allow the application in dynamic
environments and in joint search teams with robots and
greatly enhance the potential for applications.

• Heterogenous teams. In most scenarios it is unlikely
that all robots will have the same capabilities. Even if
built the same way they may have defects, different bat-
tery levels and so on. Accommodating heterogeneity of
teams is hence another crucial, albeit very challenging
from a formal perspective, new direction.

IV. CONCLUSIONS

We have summarized the current state of the art regarding
the Graph-Clear problem and outlined its relationship to
other problems relating to the application of pursuit-evasion
models to actual robotic search and security applications.
A number of technical and practical challenges remain, but
we are already equipped to move further towards real robot
applications utilizing the insights gained so far.

ACKNOWLEDGMENTS

The authors thank the workshop organizers for having
taken the lead in creating this stimulating event.

REFERENCES

[1] T. Bandyopadhyay, Y. Li, M.H. Ang Jr., and D. Hsu. Stealth
tracking of an unpredictable target among obstacles. In M. Erdmann,
D. Hsu, M. Overmars, and A.F. van der Stappen, editors, Algorithmic
Foundations of Robotics VI. Springer, 2005.

[2] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture
of an intruder by mobile agents. In Proceedings of the Fourteenth
Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 200–209, New York, NY, USA, 2002. ACM Press.

[3] F. V. Fomin and D. M. Thilikos. An annotated bibliography on guaran-
teed graph searching. Theoretical Computer Science, 399(3):236–245,
2008.

[4] G. Hollinger, A. Kehagias, S. Singh, D. Ferguson, and S. Srinivasa.
Anytime guaranteed search using spanning trees. Technical Report
CMU-RI-TR-08-36, The Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, August 2008.

[5] A. Kolling. Multi-Robot Pursuit-Evasion. PhD thesis, University of
California, Merced, December 2009.

[6] A. Kolling and S. Carpin. The GRAPH-CLEAR problem: definition,
theoretical properties and its connections to multirobot aided surveil-
lance. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1003–1008, 2007.

[7] A. Kolling and S. Carpin. Extracting surveillance graphs from robot
maps. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2323–2328, 2008.

[8] A. Kolling and S. Carpin. Multi-robot surveillance: an improved
algorithm for the Graph-Clear problem. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 2360–
2365, 2008.

[9] A. Kolling and S. Carpin. On weighted edge-searching. Technical
Report 01, School of Engineering, University of California, Merced,
2009.

[10] A. Kolling and S. Carpin. Probabilistic Graph-Clear. In Proceedings
of the IEEE International Conference on Robotics and Automation,
pages 3508–3514, 2009.

[11] A. Kolling and S. Carpin. Surveillance strategies for target detection
with sweep lines. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5821–5827,
2009.

[12] A. Kolling and S. Carpin. Multi-robot pursuit-evasion without maps.
In Proceedings of the IEEE International Conference on Robotics and
Automation, 2010. accepted for publication.

[13] A. Kolling and S. Carpin. Pursuit-evasion on trees by robot teams.
IEEE Transactions on Robotics, 26(1):32–47, 2010.

[14] S. Markov and S. Carpin. A cooperative distributed approach to
target motion control in multirobot observation of multiple targets. In
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 931–936, 2007.

[15] M.S. Marzouqi and R.A. Jarvis. Enhancing self covertness in a
hostile environment from expected observers at unknown locations.
In Proceedings of the 9th International Conference on Intelligent
Autonomous Systems, pages 189–196, 2006.

[16] S. Sachs, S. Rajko, and S. M. LaValle. Visibility-based pursuit-evasion
in an unknown planar environment. The International Journal of
Robotics Research, 23(1):3–26, January 2004.

[17] P. Tabuada. Verification and control of hybrid systems. Springer, 2009.

