
Multi-Objective Planning with Multiple High Level Task Specifications

Seyedshams Feyzabadi Stefano Carpin

Abstract— We present an algorithm to solve a sequential
stochastic decision making problem whereby a robot is subject
to multiple objective functions and is asked to complete a
number of subgoals specified using a subset of linear temporal
logic. Each subgoal is associated with a desired satisfaction
probability that will be met in expectation by the policy
produced by the algorithm. Our method relies on the theory
of constrained Markov Decision Processes and on methods
coming from the realm of formal verification. The key idea
is the definition of a product operation that can recursively
incorporate more and more subgoals into the underlying plan-
ner. Ultimately, a policy is computed solving a linear program
and we outline conditions for the existence and correctness of
the solution. Our findings are validated in various simulation
scenarios.

I. INTRODUCTION

Multi-objective planning continues to be one of the prob-
lems of major interest in robotics. As robots become more
and more capable, they are tasked with complex missions
including multiple subgoals, and the robot is expected to
autonomously determine a plan achieving multiple goals at
once. Recently, we have used Constrained Markov Deci-
sion Processes (CMDPs) to solve problems where multiple
objective functions are considered [4], [10], [11]. Rather
than combining them into a single objective function whose
meaning is hard to interpret, with CMDPs one optimizes
performance with respect to one objective function while
imposing constraints (i.e., bounds on the expected value)
on the others. In this way, the problem is setup using
parameters that are easy to understand for the end-user, rather
than introducing artificial functions that have no practical
meaning.

At the same time, there is increasing interest in developing
methods to express complex missions in a simple way. To
this end, linear temporal logic (LTL) has emerged as a
promising tool, also because of its connection to formal
verification methods. When defining a complex mission with
multiple subgoals, however, it may be impossible to achieve
all of them at the same time. Therefore it is of interest
being able to formulate problems where different subgoals
are associated with a desired probability of success, and let
the planner determine a policy meeting these objectives in
expectation.

S. Feyzabadi and S. Carpin are with the School of Engineering,
University of California, Merced, CA, USA.

This work is supported by the National Institute of Standards and
Technology under cooperative agreement 70NANB12H143. Any opinions,
findings, and conclusions or recommendations expressed in these materials
are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of the funding agencies of the
U.S. Government.

In this paper we propose a technique to tackle all of these
objectives at once, i.e., we consider a method to determine
a policy that optimizes one objective function (e.g., travel
time) while at the same time obeying to constraints on other
objective functions (e.g., consumed fuel, length of traversed
path, etc.) and satisfying a set of subgoals with a desired
level of probability (e.g., visit a certain area with a certain
probability and eventually stop in another region with a
different probability). Our method builds upon the theory
of Markov Decision Processes, i.e., it assumes that action
outcomes are stochastic, but the state is observable. The main
contributions of this paper are the following
• We formulate a multi-objective planning problem fea-

turing multiple objective functions and multiple sub-
goals to be probabilistically satisfied.

• We define a product operation between CMDPs and
finite automata expressing mission goals allowing to
precisely determine the probability that the system will
complete any of the assigned subgoals.

• We provide conditions for the existence of an optimal
solution and formulate an algorithm to determine it.

• We demonstrate the algorithm in three different plan-
ning scenarios.

The remainder of this paper is organized as following.
State of the art is discussed in Section II whereas in Section
III we provide relevant background about CMDPs and LTLs.
The problem we solve is formulated in Section IV and our
solution is discussed in Section V. Section VI illustrates
how the method performs in three different tasks, and finally
conclusions are offered in Section VII.

II. STATE OF THE ART

MDPs have been widely used to solve sequential stochastic
decision making problems where the state of the system is
observable [12]. Most of these approaches optimize over
one objective function only, although some consider multiple
objectives [5], [6], [10], [11] through the use of CMDPs. LTL
is being increasingly used to formulate task specifications
for robotics and automation [16] and there have been some
efforts to solve MDPs with LTL constraints. Lacerda et al.
[13] solve a planning problem with LTL specification in a
cost optimal form. Ding et al. [8] focused on long term
surveillance problems. Their work maximizes the probability
of satisfying task specifications expressed as LTL formulas.
The earlier work of Ding [7] uses LTL properties in motion
planning. Wongpiromsarn et al. [16] used LTL properties
on multi-agent planning and concentrate on maximizing the
probability of satisfying just one LTL formula. This work
was extended in [15]. Their application is in the area of

autonomous vehicles operating in an environment where
humans are present (e.g., autonomous forklifts on the factory
floor.). Etessami et al. [9] used MDPs with multiple LTL
properties. They use approximation methods to satisfy LTL
properties with different probabilities. They limit their work
to very simple LTL properties that can be extracted from
reachability graphs. Therefore, the approach is not easily
extensible to a broader class of LTL formulas.

Considering the mentioned related work, we see that
most of these approaches consider just a single objective.
For instance, some approaches maximize the probability of
satisfying an LTL formula and do not control the total cost
of accomplishing the task. Others emphasize the cost of
completing the task but then the probability of satisfying
the LTL specification can be arbitrarily low. Our goal is to
find a policy that satisfies a set of LTL specifications with
pre-defined probabilities while the total cost of completing
the task is minimized and bounds are met for the extra costs.

III. BACKGROUND

A. Finite State Automata

We recall some classical definitions, but we nevertheless
assume that the reader is familiar with basic terms like word,
language accepted by an automaton, and other concepts in
automata theory (see [14] for an introduction to the topic).

Definition 1: A nondeterministic finite automata (NFA) is
a 5-tuple N = (QN , q0, δN , F,Σ) where:

• QN is a finite set of states.
• q0 ∈ QN is the initial state.
• δN : QN × Σ→ 2QN is the transition function.
• F ⊆ QN is the set of accepting states.
• Σ is a finite set of symbols called alphabet.
Note that according to the definition it can be that

δN (q, a) = ∅ for some couple (q, a). In such case the tran-
sition is not defined. The set of words over Σ is partitioned
into the set of words accepted by N (also called the language
accepted by N) and the set of words rejected by N . A
deterministic finite automaton is a special case of an NFA
where the successor state is uniquely determined, as implied
by the following definition.

Definition 2: A deterministic finite automaton (DFA) D =
(QD, q0, δD, F,Σ) is an NFA in which |δD(q, a)| ≤ 1 for
each q ∈ QD and a ∈ Σ.
It is well known that every NFA N can be converted into
an equivalent DFA D, i.e., a DFA accepting all and only
the words accepted by the NFA. Hence in the following we
will simply consider DFAs. For a DFA, we define δ∗D(q0, w)
to be the state reached by recursively applying the transition
function δD to all symbols in w. For a DFA it is still allowed
that for some state and symbols δD(q, a) = ∅. If while
computing δ∗D(q0, w) the transition function is not defined
for one of the symbols in w, then the automaton stops, and
the word is rejected. A total DFA is a special type of DFA
where there is one and only one transition at any state for
every input symbol.

Definition 3: A total deterministic finite automaton (total-
DFA) is a DFA in which |δ(q, a)| = 1 for each q ∈ Q and
a ∈ Σ.

Every DFA D = (QD, q0, δD, F,Σ), can be converted
into a total-DFA T = (QT , q0, δT , F,Σ) accepting the same
language. The conversion is obtained modifying the state set
and the transition function as follows (other elements do not
change)
• QT = QD ∪ {qs}, where qs is a new state not in QD.
• δT : QT × Σ → QT is the transition function defined

as follows:

δT (q, a) =

{
δD(q, a) if q ∈ QD ∧ δD(q, a) 6= ∅
qs otherwise.

As per the above definition, if δD(q, a) is not defined in
D, then the state enters the newly added state qs (called
sink state) and remains there, as per the second case in the
definition of the transition function δT . Starting from a total-
DFA, we introduce a new type of automata, the extended-
total-DFA, whose purpose will become justified in the sequel.

Definition 4: Let T = (QT , q0, δT , F,Σ) be a total-DFA
and let qs ∈ Q be its sink state. The extended-total-DFA
E = (QE , q0, δE , F,Σ) induced by T is defined as follows:
• QE = QT ∪ {qa} where qa is a new state not in QT .
• δE : QE ×Σ→ QE is the transition function defined as

follows:

δE(q, a) =

{
δT (q, a) if q 6= qs ∧ q 6= qa

qa otherwise.
The extended-total-DFA extends the total-DFA by intro-

ducing an extra state qa. We say that qa is the absorbing state
of the extended-total-DFA. As per the transition definition δE ,
if while processing a word w the state enters qs, then at the
next processed input symbol the state will move to qa and
remain there. Based on these definitions, we can define when
a word w is accepted or rejected for these types of automata.
Starting from a DFA D it is then possible to sequentially
induce a total-DFA T and an extended-total-DFA E . It is
easy to see that a word w with finite length is accepted by
the extended-total-DFA E if and only if it as accepted by
the DFA D. For a word w not accepted by T we can have
that δ∗E(q0, w) is qs, qa or any other non final state. Note
that indeed the final state can be qs and not qa when qs is
entered after processing the last symbol of w. To eliminate
this variability in δ∗E(q0, w) when the string is not accepted,
we add a new symbol G to Σ that appears twice at the end
of each word processed by the automata, and we alter the
transition function to ensure that δ∗(q0, w) is either a final
state or qa.

Under the assumption that every word w ends with the
character G , we define a new extended-total-DFA E =
(QE , q0, δ

′
E , F,Σ

′) where
• Σ′ = Σ ∪ {G }
•

δ′E(q,G) =

q if q ∈ F
qa if q = qs ∨ q = qa

qs otherwise.

Hence for each word ending with two G symbols we have
δ′∗E (q0, w) is either a state in F or qa. Note that after
appending G twice to every word w processed by the
extended-total-DFA, it is ensured that state qs is visited at
most once. This fact will be important to exactly establish
the probability that a LTL property is satisfied.

B. Linear Temporal Logic

LTL has been extensively used to specify desired behaviors
of a variety of reactive systems, and even a cursory intro-
duction to the topic is beyond the scope of this paper. The
reader is referred to [2] for more details. LTL formulas are
used to specify properties of reactive systems, and the terms
formula and property are then used interchangeably in the
following. We consider a subset of LTL formulas leading to
the so called syntactically co-safe LTL (sc-LTL) properties
[6]. Starting from a set of atomic propositions Π, a sc-LTL
formula is built using the standard operators and (∧), or (∨),
not (¬), and the temporal operators eventually (♦), next (©),
and until (U). Furthermore, the operator ¬ can only be used
in front of atomic propositions. When comparing sc-LTL
formulas with full LTL formulas, the reader will note that
the set of temporal operators misses the always operator. As
pointed out in [6], since robots operate over missions with
finite duration, the always operator is mostly irrelevant when
specifying mission objectives and can therefore be omitted.
sc-LTL properties are verified in a finite amount of time,
as opposed to safety properties that are violated in a finite
amount of time. An sc-LTL (or LTL) formula φ splits the
set of infinite length strings over 2Π into two subsets, i.e.,
the subset of strings satisfying the property and those not
satisfying it. It is well known that given a sc-LTL formula
φ, there exists a DFA accepting all and only the strings
satisfying φ [2]. An sc-LTL property is satisfied by all words
starting with a set of good prefixes. When the DFA processes
a word with a good prefix, after having processed such prefix
it enters a final state and remains there, thus accepting the
word irrespectively of what comes afterwards.

C. Labeled CMDP

In this section we extend the classic definition of CMDPs
with a set of atomic propositions to track which properties
are verified during a trajectory. The reader is referred to [1]
for a comprehensive introduction to CMDPs.

Definition 5: A finite CMDP is defined by the tuple C =
(S, β,A, ci,Pr) where

• S is a finite set of states.
• β is a mass distribution over S giving the initial

distribution over S, i.e., β(sj) is the probability that
the initial state of the CMDP is sj .

• A = ∪s∈SA(s) is a finite set of actions, where A(s) is
the set of actions executable in state s. Based on these
definitions let K = {(s, a) ∈ S×A | s ∈ S∧a ∈ A(s)}.

• ci: K → R≥0, i = 0, . . . , n are n + 1 cost functions.
When action a is executed in state s, each of the costs
ci(s, a) is incurred.

• Pr: K×S → [0, 1] is the transition probability function
where Pr(s1, a, s2) is the probability of reaching state
s2 from s1 after applying action a.

A labeled constrained Markov decision process (LCMDP)
is obtained from a CMDP by adding a set of atomic
propositions and a labeling function.

Definition 6: A LCMDP is defined by the tuple L =
(S, β,A, ci,Pr, AP, L) where the first five parameters are
as in the CMDP definition and:

• AP is a finite set of binary atomic propositions.
• L: S → 2AP is a labeling function assigning to each

state the set of atomic propositions that are true in the
state.

MDPs and CMPDs are special cases of the more general
LCMDP just defined. A policy π defines which action
should be taken in every state. In the following we are only
concerned with so-called Markovian policies, i.e., policies in
which the decision is only a function of the current state and
does not depend on the previous history. It is known [1] that
when considering CMDPs one in general needs randomized
policies to optimally solve the problem. Randomized policies
have the form π : S → P(A) where P(A) is the set of mass
distributions over A. For a given state s, π(s) ∈ P(A(s)), i.e.,
the action is chosen from the set A(s) according to the mass
distribution P(A(s)). Given a start state s0 ∈ S and a policy
π, a stochastic process ω = s0, a0, s1, a1, . . . is defined,
with ai ∈ A(si). Such sequence is also called trajectory,
and records all states and actions taken. In an LCMDP
every trajectory induces a sequence of atomic propositions
L(ω) = L(s0)L(s1)L(s2) . . . as per the labeling function
L. Given a policy π and an initial mass distribution β, the
probability of every trajectory can be determined, and it is
a function of both π and β. Moreover, we indicate with St
the random variable for the state at time t and let At be the
random variable for the action at time t. In the sequel, we
rely on the concept of absorbing LCMDP that is formalized
in the following.

Definition 7: An LCMDP is absorbing if its state set S
can be partitioned into two subsets S′ (transient states) and
M (absorbing states) so that for each policy π:

1) for each s ∈ S′,
∑+∞
t=0 Prπβ [St = s] < +∞ where Prπβ

is the probability distribution induced by β and π.
2) for each s ∈ S′, sm ∈ M and a ∈ A(sm) we have

Pr(sm, a, s) = 0.
3) ci(s, a) = 0 for each s ∈M and each 0 ≤ i ≤ n.
Informally stated, an LCMDP is absorbing if for every

policy the state will eventually reach the set of absorbing
states M (first condition), from which it cannot escape
(second condition), and where no more costs are accrued
(third condition). Without loss of generality, in the following
we assume that the absorbing set M consists of a single state
sa and that A(sa) = {aa}. Note that the third condition
implies Pr(sa, aa, sa) = 1. From now onwards, unless
otherwise specified, we just consider absorbing LCMDPs.

For an LCMDP we can define n + 1 total cost functions

of a policy π and initial distribution β

ci(π, β) = E

[
+∞∑
t=0

ci(st, at)

]
where the expectation is taken with respect to the probability
distribution over trajectories induced by π and β. Note
that this expectation exists because of the assumption that
the LCMDP is absorbing, i.e., it will enter for sure the
absorbing state from which no more costs will be added.
This cost function is different from the finite horizon cost
function or discounted infinite horizon cost function often
considered in the theory of MDPs. However, we maintain
that in autonomous robotic applications total cost is the most
appropriate cost model because tasks have a finite duration,
but the duration is not necessarily known.

The connection between LCMDP and sc-LTL formulas is
as follows. A policy π over an LCMDP generates a trajectory
ω = s0, a0, s1, s2, a2, . . . , and this is associated with the
infinite string L(ω) = L(s0)L(s1)L(s2) We say that ω
satisfies an sc-LTL formula φ if and only if L(ω) satisfies
φ. Since sc-LTL properties consider words with finite length
only, they accept or reject infinite words with their finite
prefix. This means that after a certain time, t > 0, the total-
DFA associated with φ will accept or reject the string L(ω).

IV. PROBLEM FORMULATION

Building upon the definitions we introduced in the previ-
ous section, we can now formulate the problem we tackle in
this paper.

Multi-objective, multi-property MDP – Given:
• an LCMDPM = (S, β,A, ci,Pr, AP, L) with
n+ 1 costs functions c0, c1, . . . , cn;

• m sc-LTL formulas φ1, . . . , φm over AP ;
• n cost bounds B1, . . . , Bn;
• m probability bounds Pφ1

, . . . , Pφm
;

determine a policy π for M that:
• minimizes in expectation the cost c0(π, β);
• for each cost ci, (1 ≤ i ≤ n), ci(π, β) ≤ Bi;
• for every trajectory ω, each of the m formulas
φi is satisfied with at least probability Pφi

.

V. PROPOSED SOLUTION

Given an sc-LTL formula φi there exists a DFA Di
accepting all and only the words satisfying φi. Given the
equivalence between DFAs and extended-total-DFAs, there
is then an extended-total-DFA Ei accepting the language
satisfying φi. Starting from the LCMDP M and the m
extended-total-DFAs associated with the m formulas φi, our
solution builds upon two steps. First, we define a product
operation between an LCMDP and a DFA that returns a
new LCMDP, and we then sequentially compute the product
between M and the every Ei. Since the product generates
a new LCMDP with a larger state set, at every step we
introduce a pruning procedure removing states that cannot
be reached while following any policy. In the second step we
solve the final LCMDP using a linear program formulation.

A. Product definition

Our definition of product is given in definition 8. Products
between transition systems or CMDPs were already consid-
ered in literature [2], [6], but our approach is different. In
particular, the product between an LCDMP and an extended-
total-DFA gives a new LCMDP, and this will allow us to
define an iterated product between an LCMDP and multiple
extended-total-DFAs. Consistently with the fact that the
result is an LCMDP, the product does not include accepting
states, because these are not part of the definition of an
LCMDP.

Definition 8: Let M = (S, β,A, ci,Pr, AP, L) be an
LCMDP with absorbing state sa, and let E = (Q, q0, δ, F,Σ)
be an extended total-DFA with Σ = 2AP . The product
between M and E is an absorbing LCDMP M ⊗ E =
(Sp, βp, Ap, cpi ,Prp, AP, Lp) where:
• Sp = S ×Q.

• βp(s, q) =

{
β(s) if q = q0

0 otherwise
• Ap = A.
• cpi((s, q), a) = ci(s, a) for 0 ≤ i ≤ n.
•

Prp((s, q), a, (s
′, q′)) =

{
Pr(s, a, s′) if q′ = δ(q, L(s))

0 otherwise

• Lp(s, q) = L(s) .
States of the type (s, qs) where qs is the sink state in the

extended-total-DFA are called sink states for the product. It
is easy to verify that M⊗ E is indeed absorbing and that
its absorbing states are (sa, q) where q ∈ F ∪ {qa} and let
Qai = Fi ∪{qai} be the set of absorbing states in Ei. When
considering the product between an LCMDPM and multiple
extended-total-DFAs E1, . . . , Em the productM⊗E1⊗. . . Em
is also absorbing. Let its states have the form (s, q1, . . . , qm).
Its set of absorbing states is then

Sa = {(s, q1, . . . , qm) ∈ Sp |s = sa ∧ ∀i qi ∈ Qai},

i.e., the first component is the absorbing state of M and all
of the m other state components are in the absorbing states of
the extended-total-DFAs. Accordingly, the set S′p = Sp \ Sa
is the set of transient states in the product. Figure 1 shows
an example of product between an LCMDP and two total-
extended-DFAs. Note that there are three absorbing states at
the very right and that without loss of generality one could
combine them into a single absorbing state. However in the
figure we do not combine them to better illustrate the process
leading to the product.

B. Reducing Size of State Space

The product as per definition 8 creates LCMDPM⊗E =
(Sp, βp, Ap, cpi ,Prp, AP, Lp) where Sp = S ×Q. However,
in practice many states in Sp will be unreachable, i.e., they
will not be visited under any policy because of the way the
new transition probability function Prp is defined. Therefore,
rather than creating Sp as per the definition, we replace it
with a set of states R ⊂ S × Q that are reachable, i.e.,

Fig. 1. Left picture shows the original LCMDP with AP = {A,B,C,D}. Atomic propositions are placed near the vertices in which they are verified, as
per the labeling function. The two middle pictures are two extended total DFAs E1 and E2. The right picture shows the pruned product modelM⊗E1⊗E2.

states that can be reached. The key observation is that if
Prp((s, q), a, (s

′, q′)) = 0 for each (s, q) ∈ S × Q and a ∈
A, then (s′, q′) can be omitted from Sp. These states can
be easily identified based on the transition function for the
extended-total DFA, as per the definition of Prp.

Algorithm 1 takes as input an LCMDPM and an extended
total-DFA E , and returns the set R ⊂ S×Q of states reach-
able from the starting states following the transition function
Prp. The algorithm calls an internal function Reachable-
States-From, shown in Algorithm 2 that returns the set of
states that are reachable in one transition from a state on
product LCMDP. The algorithm uses a function Post(s) that
takes a state in M and returns the set of states that can be
reached from state s in one step.

Data: LCMDP, M = (S, β,A, ci,Pr, AP, L),
extended-total-DFA E = (Q, q0, δ, F,Σ)

Result: Set of reachable states in the product
(R ⊂ S ×Q)

R = {(s, q) | s ∈ S ∧ q = q0 ∧ β(s) > 0}
Rseen = ∅
while R 6= Rseen do

select (s, q) ∈ R \ Rseen;
Q′ ← Reachable-States-From((s, q),M, E);
R ← R∪Q′;
Rseen ← Rseen ∪ {(s, q)};

end
Algorithm 1: Selection of reachable states in product
LCMDP

Data: (s, q) ∈ S ×Q, M = (S, β,A, ci,Pr, AP, L),
E = (Q, q0, δ, F,Σ)

Result: A set of reachable states from (s, q)
∆← L(s);
C ← ∅;
S′ ←Post(s);
for a ∈ ∆ do

q′ ← δ(q, a);
for s′ ∈ S′ do

C = C ∪ (s′, q′);
end

end
return C

Algorithm 2: Reachable-States-From

After computing R, we can then generate the product
LCMDP M ⊗ E = (Sp, βp, Ap, cpi ,Prp, AP, Lp) where
Sp = R. Note that, by construction, states excluded from
R are irrelevant in the following computations, because they
cannot be reached under any policy.

C. Solving the Optimization Problem

The reason for introducing the product LCMDP is to
convert the problem of satisfying an sc-LTL formula into a
reachability problem. Similar constructions were used in the
past (e.g., [6]), although our construction is different because
of the way we defined the product. The relationship between
satisfiability and reachability is established by the following
theorem whose simple proof is omitted in the interest of
space.

Theorem 1: Let M be an LCMDP and E be an extended
total DFA associated with the sc-LTL formula φ. Let ω =
(s1, q1), . . . , (sn, qn), . . . be a trajectory ofM⊗E and L(ω)
be the corresponding string. L(ω) satisfies φ if and only if
ω does not include any state (s, q) ∈ Sp where q = qs.

According to the theorem, if a trajectory ω of M ⊗ E
reaches a sink state, then the corresponding sc-LTL property
φ is not satisfied by L(ω). Otherwise, it does. Therefore,
we are looking for traces starting from an initial state,
without passing through any of sink states and ending in the
absorbing state. These trajectories satisfy φ by construction
and as we will show in the following we can compute the
probability of satisfying φ.

Theorem 2: Let Mp = M ⊗ E be a product LCMDP
where E is the extended-total-DFA associated with an sc-LTL
property φ. If a policy π generates trajectories satisfying φ
with probability Pφ, then with probability 1−Pφ the policy
will generate trajectories passing sink states (s, q) ∈ Sp
where q = qs.

Proof: Because of the definition of transition function
for an extended-total-DFA and the definition of productM⊗
E , every state of Mp of the type (s, qa) is entered at most
once. Moreover a state of the type (s, qa) is entered if and
only if the property φ is not satisfied, so if the policy π
satisfies φ with probability Pφ, the trajectory enters states
(s, qa) with probability 1− Pφ.

Trajectories are induced by policies, and the theory of
occupation measures presented in the following can be used
to compute the probability that a policy reaches a state, as
well as to estimate the expected costs (the reader is referred
to [1] for a thorough introduction to occupation measures).
Given an absorbing LCMDP, let S′ be its set of transient

states. We define K = {(s, a) | s ∈ S′ ∧ a = A(s)} as its
state-action space. For a policy π we define the occupation
measures ρ(s, a) for each element in K as

ρ(s, a) =

+∞∑
t=0

Prπβ [St = s,At = a]

where Prπβ [St = s,At = a] is the probability induced by the
policy π and the initial distribution β. Note that in general
the occupation measure is a sum of probabilities but not a
probability itself. An occupation measure ρ(s, a), however,
is a probability when one ensures that state s is visited only
once. If state s is visited only once at time t, then all terms
in the definition of ρ(s, a) are 0, except one, and then this is
indeed a probability by definition. To ensure that a state is
visited just once, one has to either formulate an appropriate
policy π or impose specific properties on the transition
probabilities of the underlying state space. Given an LCMDP
M and m extended-total-DFAs E1, . . . , Em associated with
formulas φ1, . . . , φm, let

Mp =M⊗E1 ⊗ E2 · · · ⊗ Em.

For each property φi, we define the set

Si = {(s, q1, . . . , qi, . . . , qm) ∈ Sp | qi = qsi}

i.e., the set of states in Mp including the sink state for the
extended-total-DFA associated with φi. To ease the notation,
from now onwards we write the tuple ((s, q1, q2, . . . , qn), a)
as (x, a) with the understanding that x is a state in Mp and
a ∈ A(x) is an action for x as recursively defined by the
product. At this point we have all the elements to formulate
the main theorem providing the solution for the problem we
defined in Section IV.

Theorem 3: Let M = (S, β,A, ci,Pr, AP, L),
φ1, . . . , φm, B1, . . . , Bn and Pφ1

. . . Pφm
be as in Section

IV. Let E1, . . . , Em be m extended-total-DFAs associated
with φ1, . . . , φm, Mp =M⊗ E1 ⊗ E2 · · · ⊗ Em, and K be
the state action space associated with the set S′p of transient
states in Mp. The multi-objective, multi-property MDP
problem admits a solution if and only if the following linear
program is feasible:

min
ρ(x,a)∈K

∑
x∈S′

p

∑
a∈A(x)

c0(x, a)ρ(x, a) (1)

subject to∑
x∈S′

p

∑
a∈A(x)

ci(x, a)ρ(x, a) ≤ Bi, i = 1, ..., n (2)

∑
a∈A(Si)

ρ(Si, a) ≤ 1− Pφi , i = 1, ...,m (3)

∑
x′∈S′

p

∑
a∈A(x′)

ρ(x, a)[δx(x′)− Prp(x
′, a, x)] =

= β(x),∀x ∈ S′p (4)

ρ(x, a) ≥ 0,∀x ∈ S′p (5)

where δx(x′) equals to one, if x = x′ and zero otherwise.
Proof: The proof follows from the theory of CMDPs

and our definition of product. First consider the linear
program excluding constraints in (3). This is precisely the
linear program to solve a CMDP with an occupancy measure
approach (see, e.g., [1]). Next, consider the additional m
constraints in (3), and let us consider one specific formula
φi. Because of our definition of product, each sink state in
Si is entered at most once. More precisely, if one state Si is
entered once, then no other state in Si is entered. Therefore∑
a∈A(Si)

ρ(Si, a) is indeed a probability because at most
one of its component is different from 0. Combining this fact
with Theorem 2, it follows that each of the m constraints in
(3) bounds the probability that formula φi is not satisfied,
and this concludes the proof.

At this point it should be clear why the sink states qs and
qa were introduced when defining the extended-total-DFAs.
qs is separated from qa in order to make sure qs can be hit at
most one time for every policy realization, and our definition
of product allows to track multiple formulas in parallel.
If the linear program is solvable, its solution provides a
randomized, stationary, Markovian policy as follows (see
[1]):

π(x, a) =
ρ(x, a)∑

a∈A(x) ρ(x, a)
, x ∈ S′p, a ∈ A(x)

where π(x, a) is the probability of taking action a when
in state x.

VI. EXPERIMENTS AND RESULTS

In this section we show how the proposed system can
be used to compute policies based on complex task spec-
ifications accounting for multiple objective functions and
properties to be specified with different confidence levels.
In all cases the robot moves in a grid-like environment,
with four-connectivity, i.e., at each location the robot can
go up/down/left/right, unless the motion is forbidden by the
environment (e.g., when the robot is at the boundary or when
there are obstacles.)

A. Outdoor navigation

In the first scenario we consider a robot moving in
an outdoor domain without obstacles. Its environment is
modeled with the elevation map displayed in Figure 2. A
risk map is generated based on the terrain map where risk
is a function of altitude. The corresponding discretized risk
map is shown in the middle picture of the same figure
where warmer colors represent riskier areas. That is to say
that while completing its mission the robot has to avoid, if
possible, to move through risky areas. At each location the
outcome of actions is non-deterministic. To be specific, an
action attempting to move the robot towards a location not
higher than its current location succeeds with probability 0.9
and fails with probability 0.1. If the action fails the robot
remains at its own location or moves to one of its neighbors
with lower height (excluding the intended target location).

Fig. 2. Navigation experiment: Left : Terrain map retrieved from Internet. Middle : Risk map and labels. Right : A sample path satisfying all tasks.

Fig. 3. Factory experiment: Left : factory floor map. Middle : Risk map of the factory and its labels. Right : A sample path satisfying all properties.

Each of these locations is selected with equal probability.
When the robot selects an action trying to move to a higher
location, the action succeeds with probability of 0.3, and fails
in similar way. The same picture in Figure 2 labels some
regions in the map. The objective is to find a path from S
(start) to G (goal) that has the lowest possible cumulative
risk along the path and whose length is bounded by a given
threshold, while the robot has to perform three additional
tasks specified in sc-LTL as follows.

1) Visit region R1 then R2 in order to read some sensory
data, i.e., φ1 = ♦R1© ♦R2.

2) Visit region R3 and Leave region R3 from its border
to region R4, i.e., φ2 = ♦R3© (R3UR4).

3) Visit at least two consecutive states in region X in
order to explore that region, i.e., φ3 = ♦(X ©X).

Consistently with our problem definition, we will setup
different probability bounds for each of the properties spec-
ifying the three tasks. The right picture in Figure 2 shows a
valid path that satisfies all the properties.

B. Factory environment

In the second scenario we consider a factory-like environ-
ment where the robot is tasked with picukp-delivery tasks
in an environment with multiple obstacles. This is similar to
our former work considered in [10], [11]. Actions are non-
deterministic and succeed with probability 0.8. When failure
occurs, the robot ends up in one of the free adjacent free
locations (excluding the target location). The factory map is
shown in the left picture of Figure 3. A risk map is defined
as proximity to obstacles ranging as seen in the middle panel
of the same figure. Regions in the map are defined according
to the labels shown in the same picture which will be used
in order to define tasks. The robot starts from S and ends
at G. As in the previous task, the robot has to minimize
the overall cumulative task while obeying to a bound on the
traveled length. The following additional tasks are defined:

1) Go to P1 to pick up an object, then deliver it at D
location, i.e., φ1 = ♦P1© ♦D.

2) Go to P2 to pick up an object, then deliver it at D
location, i.e., φ2 = ♦P2© ♦D.

3) Stay away from region R, i.e., φ3 = (¬R)UG. Since
there is no always (�) operator for sc-LTL properties,
it needs to be defined requiring that the robot ends in
G.

The right panel in Figure 3 shows a sample path.

C. Rapid Deployment

Finally we consider a rapid deployment problem, similar
to what we did in our recent work [3], [4]. In a rapid
deployment scenario the robot is tasked with visiting a
number of locations with the objective of maximizing the
probability of success while obeying to a bound on the time
to complete the task. Figure 4 shows a map where four
regions are labeled as A, B, C and D and the goal area is
marked with G. The objective is to visit each region with a
certain probability. Four tasks are defined as:

1) Visit region A, i.e., φ1 = ♦A
2) Visit region B, i.e., φ2 = ♦B
3) Visit region C, i.e., φ3 = ♦C
4) Visit region D, i.e., φ4 = ♦D

Since the tasks are defined independent from each other,
assuming the probability of visiting A is P(A) and so on,
the probability of successfully completing the mission is then
P (A)P (B)P (C)P (D). Therefore, given a target probability
of success for the whole mission, one can accordingly set the
probabilities to satisfy each of the four tasks.

D. Results

For the outdoor navigation scenario we set the satisfaction
probabilities of φ1, φ2 and φ3 to be 0.7, 0.8 and 0.5
respectively. We also set the upper bound of the path length
to be 30. For the factory scenario, the satisfaction rate of the
tasks were 0.7, 0.7 and 0.8 while the upper bound of the path
length was set to 150. For the rapid deployment scenario the
probabilities are set to 0.6, 0.8, 0.5 and 0.9 respectively.

After determining the policy π from the linear program we
simulated 1000 executions for each of the problems. Table

Fig. 4. Rapid deployment experiment: A sample path satisfying all tasks.

Experiment φ1 φ2 φ3 φ4 Optimization
Navigation 36.6 244.6 2427 N/A 91.6
Factory 157.6 1012.4 8928.4 N/A 158.5
Deployment 11.4 20.4 72.9 274.5 47.1

TABLE I
TIME SPENT FOR EVERY LTL PRODUCT AND THE TIME FOR SOLVING

LINEAR PROGRAMMING PROBLEMS (IN SECONDS.)

I shows the time taken to compute the various products as
well as the time to solve the linear program. All tests were
run on a Linux machine with quad core i7 CPU at 2.5 GHz
with 12 MB of RAM and coded in Matlab.

Table II shows the number of states for all experiments.
The last column (NP – no pruning) in the table displays
how many states would have been generated if the product
was calculated without pruning unreachable states. A tenfold
reduction is obtained in average. Table III illustrates the
number of times, in 1000 simulations, that the sink state
of every extended-total-DFAs associated with each sc-LTL
properties are reached. To interpret the results it is important
to recall that the sink state is traversed when the property
is not verified, i.e., for a given probability Pφ then in N
trials we would expect that the sink state is traversed (1 −
Pφ)N times. The table confirms that the algorithm produces
policies consistent with the objectives (small deviations from
the expected number are due to the randomized nature of the
experiments.) Total risk along the path for experiments I, II
and III are 106.5, 1049.9 and 128.1 respectively. Average
path length for experiments I, II and III is 24.55, 142.7 and
34.5 in order.

Experiment Original φ1 φ2 φ3 φ4 NP
Navigation 117 600 1526 5024 N/A 25272
Factory 608 1550 3136 9400 N/A 87552
Deployment 117 356 474 950 1894 29952

TABLE II
ORIGINAL NUMBER OF STATES, AND THE NUMBER OF STATES AFTER

EACH PRODUCT OPERATION. NP STANDS FOR NOT PRUNED.

Experiment φ1 φ2 φ3 φ4
Navigation 311 195 455 N/A
Factory 259 305 194 N/A
Deployment 393 188 495 102

TABLE III
NUMBER OF TIMES EVERY SINK STATE OF EVERY

EXTENDED-TOTAL-DFA IS REACHED.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we tackled the problem of multi-objective
planning in non-deterministic environments while two types
of constraints have to be satisfied. The first category concerns
total cost values where one cost is minimized and the
remaining are bounded in expectation. The second category
is related to high level tasks. High level tasks are defined
as sc-LTL properties, and converted to extended-total-DFAs.
By calculating the product between the original CMDP and
DFAs, and taking advantage of occupation measures, we
are able to extract proper policies that achieve the goals
matching a given probability of success (if feasible). A
pruning algorithm is also used in order to remove a set of
useless states. Our approach can be extended in different
ways. The order in which the DFAs are multiplied with
LCMDP has an impact on the size of the product and
could be optimized. Another extension we will consider is
risk aversion, i.e., producing policies that not only minimize
expectations, but bound variance from the expectation.

REFERENCES

[1] E. Altman. Constrained Markov Decision Processes. Stochastic
modeling. Chapman & Hall/CRC, 1999.

[2] C. Baier and J.P Katoen. Principles of model checking. MIT Press,
2008.

[3] S. Carpin, M. Pavone, and B.M. Sadler. Rapid multirobot deployment
with time constraints. In Proc. of IROS, pages 1147–1154, 2014.

[4] Y-L. Chow, M. Pavone, B.M. Sadler, and S. Carpin. Trading safety
versus performance: Rapid deployment of robotic swarms with robust
performance constraints. ASME Journal of Dynamical Systems,
Measurements and Control, 137(3):031005, 2015.

[5] X. Ding, B. Englot, A. Pinto, A. Speranzon, and A. Surana. Hi-
erarchical multi-objective planning: From mission specifications to
contingency management. In Proc. of ICRA, pages 3735–3742, 2014.

[6] X. Ding, A. Pinto, and A. Surana. Strategic planning under uncer-
tainties via constrained markov decision processes. In Proc. of ICRA,
pages 4568–4575, 2013.

[7] X. Ding, S. L. Smith, C. Belta, and D. Rus. Ltl control in uncertain
environments with probabilistic satisfaction guarantees. In World
Congress, volume 18, pages 3515–3520, 2011.

[8] X. Ding, S. L. Smith, C. Belta, and D. Rus. Optimal control of markov
decision processes with linear temporal logic constraints. IEEE Trans.
Automat. Contr., 59(5):1244–1257, 2014.

[9] K. Etessami, M. Kwiatkowska, M. Vardi, and M. Yannakakis. Multi-
objective model checking of Markov decision processes. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 50–65.
Springer, 2007.

[10] S. Feyzabadi and S. Carpin. Risk-aware path planning using hierarchi-
cal constrained markov decision processes. In Proc. of CASE, pages
297–303, 2014.

[11] S. Feyzabadi and S. Carpin. HCMDP: a hierarchical solution to
constrained markov decision processes. In Proc. of ICRA, pages 3971–
3978, 2015.

[12] A. Kolobov. Planning with Markov decision processes: An AI
perspective. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 6(1):1–210, 2012.

[13] B. Lacerda, D. Parker, and N. Hawes. Optimal and dynamic planning
for markov decision processes with co-safe ltl specifications. In Proc.
of IROS, pages 1511–1516, 2014.

[14] M. Sipser. Introduction to the theory of computation. Course
technology CENGAGE learning, 2006.

[15] A. Ulusoy, T. Wongpiromsarn, and C. Belta. Incremental controller
synthesis in probabilistic environments with temporal logic constraints.
IJRR, 33(8):1130–1144, 2014.

[16] T. Wongpiromsarn, A. Ulusoy, C. Belta, E. Frazzoli, and D. Rus.
Incremental synthesis of control policies for heterogeneous multi-agent
systems with linear temporal logic specifications. In Proc. of ICRA,
pages 5011–5018, 2013.

