
Cognitive Computing Systems: Algorithms and Applications for
Networks of Neurosynaptic Cores

Steve K. Esser, Alexander Andreopoulos, Rathinakumar Appuswamy, Pallab Datta, Davis Barch, Arnon Amir,
John Arthur, Andrew Cassidy, Myron Flickner, Paul Merolla, Shyamal Chandra§, Nicola Basilico†,

Stefano Carpin,†, Tom Zimmerman, Frank Zee§, Rodrigo Alvarez-Icaza, Jeffrey A. Kusnitz, Theodore M. Wong,
William P. Risk, Emmett McQuinn, Tapan K. Nayak‡, Raghavendra Singh‡, and Dharmendra S. Modha
IBM Research - Almaden, San Jose, CA 95120 ‡IBM Research - India †UC Merced, Merced, CA 95343

Abstract—Marching along the DARPA SyNAPSE roadmap,
IBM unveils a trilogy of innovations towards the TrueNorth
cognitive computing system inspired by the brain’s function and
efficiency. The non-von Neumann nature of the TrueNorth archi-
tecture necessitates a novel approach to efficient system design.
To this end, we have developed a set of abstractions, algorithms,
and applications that are natively efficient for TrueNorth. First,
we developed repeatedly-used abstractions that span neural codes
(such as binary, rate, population, and time-to-spike), long-range
connectivity, and short-range connectivity. Second, we imple-
mented ten algorithms that include convolution networks, spectral
content estimators, liquid state machines, restricted Boltzmann
machines, hidden Markov models, looming detection, temporal
pattern matching, and various classifiers. Third, we demonstrate
seven applications that include speaker recognition, music com-
poser recognition, digit recognition, sequence prediction, collision
avoidance, optical flow, and eye detection. Our results showcase
the parallelism, versatility, rich connectivity, spatio-temporality,
and multi-modality of the TrueNorth architecture as well as
compositionality of the corelet programming paradigm and the
flexibility of the underlying neuron model.

I. INTRODUCTION

A. Context

To usher in a new era of cognitive computing [1], we are
developing TrueNorth (Fig. 1), a non-von Neumann, modu-
lar, parallel, distributed, event-driven, scalable architecture—
inspired by the function, low power, and compact vol-
ume of the organic brain. TrueNorth is a versatile sub-
strate for integrating spatio-temporal, real-time cognitive algo-
rithms for multi-modal, sub-symbolic, sensor-actuator systems.
TrueNorth comprises of a scalable network of configurable
neurosynaptic cores. Each core brings memory (“synapses”),
processors (“neurons”), and communication (“axons”) in close
proximity, wherein inter-core communication is carried by all-
or-none spike events, sent over a message-passing network.

Recently, we have achieved a number of milestones: first, a
demonstration of 256-neuron, 64k/256k-synapse neurosynaptic
cores in 45nm silicon [2], [4] that were featured on the
cover of Scientific American in December 2011; second, a
demonstration of multiple real-time applications [5]; third,
Compass, a simulator of the TrueNorth architecture, which
simulated over 2 billion neurosynaptic cores exceeding 1014

synapses [3], [6]; and, fourth, a visualization of the long-
distance connectivity of the Macaque brain [7]—mapped to

§Work done while at IBM Research - Almaden.

TrueNorth architecture—that was featured on the covers of
Science [8] and Communications of the ACM [1].

We now unveil a series of interlocking innovations in
a set of three papers. In this paper, we present a set of
algorithms and applications that demonstrate the potential of
the TrueNorth architecture and value of the programming
paradigm. In two companion papers, we present a versatile and
efficient digital spiking neuron model that is a building block
of the TrueNorth architecture [9] as well as a programming
paradigm for hierarchically composing and configuring cogni-
tive systems that is effective for the programmer and efficient
for the TrueNorth architecture [10].

B. Motivation

We live in a world where a rapid proliferation of sensors,
embedded in a range of consumer devices like cars, cameras,
and cell phones as well as complex systems like weather
monitoring networks, provide a massive flow of real-time,
spatio-temporal, multi-modal data. The volume, the velocity,
the variety, and the veracity of the data all pose enormous
computational, algorithmic, power, and system packaging chal-
lenges. To complement today’s computational paradigm that
brings data to computation and excels at symbolic processing,
we envision a TrueNorth-based computational paradigm that
brings computation to data and excels at sub-symbolic process-
ing. Specifically, the low-precision, synthetic, simultaneous,
pattern-based metaphor of TrueNorth is a fitting complement to
the high-precision, analytical, sequential, logic-based metaphor
of today’s von Neumann computers.

A TrueNorth program is a complete specification of the
anatomy and physiology of a network of neurosynaptic cores
that identifies all external inputs and outputs of the network.
Abstractions, algorithms, and applications that are efficient for
the von Neumann architecture are not necessarily efficient for
the non-von Neumann TrueNorth architecture. Therefore, we
are unable to directly leverage the rich heritage of design,
development, and deployment of the former and instead are
compelled to seek a new way of thinking that is custom tailored
to the latter. Specifically, to write good TrueNorth programs,
three concrete challenges must be overcome. First, one must
learn to program a parallel, distributed, event-driven architec-
ture that uses spikes, has discrete-valued synapses, allows each
neuron to receive inputs from at most 256 axons, requires that
all 256 neurons on a neurosynaptic core must receive input
from a receptive field of the same 256 axons, and allows each
neuron to transmit spikes to at most one axon line, providing

DARPA: Approved for public release; distribution is unlimited

Network

neurons

axons

dendrites synaptic
crossbar

neurosynaptic core

Buffer

Buffer

Buffer

PRNG

Buffer

Fig. 1. TrueNorth is a brain-inspired chip architecture built from an
interconnected network of lightweight neurosynaptic cores [2], [3]. TrueNorth
implements “gray matter” short-range connections with an intra-core crossbar
memory and “white matter” long-range connections through an inter-core
spike-based message-passing network. TrueNorth is fully programmable in
terms of both the “physiology” and “anatomy” of the chip, that is, neuron
parameters, synaptic crossbar, and inter-core neuron-axon connectivity allow
for a wide range of structures, dynamics, and behaviors. Inset: The TrueNorth
neurosynaptic core has 256 axons, a 256×256 synapse crossbar, and 256
neurons. Information flows from axons to neurons gated by binary synapses,
where each axon fans out, in parallel, to all neurons thus achieving a 256-fold
reduction in communication volume compared to a point-to-point approach.
A conceptual description of the core’s operation follows. To support multi-
valued synapses, axons are assigned types which index a synaptic weight for
each neuron. Network operation is governed by a discrete time step. In a time
step, if the synapse value for a particular axon-neuron pair is non-zero and
the axon is active, then the neuron updates its state by the synaptic weight
corresponding to the axon type. Next, each neuron applies a leak, and any
neuron whose state exceeds its threshold fires a spike. Within a core, PRNG
(pseudorandom number generator) can add noise to the spike thresholds and
stochastically gate synaptic and leak updates for probabilistic computation;
Buffer holds incoming spikes for delayed delivery; and Network sends spikes
from neurons to axons.

a projective field of 256 neurons. Second, one has to optimize
the implementation of each algorithm and application from the
perspective of power and area by minimizing the number of
neurosynaptic cores used; minimizing the average firing rate;
maximizing the sparsity of synaptic crossbars; and minimizing
the total time to solution. Third, one has to transduce incoming
data into spike-based neural code and transduce spike-based
output into the desired output format. In summary, within the
hardware constraints of the TrueNorth architecture, our goal is
to fully specify a network of neurosynaptic cores that carries
out a desired application as efficiently as possible.

C. Contributions

Creating a TrueNorth program, a complete specification of
neurosynaptic cores as well as inputs and outputs, that is con-

sistent with the TrueNorth architecture becomes increasingly
difficult as the size of a network increases. To help combat
the complexity, we propose a divide-and-conquer approach
whereby a large network of neurosynaptic cores is constructed
by interconnecting a set of smaller networks of neurosynaptic
cores, where each of the smaller networks, in turn, could be
constructed by interconnecting a set of even smaller networks,
and so on, until we reach a network consisting of a single
neurosynaptic core, which is the fundamental, non-divisible
building block.

To enable a programmer to effectively construct cognitive
abstractions, algorithms, and applications that are efficient for
TrueNorth, we have developed a new corelet programming
paradigm that provides a complete end-to-end framework [10].
A corelet is an abstraction of a network of neurosynaptic
cores that encapsulates all intra-network connectivity and all
intra-core physiology and only exposes external inputs to and
external outputs from the network. In other words, a corelet
is a synonym for a program on the TrueNorth architecture.
Given two or more corelets, composition is an operation for
creating a new corelet. As algorithm designers our job is to
create corelets from scratch or to compose one or more existing
corelets into new corelets that are suitable for the application
at hand.

Abstractions: In Section II, to carry out the essential tasks
of corelet creation and composition effectively, we specify
a set of repeatedly-used design abstractions that span neural
codes, long-range connectivity, and short-range connectivity.
In Section III, we develop and demonstrate ten algorithms and
seven applications for TrueNorth.

Algorithms: The algorithms include convolution networks
[11] for spatial feature extraction, spectral content estimators
for time-domain to frequency-domain conversion, liquid state
machines [12], [13] for feature extraction in time-varying
signals, restricted Boltzmann machines (RBMs)[14] for spa-
tial feature extraction, hidden Markov models [15] as an
example of finite-state machines, looming detectors, temporal
pattern matching, and various classifiers (logistic regression,
backpropagation [16], stackable covariance-based). The same
corelet algorithm is often used across multiple applications,
and multiple corelet implementations are possible for the same
algorithm, showcasing the composability and flexibility of
corelet construction.

Applications: The applications include speaker recogni-
tion, music composer recognition, digit recognition, sequence
prediction, collision avoidance, optical flow, and eye detection.
The applications presented here were judiciously chosen to
illustrate the inherent parallelism and versatility of the ar-
chitecture; the architecture’s ability to support feedforward,
feedback, and lateral inter-core connectivity; the architecture’s
ability to support spatial, temporal, and spatio-temporal pro-
cessing as well as event-driven sensors; the architecture’s
ability to support representative inputs such as voice, music,
images, text, and video; the richness and diversity of intra-core
connectivity; the compositional power of the programming
paradigm; and the flexibility of the neuron model. All of
the applications were prototyped and tested on the Compass
simulator [3]. Demonstrating the scalability of TrueNorth, the
systems used for these applications range in size from 38 to

3.1× 106 neurons, 122 to 14× 106 synaptic connections, and
1 to 21× 103 cores.

II. DESIGN SUBSTRATES

The representation, delivery, and integration of informa-
tion in a neurosynaptic system is directly influenced by the
underlying architectural substrate. Here, we describe neural
codes, connection methods, and synaptic weight representation
approaches used throughout the systems described in this
paper.

A. Neural Codes

In a number of systems, the brain uses binary spikes to
represent non-binary information [17]. Drawing inspiration
from this, we use a number of neural coding schemes to
represent different types of information in TrueNorth. A binary
code uses a single spike to provide an indication that something
specific has been detected. A rate code uses the number of
spikes occurring within a specified number of time steps, the
temporal window, to indicate the amplitude of a signal. A
population code uses the number of spikes occurring across
multiple axons or neurons, the spatial window, in a single
time step to indicate the amplitude of a signal. Time-to-
spike coding uses the time of a single spike in a predefined
temporal window to indicate the amplitude of a signal. The
particular choice of coding scheme is dependent on the neuron,
axon, communication and time resources available, as well
as the particular network design. We have found that rate
code schemes are typically the easiest to develop systems
for, but are not necessarily the most efficient in terms of
resource utilization. We abbreviate coding schemes using a
letter-number pair to indicate the coding scheme, Binary (B),
Rate (R), Population (P), or Time-to-spike (T) followed by a
number indicating the window used, such as R16 for a rate
code applied in a window of 16 time steps. If the notion of
window is not applicable, the number is omitted.

B. Connection Methods

The TrueNorth architecture allows each neuron to transmit
spikes to a single axon line. In cases where broader connec-
tivity is desired, a splitter corelet can be used. Each input to
a splitter corelet forms a synapse with N unique neurons in
that corelet, and the neurons are configured such that for each
incoming spike they receive, they generate a spike of their
own. Thus, a single input produces N spiking neurons on the
next time step that can be targeted to N different axons.

C. Synaptic Weight Composition

The TrueNorth architecture provides the capacity for a neu-
ron to assign four possible synaptic strengths across its inputs,
with specific strength assignments dictated by the axon types
at the crossbar level (see Fig. 1 for details). Further flexibility
can be achieved by splitting each input and connecting it to
multiple axon lines, then choosing the four available weights
judiciously. For example, if each input to a core is split so that
it can connect to four axon lines, each with a different type,
with the corresponding strength values set to 1, 2, 4, and 8 for
those types, a neuron can assign any strength between 0 and
15 to each of its inputs. A similar composition can be used if

negative weights are desired. This approach can be extended to
multiple axon lines if additional values are desired. Another
way of emulating a large range of integer weights is to use
multiple neurons and use a weighted combination of them at
a later stage.

III. APPLICATIONS

For each application, we describe a corelet-level connec-
tion blueprint, a description of component corelets and their
associated algorithms, and results.

A. Speaker Recognition

The ability to process and integrate information from
multiple sensory modalities is a hallmark of cognitive systems.
Given audio and video of 34 individuals from the CUAVE
database [18] speaking the digits 0–9, we constructed a system
that recognizes and classifies these speakers. The system draws
upon two feature extraction approaches. The first is a spectral
content estimator, which computes the dot product between
an input signal and a bank of square-wave filters to convert
a time-varying signal into a frequency space. The second is a
convolution network, which is a popular, biologically inspired
approach for visual processing [11] that uses convolutions with
a filter library followed by averaging to create a feature set.
Features are fed into a multilayer classifier that makes succes-
sive non-linear discriminations based on linear combinations
of input features. The system includes three main corelets, a
spectral content estimator corelet that process audio in parallel
with a convolution network corelet that process video, both of
which connect to a stackable classifier corelet (Fig. 2).

Spectral Content Estimator: Input to this corelet is sent
to a square-wave filter sub-corelet that implements a bank of
square-wave filters with a configurable range of frequencies
and phases. Each square wave is separated into positive
and negative components, further divided into 256 sample
segments, and a neuron is configured with a receptive field
matching each segment. These neurons thus compute a portion
of the total dot product of the input with a square wave.
For inputs with NS samples, this design allows representation
of a square wave across dNS/256e cores. In the summation
corelet, a core collects all partial dot products for the same
square wave. A single neuron is configured to sum the inputs,
assigning a negative weight to inputs representing negative
wave components and a positive weight to inputs representing
positive wave components. The rate-coded output of a summa-
tion neuron thus represents the dot product of the input signal
and the entire square wave.

Convolution Network: Input to this corelet is sent to a
bank of convolution filter corelets, where it is divided into
16×16 patches, and each patch sent to a filter module corelet.
A filter module corelet contains a single core whose neurons
have receptive fields that individually represent a filter at a
particular input location and collectively apply an optimal
convolution of input with the desired filter. This set of corelets
thereby convolves horizontal, vertical, and two diagonal edge-
extraction kernels of dimension 3×3 each with the input image.
Output from a convolution filter corelet is sent to an averaging
corelet, containing cores configured to do an average-and-
downsample operation.

51
2

P
R

16

4
KP R
16

36
 P

R
16

17
 K

P
R

16

16
 K

P
R

16

65
 K

P
R

16

85 Cores

Convolution Network

Spectral Content
Estimator

512 Cores

393 Cores

Stackable Classifier

Classifier Module

Summation

Square-wave Filter

Averaging

Convolution Filter

4
KP R
16

16
 K

P
R

16

Convolution Filter

64 Cores
...

Corelets

Filter module

Filter Module

25
6

P
R

16

25
6

P
R

16

1 Core

CF ACF ACF ACF A

C

C
C

C

C
C

...

CF

A

C

S Σ

S

Σ

FM

FMFMFMFM

Convolution Network*

Spectral Content
Estimator

Sp

Stackable Classifier

*

SC

Sp

CF

FM

SC

Fig. 2. Corelet diagram for the speaker recognition system. Here, and for
all corelet diagrams, each box represents a corelet, with the top color bar
providing the title, interior gray box showing internal structure and the side
white bars representing connectors. Each connector indicates the number of
pins (P), 1,024 pins (KP), or 1,048,576 of pins (MP) in the connectors,
and the coding scheme used. A corelet always contains other corelets or
individual cores, thus systems are always decomposable into individual cores.
Input connectors link external inputs or corelet output connectors to internal
corelet input connectors or axons on individual cores. Output connectors link
internal corelet output connectors or neurons on individual cores to external
corelet input connectors or external outputs. Here, to provide an example of
the compositional structure of the system, decomposition of the convolution
network corelet down to one of its single core corelets is shown.

Stackable Classifier: This corelet uses classifier module
corelets as its basic building block, where each such corelet
attempts to predict the correct class label based on its own,
partial set of input features. Training is accomplished by
computing the covariance between a classifier module’s input
features and the corresponding binary class labels. Covariance
values are converted into a synaptic crossbar by finding the
closest fit of axon types, strength values, and binary synaptic
states. By ensuring that the number of inputs to each corelet
is less than or equal to 256, each corelet is implemented using
a single core. For a system with NF features and NC classes,
these corelets are arranged in a pyramid, such that L1 =
dNF /256e corelets in the first layer receive external inputs.
Subsequent layers are added with Lx = d(Lx−1 ∗ NC)/256e
corelets in layer Lx drawing input from the previous layer until
a layer with a single corelet is reached. The rate-coded output
of the top layer is read out using a winner-take-all process to
provide a predicted class label.

Results: The system was trained and tested using data
from 34 individuals chosen from the CUAVE database [18].
The data was processed so that each speaker’s head was
similarly centered and scaled in the video. Video frames were

Liquid State MachineLSM

1.
7

KP
R

16

10
8

P
B

17 Cores

S

L

LSM

Classifier Module
C

Stackable Classifier
SC

S L

2
P B

1.
7

KP
R

16

85 Cores

Stackable Classifier

C

C
C

C

C
C

...

SC

Corelets

Splitter

Liquid State Machine

Liquid

INPUT

Fig. 3. Corelet diagram for the composer recognition system. The splitter
sub-corelet is conditional and only generated when duplication of inputs for
broader distribution is desired. A zoomed in view of the liquid corelet’s core
level connectivity is provided. Feedforward connections are shown in green,
feedback connections are shown in black, lateral excitatory connections are
shown in red and lateral inhibitory connections are shown in purple.

downsampled to a resolution of 75×50, converted to grayscale,
and each pixel transduced using a rate code. For each video
frame, the corresponding 1 second long audio segment was
downsampled from 16 KHz to 4 KHz, and each audio sample
transduced using rate code. 2500 total frames were used for
training the system, and testing was performed on 21 out-
of-sample frames from each subject. The system identified
the correct speaker with 98.8% accuracy, comparable to best
previous results on this dataset [19]. This system illustrates
how TrueNorth’s internal representation of data using the
common language of spikes naturally facilitates multimodal
system composition.

B. Composer Recognition

To explore the use of recurrent networks for processing
time-varying signals, which are pervasive in cognitive ap-
plications, we constructed a system to distinguish between
musical scores of Bach and Beethoven. Given a MIDI file
dataset of musical compositions, this system uses a liquid
state machine, in conjunction with the stackable classifier
previously discussed, to identify the music piece’s composer.
Liquid state machines [12] are computational constructs that
rely on recurrent connectivity to extract discriminative features
from time varying signals and provide a natural and elegant
approach for extracting the recurring patterns found in music.
The design of the system discussed here is inspired by [20].
In Fig. 3 we provide a diagram of the system’s corelet-
level architecture. The system comprises three main corelets,
a liquid state machine corelet that connects to an instantiation
of the stackable classifier corelet described above.

Liquid State Machine: This corelet contains a splitter
corelet that distributes input to a liquid corelet. The liquid
corelet uses a multilayer approach, where both the number of
layers and number of cores in each layer is parameterizable.

Each core allocates 27 inputs axons for each of feedforward,
feedback, lateral excitatory and lateral inhibitory input, along
with 27 output neurons for each of feedforward, feedback,
lateral excitatory and lateral inhibitory output (see Fig. 3).
Feedforward, feedback and lateral output neurons are assigned
target cores uniformly in the next layer, previous layer, or
same layer, respectively. Cores in the first layer receive input
from the data to be processed to their feedforward input
axons. All neurons in the system are duplicated (identical input
weights and parameters), providing an implicit splitter, such
that activity from each neuron can also be delivered to the
classifier. Independent and identically distributed samples from
a simulated Bernoulli random variable are used to assign the
binary crossbar weights. Each of the three non-inhibitory axon
types has a synaptic weight of 1, the inhibitory axon type has
a weight of -1, and a neuron fires a spike when its membrane
potential is at least 70.

Results: A system was created using a liquid state machine
corelet with four layers and four cores per layer. The system
uses the MIDI toolbox [21] to convert each music file from a
dataset of 54 Bach and Beethoven MIDI files in C major to
a spike-based time sequence of 108 note pitches. The music
was represented using a binary code by assigning each of the
108 pitches in the music to an input line and each 32nd note
to a time step. Each note produced one or more spikes on the
corresponding input line and time steps. We used 44 files for
training and the remainder for testing. A running total of the
spikes produced by the classifier for each of the two classes
(Bach or Beethoven) was computed to provide an ongoing
indication of the classifier’s prediction. By using winner-
take-all on the final spike count per test piece, an average
classification accuracy of 75% is achieved. In this system,
the large number of feedback and lateral connections in the
liquid state machine corelet highlights TrueNorth’s suitability
for recurrent connectivity.

C. Digit Recognition

Recognizing and labeling symbols from noisy sub-
symbolic data is an essential capability for cognitive systems.
Given handwritten digits (0–9) from the MNIST dataset [22],
we developed a TrueNorth program to recognize and classify
these images. This task is challenging due to variation among
writing styles, even among handwriting instances from the
same person repeatedly writing the same digit. To overcome
this challenge, we use an RBM [14], which is a generative
and unsupervised learning algorithm that clusters and extracts
features from data. This ability to cluster data into similar sets
without using labels is appropriate to deal with the variations
in writing styles, reducing the burden on the classifier. The
system comprises an RBM-trained feature corelet that extracts
image features and sends them to a stochastic gradient descent
trained linear classifier corelet that identifies the digit.

Coding Scheme: We implemented this network such that
a new image can be input each timestep, and a recognition
requires 4 timesteps to travel through the core pipeline (1
timestep for input, 1 for feature extraction, and two for
classification). To achieve such throughput, we cannot use rate
code, which takes many timesteps to transmit and receive a
value; instead we encode all signals as either binary (spike or
no spike) or as a population code. The population code we use

is a thermometer code (i.e., unary code), which uses N neurons
to represent values from 0 to N. If no neurons are active, the
value is 0; if the first M neurons are active the value is M.

RBM Feature Extractor: This corelet comprises multiple
receptive field corelets, each trained independently using an
RBM (Fig. 4 left). Each corelet contains 64 hidden units,
each excited and inhibited by a set of pixels in the image,
its feedforward receptive field. A corelet is mapped to a single
core by finding a best fit between learned weights and core
parameters. Unlike common RBM implementations that use
sigmoidal units, we threshold the hidden units’ outputs at zero,
resulting in a 64-dimension binary vector per receptive field
corelet, which is sent to the classifier.

Linear Classifier: This corelet multiplies the binary feature
extraction output with a weight matrix trained using stochastic
gradient descent. We separate the classifier’s weight matrix
into two sublayers, simplifying the core mapping. The first
sublayer uses partial sum corelets that compute the partial
matrix multiplication for 64 inputs, resulting in one output per
class. The second sublayer uses summation corelets to sum
the partials to complete the operation. For the partial sum,
the crossbars implement a 4-bit (-8..7) multiplication with the
binary features. The neurons’ membrane potentials correspond
to the accumulation of the 16-level multiplications. We truncate
the multiply-accumulate values at 24 levels, which are sent to
the second sublayer, which sums them into the values for the
10 classes. The final sums are represented using an ON-OFF
thermometer code, 128 output neurons corresponding to each
class, representing values from -64 to 641. The system codes
values 1 to 64 by giving all neurons a threshold of zero and a
leak ranging from -1 to -64; negative values are coded in the
same manner by negating input values (in the crossbar).

Results: We preprocessed the MNIST images of handwrit-
ten digits by subsampling and thresholding, which reduced the
original 28×28 pixel images down to 16×16 and reduced the
number of pixel levels from 256 down to 2. This preprocessing
results in a minimal loss of performance (both for machine and
human), but enables us to map this task more efficiently, using
fewer neurons and synapses and therefore fewer cores. We di-
vided the image into four (overlapping) patches, corresponding
to the four sets of 64 hidden units, each consisting of 11×11
pixels. We send two spikes (positive and negative axon types)
for each active pixel in each patch to the hidden units. This
input drives hidden unit activity in the RBM feature extractor
and on to the linear classifier (Fig. 4 center). The system scored
92.34% correct in the 60,000 sample training set and 91.94%
in the 10,000 sample test set (Fig. 4 right).

The digit recognition system exhibits the parallel, low-
precision nature of TrueNorth computation. We use many bi-
nary feature encoder neurons in parallel (equaling the number
of pixels) with a low-precision classifier, in contrast to conven-
tional implementations, which use fewer encoder neurons and
higher neuron and classifier precision to match performance.

D. HMM Sequence Modeling

Recognizing patterns within a sequence of symbols is a
critical ability for cognitive systems. For example, acoustic

1Negative values are necessary in the case that the input image results are
negative for all classes.

12
80

P
P1

28

40
96

P

40
96

P
B1

96
8

P

t3t3t3t3t3

9 C ores

RBM Feature Extractor

4 C ores

Linear Classifier

R FR FR FR F
PS

LCFE

Partial S umR eceptive F ield
R F PS

R BM Feature E xtractorFE Linear Classifier
LC

S ummation
t3

PSPSPSPS

B1B1

Corelets

0 10 20

Summation

Partial Sum

Receptive Field

time step

sp
ik

e
ra

st
er

1 2 3 4 5 6 7 8 9
90

91

92

93

94

%
 c

or
re

ct

digit

Fig. 4. Left The corelet diagram for the digit recognition system. Center The receptive field neurons sum inputs from a digit image presented at each time
step and spike (dots) if excitation exceeds inhibition. Spiking receptive field neurons drive the partial sum neuron, which drive the summation neurons, the
classification output (100 of each neuron type shown). Right The classification system achieves 91.94% correct on the 10,000 out-of-sample test digits.

0 1 2 3
s1

s2

p a i d f o r n u

time (seconds)

sp
ik

e
ra

st
er

 (n
eu

ro
n)

S2

S1

S2

S1

S2

S1

i = 0

…

q(A0 | s1)

q(A0 | s2)

q(A1 | s1) q(A2 | s1)

t1

t2

t3

t4

i = 1 i = 2

27
 P

R2
56

Observation Probability

Corelets

2
P

R2
56

Observation
Probability

2
P

R2
56

State ComputationSC

OB

1/4 Core

2
P

R2
56

2
P

R2
56

* WTA

1/4 Core

1/4 Core

4
P

R2
56

2
P

R2
56

State MemorySM

1/4 Core

4
P

R2
56

State Computation

WTA

State Memory

OB

SC

WTA

SM

Fig. 5. Two-state HMM lattice diagram (upper left). Decoding results: s1
corresponds to consonants and s2 corresponds to vowels + space (upper right).
Corelet diagram for the HMM sequence recognition system (bottom).

sequences form music and words, word sequences form lan-
guage, and language is a construct for conscious sequential
thought. Given a sample of English text, we classify the
sequence of characters into two classes: consonants (s1) or
vowels and spaces (s2) using the two-state Hidden Markov
Model (HMM) [15] shown in Fig. 5 (upper left). We trained the
HMM using the forward/backward algorithm on a sequence of
30,000 characters from unlabeled English text, and we mapped
the resulting parameters from the HMM to a set of TrueNorth
cores and tested the performance.

To evaluate the HMM, we compute the forward recursion,
the probability that the HMM will end up in each state, as:

αi(s1) = αi−1(s1)p(t2)q(Aj |s1) +
αi−1(s2)p(t3)q(Aj |s1) (1)

where αi(s1) is the non-normalized probability of state 1 at

time i, p(tx) is the transition probability (see Fig. 5, upper left),
and q(Ai|sk) is the observation probability for the character
A ∈ {a, b, c, ...} at time i, for the kth state. We repeat this
for state 2 and map to TrueNorth corelets (Fig. 5, bottom) as
follows.

Coding Scheme: Input into the HMM is represented as
symbols by 27 axons, where each axon corresponds to a letter
of the alphabet or the space character. A symbol is presented
to the system by injecting 256 spikes—one per timestep—onto
the input line corresponding to the observed character A.

Observation Probability: This corelet uses neurons with
stochastic synapses to compute the observation probabilities.
There is one synapse per state, per symbol. These neurons
are configured with a threshold of 1 and their synapses are
programmed to stochastically deliver incoming spikes with
probability q(Ai|sk).

State Computation: This corelet uses three neurons per
state to compute the probability αi(sk) of the system being
in state sk at time i. There are two input neurons that each
compute one of the terms in (1). The system’s previous state
αi−1(sk) arrives through one axon with synaptic weight of
1, and the observation probability q(Ai|sk) arrives through
another axon whose synapse is configured to stochastically
deliver spikes with probability p(tx). With the threshold set
at 2, each neuron outputs a spike train that probabilistically
encodes αi−1(sk)p(tx)q(Ai|sk). A third neuron sums the
output of the two input neurons and outputs a spike train
encoding the probability αi(sk).

State Memory: This corelet stores the current and past
states of the HMM using rate store neurons. These neurons
are configured with a stochastic threshold and no leak so that
their output spike train probabilistically encodes the value of
the neuron’s membrane potential. The output of these neurons
is shown in Fig. 5 upper right.

WTA: Finally a winner-take-all corelet reports the maxi-
mum likelihood estimate of the class that each letter belongs
to, at each time segment.

Results: We tested the performance of this HMM im-
plemented in TrueNorth by presenting a sequence of 500
characters from out-of-sample English text (Fig. 5, upper
right). Our HMM based recognizer performed with 99.8%
accuracy over the 500 character test set. It is desirable to
use the fewest number of neurons to implement a system
on TrueNorth. We used only 8×2 neurons to compute the

26
 K

P
R

16

46
2

KP
R

16

16
 P B32
 P

R
16

46
2

KP
R

16

46
2

KP
R

16

36 Cores

Motion Extractor Looming Detector

10,861 Cores 10,064 Cores

Nonlinear Classifier

Classifier
Module

Looming
Summation

Partial
Looming

Feature
Extractor

Spatiotemporal
Filter

32
 P

R
16

26
 K

P
R

16

Feature Extractor

153 Cores

...

...

Corelets
Feature
Template

SFSFSFSF

C
CC

...

SF

FE

CPL

LS

FT

FT

Motion
Extractor

ME

Looming
Detector

LD Nonlinear
Classifier

ME

NL

LD

FE NL

PL LSPL LSPL LSPL LS

...

CC

H
History

H

...

FTH FTH FTH

Fig. 6. Corelet diagram for the collision avoidance system.

observation probabilities, 3×2 neurons to compute the state
probabilities, 2×2 neurons to store the state probabilities, 5×2
neurons for control, and 1×2 neurons for WTA (38 neurons
total). In our implementation, the number of required neurons
scales linearly with the number of states modeled in the
HMM (with a linear scaling constant of 18 in this example.)
This linear scaling generalizes to other finite-state machines
implemented on the TrueNorth architecture as well.

E. Collision Avoidance

Recognizing patterns of motion is a fundamental task for a
cognitive system that interprets visual signals. In particular,
obstacle avoidance is essential for any navigation system.
Mimicking the age-old game of dodgeball, given a series of
video frames containing a ball moving towards the camera,
the collision avoidance system determines whether the object
would pass within one meter of the camera. Trajectories are
classified into 16 target regions and a classification is ideally
generated no later than 0.5 seconds before the collision. The
collision avoidance system consists of four corelets: motion
extractor, looming detector, feature extractor and nonlinear
classifier, configured in a linear pipeline, as shown in Fig. 6.

Motion Extractor: This corelet receives transduced spikes
from each input pixel, split 16 ways with appropriate delays
to enable the parallel computation of the motion signal for
four speeds and four directions per speed. The corelet contains
spatio-temporal filter sub-corelets, each with neurons config-
ured to receive connections from three pixels, sampled from
three video frames, for a total of nine inputs per neuron. Using
a spatio-temporal filtering model (as described, for example,
in [23]) the summation carried out by the neuron coding the
horizontal motion signal for velocity v at the pixel P located
at row y, column x, for frame t is given by

Mot(x, y, t, v) =

P (x, y, t−2)− P (x+v, y, t−2)− P (x+2v, y, t−2) −
P (x, y, t−1) + P (x+v, y, t−1)− P (x+2v, y, t−1) −
P (x, y, t)− P (x+v, y, t) + P (x+2v, y, t).

Here v = 1, 2, 3, 4 represents the velocity of the motion for
rightward, and v = −1,−2,−3,−4 for leftward motions. A
similar formula is used for vertical motion. Thus, the rate
coded output of a single neuron represents the level of the
motion signal for a specific speed, direction, and location.

Looming Detector: This corelet uses input from the mo-
tion extraction corelet to compute looming for each pixel—a
measure of how fast the object is expanding in the field of
view. This model is inspired by the locust, which has dedicated
looming neurons that it uses to detect potential collisions
[24], [25]. Four partial looming sub-corelets are used, each
configured to compute one of the partial looming signals
R,L,U, or D for each pixel by using a neuron to sum the
outward motion signals from two 3× 5 flanking patches (Fig.
7). If this summation is positive, it is consistent with expansion
of an object in the field of view; if negative, it is not consistent,
and is ignored. Mathematically, this can be represented as

Ls(x, y) = max(0,

−1∑
j=−5

1∑
i=−1

ls(x+j, y+i)−rs(x+j, y+i)),

where rs and ls represent the rightward and leftward motion
signals for speed s at a given pixel. Similar equations can
be derived for the top, right and bottom windows. The final
looming signal for each pixel is determined in a looming
summation corelet, using neurons configured to compute

Loom =

4∑
s=1

Rs + Ls + Us +Ds.

P

U = max(0, (u-d))

D = max(0, (d-u))

R
 =

 m
ax

(0
,

(r
-l)

)

L
=

m
ax

(0
,

(l-
r)

)

Loom = R + L + D + U

Σ

Σ

Σ Σ

Fig. 7. 3×5 windows used to compute
looming.

.92
.72

.98

.82

.64

.36

.72

.76

.22

.38

.24

.68

.06

.14

.04

.72

.92
.72

.98
.82

.64

.36

.72

.76

.22

.38

.24

.68

.06

.14

.04

.72

Fig. 8. The fraction of test cases
classified as a hit by the collision
avoidance system, in each of 16
target regions.

Feature Extractor: This corelet computes the match be-
tween recent looming activity and defined trajectory templates.
A history sub-corelet uses input from the looming detec-
tion corelet to increment the membrane potential of history
neurons. This membrane potential, which gradually decays
over time the stochastic firing rate of these neuron. Thirty-
two templates were created based on output from the history
corelet by averaging a set of motion frames with similar target
destinations. These were used to configure a feature template
corelet such that its neurons compute an inner product between
input, unknown trajectories, and known templates.

Nonlinear Classifier: This corelet assigns a predicted target
location to a particular feature vector. The classifier is trained
using a variant of the backpropagation algorithm [16] that
we developed to converge to a TrueNorth implementable
solution. Specifically, a multilayer classifier network is created
following TrueNorth connectivity, then trained using standard
backpropagation. After a reasonable solution is reached, the
network is pushed to discrete weights by selecting a synapse
at random, rounding it to the nearest integer, pinning it to that
value, then further training the network for a short time (here,
50 training examples) to allow unpinned weights to improve
the overall solution with this new constraint. This process is
repeated until all synapses have been pinned. The resulting
network is then used to configure the classifier corelet.

Results: Using USARSim[26], a virtual environment built
on top of the Unreal Tournament rendering engine, video
frames are generated at a 25 Hz frame rate. The image is
reduced in size to 170 × 170 by averaging and the pixel
intensities are linearly quantized to a 16-level rate code of 0–
16 spikes per frame. Eight hundred videos, 50 videos of each
of the 16 target areas were processed through this pipeline.
Fig. 8 gives the first working results achieved.

This approach to looming detection and response demon-
strates the parallel nature of TrueNorth’s sub-symbolic pro-
cessing. Rather than explicitly detecting and characterizing
individual objects in each video frame, and carrying out se-
quential logical operations on such objects, this system extracts
motion and looming signals in parallel across each image, and
recognizes patterns in the extracted signals that are consistent
with an approaching object, a method that is more flexible,
robust, and scalable.

F. Optical Flow

Optical flow is the apparent motion of objects in a scene
relative to an observer, often described as the direction and
magnitude of motion of each pixel in a frame. In a cognitive
system, optical flow can play an important role in object
tracking and navigation. Given two successive frames from a
video, we built a system that finds local changes in image edge
locations as a measure of motion. The system is composed
of four corelets: the convolution network corelet described in
Section III-A, a rate to binary conversion corelet, a temporal
match corelet, and an averaging corelet. Multiple instances of
these corelets are instantiated and connected as illustrated in
Fig. 9. For clarity, we describe here computation of optical
flow along a single axis. The method described here provides
an alternative to the related motion extraction corelet described
in Section III-E This algorithm was inspired in functionality
by [27], an algorithm developed for the “Connection Machine”
at MIT in the 1980s—one of the first alternative architectures
to the traditional von Neumann model of computation.

Convolution Network—Edge Extraction: This corelet is
implemented as described in Section III-A, configured to
extract vertical and horizontal edges in the current frame and
previous frame.

Rate To Binary Conversion: In this corelet, each input
line connects to a single neuron configured to provide a
subthreshold summation of received spikes. A query pulse is
sent to these neurons every 16 time steps, which pushes a

Fig. 10. For the frame shown on left, depicting movement down and to the
right, computed optical flow vectors are shown on right.

neuron above threshold if it has received a user parameterized
number of prior inputs. A reset pulse is sent in the next time
step to reset these neurons. The query and reset pulses are
generated by neurons configured with positive leaks to spike
spontaneously at the desired frequency.

Temporal Match: The output of both rate to binary con-
version corelets are fed into a temporal match corelet. Axon
delays are set such that input from the previous and current
frame arrive simultaneously at the temporal match corelet. The
temporal match corelet has neurons configured to compute an
“AND” operation between a pixel in the current frame and the
± 1st and ±2nd pixel from the delayed frame.

Convolution Network - Averaging: The temporal match
corelet provides input to a bank of spatial averaging corelets.
Each such corelet is a variant of the convolution network
corelet, configured such that an output neuron represents an
average over 3×3 pixels. The bank of averaging corelets
outputs five signals for each pixel, corresponding to five
velocities.

Results: Using this system, we computed optical flow using
a simple test example of a horizontal bar moving downwards,
and a vertical bar moving rightward (Fig. 10). This algorithm
exploits the implicit parallelism of the TrueNorth architecture
and illustrates a novel parallel algorithm for computing optical
flow. One of the keys attribute of this algorithm is shallow,
heavily parallel computation as compared to deep, sequential
instruction execution on a von-Neumann architecture.

G. Eye Detection

The ability to detect and track spatio-temporal patterns is
a useful feature of cognitive systems. Given an on-axis and
off-axis light source, we constructed a system that uses retro-
reflection to detect and track eye location, drawing inspiration
from [28]. When an eye is illuminated, it reflects a narrow
beam of light directly towards the light source. In flash
photography this reflection causes the undesired red eye effect,
but can be used advantageously for eye detection. An on-axis
light induces the red-eye reflection, producing an image with
bright pupils, while an off-axis light results in a similar image,
but with dark pupils. Subtracting the two images provides the
location of the eyes. In our approach, we use the iniLabs
DVS128 spiking retina sensor [29] instead of a traditional
camera. This sensor has 128×128 detectors, or pixels, each
spiking asynchronously when the change in light brightness
exceeds a threshold. Each pixel may spike up to 1000 times
a second, and the entire sensor can deliver up to two million
spikes per second. The spikes are fed into our eye detection

32
 K

P
R

16

32
 K

P
R

16

Convolution Network -
Edge Extraction

135 Cores
...

FFFF

32
 K

P
B

32
 K

P
R

16

Rate To Binary
Conversion

130 Cores
...

RB

32
 K

P
R

16

32
 K

P
R

16
Convolution Network -

Edge Extraction

135 Cores
...

FFFF

32
 K

P
B

32
 K

P
R

16

Rate To Binary
Conversion

130 Cores
...

RB

5
* 3

2
KP

B

2
* 3

2
KP

B

 680 Cores

Temporal Match

...

TM*E

*E

Rate to Binary
Converter

Temporal Match
Convolution Network -
Averaging

Convolution Network
- Edge Extraction

Temporal Match
Cores

T

T

R
Rate to Binary Cores

R

R

Convolution Filter
Convolution
Averaging Filter

F

RB

32
 K

P
B

AAAA
*

* ...
135 Cores

AAAA
... +2

 Convolution Network -A

32
 K

P
B

32
 K

P
B

135 Cores

AAAA
...

CN

A

*ATM

*E
Corelets

32
 K

P
B

AAAA
*

* ...
135 Cores

AAAA
... +2

 Convolution Network -A

32
 K

P
B

32
 K

P
B

135 Cores

AAAA
...

CN

32
 K

P
B

AAAA
*

* ...
135 Cores

AAAA
... +2

 Convolution Network -A

32
 K

P
B

32
 K

P
B

135 Cores

AAAA
...

CN

32
 K

P
B

AAAA
*

* ...
135 Cores

AAAA
... +2

 Convolution Network -A

32
 K

P
B

32
 K

P
B

135 Cores

AAAA
...

CN

32
 K

P
B

AAAA
*

* ...
135 Cores

AAAA
... +2

 Convolution Network -
Averaging

32
 K

P
B

32
 K

P
B

135 Cores

AAAA
...

*A

Fig. 9. Corelet diagram for the optical flow system. For clarity, corelets for optical flow along a single orientation are shown.

system, composed of a convolution and temporal integration
corelet followed by an eye centroid detection corelet (Fig. 11).

Convolution and Temporal Integration: This corelet is
composed of an overlap kernel tiling corelet with a 3×3 spatio-
temporal kernel, implemented using the TrueNorth kernel
[a b a; c d c; a b a] with a = 5, b = c = 6, d = 9. Within this
corelet, neurons are configured to compute the spatial filter, use
the leak for temporal decay, and spike stochastically according
to their membrane potential, like the history neurons described
in Section III-E. This transform is very efficient, requiring only
1.3 neurons/pixel (average) for both the spatial and temporal
filters. The filter removes much of the scattered sensory noise
from the retina sensor, and integrates over time to detect pupil
regions and track them. Using overlap kernel tiling, continuous
coverage of the image area is achieved without causing any tile
boundary effects.

Eye Centroid Detection: The eye centroid detection corelet
is composed of winner-take-all corelets. Each such corelet
receives an 8×8 region from the convolution and temporal
integration corelet, applies a filter to find the centroid of
activity in the region, and outputs a single pixel, where the
maximum activity is found. This ensures that only one pixel
per target is reported (Fig. 12b).

Results: Tests were conducted with simulated spike files,
where targets are moved along trajectories at various directions
and speeds, and with the retina camera. In this preliminary test,
we use an array of three synthetic retro-reflectors as targets (5
mm in diameter). Fig. 12 shows the final result for moving
targets in front of the retina camera. The use of a spiking
camera for system input provides an elegant demonstration of
TrueNorth’s aptness for event-driven computation.

 81 Cores

16
 K

P
B

16
 K

P
B

Convolution & Temporal
Integration

...

CT

C

Convolution & Temporal Integration Eye Detection

C Overlap Tiling Cores C WTA Cores

E

16
 K

P
B

16
 K

P
B

 128 Cores

Eye Centroid Detection

...
W

E

W

CT
Corelets

Fig. 11. Corelet diagram for the eye detection system.

(a) (b)

Fig. 12. Spikes from the retina senors (a) and the corresponding output (b),
with faded history to exemplify the targets motion within a 2 seconds window.

IV. CONCLUSIONS

To realize TrueNorth’s full potential as an efficient platform
for running cognitive algorithms, it is necessary to go beyond
the prevailing von Neumann paradigms and imagine entirely
new abstractions that improve programmer productivity yet
are natively efficient for neuromorphic architectures such as
TrueNorth. As a step in this direction, we have leveraged a new
set of programming abstractions [10], a new neuron model and
libraries [9], and an architectural simulator [3] to demonstrate
seven applications that are efficient on TrueNorth (in terms of
the number of neurosynaptic cores used).

For the present, we have tested the applications using the
Compass simulator running on a von Neumann computer—
while ensuring their compatibility with forthcoming TrueNorth
hardware. For the future, we are eager to measure and bench-
mark the power, area, and speed advantages of running our
applications directly on TrueNorth hardware. Given the event-
driven nature of TrueNorth, we are also interested in seeking
novel event-driven sensors/actuators that seamlessly connect
with it. Moving in this direction, we employed a spiking
camera in our eye detection system [29], one of an emerging
breed of spiking sensors [30]. Such end-to-end spike-based
systems have the potential to further push the power and
speed envelope while dispensing with the prevailing frame-
based approaches to spatio-temporal signals.

The seven applications presented in this paper move us
closer to our end goal of solving interesting and real-world
problems using TrueNorth. We expect that TrueNorth’s low
cost (in power and size), unique architecture (scalable, parallel,
distributed, event-driven), and function (multi-modal, spatio-

temporal, real-time), will open up entirely new application
spaces with endless possibilities. We imagine glasses that
help the visually-impaired navigate a complex environment
with obstacles. We imagine cars that can understand complex
scenes in real-time regardless of weather or time of day. We
imagine cameras that can watch the road for accidents and alert
public safety officials. We imagine sensors on patients that can
anticipate and avoid emergencies. We imagine grocer’s gloves
that can flag bad or contaminated produce. To translate these
possibilities into actualities—building on the groundwork that
we have laid down here—will require a concerted collaboration
of a community of researchers and practitioners who are
committed to the vision of cognitive computing.

ACKNOWLEDGMENTS

This research was sponsored by DARPA under contract
No. HR0011-09-C-0002. The views and conclusions contained
herein are those of the authors and should not be interpreted as
representing the official policies, either expressly or implied,
of DARPA or the U.S. Government. We would like to thank
David Peyton for his expert assistance revising this manuscript.

REFERENCES

[1] D. S. Modha, R. Ananthanarayanan, S. K. Esser, A. Ndirango, A. J.
Sherbondy, and R. Singh, “Cognitive computing,” Communications of
the ACM, vol. 54, no. 8, pp. 62–71, 2011.

[2] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S.
Modha, “A digital neurosynaptic core using embedded crossbar memory
with 45pJ per spike in 45nm,” in IEEE Custom Integrated Circuits
Conference (CICC), Sept. 2011, pp. 1–4.

[3] R. Preissl, T. M. Wong, P. Datta, M. Flickner, R. Singh, S. K. Esser,
W. P. Risk, H. D. Simon, and D. S. Modha, “Compass: A scalable
simulator for an architecture for cognitive computing,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC 2012), Nov. 2012, p. 54.

[4] J. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye,
B. Rajendran, J. A. Tierno, L. Chang, D. S. Modha, and D. J. Friedman,
“A 45nm CMOS neuromorphic chip with a scalable architecture for
learning in networks of spiking neurons,” in IEEE Custom Integrated
Circuits Conference (CICC), Sept. 2011, pp. 1–4.

[5] J. V. Arthur, P. A. Merolla, F. Akopyan, R. Alvarez, A. S. Cassidy,
S. Chandra, S. K. Esser, N. Imam, W. Risk, D. B. D. Rubin, R. Manohar,
and D. S. Modha, “Building block of a programmable neuromorphic
substrate: A digital neurosynaptic core,” in The International Joint
Conference on Neural Networks (IJCNN). IEEE, 2012, pp. 1–8.

[6] T. M. Wong, R. Preissl, P. Datta, M. Flickner, R. Singh, S. K. Esser,
E. McQuinn, R. Appuswamy, W. P. Risk, H. D. Simon, and D. S.
Modha, “1014,” IBM Research Divsion, Research Report RJ10502,
2012.

[7] D. S. Modha and R. Singh, “Network architecture of the long distance
pathways in the macaque brain,” Proceedings of the National Academy
of the Sciences USA, vol. 107, no. 30, pp. 13 485–13 490, 2010.

[8] E. McQuinn, P. Datta, M. D. Flickner, W. P. Risk, D. S. Modha, T. M.
Wong, R. Singh, S. K. Esser, and R. Appuswamy, “2012 international
science & engineering visualization challenge,” Science, vol. 339, no.
6119, pp. 512–513, February 2013.

[9] A. S. Cassidy, P. Merolla, J. V. Arthur, S. Esser, B. Jackson, R. Alvarez-
Icaza, P. Datta, J. Sawada, T. M. Wong, V. Feldman, A. Amir, D. Rubin,
F. Akopyan, E. McQuinn, W. Risk, and D. S. Modha, “Cognitive
computing building block: A versatile and efficient digital neuron model
for neurosynaptic cores,” in International Joint Conference on Neural
Networks (IJCNN). IEEE, 2013.

[10] A. Amir, P. Datta, A. S. Cassidy, J. A. Kusnitz, S. K. Esser, A. An-
dreopoulos, T. M. Wong, W. Risk, M. Flickner, R. Alvarez-Icaza,
E. McQuinn, B. Shaw, N. Pass, and D. S. Modha, “Cognitve computing
programming paradigm: A corelet language for composing networks
of neuro-synaptic cores,” in International Joint Conference on Neural
Networks (IJCNN). IEEE, 2013.

[11] Y. Le Cun, J. Boser, D. Denker, R. Henderson, W. Howard, W. Hubbard,
and L. Jackel, “Backpropagation applied to handwritten zip code
recognition,” Neural Computation, vol. 4, no. 1, pp. 541–551, 1989.

[12] W. Maass, “Liquid state machines: Motivation, theory, and applica-
tions,” in Computability in Context: Computation and Logic in the Real
World, B. Cooper and A. Sorbi, Eds. Imperial College Press, 2010,
pp. 275–296.

[13] W. Maass, N. T., and M. H., “Real-time computing without stable states:
A new framework for neural computation based on perturbations,”
Neural Computation, vol. 14, no. 11, pp. 2531–2560, 2002.

[14] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.
[Online]. Available: http://dx.doi.org/10.1126/science.1127647

[15] F. Jelinek, Statistical methods for speech recognition. MIT press, 1998.
[16] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations

by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536,
1986.

[17] W. Gerstner and W. Kistler, Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge University Press, Cambridge, 2002.

[18] E. Patterson, S. Gurbuz, Z. Tufekci, and J. Gowdy, “Cuave: A new
audio-visual database for multimodal human-computer interface re-
search,” in IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), vol. 2. IEEE, 2002, pp. 2017–2020.

[19] D. Dean, P. Lucey, and S. Sridharan, “Audio-visual speaker identifica-
tion using the cuave database,” in Proceedings auditory-visual speech
processing 2005, AVSP05, 2005.

[20] L. Pape, J. de Gruijl, and M. Wiering, Speech, Audio, Image and
Biomedical Signal Processing Using Neural Networks. Springer, 2008,
ch. Democratic Liquid State Machines for Music Recognition, pp. 191–
215.

[21] T. Eerola and P. Toiviainen. (2004) Midi toolbox: Matlab tools for music
research. University of Jyväskylä, Finland.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition.” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[23] E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the
perception of motion,” J. OPT. SOC. AM. A, vol. 2, no. 2, pp. 284–299,
1985.

[24] S. Yue and F. C. Rind, “Collision detection in complex dynamic
scenes using an LGMD-based visual neural network with feature
enhancement,” Trans. Neur. Netw., vol. 17, no. 3, pp. 705–716, May
2006. [Online]. Available: http://dx.doi.org/10.1109/TNN.2006.873286

[25] S. Bermudez i Badia and P. Verschure, “A collision avoidance model
based on the lobula giant movement detector (LGMD) neuron of the
locust,” in IEEE International Joint Conference on Neural Networks,
vol. 3, july 2004, pp. 1757 – 1761 vol.3.

[26] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “US-
ARSim: a robot simulator for research and education,” in 2007 IEEE
International Conference on Robotics and Automation, april 2007, pp.
1400–1405.

[27] H. Bülthoff, J. Little, and T. Poggio, “A parallel algorithm for real-time
computation of optical flow,” Nature, vol. 337, no. 6207, pp. 549–553,
1989.

[28] C. Morimoto, D. Koons, A. Amir, and M. Flickner, “Pupil detection and
tracking using multiple light sources,” Image and Vision Computing,
vol. 18, no. 4, pp. 331–335, March 2000.

[29] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 × 128 120 db 30 mw
asynchronous vision sensor that responds to relative intensity change,”
IEEE ISSCC Digest of Technical Papers, pp. 2060–2069, feb. 2006.

[30] S. Liu, A. van Schaik, B. Minch, and T. Delbruck, “Event-based 64-
channel binaural silicon cochlea with q enhancement mechanisms,”
ISCAS, pp. 2027–2030, 2010.

http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1109/TNN.2006.873286

	Introduction
	Context
	Motivation
	Contributions

	Design Substrates
	Neural Codes
	Connection Methods
	Synaptic Weight Composition

	Applications
	Speaker Recognition
	Composer Recognition
	Digit Recognition
	HMM Sequence Modeling
	Collision Avoidance
	Optical Flow
	Eye Detection

	Conclusions
	References

