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We present a learning algorithm to determine the appropriate approaching pose to grasp

a novel object. Our method focuses on the computation of valid end-effector orientations

in order to make contact with the object at a given point. The system achieves this goal
by generalizing from positive examples provided by a human operator during an offline

training session. The technique is feature-based since it extracts salient attributes of the

object to be grasped rather than relying on the availability of models or trying to build
one. To compute the desired orientation, the robot performs three steps at run time.

Using a multi-class support vector machine, it first classifies the novel object into one of

the object classes defined during training. Next, it determines its orientation, and, finally,
based on the classification and orientation, it extracts the most similar example from

the training data and uses it to grasp the object. The method has been implemented

on a full scale humanoid robotic torso equipped with multi-fingered hands and extensive
results corroborate both its effectiveness and real-time performance.

1. Introduction

The ability to grasp and move objects used in everyday human activities is one of
the basic competences humanoid robots must exhibit in order to leave research labs
and become useful companions in our everyday lives. Indeed, the general public
expects robots to seamlessly integrate into daily life without having to condition
the environment or carefully delimit the range of objects they will interact with.
Needless to say, these legitimate expectations are far beyond what robotics research
can deliver today. In this paper we address one of these problems, namely the
ability to grasp objects. In particular, we focus on the capacity to apply this skill
to previously unseen objects. As detailed in Section 2, grasping has already been
extensively investigated since it is a core competence for humanoid robots to have.
However, most solutions to this challenge rely on the availability of models for the
objects being manipulated, or formulate stringent hypotheses concerning the class
of objects the robot can interact with. On the contrary, our method does not start
from these assumptions, but rather takes inspiration from the approach presented
by Saxena et al.1 who proposed a learning method capable of identifying good
grasping points, in image-space, for a previously unseen object. The strength of
Saxena’s approach lies in its ability to greatly generalize from training data, thus
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producing a system that does not rely on models or 3D shape reconstruction. Such
method only identifies a good grasping point in the image, but to grasp an object
the robot actually needs to approach it correctly and grab it. As our everyday
experience suggests, when instructed to grasp an object at a certain point we may
approach it in different ways. Hence, we are particularly interested in the orientation
the hand (or end-effector) should assume in order to successfully complete the task.
Obviously, certain orientations are more appropriate than others. Similarly to the
aforementioned paper by Saxena, our method exploits supervised learning and does
not rely on a priori availability of geometric models for the object to be handled, nor
does it construct one online. Instead, the goal is to determine a correct approaching
posture to grasp a novel object by generalizing from training data provided by a
human operator. Moreover, emphasis is given to implement a system that is robust
to noise and invariant to scale, translations, and rotations of the objects being
considered.

Assuming that the robot is equipped with a stereo camera, given a picture and
a point cloud of an object to be grasped, the goal is to determine the pose and
orientation for the end-effector so that the robot can successfully grasp it. Saxena’s
method provides the pose, therefore in this paper we focus on the orientation, as-
suming that the position is given. Our method answers this question by extracting
appropriate orientations from training data provided by a human operator in the
form of positive examples showing how the robotic arm should approach a certain
number of objects in order to successfully grasp them. At run time, a three layer
approach is used where every layer reduces the search domain to identify an appro-
priate example in the training set. The first layer classifies the object to be grasped
into one of the classes of objects used during training. This problem is solved using
a multi-class support vector machine (SVM). Next, the orientation of the object
to grasp is determined using plane fitting and central image moments. Finally, a
nearest neighbor search identifies the most similar example in the training data
matching the closest object class and orientation determined in the first two steps.

The contributions of this manuscript are as follows:

• we present a model-free hierarchical learning algorithm that exploits human
imitations;
• minimal sensory input is necessary, namely a single stereo image;
• the learning process generalizes competently, allowing robots to grasp both

trained and unseen objects;
• the algorithm is invariant to objects’ scale, rotation, and translation as well

as manipulator independent;
• the entire process runs in real-time, taking less than half a second.

We have implemented our method on a robotic torso with two arms equipped
with multi-fingered hands, and we have demonstrated its effectiveness in practice.
The robot successfully manages to grasp a variety of new objects, and the end-to-end
processing time is in the order of half a second. We remark that the principal goal
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and consequent contribution of this work come from the ability to compute, in real-
time, valid grasps for untrained objects given a single stereo image. Consequently,
we perform experiments without regards for planning in cluttered environments or
dealing with partial occlusions since they are beyond the scope of this paper.

The remainder of the paper is organized as follows. Section 2 discusses related
literature. A formal definition of the problem is then provided in Section 3. Section
4 is the core of this manuscript. It describes the training data provided to the
robot and discusses the aforementioned three layer structure we propose. Section
5 introduces the experimental setup used to validate our proposal and presents
detailed results showing the performance of the various layers, as well as end-to-
end performance. Finally, Section 6 summarizes the lessons learned and provides
directions for further investigations.

2. Related work

Grasping algorithms can be classified as model-based or feature-based. Although
the line between the two can be blurry, model-based approaches generally rely
on object models whereas feature-based techniques extract representative features
from objects. Object models are represented in a multitude of different formats
such as geometric primitives, point clouds, or three-dimensional meshes. Features
that can be extracted range from point, corner, line, and edge detection to various
convolution filters. Generally, both methods use a database of known models or
features, labeled with appropriate grasps, which is used when trying to grasp an
object. The algorithm we present in this paper is feature-based, but since its design
was influenced by model-based methods we present previous work in both categories.
We conclude this section with some related literature on human grasping and how
it has influenced our research.

Two feature extraction algorithms frequently employed in feature-based grasp-
ing are SIFT2 and SURF,3 made popular for their invariance to scale, rotation,
small view point changes, and illumination variations. While stemming from the
computer vision literature, SIFT and SURF have been extensively employed in
robotic manipulation,4,5,6,7,8,9 generally to represent objects in a database that is
then used to recognize objects seen by the robot and calculate their orientations.
The principal drawback with these features, and the reason we do not use them, is
that they are dependent on texture. For example, two geometrically-identical soda
cans with different logos would require two different feature descriptors. SIFT and
SURF are thus inappropriate for our application since we attempt to grasp com-
pletely novel objects. Piater exploits visual features from an overhead camera as a
learning tool to calculate good grasps.10 The learning approach is completely un-
supervised since the manipulator mechanically tries different grasps and the visual
features corresponding to a successful grasp are stored in a database. Even though
the paper provides a rare online learning algorithm, it is limited in scope since it
only applies to planar objects. This greatly reduces the difficulty of the problem
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in terms of manipulation, feature extraction, and learning. Given the experiments
were performed on very simple objects (i.e. a triangle, a circle, a square), it seems
difficult to apply this algorithm to objects that cannot be represented as extrusions
of simple shapes. Bowers and Lumia also attack the problem of grasping planar
objects with the help of a vision system.11 They use an overhead camera to create
mappings between vision data and end-effector configurations. More specifically,
blobs categorized as either a circle, ellipse, rectangle, or triangle are extracted from
images, along with various parameters such as position, orientation, size, and elon-
gation. The information extracted from the blobs can then be used to grasp objects.
Even though the experiments on a real robot are very convincing, they only apply
to relatively simple planar objects. Another approach to planar object grasping is
presented by Morales et al.12 An overhead image of the object is processed to find
the object’s contour and a grasp characterization metric is used to find grasp regions
on the contour. This data is acquired through a contour curvature threshold and the
force-closure criterion. While the algorithm can successfully grasp unknown planar
objects of any complexity with potentially curved contours, the limiting assumption
comes from the need for objects to have well-defined contours and being extrusions
of those contours. This is not applicable to numerous objects in the real world. The
algorithm is implemented on a real platform in a follow up publication,13 using
a decoupling between visual processing (i.e. finding a grasp given an image) and
grasp execution. We view the link between visual processing and physical grasping
similarly: as a hierarchical framework where the visual and grasping processes are
independent. The authors re-examine their framework in which they supply more
realistic examples such as scissors.14 In addition, they make their algorithm modular
with respect to the manipulator’s hand configuration, a characteristic that we find
crucial for manipulation algorithms. We take that characteristic further by making
our algorithm manipulator-independent.

Moving away from the aforementioned limitations of planar object grasping,
Remazeilles et al. offer a robust method to grasp previously unseen objects.15 The
authors exploit image features and visual-servoing in a reaction-based grasping pro-
cedure to slowly but accurately approach objects to be grasped. While providing
good results and not requiring any learning, the work is intended for human-in-the-
loop applications and assumes that an operator will draw a box around the object
to grasp. Trying to replicate human grasping,16 we do not embrace visual-servoing
and provide a completely autonomous grasping algorithm. A different approach,
which uses prior knowledge and online learning, is proposed by Kroemer et al.17

Initially, a human demonstrates how to grasp a series of objects, each represented
by Early Cognitive Vision descriptors.18 The robot learns through a combination
of Gaussian Processes Regression and Mean-Shift and the results from attempted
grasps (i.e. successful or not) are incorporated into the robot’s knowledge-base. The
experimental results show that the robot quickly learns new grasps on its own and
discards the initially learned ones.

Recently, a publication by Saxena et al. introduced a novel supervised learning
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approach to feature-based grasping.1 Instead of using features as object represen-
tations, the authors use features to represent good grasping points in image space.
For training, each pixel in an image, labeled as a good or bad grasping point, is
represented by a feature vector. When attempting to grasp an object, a binary
classification (i.e. good or bad grasping point) is performed to classify each pixel
in the image and choose the most likely good grasping point. The method is both
accurate, provided a good training set, and efficient, thanks to the simple binary
classification. The computationally expensive part of the algorithm, however, comes
from the feature computation, which applies dozens of convolution operations on
the image to extract the feature vector. These feature vector computations make for
a non-real-time system with typical image resolutions. Recently we have improved
this approach by using a feature selection process.19 However, these algorithms
only find a point to grasp in image space, but do not calculate an appropriate end-
effector pre-shape to successfully grasp the object. In fact, this is the very issue that
we address in this paper.

Early approaches to model-based grasping involved shape primitives (i.e. box,
sphere, etc...), the combination of which accounted for the object model.20 Each
shape primitive is labeled with a strategy, including a grasp pre-shape, that can be
exploited to grasp an object. The decomposition of an object into shape primitives
is a major problem with such approach since there could be many different but valid
decompositions and finding all of them would be time consuming - an issue avoided
by the authors whose experiments were all performed on manually labeled objects.
As is typically done in more recent model-based approaches, Goldfeder et al. utilize
a database of three-dimensional synthetic object models labeled with valid grasps
and attempt to match the object to grasp with the closest ones in the database.21

They model each object in the database with a bag-of-features, composed of SIFT
features from depth images, to encode different views of the objects. Given the
bag-of-features for an object to grasp, a distance function allows to find the closest
neighbors in the database and the best suited grasp. Our algorithm possesses similar
components such as the use of an object database and the combination of range
sensor data and features but our training data comes from real objects labeled with
grasps shown by a human. This alleviates the assumption that there is a one-to-one
correspondence between synthetic and real data. Although no temporal analysis is
given, it is clear that the algorithm is computationally expensive due to the high-
dimensionally encompassed in the database, a problem that we resolve in this paper.
Alternatively, Sahbani et al. combine a learn-by-demonstration approach with grasp
quality measures.22 A part of each synthetic three-dimensional object is labeled as
a good grasp region by a human. Finding valid grasps is then decomposed into
finding the best object’s part and applying a grasp quality metric23 to the locations
in that region.

We conclude this section by describing human manipulation research that has
influenced the design of our algorithm. Specifically, human grasp strategies, de-
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veloped in the first two years of infancy, relies primarily on learning (imitated24

and reinforced25) and human senses (sight26 and touch27). Furthermore, evidence
suggests that, for humans, imitated learning is supplemented by sight,24 whereas
reinforcement learning is driven by touch.28 Following human grasping, and given
the fact that we are interested in imitation learning, we abstain from touch sensors,
sensor-fusion, and object reconstruction and limit our algorithm’s sensory input
to a single stereo image. With humans arguably providing the best examples of
dexterous manipulation, we use them as part of our training data acquisition in
a learn-by-demonstration framework. Goodale et al. found that human processes
that recognize object information (e.g. size, shape, color) are independent from the
processes that compute a correct grasp.29 The conclusions of this work were later
validated by Castiello since the authors found that neural activities to encode ob-
ject features and plan a grasp were indeed different.30 Our multi-layer approach
encompasses this dissociation by having a separate layer to recognize the object to
grasp. In other words, we separate grasp planning from grasp execution and, con-
sequently, we do not use reaction-based grasping or visual-servoing. Jeannerod has
demonstrated the need for an hand pre-shape in human grasping31 along with the
fact that humans do not need to keep both the object and the hand in their field
of view once a grasp plan has been established.16 Our algorithm implements this
approach by using the end-effector rotation as a grasp pre-shape and only requiring
a single view of the object to be able to grasp it. Last but not least, Weir et al.
found that there was no correlation between intrinsic object properties such as tex-
ture or weight when humans compute hand pre-shapes,32 another finding that we
exploit in our algorithm since we only rely on geometrical information to compute
end-effector orientation.

3. Problem formulation

The grasping problem is, in general, very unconstrained. In order to formalize our
contribution we make some operative assumptions. We assume the robot is tasked
with the goal of grasping an object placed on a planar surface in front of the robot
(e.g. a table). The object to be grasped can be reached by the robot by moving the
arm only. In other words, we do not consider situations where the robot may need
to walk to get closer to the object it has to grasp, neither does it need to squat
or stand up. It is assumed the robot arm has n degrees of freedom, with n ≥ 6.
Let q = (q1, . . . , qn) indicate a vector of n joint values specifying the end-effector
pose. The object to be grasped has a size such that it can be grasped using one
arm and a form-closure grasp. We do not make any hypothesis about the shape of
the object, nor about its color. We do not make assumptions about its location or
orientation, as long as it is within the arm’s dexterous reachable space. The robot
we consider is equipped with a stereo camera. This provides both an image Ig of the
object as well as a point cloud Pg with depth estimates expressed with reference
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to a known Cartesian global frame.a However, the stereo camera is not used to
reconstruct a three-dimensional model of the object on the fly in order to match
it against a library of models. Starting from Ig and Pg, our method shall output
a configuration q = (q1, . . . , qn) such that if the arm attains such configuration
and closes its end-effector it grasps the object. This goal can be achieved by first
computing the 4×4 transformation matrix specifying the pose and orientation of the
end-effector, and then computing q via inverse kinematics. Let TE be the matrix
specifying the end-effector pose and orientation33

TE =


px

R py

pz

0 0 0 1

 (1)

where R specifies the rotation and pg = (px py pz)T provides the position. Given
image Ig, the aforementioned paper by Saxena et al. computes a grasping point pI

in image space, i.e. it identifies a pixel in Ig where the object should be grasped at.
Since the stereo camera provides both the image Ig and the corresponding point
cloud Pg, and there is an inherent one-to-one relationship between pixels (in Ig)
and points (in Pg), it is possible to extract its corresponding spatial coordinates,
pg ∈ R3, from Pg given pI . Hence it may be assumed that the sub-problem of
determining pg is solved, and this is indeed the contribution presented by Saxena
et al.1 The focus of this paper, then, is to compute the rotational component R,
under the assumption (and constraint) that the pose component of TE is already
provided. The above consideration leads to formulate our question as the design of
an algorithm that computes a function

f : I × P × R3 → SO(3) (2)

where I is the space of images, P is the space of point clouds, and SO(3) indicates
the special orthogonal group in R3, i.e. the space of three-dimensional rotations.
We conclude this section stressing that, in our formulation, f is a function of the
image Ig, of the point cloud Pg, and of the point pg. In other words, we do not
have control over how pg is chosen, since it is the output of Saxena’s algorithm.
While it is true that pg is actually a function of Ig and Pg, and then one could
write R = f(Ig, Pg) (rather than R = f(Ig, Pg, pg)), the algorithm we propose in
general would work even when pg is chosen independently from Ig and Pg, as long
as it is a valid grasping point. It should also be noted that we require the algorithm
to compute R given a single view point, i.e. it is not possible to observe the object
from different vantage points as is done in other methods.21

The system we present is scale, rotation, and translation invariant for objects.
That is to say that it can cope with objects placed at different locations in the reach-
able area, and that their size may vary. For what concerns invariance to rotation, we

aThroughout the paper, subscript g is used to indicate data referring to the object to be grasped.
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consider invariance to rotations about the axis orthogonal to the plane where the
object is placed (such axis is indicated as z in the following). Rotations about other
directions can be accounted for by providing additional training data encompassing
those directions, but this extension will not be studied in this manuscript.

4. Learning how to grasp

In this section we first give a high-level overview of the algorithm and we then care-
fully describe its individual components in greater detail. The method we propose
works by generalizing from a set of training instances showing how different objects
could be grasped. Every training object, also referred to as class, is presented to
the robot in numerous orientations about the z axis. During training, a picture of
the object is taken, as well as the corresponding point cloud, and the orientation
of the object is recorded. Moreover, for a subset of each object’s orientations the
robot is also provided with information about the right way to approach it in order
to grasp it. This information is provided by a human supervisor placing the robot
arm at appropriate grasping points.

Classification Orientation
Estimation

Nearest
Neighbor Search

Inverse
Kinematics

 =(q 1,q2,...,qn )

Class M g R g

Robot Stereocamera

Point
Cloud

P g

Image
Ig

Grasp Point
Computation

pg

Training Data

q

Fig. 1. A schematic representation of the system we present in this paper. The block labeled as

”Grasp Point Computation” is implemented using Saxena’s algorithm. The three layers and the
grasp point computation blocks provide an orientation and pose for the end-effector that are then

used to compute inverse kinematics.

At run time, the stereo camera mounted on the robot starts by providing an
image Ig and a point cloud Pg of the object to be grasped (see Fig. 1). Ig and Pg

are preliminarily used to compute the appropriate grasping point pg using Saxena’s
algorithm. Then, the problem of computing the correct orientation is attacked in
three stages referred to as layers, because they progressively prune the search space
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in order to determine how to approach the object. The first layer performs a classi-
fication using a multi-class support vector machine and aims to classify the object
to be grasped into one of the classes used during training. After this class has been
identified, in the second layer the orientation of the object to be grasped is deter-
mined using a plane fitting technique and momentum matching. Then, based on
the determined class and orientation, in the third layer a nearest neighbor search is
performed in the training data to determine the correct approach pose. The near-
est neighbor search takes place in a reduced search space taking into account the
results of classification, estimated orientation, and grasping position pg. Therefore,
this final step is extremely efficient. At last, position pg and orientation Rg are
provided to an inverse kinematics algorithm that computes an appropriate joint
configuration q for the robot.

From this description it emerges that training data is used for three purposes,
i.e. object classification, orientation estimation, and nearest neighbor search. These
different sub-problems are mirrored by two sets of training data. To solve the first
two, classification and estimation orientation, we train the system using k instances
(Ii, Pi, αi) where Ii is an image of the object to be grasped, Pi is the corresponding
point cloud, and αi is the orientation of the object with reference to a predeter-
mined global frame. For the third sub-problem (i.e. the nearest neighbor search),
we consider a subset of orientations for each class, and for each of these we record
a number of appropriate grasping positions. Training data in this case then con-
sists of sets (Pi, αi,TEi), where Pi, and αi are defined as above, while TEi is the
end-effector pose and orientation demonstrated by the human operator. It is im-
portant to stress that for a fixed object class and orientation the operator provides
multiple valid grasping poses. Therefore there may be numerous training instances
(Pi, αi,TEi) with the same Pi, and αi, but different TEi. Moreover, for a given TEi

let pEi be the corresponding position, and REi the corresponding orientation.
A performance assessment of the individual layers is deferred until Section 5

where all experimental results are illustrated. In the remaining part of this section
we describe the training data and the three layers.

4.1. Training data

Training is performed using 6 different objects that are shown in Fig. 2. Training
objects differ in size, shape, and color. Of course, a richer set of training objects
is expected to improve the performance of the system, but we have experimentally
determined that already with m = 6 different classes (i.e. objects) the algorithm
performs well.

4.1.1. Training for classification and orientation estimation

For classification and orientation estimation purposes we collect k instances
(Ii, Pi, αi). Since we aim for an algorithm with rotational invariance, during the
training stage every object is considered in 36 different orientations. In other words,
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Fig. 2. A coffee can, a drill, a mouth wash bottle, a mug, a detergent bottle and a plastic bottle

were used for training. While discussing the results we will refer to them as object 1 to 6 (with 1
being the leftmost one).

for every object, 36 different values for αi are considered. To be precise, every object
is rotated about z in increments of 10 degrees. Therefore a total of k = 6×36 = 216
instances are acquired to solve the first two sub-problems. These will be indicated
as Ic

i , P c
i , and αc

i , with 1 ≤ i ≤ 36 and 1 ≤ c ≤ 6. Point clouds provided by the
stereo camera are inherently noisy. Moreover, the point cloud necessarily includes
not only the object, but also the supporting table (see Fig. 3(a) and 3(b)). Hence,
right after acquisition, every point cloud is post-processed to remove noise and the
points belonging to the table.

In order to remove points belonging to the table we use a process based on a
previously-published algorithm.34 A best-fit plane is fitted to point neighbors in the
point cloud. If the best-fit plane is approximately parallel to the robot’s horizontal
base, we eliminate all points whose distance from the plane falls below a given
threshold εT (see Fig. 3(c)). This process is repeated for different point neighbors
until a number of different point neighbors have been tried or a sufficient number
of points have been removed. This technique applies a simple heuristic, with the
evidently valid assumptions that the table’s top is parallel to the floor with the
robot being either on the table or the floor. While being straightforward, it works
well in practice35 without assuming explicit knowledge of the distance between the
camera and the table. Therefore, it can also be used in more general experimental
conditions where, for example, the robot might change its posture and position with
respect to the table.

Once points belonging to the table have been removed from the point cloud,
an outlier detection algorithm is run to remove spurious readings. To this end, we
use the method based on quartile ranges described by Laurikkala et al.36 More
specifically, two thresholds εL and εU for lower and upper outlier classification,
respectively, are defined as follows:

εL = LowerQuartile− Step (3)

and

εU = UpperQuartile+ Step. (4)

The Step variable is usually taken, as we do in this paper, to be 1.5 times the
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Fig. 3. Fig. 3(a) shows the training object (drill) as seen from the robot stereo camera. Fig. 3(b)
displays the noisy point cloud returned. The dataset includes both points belonging to the table
and noise. Fig. 3(c) shows the point cloud after points belonging to the table have been eliminated

and Fig. 3(d) illustrates the final result after outliers have been removed.

interquartile range (i.e. UpperQuartile − LowerQuartile), although that number
can be modified depending on the expected noise in the data. If p is a data point,
it is labeled as an outlier and removed from the point cloud if p < εL or p > εU .
We note that we perform this process three times, for each X, Y, and Z coordinate
independently, in order to equally remove outliers in each coordinate direction. An
example of a resulting point cloud is shown in Fig. 3(d).

The two-step denoising process works well in practice, is efficient, and does
not require human intervention. For more complex situations, more sophisticated
methods for environment detection and outlier detection can be exploited.37,35
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4.1.2. Training for nearest neighbor search

The most time consuming offline step consists in recording valid end-effector poses
and orientations associated with the training objects. For a given object at a given
orientation, a human operator moves the robot arm to a variety of appropriate
grasping positions around the object to be grasped, as shown in Fig. 4. This task
is facilitated in our experimental setup because the specific robot we use features
a ”gravity compensation mode” that allows to easily move it around. Once a valid
pose is achieved, the human operator records the position. Then, by reading the joint
values and computing forward kinematics, the end-effector transformation matrix
TE can be computed and recorded. Since this process is the most time consuming,
it is performed only for a subset of orientations. Specifically, it is performed only
for 12 of the 36 views, in increments of 30 degrees about the z axis. However, as
anticipated, multiple grasping positions are recorded for the same view. Therefore,
this stage produces training instances of the type (P c

i , α
c
i ,T

j
Eic) where 1 ≤ c ≤ 6,

1 ≤ i ≤ 12, and j varies between 126 and 525 depending on the specific object class
being considered. Typically, more training points are provided for highly asymmetric
objects, and less for symmetric objects. According to this notation, Tj

Eic is the j-
th grasping example provided when considering the c-th object class in the i-th
orientation. Overall, a total of n = 23984 instances (Ic

i , P
c
i ,T

j
Eic) were collected,

and Table 1 gives more details for each class.

Fig. 4. A human teaching the robot to grasp a detergent bottle (left), a plastic bottle (center),
and a drill (right).

4.2. Layer 1: classification

The classification sub-problem is solved using a multi-class support vector machine
(SVM).38,39 A classification problem with m classes can be solved in two ways. In
the one-against-all paradigm m SVMs are used to separate every class from the
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Table 1. Number of grasping examples provided for each of the six object classes considered (see

also Fig. 2). Each object is assigned a number in order to simplify the results’ discussion.

Object Object Number Number of Grasping Examples
Coffee can 1 5607

Drill 2 3623
Mouth wash bottle 3 3619

Mug 4 1795
Detergent bottle 5 4419

Plastic bottle 6 4885
Total 23984

remaining m− 1. Alternatively, in a one-against-one setup one trains
(
k
2

)
SVMs to

separate each couple of classes. The one-against-one approach is in principle more
expensive to use, but preliminary results showed that for the problem at hand it
outperforms the other method in terms of accuracy, a fact corroborated by Hsu et
al.40 Moreover, even though the number of SVMs is higher, every individual classi-
fication problem is simpler, so a competitive tradeoff between speed and accuracy
is obtained. In our implementation every SVM uses a polynomial kernel, since pre-
liminary experiments outlined it performs better than a kernel based on Gaussian
Radial Basis Functions.

The use of SVM to classify the object starting from a point cloud poses however
a challenge. Indeed, in order to use an SVM a constant size feature vector needs to
be associated to all training and input data. However, as one may easily intuit, the
various point clouds include a variable number of points, and therefore an additional
post-processing step is needed in order to extract a constant size feature vector from
every point cloud. Hence, we need a method that, given a point cloud P c

i , returns a
fixed-size feature vector F c

i . This conversion is performed for all point clouds, both
for training data and for data acquired at run time, and works as follows.

Similarly to other publications,41,42 for each point cloud P c
i we first generate a

new point cloud, P ′c
i , with zero mean. Indicating with M c

i ∈ R3 the Euclidean mean
of P c

i , the new point cloud P ′c
i is obtained from P c

i by subtracting M c
i from all its

points. Zero mean point clouds are created to implement an algorithm that is trans-
lation invariant. Indeed, the point clouds lose any global spatial information, which
was originally dependent on the camera and object locations. Next, we convert the
point clouds P ′c

i to fixed-size feature vectors F c
i . Algorithm 1 shows pseudo-code to

convert a point cloud to a feature vector, where we exploit the one-to-one relation-
ship between stereo images and point clouds. The feature F c

i is a gridSize×gridSize
matrix, stored in row-major vector format. Every element in the matrix summarizes
the information of a set of points in the point cloud: the value stored in one element
is the average of the points lying in an associated region. One can think of this
process as layering a grid on top of the depth image acquired through stereo vision
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and taking the mean of all the points, in Cartesian coordinates, that are included
in each cell. In order to remain fixed-size across all objects, the grid is fitted to the
minimum (minRow,minCol) and maximum (maxRow,maxCol) pixel coordinates of
the object. Consequently, the number of pixels encompassed by each cell in the grid
(∆Row,∆Col) adapts to the object. We use a gridSize of 50, yielding 2500 cells,
and a constant feature vector size of 7500 (each cell is comprised of three Cartesian
components). It is important to note that this encoding not only creates a fixed-
size feature vector necessary for SVM but also makes our algorithm scale invariant.
Indeed, the grid automatically adjusts to changes in object size that could occur
from being at different distances from the robot’s camera. We conclude this section
by acknowledging that other methods could be used to create F c

i such as circular
and radial sampling filters.43 These methods, however, have not been investigated
because the simple approach we sketched already gives satisfactory results.

Algorithm 1 Computation of F c
i from P ′c

i

1: gridSize← 50, F ← 0, Count← 0
2: ∆Row ← b(maxRow −minRow)/gridSizec // Number of row pixels per cell
3: ∆Col← b(maxCol−minCol)/gridSizec // Number of column pixels per cell
4: for all p ∈ P ′c

i do
5: r ← b(Row(p)−minRow)/∆Rowc //Row of cell ∈ F c

i encompassing p
6: c← b(Col(p)−minCol)/(∆Col)c // Column of cell ∈ F c

i encompassing p
7: F c

i (r × gridSize+ c) = F c
i (r × gridSize+ c) + p // Sum of all ps in cell

8: Count(r × gridSize+ c)← Count(r × gridSize+ c) + 1 // Pixels in cell
9: end for

10: for k = 1 to size(F c
i ) do

11: F c
i (k) = F c

i (k)/Count(k) // Compute the mean of the points in each cell
12: end for

4.3. Layer 2: Determining Object Rotation

Layer 1 classifies the object to be grasped into one of the m classes, say class M . In
layer 2, starting from Pg and M we determine αg - the orientation of the object to
be grasped. This is done by contrasting Pg with PM

1 , PM
2 , . . . , PM

36 , i.e. by restricting
the search domain to class M only. Before introducing the method we reiterate that
we are only concerned with identifying the orientation about the z axis. This is
consistent with the approach we took while collecting training data.

This problem of orientation estimation is solved using a plane fitting technique
complemented by a momentum search to deal with symmetries. To be precise, for
every point cloud in the training set we preliminary (offline) compute the best-fit
plane using orthogonal distance regression,44 and store its normal (see Fig. 5). Let
N c

i be the normal to the best-fit plane computed for P c
i . At run time, given Pg, we

compute its best-fit plane using the same technique, and let Ng be its normal.
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Fig. 5. Fig. 5(a) shows two overlapping point clouds for the training object drill placed at two
different orientations. Fig. 5(b) shows the computed best-fit planes that clearly differentiate the

two.

A set of 6 initial estimations for αg is determined as follows. We start with the
vector

S = sorti

(
arccos

(
NT

g N
M
i

||Ng||||NM
i ||

))
(5)

where NT
g is the transpose of vector Ng and the function sort orders the values in

increasing order, returning a vector of indices. In other words, αS[1] is the orientation
of the training point cloud PM

S[1], whose best-fit plane normal forms the smallest
angle with Ng. Evidently, αS[2] is the orientation of the training point cloud PM

S[2],
whose fitting plane normal forms the second-smallest angle with Ng and so on. As
such, our six candidate orientations are αS[1], αS[2], αS[3], αS[4], αS[5], and αS[6]. The
choice of six candidates was made to add robustness under the assumption that the
same object rotated by 180 degrees would yield similar best-fit planes, along with
objects rotated by ±10 degrees. In other words, we try to accommodate ±10 degrees
from a rotation of 0 degrees (3 candidates) and ±10 degrees from a rotation of 180
degrees (3 candidates). In order to choose one of the six candidate orientations
a comparison based on central image moments is performed. This central image
moment comparison is used to differentiate views rotated by 180 degrees, which
would generate similar planes. We first convert the camera image into a binary
image, B, where pixels that are part of the object are set to 1 and the rest are
set to 0 (see Fig. 6(a) and 6(c)). This conversion, done offline, is straightforward
thanks to the one-to-one correspondence between a point in the point cloud and a
pixel in the camera image. Image B is consequently composed of an object region,
R (i.e. the set of pixels equal to 1). We divide R into left and right segments each
having their own regions, RL and RR respectively as shown in Fig. 6(e) and 6(f).
We calculate the central moments of order i, j using the formula
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(a) (b)

(c) (d)

(e) (f) (g) (h)

Fig. 6. Fig. 6(a) shows the cropped image of an object (drill). Fig. 6(c) displays the equivalent
binary image B, with the object region R in black. Fig. 6(e) and 6(f) show the left and right

image segments with regions RL and RR in black, respectively. Fig. 6(b), 6(d), 6(g), 6(h) shows
the same information for the same object perfectly rotated by 180 degrees.

µi,j =
∑
X,Y

(X − x̄)i(Y − ȳ)j (6)

where X,Y ∈ RL for the central moment of the left region, X,Y ∈ RR for the
central moment of the right region, and x̄ and ȳ represent the centroid coordinate
of the region. For more robustness, we use the first two central moments, namely µ0,0

and µ1,1. Let L0 = µ0,0 and L1 = µ1,1 when X,Y ∈ RL and let R0 = µ0,0 and R1 =
µ1,1 when X,Y ∈ RR. Since we are trying to choose one of the six aforementioned
candidate orientations, we introduce LC

0 , LC
1 , RC

0 , and RC
1 to indicate the various
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moments for each candidate orientation, with C = 1, 2, 3, 4, 5, 6. We finally choose
one of the candidates C by minimizing the Root Mean Square Error of the central
moments:

arg min
C

(√
(LC

0 − L0)2 + (LC
1 − L1)2 + (RC

0 −R0)2 + (RC
1 −R1)2

4

)
(7)

The central moment procedure allows the algorithm to differentiate between
objects that have a 180 degree rotational difference, where plane fitting alone would
find they have the same rotation. Fig. 6 shows a visual example of this phenomenom.
The drill in Fig. 6(a) and 6(b) is rotated by 180 degrees and the plane fitting process
would mistakenly deduce that they have the same rotation. It is clear from the image
moments, in Fig. 6(c) and 6(d), however, that the objects’ orientations are different.
Algorithmically, and as aforementioned, we are essentially comparing RL (Fig. 6(e)
and 6(g)) and RR (Fig. 6(f) and 6(h)).

4.4. Layer 3: Calculating End-Effector Rotation

The last layer determines the appropriate orientation in order to grasp the object,
and it is activated after the object to be grasped has already been assigned to one
of the classes used during training (class M , layer 1), and its orientation has been
identified (orientation αg, layer 2). In order to compute the orientation in this final
step, the target pose in pg ∈ R3 is also used. This last stage is complicated by
the fact that for every object class positive grasping examples are available only
for poses spaced by 30-degree intervals (i.e. for 12 of the 36 views), whereas the
orientation has been determined up to 10 degrees. Therefore, before looking for the
closest example in the training data concerning class M , it is necessary to project
pg to the right place in order to compensate for the possible difference in rotation
accuracy. The projected point pp is then obtained as follows

pp = Rz(αt)(pg − pm) + pm (8)

where pm is the mean of the point cloud Pg and Rz(αt) encompasses a rotation
of αt about z, with αt being the smallest rotation that brings αg to one of the 12
grasping examples. Thanks to this projection, pp is then aligned with the closest set
of examples in the training set. At this point a nearest neighbor search is performed
among all the poses pEi with pp as target. Let TEi be the returned training instance
with the pose pEi closest to pp. Then, the algorithm returns REi, the end-effector
rotation corresponding to the closest pose found. However, before returning REi

such rotation needs to be back projected in order to compensate for the change
made in Eq. 8. We return

Rg = Rz(−αt)REi. (9)
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5. Experimental results

5.1. Experimental setup

The presented system has been implemented and tested on George, the humanoid
robotic torso displayed in Fig. 7.

Fig. 7. The experiments presented in this paper have all been implemented and validated on the
humanoid robotic torso displayed in this figure.

George is composed of two Barrett arms mounted sideways on a custom made
steel frame. Each arm has seven degrees of freedom: three on the shoulder, one on the
elbow, and three on the wrist. Moreover, each arm is equipped with a multi-fingered
Barrett Hand. The hand has four degrees of freedom, one controlling the spread of
the fingers and three controlling the closure of each finger. On top of the frame a
BumbleBee 2 stereo camera is mounted on two servos allowing for motions about
the yaw and pitch angles. The robot is controlled by an external PC running a real-
time Linux distribution. The PC exchanges data with the robot using a CAN bus
card. The servos controlling the camera are instead connected to the PC with USB
cables and are controlled using a driver provided by the manufacturer (Phydget). A
program written in C++ computes direct and inverse kinematics and handles image
acquisition with the BumbleBee. The rest of the algorithm is currently implemented
in Matlab. All code developed and collected data are freely available on the authors’
website.b The website also features numerous videos showing the system in action.

bSee http://robotics.ucmerced.edu.

http://robotics.ucmerced.edu
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5.2. Classification Accuracy

We start by presenting an extensive set of results showing the validity of the pro-
posed SVM classification method using our feature space. In the first experiment,
we train our algorithm with all training data except for one, and we try to clas-
sify the one that was not included in our training phase. We repeat this process
removing and classifying a different view every time, until all views have been clas-
sified. Results are shown as a confusion matrix in Table 5.2 and show a classification
accuracy of 97.69%.

Table 2. Confusion matrix for the experiment performed on trained objects from the training data.

Actual

Predicted

Object # 1 2 3 4 5 6
1 35 2 1 0 0 0
2 1 34 0 0 0 0
3 0 0 35 0 1 0
4 0 0 0 36 0 0
5 0 0 0 0 35 0
6 0 0 0 0 0 36

The next batch of experiments is performed to test scale, translation, and rota-
tion invariance. We collected data for the same 6 objects used during training at 30
random locations and orientations. Results are shown in Table 5.2 and outline the
scale, translation, and rotation invariance properties incorporated in our algorithm,
with an overall accuracy rate of 90.00%.

Table 3. Confusion matrix for the experiment performed on trained objects of different scales,

translations, and rotations.

Actual

Predicted

Object # 1 2 3 4 5 6
1 28 1 0 0 0 0
2 0 28 0 2 1 0
3 0 0 26 0 1 4
4 0 1 1 28 0 0
5 0 0 3 0 27 1
6 2 0 0 0 1 25

Finally, since the focus of this paper is about grasping novel objects, we test the
classification layer with objects that are not part of the training set. Novelty in this
context can be intended in two ways. The robot may be presented with objects that
are similar but different from those used during training (e.g. a different bottle or
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a different drill). Alternatively, the robot may be presented with objects that are
completely new - objects that have no similarity to those used during training. Fig.
8 shows some of the novel objects we considered and we point the readers to the
end of the section for more experiments involving highly different novel objects.

Fig. 8. A DVD case, a drill, a shampoo bottle, a mug, a detergent bottle, a water bottle, a salt

container, and a rectangular box were used as novel objects. While discussing the results we will

refer to them as object 1 to 8 (with 1 being the leftmost one).

The key observation in grasping novel objects is that different objects can be
grasped similarly based on shared geometry with trained objects. Therefore, the
SVM classifier should be capable of identifying an appropriate class to extract the
grasping information. To perform this test we acquire 30 images of each novel object,
varying its position and orientation. The result of this experiment is shown in Table
5.2, which shows an overall classification rate of 84.17%. Even though the objects
being classified are different from those used for training, we nevertheless present
the results in the form of a confusion matrix, but we need to clarify how correct
associations are inferred. For different instances of the same object (e.g. different
bottle, or different mug), the correct association is easy to determine. For truly
novel object (e.g. DVD case, rectangular box) the association is less obvious. For
example, these two objects are classified as a coffee can 63.33% and 33.33% of the
time as a drill. The association with the coffee can is somehow natural, since the
shape is very similar, and can be considered correct. After having analyzed instances
where they are classified as a drill, we verified that because of self-occlusions they
feature a long edge parallel to the table, and this is associated with the drill’s shaft.
In these cases, however, association with the drill still leads to a successful grasp.
Indeed, even though our overall classification rate is 84.17%, the grasping rate is
better because misclassifying an object will not necessarily result in a poor choice
of wrist orientation.

5.3. Estimation of object rotation

The next layer to be evaluated concerns the orientation’s estimation about the z
axis. The method we embrace is somewhat similar to the one presented in the pre-
vious subsection. That is, for each object class we remove one instance from the
training data and we then determine the closest neighbor in order to estimate the
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Table 4. Confusion matrix for the experiment performed on novel objects of different scales, trans-

lations, and rotations.

Actual (Trained)

Predicted (Novel)

Object # 1 2 3 4 5 6 7 8
1 19 2 0 2 0 0 1 19
2 10 28 0 2 0 0 0 10
3 0 0 27 0 3 3 0 0
4 0 0 0 26 0 0 29 1
5 0 0 0 0 27 0 0 0
6 1 0 3 0 0 27 0 0

orientation. The method is repeated for each object in every class. Before analyzing
the results encompassed by the stacked histogram displayed in Fig. 9, we observe
that different object symmetries will result in different outcomes. Three different
symmetries should be accounted for. Some objects, like the water bottle, are fully
symmetric about the z axis. These objects are removed from the current evaluation
because the problem is ill posed for them (any rotation would do). Remaining ob-
jects can be either partially symmetric (e.g. coffee can, mouth wash bottle, mug) or
fully asymmetric (e.g. drill, mug, detergent bottle). For partially symmetric objects,
rotations that are 180 degrees apart will result in the same object view, so these
cannot be differentiated. Fully asymmetric objects, however, never look the same
under different rotations. The situation is in practice somehow more complicated
because some objects (e.g. the mug) can be partially symmetric or fully symmetric,
depending on whether or not the handle is self-occluded. Keeping this information
in mind, Fig. 9 shows a 87.5% rate of finding the closest neighbor (the one within a
10 degree difference) for completely asymmetric objects and a 75% rate of finding
the closest neighbor for partially symmetric objects (taking into account that a 180
degree rotation yields the same object view).

5.4. Overall system performance

We finally present the end-to-end performance of the system, where we evaluate
the success rate for the final grasping action based on the outcome of the three
layers. In all experiments, we exploit inverse kinematics to place the end-effector to
the pose and orientation determined by the algorithm and we close the fingers. We
count any form-closed grasp as being correct, given that this is how the system was
trained. In the first experiment, shown in Fig. 10, we place each of the 6 trained
objects at 10 random rotations, and let the algorithm determine the right pose and
orientation. The overall success rate is 81.66%, where the bottle, drill, and coffee
can had the highest (90%) and the mug and mouth wash bottle had the lowest
(70%).

We repeat the same experiment with novel objects that are fairly similar to
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Fig. 9. Stacked histogram showing the results in finding the nearest neighbor, for each object. The

patterns indicate how far, in degrees, the closest neighbor is from the actual value (depending on

symmetries, it should be 10 to 20 or 160 to 200 degrees for the algorithm to work). The y-axis is
a stacked count of the number of trials for which that value occurred.

those we trained on (10 trials for each of the 6 objects). Some example of which
are shown in Fig. 11. In this case, the accuracy drops to 76.66%, with the highest
accuracy of 100% achieved by the drill and lowest accuracy of 60% for the shampoo
bottle and the DVD case.

Finally, we also performed some experiments with objects that are completely
different than those we trained on, as seen in Fig. 12. We ran 4 trials for each of
the 6 objects and obtained an overall success rate of 83.33%.

Last but not least, as a proof of concept, we ran the same system acting on the
left arm rather than the right arm. Examples are shown in Fig. 13, and the success
rate is similar.

We conclude the experimental section of the paper with Table 5.4, which shows
the speed of the algorithm. We note that, while the algorithm is very fast, it can
be made even faster simply by porting the MatLab implementation to C++.

6. Conclusions

This paper has presented a method to determine wrist orientations in order to de-
termine how to grasp an object based on a single image and point cloud provided by
a stereo camera. The method is feature-based and complements a recently presented
method that determines the pose only. Imitation learning is exploited to extrapolate
information from examples provided offline by a human. At run time, less than half
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Fig. 10. Robot grasping trained objects with camera view in each left-hand corner. The cursor in

each camera view shows pg in image-space.

Table 5. Algorithm speed, divided by parts.

Algorithmic Part Average Time (ms)
Outlier Removal 361.3

Object Classification 103.1
Nearest Neighbor Search 6.5

Wrist Calculation 4.4
Inverse Kinematics 20.0

Total Time 495.3

a second is needed in order to determine where the hand should be placed in order
to grasp the object. We have described the three layers composing the algorithm,
namely classification, rotation estimation, and wrist orientation computation. The
proposed algorithm has been implemented on a humanoid torso and extensive ex-
perimental results corroborate the effectiveness of the method presented.
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Fig. 11. Robot grasping novel objects with camera view in each left-hand corner. The cursor in

each camera view shows pg in image-space.
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