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Abstract

Sampling demonstrated to be the algorithmic key to
efficiently solve many high dimensional motion plan-
ning problems. Information on the configuration space
is acquired by generating samples and edges between
them, which are stored in a suitable data structure.
Following this paradigm, many different algorithmic
techniques have been proposed, and some of them are
now widely accepted as part of the standard literature
in the field. The paper reviews some of the most in-
fluential proposals and ideas, providing indications on
their practical and theoretical implications.

1 Introduction

Many fields beyond robotics, are benefiting from pro-
gresses in algorithmic motion planning. Examples in-
clude structural studies in biology, computer graphics,
and computer assisted surgery among the others [44].
The successful application of these algorithms relies on
the availability of an abstract formulation suitable to
model many different real world applications, and on
the ability to solve difficult instances in a reasonable
time. Motion planning is performed as a search in a
suitable space, called the configuration space. Early
studies outlined that the basic version of this prob-
lem is PSPACE-complete [13],[60], and the best ex-
act deterministic algorithm known is exponential in
the dimension of the configuration space [12]. On the
other hand, real world problems generate instances
with high dimensional configuration spaces. Around
the mid nineties a new approach was introduced, and
this boosted the research in the field, as well as the
practical use of these algorithms. This technique is
based on the generation of samples to aquire informa-
tion about the problem instance being solved. It has
to be outlined that while the first algorithms heav-
ily relied on random samples, there has been a recent
trend to introduce also deterministic sampling schemas
[46],[54], although this will not be covered in this pa-
per. Samples are stored in a data structure which rep-
resents an approximation of the configuration space,
as opposed to its exact combinatorial representation.
The data structure is usually composed by nodes, i.e.
samples in the configuration space, and links, i.e. valid
paths connecting samples. Nodes and links can be
stored in graphs or trees. The sampling based ap-

proach has some appealing properties. It is immedi-
ately applicable whenever a configuration state space
is used to model a real world problem. For example,
sampling based motion planners have been used for
multi-robot systems [14],[65],[61], closed chain systems
[20],[27],[68], and deformable objects [9],[42]. These al-
gorithms are also well suited for practical parallel im-
plementation [15],[16],[29], thus allowing further per-
formance gains. Finally, the implementation of these
algorithms is usually quite simple. The price to pay is
completeness. Traditional combinatorial motion plan-
ning algorithms are complete, i.e. they will find a so-
lution if one exists, and will report failure otherwise.
Algorithms based on randomly generated samples ob-
tain instead probabilistic completeness. This means
that if a solution exists, the probability to find it con-
verges to 1 when the computation time approaches
infinity. So, if a path is not found it could be the case
that a solution does not exist at all, or that the sam-
pling process has not been able to get the information
needed to solve the search. There have been also at-
tempts to address the dual problem, i.e. to prove that
a solution cannot exist [8]. However, while in princi-
ple this approach is appealing, it has not been shown
to work under general conditions, and has not enjoyed
great use up to now. In between the above mentioned
forms of completeness, algorithms based on determin-
istic samples sequences achieve resolution complete-
ness. This means that when the algorithm fails to
find a solution, this implies that either the solution
does not exist, or it requires a sampling resolution be-
low the one used. This approach has been attracting
some attention recently [17]. The randomized frame-
work can be extended in many directions. This mo-
tivates the great number of different algorithms pro-
posed up to now. Some algorithms and techniques
proved to be very efficient and are now part of the
standard literature in computational robotics. In ad-
dition to operative aspects, also the theoretical foun-
dations of this approach have been addressed, so that
some understanding about the power and the limita-
tions of the framework has been obtained, although
we are far from having a complete picture. This paper
presents some of the most common algorithms, and
give an overall perspective on the most widely used
ideas in the field. For sake of completeness, we have
to mention that the first broadly used motion planning
algorithm incorporating random components has been
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the so called Randomized potential field Path Planner
(RPP) [7]. RPP uses a deterministic gradient descent
strategy over a suitably defined potential field. When
the planner gets stuck at in one of the possible local
minima, a sequence of random motions of increasing
length is activated, until the potential well is escaped.
However, the RPP planner will not be addressed in the
paper because the underlying mechanism is different,
i.e. it does not generate samples to explore the con-
figuration space, but only to recover from problematic
situations.
The paper is organized as follows. Section 2 intro-
duces the formal statement of the robot motion plan-
ning. Algorithms based on probabilistic roadmaps are
discussed in the successive section. The basic formu-
lation, as well as improvements, are illustrated and
discussed. The section also provides the fundamen-
tal theoretical results concerning probabilistic conver-
gence. Following the same approach, section 4 reviews
algorithms whose underlying data structure is a tree
rather than a graph. Finally, section 5 addresses prac-
tical issues related to the choice of a specific algorithm,
while conclusions are offered in section 6.

2 Problem formulation

Extensive treatment of the basic computational as-
pects or robot motion planning can be found in
[33],[43],[48],[62]. We here formalize the problem. The
robot motion planning (RMP) problem is dealt with
by using the configuration state space approach intro-
duced by Lozàno-Perez [55]. Every robot is associ-
ated with a set of degrees of freedom which specify its
placement in the workspace. The combination of the
degrees of freedom assumes values in a space called the
configuration space, usually indicated as C. The config-
uration space is partitioned into two subsets, the space
of free configurations, Cfree, and the space of obstacle
configurations, Cobs. The space of free configurations
is the subset of valid configurations, i.e. configura-
tions in which the robot does not collide with any ob-
stacle and does not violate its mechanical constraints.
The space of obstacle configurations is its complement,
i.e. Cobs = C \ Cfree. Given two points xstart ∈ Cfree

and xgoal ∈ Cfree, the RMP problem requires to com-
pute a continuous function f : [0, 1]→ Cfree such that
f(0) = xstart and f(1) = xgoal. In general this func-
tion could even not exist, for example if Cfree is dis-
connected and xstart and xgoal belong to different com-
ponents. An ideal RMP algorithm should be able to
determine this situation and stop the computation as
soon as it is possible to establish that a solution can-
not be found. As we will see, randomized algorithms
fail to accomplish this goal, so it is common to bound
the computation time in order to avoid infinite loops
while trying to solve unsolvable problem instances. In
the sampling based motion planning framework, it is

assumed the availability of a collision detection func-
tion. Given a configuration, the collision checker de-
termines whether a configuration belongs to Cfree or
to Cobs. Formally, it is a function

Check : C → {0, 1} (1)

where 0 indicates the sample belongs to Cobs, and 1 in-
dicates the sample belongs to Cfree. In many practical
situations robots are not allowed to execute arbitrary
motions. A classical example is a car-like robot. In
this case the robot is not permitted to perform certain
actions, like for example to move along the axis con-
necting the rear wheels. These limitations are usually
defined as differential constraints, i.e. equations or in-
equalities involving not only the degrees of freedom,
but also their time derivatives. In the related liter-
ature the configuration space C is frequently substi-
tuted with the state space X , which includes both the
degrees of freedom and their derivatives. An element
of the state space is then in the form (x, ẋ), where ẋ
indicates the first order time derivative1. Differential
constraints assume the form f(x, ẋ) = 0, f(x, ẋ) < 0
or f(x, ẋ) ≤ 0. If the constraints are not integrable the
problem is called non holonomic motion planning. If
the constraints depend on x and limit the possible val-
ues of ẋ and/or ẍ, the problem is called kinodynamic
motion planning. For instance, a bound on the max-
imal speed (dynamic constraint) might be not abso-
lute but rather related to the position (kinematic con-
straint) of the robot in its environment. This could al-
low higher speeds in wide areas and force slow motions
when the robot is near to an obstacle. The exact solu-
tion of the three dimensional kinodynamic problem is
NP-hard, while approximated dynamic programming
based solutions have been illustrated in [24],[22] and
[23].

3 Probabilistic Roadmaps

Probabilistic roadmaps (PRM), introduced in [37] (see
also [34],[58] for preliminary versions). For sake of
completeness it has to be acknowledged that some re-
lated ideas can be found in the earlier work [26]. It
should also be mentioned that in the same period a
similar approach was introduced in [56], the so called
Ariadne’s clew algorithm. The difference is that the
Ariadne’s clew algorithm does not explore the config-
uration space, but rather the trajectory space. The
PRM algorithm works in two steps, the first called
learning stage and the second called query stage. Given
an instance of the RMP problem, in the learning stage
the algorithm samples the configuration space and
builds an undirected graph G = (V,E) which captures
the information gathered. The graph is called proba-
bilistic roadmap (PRM). In the query stage, the PRM

1even higher order derivatives could be included, for example
to take into account accelerations and so on.



is used to solve specific RMP problem instances which
are then reduced to a graph search. The availability
of the following elements is assumed:

• a subroutine Check which computes the function
described in equation 1

• a subroutine Distance which computes a distance
between two configurations, i.e. it computes a
function

D : C × C → R+ ∪ {0} (2)

that associates two configurations with a non neg-
ative real number.

• a fast and possibly incomplete deterministic plan-
ner

3.1 The learning stage

The learning algorithm is illustrated in algorithm 1.
Samples randomly generated over C are accepted if
they belong to Cfree, and discarded otherwise. When
a sample is accepted, it becomes a vertex of the PRM
graph. After a vertex is added, the algorithm checks if
it is possible to add edges between the inserted vertex
and vertices already in the graph. For this aim a subset
of neighboring vertices are selected and the determin-
istic planner is run to determine if the new vertex can
be connected to them. Two vertices are neighbors if
their distance D is less than a fixed threshold M . This
choice is made for sake of efficiency, as it is unlikely
that a couple of far apart vertices could be connected
by the simple planner. At the same time we wish to
minimize the number of calls to the simple planner.
Another often used efficiency driven choice is to limit
the size of the neighbors set to a maximum size, say
K. If the planner succeeds in finding a free path be-
tween them, and if the nodes do not belong to the
same connected component of the graph, an edge con-
necting the two vertices is added to the graph. Even
if different techniques have been evaluated [2],[25], in
the vast majority of implementations the deterministic
planner simply connects the two points with a straight
segment and verifies if it lies in Cfree or not. This is
done by selecting a set of intermediate points along the
segment and by calling the collision checker on each of
them. The segment is declared to be free if all the
intermediate points lie in Cfree. This approach is in-
herently error prone, as just a discretization is used to
determine the validity of the entire segment. Recently
however a new algorithm which computes exact col-
lision checking has been introduced [63], and its use
appears appealing in the context of sampling based
RMP algorithms, as it can be used to perform exact
validation of the edges. If the resulting graph con-
tains more than one connected component (see figure
1), the learning stage is often followed by a roadmap

Algorithm 1 Basic PRM algorithm: learning stage
1: V ← ∅
2: E ← ∅
3: loop
4: Generate a random configuration c ∈ Cfree

5: V ← V ∪ {c}
6: Vn ← {v ∈ V | Distance(c, v) < M}
7: for all vertices v ∈ Vn in order of increasing

Distance(c, v) do
8: if c and v can be connected by the simple

planner and they do not lie in the same con-
nected component then

9: E ← E ∪ {(c, v)}

Figure 1. An example of Probabilistic Roadmap.
Black regions indicate Cobs. In this case the PRM
consists of two connected components and a roadmap
improving stage could succeed in merging them

improving substep. The improving is done by select-
ing some vertices assumed to lie in difficult regions
and then trying to add more samples in their neigh-
borhood and more edges. Different heuristics cab be
used to decide if a vertex is in difficult region or not
(see for example [37]). If the configuration space is in-
deed disconnected, the improving step could even be
not necessary, meaning that it could not improve the
overall roadmap quality at all. On the other hand, due
to the approximated nature, it is unfeasible to deter-
mine whether the improving step is indeed needed or
not.

3.2 The query stage

In the query stage two configurations xstart and xgoal

are given, and the algorithm is required to produce
a path between them, provided it can be extracted
from the graph (see algorithm 2). The algorithm tries
to connect the two points to vertices in the graph G.
This trial is done by using the same technique used
to to insert edges in the roadmap, i.e. vertices are
probed by increasing distance order. If it is not pos-
sible to connect both xstart and xgoal to the roadmap



G, the algorithm reports failure. Otherwise, let us as-
sume that xstart has been connected to a vertex Vs and
that xgoal has been connected to a vertex Vg. Then, a
graph search is performed to verify whether vs and vg

belong to the same connected component of G. If the
search succeeds, then the path is returned. Later, the
sequence of segments could be smoothed by using stan-
dard path smoothing algorithms in order to improve
path quality. The goal of this substep is to eliminate
useless motions. This is usually done by picking some
random couple of confiugarions and trying to replace
the path connecting them with a straight line.

Algorithm 2 Basic PRM algorithm: query stage
Vs ← {v ∈ V | Distance(xstart, v) < M}
if the planner can find a path between xgoal and a
vertex in Vs then

Let vs ∈ Vs be that vertex
else

return Failure
Vg ← {v ∈ V | Distance(xgoal, v) < M}
if the planner can find a path between xgoal and a
vertex in Vs then

Let vg ∈ Vg be that vertex
else

return Failure
if a path P between vs and vg is found then

return the overall solution path
(xstart, vs), P, (vg, xgoal)

else
return Failure

3.3 Remarks on the PRM algorithm

The PRM algorithm has been successfully used to
solve problems with many degrees of freedom. There is
also experimental evidence that the algorithm fits well
in a parallel computational environment [3]. However
some drawbacks were also outlined and motivated the
of further research. First, it is evident that the learn-
ing stage will take much more time than then query
stage. Therefore the learning stage is worth only if
many queries will benefit from the created roadmap.
This is not the case when the user is interested in the
single shot instance, i.e. just one instance of the prob-
lem has to be solved. Similarly, if the robot is to move
in a dynamic environment, the PRM will be no more
valid as obstacles move, thus vanishing the time spent
to build it. Second, in the PRM framework it is com-
mon to use uniform sampling over C while generating
samples, but this sampling strategy has its disadvan-
tages, namely the low probability to place samples in
narrow regions. The difficulty of discovering narrow
passages in C is one of the motivations which led to
development of many refinements proposed.

3.3.1 Extensions to the PRM algo-
rithm

After the introduction of the aforementioned algo-
rithm, there have been various extension proposed,
like lazy PRMs [10] or visibility based probabilistic
roadmaps [57]. In this subsection in particular we de-
scribe this last extension to the original PRM frame-
work. One of the bottlenecks of PRMs is that as the
number of samples grows, it becomes more and more
expensive to updated the graph. It would then be
beneficial to keep graph’s size low. In the proposed
algorithm, nodes in the graph belong to two differ-
ent categories: guards and connection nodes. To each
guard is associated a visibility region, i.e. the region of
points in Cfree that can be reached with a straight line
segment. Connection nodes are nodes placed in the in-
tersections of the regions associated with two different
guards. Edges are created only between nodes of differ-
ent types, i.e. between guards and connection nodes.
This way, nodes are added to the roadmap only when
they really improve it, i.e. when they allow to create
paths previously not possible. Nodes generated into
the visibility region of a single guard are not added
to the graph, as this would not create paths previ-
ously not possible. Experimental results outline that
with the same amount of generated random samples,
this technique allows to cover more or less the same
portion of the configuration space. At the same time,
because of the restricted number of nodes in the graph,
the processing time turns out to be much smaller.

3.4 The problem of narrow passages

As already stated, most of the proposed PRM based
approaches rely on uniform sampling over C. Uniform
sampling poorly deals with narrow passages. In fact,
if we indicate with µ(S) the measure of the set S,
by using random sampling over C the probability of
placing a sample inside S is µ(S)/µ(C). This clearly
indicates the inability of the algorithm to quickly find
out small volume regions.

3.4.1 Obstacle based and medial axis
probabilistic roadmaps

The problem of narrow passages is tackled in [1]. The
authors address the problem in the context of Obsta-
cle Based Probabilistic Roadmaps (OBPRM from now
on). OBPRM [4] are a variant of the PRM algorithm
where node generation is performed with the goal of
placing samples near to or in contact with the obsta-
cles. The underlying idea is that in this way it is
possible to correctly operate even in the presence of
cluttered environments, as narrow passages are the re-
sult of facing obstacles. The authors illustrate then



a set of different approaches both for node generation
and for roadmap connection. Nodes generation is per-
formed by using three different methods. The first
one generates configurations in contact with obstacles
(see algorithm 3). The second generates samples in

Algorithm 3 Algorithm for creating samples on the
boundary of the obstacle Oj

1: GENERATE CONFIGURATION
2: determine a point p inside the obstacle Oj

3: let M be a set of directions emanating from p
4: for all m ∈M do
5: use binary search to determine a point lying on

the boundary of Oj along the direction m

free space, but near to the boundary of Cfree. These
points can be obtained by a slight modification of algo-
rithm 3 so that free space points rather than contact
points are generated. The third one aims to create
shells of configurations around obstacles, so that paths
in those difficult regions can be quickly found. Shells
are obtained by retaining some of the valid samples
generated while looking for contact and free configu-
rations in the previous steps. During the connection
stage three different local planners are used. The first
one is the usual straight line planner used in the sim-
plest PRM implementation. The second one is the so
called rotate–at–s, where s is a number between 0 and
1 [2]. While seeking a path between the configurations
c1 and c2, this planner tries to translate the robot from
c1 to an intermediate configuration along the line con-
necting c1 and c2. Then it rotates the robot and it
tries to translate it to the final c2 configuration. The
value s is the fraction along the straight line where
the rotation is performed. The last planner is an A∗-
like planner. During roadmap connection, three differ-
ent stages are carried out. The first one, called Sim-
ple Connection utilizes the simplest planner (straight
line), which is called many times to try many cheap
connections among samples belonging to the same ob-
stacle. The second stage, called Connecting Compo-
nents, tries to create connections between disjointed
roadmap components. The third stage, called Grow-
ing Components, has the same goal, but while trying
to create connections, it can also generate new samples
if needed. This is done by enhancing the map adding
nodes near to small components and by keeping valid
samples lying in segments not entirely accepted. In
the second and third stages, while trying to connect
two nodes the local planners are used in this order:
straight line, rotate–at–1/2, rotate–at–0, rotate–at–1,
A∗. Thus, by following an increasing planning cost
strategy, expensive local planners are used just when
cheaper and simpler planners fail to succeed. The
authors report extensive simulation results illustrat-
ing that significant speedups can be obtained by using
the combination of techniques they propose and also

provide experimental driven recommendations about
the techniques to utilize. The use of many different
sampling and connecting techniques however has its
own drawbacks, as many parameters should be fixed
and it can then be non trivial to determine a suit-
able combined tuning. To overcome these difficulties,
a slightly different approach that uses sampling on the
medial axis of Cfree was proposed [53],[66],[67]. In this
framework, called MAPRM, Medial Axis PRM, sam-
ples are not generated on the surface of the obstacles,
but rather over C and are then retracted into the me-
dial axis of Cfree. The medial axis of the configuration
space are the points in Cfree with maximal distance
from Cobs. Formally, for x ∈ Cfree, we define BCfree

to
be the largest closed ball centered in x and completely
lying in Cfree. The medial axis of the space of free
configurations are defined as the set of points whose
associated BCfree

are maximal, i.e.:

MA(Cfree) = {x ∈ Cfree|@y ∈ Cfree

with BCfree
(x) ( BCfree

(y)}.
Known properties of medial axis guarantee that the
network or medial axis associated with the configura-
tion space captures the connectivity of the space itself.
Therefore, by relying on this reduced representation no
significant information is lost. The strength of the al-
gorithm relies on the ability to efficiently push or pull
a sample to a medial axis. The authors report algo-
rithms for dealing both with two and three dimensional
workspaces, while here (see algorithm 4) we sketch the
simple algorithm for retracting a sample into the me-
dial axis of a two dimensional environment. Once a
sample c over C is generated, the nearest point lying
on the boundary of Cfree is determined (here it is in-
dicated as n). Then, if c lies in Cfree, it is retracted to
the medial axis, otherwise the point to move is n. The
line to move along in order to reach the medial axis
is determined by c and n, while the direction depends
whether c is in Cfree or not. In order to efficiently

Algorithm 4 Medial axis retraction algorithm
1: Let c ∈ C
2: Among the points in ∂Cfree determine the nearest

to c, and call it n
3: if c ∈ Cfree then
4: ~d← ~nc
5: s← c
6: else
7: ~d← ~cn
8: s← n
9: Move s along the direction ~d. Stop moving s when

n is not the unique nearest point of ∂Cfree to s

perform the computation, the retraction step (line 9)
is performed by using a bisection technique. The over-
all PRM algorithm generates samples uniformly over C



and the retracts them over the medial axis. A graph is
then built by connecting those samples, and this builds
up the probabilistic roadmap. The rational of this ap-
proach is the following: to discover narrow passages, it
is no more necessary to generate samples into the nar-
row passages themselves, but rather to generate sam-
ples that once retracted end up into the medial axis
associated with the narrow passages, thus increasing
the probability of discovering them. This is achieved
by sampling over the entire C rather than over just
Cfree.

3.4.2 Planning in dilated spaces

Along the same lines of OBPRM, some authors [30]
pushed the idea of sampling on obstacle surfaces even
further, by allowing the generation of samples lying
outside Cfree. The planning is divided into two stages.
First a roadmap is created in a dilated configuration
space. This means that if a sample lies inside Cobs,
but its distance from Cfree is smaller than a certain
threshold δ, it is retained rather than discarded. This
step is performed using the classical PRM algorithm
where the space Cfree is substituted by its dilatation
Cdil

free

Cdil
free = Cfree ∪ {c ∈ Cobs|Distance(c, Cfree) < δ}.

In the second stage samples inside Cobs are pulled into
Cfree. This is done by resampling in their neighbor-
hood. Next, edges have to be created, and also in this
case resampling could be needed in order to push edges
into Cfree. Algorithm 5 illustrates this approach. In
the algorithm, Uv(v) is the resampling region associ-
ated with vertex v, while Ue(v1, v2) is the resampling
region associated with the edge (v1, v2). By using the
dilated configuration space, narrow passages are easier
to detect, as they are widened. The choice of the value
of δ is very important. Taking it too small would not
give too many advantages over the basic PRM algo-
rithm, but taking a too big value of δ has its disad-
vantages too, as entire obstacles could then disappear.
The authors illustrate the encouraging results of their
simulation and offer some hints about practical imple-
mentation. The resampling region Uv(v) is a sphere
centered in v while Ue(v1, v2) is a square. Moreover,
the authors found that by using a series of decreasingly
dilated spaces better results can be obtained.

3.5 Probabilistic convergence of the
PRM algorithm

The PRM algorithm is probabilistic complete, mean-
ing that if enough time is alloted to the learn stage, it
will eventually create a roadmap that will determine
the solution of every solvable RMP problem instance.
This is intuitive, as the uniform sampling process over

Algorithm 5 Algorithm for creating a valid roadmap
starting from a roadmap created in then dilated con-
figuration space
1: Generate a Roadmap R′ = (V ′, E′) in the dilated

space Cdil
free.

2: V ← ∅ E ← ∅
3: for all v′ ∈ V ′ do
4: if v′ ∈ Cfree then
5: V ← V ∪ {v′}
6: else
7: pick up to k samples in Uv(v′) and add to V

the first on lying in Cfree (if any)
8: let p(v′) be the vertex added to V (if any)
9: for all (v1, v2) ∈ E′ do

10: if (p(v1), p(v2)) ∈ Cfree then
11: E ← E ∪ {(p(v1), p(v2))}
12: else
13: Resample in Ue(p(v1), p(v2)). Let R be this

sample set
14: if by using samples in R a path connecting

p(v1) and p(v2) is found then
15: add the samples and the edges to V and E

respectively

Cfree will eventually cover it all, but from a practical
point of view it would be precious to know how many
nodes should be in the roadmap in order to get a de-
sired probability of success. This is of course related to
shape of Cfree, and to the placement of xstart and xgoal

therein. We here give the results concerning the two
main contributions given in the literature. In [35] basic
speculations concerning the basic version of the PRM
algorithm are illustrated. There are three parameters
playing an important role in the overall planning per-
formance. Let us suppose that there exists a path p
connecting xstart and xgoal. The first relevant param-
eter is L, the length of p. The second parameter is
ε which is the Euclidean distance of p from Cobs, and
the third parameter is N , the number of vertices in
the graph (i.e. N = |V |). The first result proved by
the authors is the following.

Theorem 3.1 Let p : [0, L] → Cfree be a path con-
necting xstart and xgoal and let ε be its distance from
Cobs. Let d be the dimension of the configuration space.
Then the probability that the PRM will fail to connect
xstart and xgoal is at most

2L

ε
(1− αωd)N (3)

where α = εd/(2d|Cfree|) and ωd is the volume of the
unit ball in the d−dimensional space.

The result provides two indications. First, the bound
claims that the probability of failure decreases while
increasing the number of samples in the roadmap. The
second point is that the failure probability increases



with the increase of path length. Again, this is some-
how expected. Long paths require more information,
i.e. more samples, to be caught. Also the dependence
on ε, is to be expected. It takes into account the prob-
lems given by narrow passages in Cfree, since more
samples will be needed to discover them. Theorem 3.1
considers just the minimum distance between the path
p and Cfree. The authors then provide a second bound
which considers a mean distance between the path and
the obstacle space.

Theorem 3.2 Let p be a path of length L connecting
xstart and xgoal, i.e. p : [0, L]→ Cfree. Let ε(t) be the
distance between the path and Cobs at instant t. Then,
the failure probability is bounded by

6
∫ L

0

(1− αd

2d ωdε
d(t))N

ε(t)
dt (4)

where αd = 2−d|Cfree| and ωd is the volume of the unit
ball in the d−dimensional space.

Both bounds depend either on ε or ε(t), and also on α.
This bound is then far from being trivial to compute,
since the exact computation of these parameters is not
easy. They depend on the path p and on the shape of
Cfree. A different analysis is presented in [6], [36], and
[29]. It is performed assuming of the availability of a
fast but incomplete planner, indicated as BS , and of
a complex but complete planner, indicated as BC . In
the following, two configurations are said to be visible if
they can be connected by using the simple planner BS .
Two basic concepts there introduced are the notion of
ε-goodness and of adequate samples set.

Definition 3.3 Let c ∈ Cfree and let S(c) ⊆ Cfree

be the set of points visible from c. Let ε > 0 be a
real number. A configuration c ∈ Cfree is ε-good if
µ(S(c)) ≥ εµ(Cfree), where µ indicates the volume of
the given set. Cfree is ε-good if all its elements are
ε-good.

Definition 3.4 Let Cfree be an ε-good space of free
configurations. A set of samples V is adequate if the
volume of Cfree not reachable from V by using BS is
at most (ε/2)µ(Cfree)

The ε-goodness property states that from every point
of Cfree it is possible to see a significant portion of
Cfree itself, while a set of vertices is declared to be
adequate if from that set the part of Cfree not visi-
ble from it is bounded. Thus one can expect that an
ε-good configuration space can be well covered by us-
ing not too many samples. The bounds on the failure
probability are formulated in terms of the following
preprocessing procedure, which is a slight variation of
the basic PRM algorithm.

1. Generate k samples in Cfree

2. Run the simple planner BS over every couple of
samples

3. Pick a sample from every connected component
of the graph built so far

4. Use the complex planner BC to try to connect
couples of samples belonging to different compo-
nents

The reader is referred to the cited papers for details
on the fourth step, called permeation.

Theorem 3.5 Let β ∈ [0, 1) and let k =
(c/ε)(ln 1/ε + ln 4/β) where c is a fixed positive con-
stant large enough that for all x ∈ [0, 1) the inequality
(1 − x)(c/x)(ln 1/x+4/β) ≤ xβ/4 holds. In such hypoth-
esis the preprocessing stage will generate an adequate
samples set with probability at least 1− β.

An additional bound can be obtained for the query
step, provided that the the it is performed according
to the algorithm illustrated in algorithm 6. In that

Algorithm 6 Query algorithm to be used in order to
obtain the bound given in theorem 3.6
1: for i = 1 to 2 do
2: if a sample s ∈ V is visible from ci then
3: si ← s
4: else
5: for log(2/γ) times do
6: let ui be a random point visible from ci

7: if a sample s ∈ V is visible from ui then
8: si ← ui

9: if all log(2/γ) trials failed then
10: Output FAILURE
11: if s1 and s2 are in the same component of G then
12: Output SUCCESS
13: else
14: Output FAILURE

case the following theorem holds.

Theorem 3.6 If the samples set produced by the pre-
processing stage is adequate, then the probability that
the query algorithm outputs FAILURE is at most γ.

A different type of analysis is presented in [41], where
a framework based on probability spaces is introduced.
From the two theoretical analysis briefly summarized,
it is evident that while to a certain extent it is feasi-
ble to prove the probabilistic convergence of the PRM
based algorithms, it is far from trivial to provide the
numbers for a given environment. It is then still not
possible to derive expectations on the required number
of samples needed to achieve a given success probabil-
ity while solving a generic RMP problem instance.



4 Tree based randomized motion plan-
ners

Samples and edges can also be organized in a tree
rather than in a graph. By using this approach efficient
planners have been designed. They are well suited for
addressing single-shot motion planning problems, and
while growing a tree it is possible to utilize the motion
equations of the robot, thus obtaining paths complying
with kinodynamic constraints.

4.1 Rapidly Exploring Random Trees

Rapidly Exploring Random Trees (RRT) are a class
of RMP algorithms that can be used both for
systems involving kinodynamic constraints or not
[49],[50],[19],[40],[51],[52],[45]. RRT proved to be suit-
able for being used in very different real world appli-
cations [39],[11]. In addition to the Check and Dis-
tance routines used in the PRM framework, the RRT
algorithm assumes the availability of the following el-
ements:

• a set U of inputs to be applied to the system

• an incremental simulator, i.e. a procedure that
given a state x(t) ∈ X and an input u ∈ U , pro-
duces the state x(t+∆t), provided that the input
u has been applied over the given time interval.

Then, by including system’s equations into the incre-
mental simulator, the planner is able to directly pro-
duce paths satisfying the kinodynamic constraints. If
no such constraints are given, i.e. the planner is re-
quired to produce a path for a holonomic robot, no
incremental simulation takes place and simple interpo-
lation is performed, as every motion is allowed. The
basic version of the algorithm is given in 7. The al-

Algorithm 7 Algorithms for the construction of an
RRT
1: BUILD RRT(xinit)
2: T.init(xinit)
3: for k = 1 to K do
4: xrand ← RANDOM STATE()
5: EXTEND(T,xrand)
6: return T
1: EXTEND(T, x)
2: xnear ← NEAREST NEIGHBOR(x, T )
3: if NEW STATE(x, xnear, xnew, unew) then
4: T.add vertex(xnew)
5: T.add edge(xnear, xnew, unew)
6: if xnew = x then
7: return Reached
8: else
9: return Advanced

10: return Trapped

Nearest node

Random sample

Figure 2. Extension of an RRT. Starting from a ran-
domly sample xrand generated over the state space X,
the nearest RRT node is found (xnear), and a new node
is created as its child. The new node is placed along
the segment connecting xnear and xrand if the system
is holonomic, otherwise it is generated by applying the
incremental simulator to xnear
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Figure 3. A RRT built over an obstacle free [0, 1]2

state space and the associated Voronoi regions

gorithm starts by building a tree rooted at the star-
ing point xstart. Samples are then randomly gener-
ated over Cfree. If the incremental simulator is in-
cluded, the NEW STATE subroutine (called in line 3
of the EXTEND substep) chooses an input u, either
randomly or by determining the one which will give
a new state as closed as possible to the new random
state, and determines a new state to be added to the
tree. The routine returns Reached if the new sample
can be reached, Advanced if it cannot be reached but a
new state has been added, or Trapped if no new state
has been produced. If the simulator is not needed,
NEW STATE simply tries to place the new state at a
fixed distance from xnear along the segment connect-
ing it with x (see figure 2). The rationale behind the
RRT algorithm is the following (see figure 3). Let x
be a node in the tree T and let V (x) be its associated
Voronoi region, i.e. the set of states nearer to x than
to every other state in T . Then, by uniformly sam-
pling over the state space, it is more likely to place
samples into a big Voronoi region rather than into a
small one. If a sample is placed into V (x), then x



will be chosen to be extended. Thus the tree is bi-
ased to grow towards unexplored regions. The schema
depicted in figure 7 simply builds a RRT which ex-
plores the state space starting from the given xstart

point. If a couple of points is given in a single shot
framework, a significant speedup is obtained by grow-
ing two trees, one from xstart and the other from xgoal.
The RRT-Connect algorithm [40], designed for prob-
lems not involving kinodynamic constraints, exploits
this technique, as well as a greedy tree extension to
cut down planning time even more. Figure 8 illus-
trates this improved version. An ever more aggressive
behavior can be obtained by using always the CON-
NECT routine instead of alternating it with EXTEND.
This version of the planner is often indicated as RRT-
ConCon. In this way, as soon as a promising direction
is discovered, the tree is expanded in that direction
as much as it is possible thus decreasing exploration
time.

Algorithm 8 The RRT-Connect algorithm
1: CONNECT(T, q)
2: repeat
3: S ← EXTEND(T,xrand)
4: until NOT S =Advanced
5: return S

1: RRT CONNECT(xstart, xgoal)
2: Ta.init(xstart)
3: Tb.init(xgoal)
4: for k = 1 to K do
5: x←RANDOM CONFIG()
6: if not (EXTEND(Ta,x) = Trapped ) then
7: if CONNECT(Tb,xnew) = Reached then
8: return PATH(Ta,Tb)
9: SWAP(Ta,Tb)

10: return Failure

4.1.1 Probabilistic completeness of the
RRT algorithm

The RRT algorithm has been proved to be probabilis-
tic complete under rather mild hypothesis. As for the
PRM algorithm, detailed proofs can be found in the
aforementioned references, while here we provide just
the results. Two different theorems are valid, one for
holonomic systems and one for nonholonomic systems.

Theorem 4.1 Let xinit and xgoal lie in the same con-
nected component of a nonconvex, bounded, open, n-
dimensional connected component of an n-dimensional
state space. The probability that an RRT constructed
from xinit will find a path to xgoal approaches one as
the number of RRT vertices approaches infinity.

A similar theorem holds for nonholonomic systems. In
what follows it is assumed that in the NEW STATE

routine the input u is uniformly randomly chosen over
the set of available inputs U .

Theorem 4.2 In the same hypothesis of theorem 4.1,
let further assume that |U | is finite, ∆t is constant,
and no two RRT vertices lie within a specified ε > 0,
according to the used metric Distance. Let also as-
sume that there exists a sequence u1, . . . , un of inputs
that when applied to xinit will lead the system to the
state xgoal. Then the probability that an RRT initial-
ized at xstart will contain a vertex in the Xgoal region
approaches 1 as the number of vertices approaches in-
finity.

While valuable in itself, probabilistic convergence only
ensures convergence to the solution when the number
of vertices, and then the computation time, approaches
infinity. As with PRM, it would be highly useful to
have a rate of convergence of the planner, in order to
be able to predict the expected time. Again, while
some results have been obtained, they are expressed
in terms of environment specific quantities not easy
to determine. The following theorems apply to single
RRT and assume that an instance of the RMP problem
is given in terms of a starting point xgoal and of a
goal region Xgoal, i.e. the robot is required to reach a
region rather than a point. Both theorems rely on the
following definition.

Definition 4.3 A sequence of subsets A =
{A1, A2, . . . , Ak} of the state space X is an at-
traction sequence if A0 = {xinit}, Ak = Xgoal, and
for each Ai there exists a basin Bi ⊆ X such that:

1. for all x ∈ Ai−1, y ∈ Ai, and z ∈ X \ B, the
metric Distance yields
Distance(x, y) < Distance(x, z)

2. for all x ∈ Bi, there exists a number m such that
the sequence of inputs {u1, u2, . . . , um} selected by
the EXTEND algorithm will bring the state into
Ai ⊆ Bi

Given a set S, we indicate with µ(S) its measure.

Theorem 4.4 Let assume that a connection sequence
A = {A1, A2, . . . , Ak} of length k exists, and let p =
mini{µ(Ai)/µ(Xfree)}. Then, the expected number of
iterations required to connect xstart and Xgoal is no
more than k/p.

Theorem 4.5 If an attraction sequence of length k
exists and δ ∈ (0, 1], then the probability that the
RRT finds a path after n iterations is at least 1 −
exp(−npδ2/2), where δ = 1− k/(np), and p is defined
as in theorem 4.4.

Both theorems 4.4 and 4.5 suffer from the dependence
on k, the length of the attraction sequence. While
given a solvable instance of the RMP problem one can
assume the existence of such sequence, the number of
elements in it depends heavily on the shape of the
environment and is far from being easy to compute.



4.1.2 Remarks on the RRT algorithm

The EXTEND substep of the RRT algorithm starts
by determining the nearest node to the last generated
sample. This has at least two implications from a
practical point of view. First, the search has to be
performed over the whole set of nodes generated so
far. If one does not adopt a suitable data structure,
but rather scans the whole sequence, this will yield
a quadratic dependence. This problem has been ad-
dressed in [5], where the problem of efficient neighbor
search is tackled and a solution based on Kd−trees
is proposed, yielding an overall n log n complexity. It
has however to be pointed out that the techniques uti-
lized are quite involved, and could take some effort to
be implemented. While implementing this technique,
one has additionally to take care that the topology of
C is respected. The second important issue related to
neighbor search is the metric used. The choice of a
good metric is a fundamental problem, as the use of
an inappropriate one could lead the tree to grow to-
ward the wrong direction. Ideally, the value returned
by the Distance function should reflect the cost to go,
while moving from one state to another. It is evi-
dent that this cost depends on the underlying system
model and that the metric should then be strictly re-
lated to it. This problem is well discussed in [18].
Recently, some possible extensions for the RRT algo-
rithm were introduced. In [64], the idea of bidirec-
tional search is pushed forward, towards multiple trees
based search. These additional trees, called local trees
are generated when a newly generated sample lies in
free space, but cannot be connected to any of the al-
ready created trees. An upper bound on the number
of trees is considered as well in order to eliminate the
possibility to create too many trees. Experiments show
that this expedient can significantly reduce the time
needed to solve motion planning problems in maze like
environments with narrow passages. A similar idea
has also been proposed in [59], where nodes in the
PRM roadmaps are substituted with trees. The au-
thors also address how this schema can be efficiently
implemented over distributed architectures in order to
exploit the inherent parallelism.

4.2 Planning in expansive spaces

An approach similar to RRT have been proposed in
[32], [38] [28] and [31]. As the RRT planner, this plan-
ner efficiently builds a tree data structure. We first
illustrate the basic version which does not deal with
kinodynamic constraints. Given an instance of the mo-
tion planning problem, the algorithm starts building
two trees, one rooted at the start point xstart, and the
other rooted at the goal point xgoal. As for the PRM
algorithm, we assume that a tree T consists of a couple
of sets T = (V,E), where V is the set of tree nodes

and E is the set of edges between nodes. The two trees
are iteratively expanded by using the same algorithm,
and the process terminates if it is possible to find a free
path connecting the two trees. Algorithm 9 illustrates
this iterative approach. The iteration terminates when
either a solution is found or the maximum number if
iterations is reached. Algorithm 10 illustrates how a

Algorithm 9 Expansive planner
1: Let T1 be a tree rooted at xstart and with no other

nodes
2: Let T2 be a tree rooted at xgoal and with no other

nodes
3: for MAX ITERATIONS times do
4: EXPANSION(T1)
5: EXPANSION(T2)
6: if CONNECT(T1, T2) then
7: return the PATH connecting xstart and xgoal

8: return FAILURE

tree T = (V,E) can be expanded. In what follows, let
Bd(s) be the ball of radius d centered in s. At each
step the algorithm associates a weight with every node
in V . The weight of the node s ∈ V is the number of
sampled nodes of V lying in Bd(s), i.e.

w(x) = |V ∩Bd(s)|.

The goal of the weight function is to avoid oversam-
pling in regions already explored and to rather bias
the expansion towards unexplored areas of the con-
figuration space. In this respect both RRT and the
expansive planner aim to the same goal, the only dif-
ference being in the technique used to identified poorly
explored zones. Finally, algorithm 11 illustrates how

Algorithm 10 Expansion algorithm
1: EXPANSION(T )
2: Pick a sample s from V with probability propor-

tional to 1/w(s)
3: Let K be a set of N samples lying in Bd(s)
4: for all k ∈ K do
5: compute w(k) and retain k with probability pro-

portional to 1/w(k)
6: if k is retained and k ∈ Cfree and the segment

(s, k) ∈ Cfree then
7: V ← V ∪ {s}
8: E ← E ∪ {(s, k)}

connection between trees is verified. To limit the num-
ber of useless trials, the algorithm ignores nodes cou-
ples too far apart. The algorithm assumes that a path
can be found if a couple of nodes is close enough. In
that case the segment is stored so that it can be later
used to produce the path connecting xstart with xgoal.
The above algorithm can be adapted in order to deal
with kinodynamic constraints. In this case, a single



Algorithm 11 Connection
1: CONNECT(T1, T2)
2: for all x ∈ V1 do
3: for all y ∈ V2 do
4: if Distance(x, y) < Threshold then
5: if (x, y) ∈ Cfree then
6: store (x, y)
7: return TRUE
8: return FALSE

tree is built, but the samples space is not X but rather

CT = Cfree × [0,+∞]

which is called space×time. The subset of free valid
configurations of CT is indicated as CT free. Along
the same lines of the RRT algorithm, it is assumed
the availability of an incremental simulator and of a
set of inputs Ul. In this context it is assumed that
inputs in Ul are piecewise constant functions with at
most l pieces. Algorithm 12 illustrates how it is pos-
sible to generate a trajectory complying with the kin-
odynamic constraints. A problem instance is again
formulated in terms of a start point and of a goal re-
gion, which the authors indicate call ENDGAME and
will be here indicated as E. Extensive results over

Algorithm 12 Randomized kinodynamic motion
planner
1: let T be a tree whose root is (xstart, 0)
2: for at most MAX ITERATIONS times do
3: Pick a sample s from V with probability 1/w(s)
4: Pick an input u from Ul uniformly at random
5: s′ =INTEGRATE(s, u)
6: if s′ ∈ CT then
7: V ← V {s′}
8: E ← E{(s, s′)}
9: if s′ ∈ E then

10: Terminate with success

simulations and real robots are illustrated in [31]. The
trials involved both nonholonomic robots and systems
performing in dynamic environments, i.e. with mov-
ing obstacles. Detailed results provide evidence that
the devised algorithms lead to real time compliant sys-
tems.

4.2.1 Probabilistic convergence

The former algorithms have been formulated in a
framework based on the expansiveness concept intro-
duced in [32]. We here report the generalized results
illustrated in [31] which concerns the kinodynamic mo-
tion planner. Given (s, t) and (s′, t′) ∈ CT free we say
that (s′, t′) is reachable from (s, t) if there exists a
control function that leads to an admissible trajectory

from (s, t) to (s′, t′). If such a trajectory can be ob-
tained by applying just the inputs of the Ul set, then
we say that (s′, t′) is l-reachable from (s, t). According
to these definitions, it is possible to define the set of
points reachable and l-reachable from a point p = (s, t).
We indicate the first set as R(p) and the second as
Rl(p). Then, given a subset of S ⊂ CT free, it is pos-
sible to define its reachable sets:

R(S) =
⋃
p∈S

R(p)

Rl(S) =
⋃
p∈S

Rl(p)

Definition 4.6 Let β ∈ [0, 1) be a constant and Let
S ⊂ CT . The lookout of the set S is

Lookoutβ(S) = {p ∈ S|µ(Rl(p)) \ S) ≥ βµ(R(s) \ S)}

Definition 4.7 Let α, β be constants in [0, 1]. For
any p ∈ CT free, R(p) is (α, β)-expansive if for every
connected subset S ⊆ R(p),

µ(Lookoutβ(S)) ≥ αµ(S).

CT free is (α, β)-expansive if for every p ∈ CT free,
R(p) is (α, β)-expansive.

The following theorem proves that the algorithm will
reach the ENDGAME region, i.e. will succeed in find-
ing a solution, with high probability.

Theorem 4.8 Let X be the reachability of the start
point (s, t) and let g = µ(E∩X ) be strictly positive. Let
X be (α, β)-expansive. Let γ ∈ (0, 1] be a constant. Let
T be a tree rooted at (s, t) with r nodes. The probability
that T has a node in E is at least 1− γ if

r ≥ k

α
ln

2k

γ
+

2
g

ln
2
γ

,

where k = (1/β) ln(2/g).

A set of similar results and definitions holds for the ba-
sic planner that does not deal with kinodynamic con-
straints. It is again evident that probabilistic conver-
gence can be proved, but convergence rate is difficult to
measure in terms of the problem instance to be solved.

5 Practical considerations

Given a motion planning problem, the choice of the
planning algorithm to use is driven by different fac-
tors. The first aspect to consider is whether the prob-
lem involves kinodynamic constraints or not. If this
is the case, the choice is for one of the the two algo-
rithms illustrated in section 4. Up to now no analytic
comparison is available, and also no fair experimen-
tal comparisons have been performed. On the other



hand both algorithms proved to be suitable for being
used in real world applications, they address the same
class of problems, and they require the same compo-
nents. Certain authors report that expansive planners
are more difficult to tune because of the higher num-
ber of parameters. It is however somehow difficult to
give general indications on the one which could bet-
ter fit the needs, or could be easier to implement. If
the problem to be solved involves just kinematic con-
straints, then all the proposed algorithms can be used.
In the single shot scenario, tree based algorithms are
in general much faster. It has however to be pointed
out that speed comes to the price of path quality, since
these planners stop as soon as a path is found. PRM
based planners, instead, can produce a set of paths,
and then the most favorable one is returned. In a situ-
ation where many successive queries have to be solved,
also the use of the basic PRM algorithm appears ap-
propriate. If the operating environment exhibits a con-
figuration space with narrow passages, then one of the
outlined refined PRM algorithms is the choice. It is
nevertheless evident that in general no algorithm is
better, but rather the environment influences the per-
formance. The opportunity of having more planners
to be used in different regions is addressed in [21], but
up to now no well defined heuristic is available to drive
the choice.
Another important issue is the sampling and resam-
pling strategy. The vast majority of the proposed
planners propose uniform sampling over either C or
a suitable subset. This leads to easy implementation,
but has the outlined drawbacks. For what concerns
resampling, associating a weight to each vertex and
then choosing vertices to resample with a probability
proportional to the inverse of the weight is easy to im-
plement. The easiest weight to compute is the number
of edges outgoing from a vertex. Also the weight sug-
gested in algorithm 10 is easy to compute, but could
take more time.

Collision detection is a challenging problem in
itself, but fortunately there exist very efficient algo-
rithms whose implementations are freely available to
the scientific community. These algorithms often as-
sume that the description of the objects is given in
terms of meshes of triangles. This is a very favor-
able hypothesis, as many CAD systems export this
type of representation for solid objects. However dif-
ferent algorithms exhibit different performances in var-
ious operating scenarios and a preliminary evaluation
is needed in order to select the one better fitting the
needs of the problem to be solved. The choice of
the collision detector is extremely important, as most
of the time spent by planners is devoted to collision
checking, both for validating samples and edges con-
necting samples. Another important practical aspect
concerns the Distance function. Since this is much
easier to implement, it is practical to try different def-

initions and than rely on the one giving better experi-
mental results. This is extremely important since sam-
pling based algorithms use the Distance function in
order to decide how the supporting data structure will
be expanded. Common choices are the L1, L2 or L∞
norms in the configuration space C. While computing
distances between configurations, it is also usual to
assign different weights to the degrees of freedom, or
to normalize them to a given common interval. This
is usually the case when both translational and rota-
tional joints are present, as rotating and translating
can have a different impact on the geometry of the
system.

6 Conclusions

We presented the most influential algorithms devel-
oped in the last years in the field of randomized robot
motion planning. This paper illustrated the most com-
mon sampling based algorithmic techniques, namely
graph based and tree based. The field is however con-
tinuously growing, and more and more refinements
are being proposed, so that an exhaustive enumer-
ation of the many possible variations is doomed to
early obsolescence. The user who needs to implement
them should have had concrete indications about their
strength and limitations, and will not find too difficul-
ties in adapting them to its specific needs.
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