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Abstract— The multirobot localization problem is solved in
this paper using an innovative approach related to Tikhonov
regularization. We release the requirement that robots are
equipped with sensors to estimate their own motion, as well
as the requirement that covariance matrices describing system
and measure noises are perfectly known. Robots are assumed
to have a single sensor returning noisy measurements of
mutual distances while they move along unknown paths. The
proposed algorithm estimates online both the robots’ poses
as well as the unknown covariance parameters. In addition
to the classical iterations of the well known iterated Kalman
filter, we include iterations that propagate an approximation
of the posterior marginal densities of the unknown variances.
Simulationl results provide evidence that the algorithm is
capable of accurately estimating the variances online while at
the same time keeping the localization error bounded.

I. INTRODUCTION AND RELATED WORK

Networked robotics is envisioned to be one of the key
research areas in the future of robotics research. Application
scenarios are abundant: surveillance, environmental monitor-
ing, wildlife observation, and homeland security are just few
examples. In all these applications, the ability to localize
sensors or robots is a key feature. While the NAVSTAR
satellites implementing the GPS network offer in general
a reliable solution, there exist significant fractions of the
globe where this technology is not usable (e.g. indoor areas,
forests, and urban canyons) In these situations, instead of
relying on the existence of an external set of landmarks,
the system can act as its own supporting structure, having
some of its elements (sensors or robots) acting as reference
points. This idea, that is one approach to solve the cooper-
ative localization problem, was pioneered by Kurazume et
al. [1]. In this paper we start from their problem setting,
i.e. a scenario where certain robots move around, while
certain others stay stationary to serve as reference points
for exterioceptive measurements. We attack the multirobot
localization problem removing some of the assumptions
usually found in the related literature. First, we abandon
the hypothesis that nodes are equipped with proprioceptive
sensors returning estimates of their motion. We assume that
the only form of external measurement available is the
mutual distance between nodes, similarly to what can be
obtained with time of flight sensors. Second, we drop the
assumption that the covariance matrices characterizing state
evolution and measurement noises are perfectly known. The
core of the paper is indeed an algorithm that solves the
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localization problem estimating these variances online. For
this kind of problem, the simplest and most widely used
technique consists of augmenting the dimension of the state
space by interpreting variance parameters as additional states.
Then, state/parameter estimation is performed by means of
an extended Kalman filter [2, 3]. The on-line approach that
we propose instead exploits and extends classical iterated
Kalman filtering equations [4] in order to propagate an
approximation of the marginal posterior of the unknown
parameters over time.
Being one of the most fundamental problems in mobile
robotics, localization has enjoyed a great amount of research.
The recent book by Thrun et at. [5] provides a comprehensive
coverage of the field. Most successful approaches to the
localization problem can be regarded as special instances of
the Bayes filter. Localization based on the extended Kalman
filter (EKF) or any of its refinements has been popular since
quite some time [6]. The posterior probability distribution is
approximated by a Gaussian, i.e. a single modal distribution.
A limitation affecting EKF based methods is the so called
data association, i.e. the problem of matching perceived
data with features in the environment. When the association
cannot be univocally determined, multiple hypothesis should
be tracked, and hence multi modal distributions should be
used instead. Although this constraint can be somehow
overcome using Gaussian mixtures, this is one of the main
limitations of these methods. EKF based approaches have
been used to solve both the single and multiple robot local-
ization problem. Roumeliotis and Bekey [7] implemented a
distributed solution for a system composed of robots able
to sense each other as well as their own motion. Smaller
communicating filters implement a global estimator. These
methods are good in solving the pose tracking problem, i.e.
to iteratively estimate the pose of the system once its initial
value is known with a certain uncertainty, provided that the
data association problem does not play a dominant role.
Monte Carlo localization overcomes the single hypothesis
limitation inherent in EKF based filters [8][9]. By using
particle filters the authors propose an algorithm able to
approximate an arbitrary posterior probability distribution.
Monte Carlo based localization methods assume the avail-
ability of a motion model as well as of a sensor model. Monte
Carlo methods are suitable to solve not only the pose tracking
problem. They solve also the global localization problem,
i.e. a localization task where initial pose estimation is not
known at all, as well as the kidnapped robot problem, i.e.
a localization problem where the initial pose estimation is
completely wrong.



II. STATEMENT OF THE PROBLEM

A. General problem formulation

In the sequel all vectors are column vectors. Some of the
notation used in the following of the paper is described in
the following table:

Notation Description
p ∈ Z+ dimension of parameter space
n ∈ Z+ dimension of state space
m ∈ Z+ dimension of output space
θ ∈ Rp parameter vector
x0 ∈ Rn initial value of state vector
zk ∈ Rm measurement vector
hk : Rn → Rm expected value of zk given xk

Rk : Rp → Rm×m variance of zk given xk

gk : Rn → Rn expected value of xk given xk−1

Qk : Rp → Rn×n variance of xk given xk−1

In particular, we assume that Rk and Qk can be dependent
on θ. Now, consider the following state-space model{

xk = gk(xk−1) + ωk

zk = hk(xk) + νk
(1)

Assumption 1: Given θ, the random vectors {νk} and
{ωk} are all mutually independent, Gaussian, with mean zero
and variance {Rk(θ)} and {Qk(θ)} respectively.

Our problem consists of estimating on-line {xk} and the
unknown components of vector θ starting from {zk}.

B. Multirobot localization problem

In the sequel we often use bd{A1, . . . , Ap} to denote the
square block matrix in which the diagonal elements are the
square matrices A1, . . . , Ap and the off-diagonal elements
are 0.
We introduce the multirobot localization problem as a special
instance of the problem previously stated. We have
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where integers i and j range from 1 to N (N is the number
of nodes), a

(i)
k and b

(i)
k are the coordinates in the plane of the

i−th robot at instant k while c
(i)
k represents its orientation.

Furthermore, v
(i)
k and d

(i)
k denote robot’s translational and

rotational velocity, respectively. The reader should recognize
in equation 2 the standard equations for a differential drive
robot moving on a plane. In terms of model 1 the following
correspondences hold (in this case m = N × (N − 1))
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where the trailing T indicates the transpose. It is assumed
that two kind of nodes may be present in the model. When
node i acts as a landmark, vi

k as well as the variances of
the components of ωk are set to zero for every k. Otherwise,
covariance of the random vectors [ω(i)
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where variances σ2

a, σ2
b and σ2

c could be components of θ.
We thus have Qk = bd{Q(1)

k , Q
(2)
k , ..., Q

(N)
k } It is assumed

known which node is moving and which is a landmark. As
concerns Rk, no particular structure is stated here. Notice
that if both i and j represent landmarks, whose positions are
assumed known, and the {Rk} do not depend on unknown
components of θ, measurements of their distance become
irrelevant and can be removed from the model. In addition,
depending on the particular problem under study, not all the
measurements {zk} listed above could be available, as also
specified later on.

C. Connection with Tikhonov regularization

We provide a connection between a simplified off-line
version of our state-estimation problem and Tikhonov regu-
larization. To simplify the notation, dependence of matrices
on θ is omitted in the rest of this sub-section. Let index
k vary between 1 and K inclusive. We define the vectors
X ∈ RnK , Z ∈ RmK as follows

X = (x1 . . . xK)T
Z = (z1 . . . zK)T

The functions h : RnK → RmK and g : RnK → RnK are
instead given by

h(X) = (h1(x1) . . . hK(xK))T

g(X) = (g1(x0) . . . gK(xK−1))
T

Matrices Q ∈ R(nK)×(nK) and R ∈ R(mK)×(mK) are
defined as follows

Q = bd{Q1, Q2, ..., QK}
R = bd{R1, R2, ..., RK}

If W is a symmetric positive definite matrix, v ∈ Rp and
W ∈ Rp×p, we define ‖v,W‖2 = vT Wv. The following
lemma provides and expression for the joint density of states
and data. It can be easily proved using the probability chain



rule and considering that, by assumption, {xk} is Markov
and process {zk} is white conditioned on the state process.

Lemma 2: If Assumption 1 holds, the negative log of the
joint density of Z and X is given by the function L : RnK×
RmK → R defined by

L(X, Z) =
1
2

log det(2πR) +
1
2
‖Z − h(X), R−1‖2

+
1
2

log det(2πQ) +
1
2
‖X − g(X), Q−1‖2(4)

The following theorem provides the desired connection
between a version of the off-line multirobot localization
problem and Tikhonov estimation [10].

Theorem 3: Consider model in eq.(2) with null initial
condition. Assume also that no landmark nodes are present
and that the N moving nodes are subject only to random
inputs, i.e. the translational and rotational velocities {v(i)

k }
and {d(i)

k } are all set to zero. In addition, let σ2 be the vari-
ance of the independent noises ν

(i,j)
k . Then, conditioned on

the values of the transition and measurement noise variances
and on {zk}, the maximum a posteriori estimates of {a(i)
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while F is a K × K lower triangular Toeplitz matrix
whose first column is equal to [1 − 1 0 ... 0]T , i.e.
F represents a discrete-time derivator.
The previous result is of interest since it shows how off-
line localization problem enjoys theoretical interpretation
in terms of regularization theory. In fact, the solution of
an instance of the problem can be obtained by optimizing
an objective function containing two kind of contrasting
factors. The first term in equation 5 accounts for experimental
evidence, while the second and third are penalty terms on
the energy of the discrete derivative of the robot trajectory.
Given this correspondence, we can think of γ1 and γ2 as two
regularization parameters which have to properly balance the
relative importance of the sum of squared residuals against
the smoothness index. In regularization theory it is well
known that the problem of finding a robust criterium for
selecting the regularization parameter is key [11]. In fact, on
one hand a too large value will correspond to a model that
is not complex enough to describe experimental data and
will return biased estimates. On the other hand, a too small
value will produce over-fitting and will increase estimates
variance [12]. When linear measurement models are used,

cross-validation or maximum likelihood represent robust
and commonly used criteria to tune this crucial parameter
However, in our case the problem is more difficult since

• the measurements model as well as the state dynamics
in the full model in eq.(2) are generally nonlinear

• more than one unknown regularization parameter may
be present in the estimator, depending on the unknown
components contained in θ

• estimation of robot trajectory and of regularization
parameters must be performed in an on-line manner

The approach developed to overcome the above difficulties
is described in the following Section.

III. THE ALGORITHM

In this Section we describe the algorithm for on-line
estimation of the state-vectors {xk} and θ. In the follow-
ing, we think of θ as a normal random variable whose
realizations are constrained to be nonnegative and whose
(possibly noninformative) density is specified before seeing
the measurements and updated as time index k increases.

A. Time update

We use θ̂k−1 to denote the estimate of θ at instant (k−1)
while Σ̂θ,k−1 denotes the covariance matrix of the associated
error. The estimate of xk−1 based on measurements collected
up to instant (k−1) is instead x̂k−1|k−1 with error covariance
denoted Σ̂k−1|k−1. It is worth stressing that both x̂k−1|k−1

and Σ̂k−1|k−1 are quantities which are not interpreted as
dependent on θ at this level of the algorithm.
As usual, we use the linearized dynamics of the system
around the current estimate to perform the time-update. We
use the notation g′(y) to denote the Jacobian of a function
g evaluated at y. Then

xk ≈ gk(x̂k−1|k−1)+ g′k(x̂k−1|k−1)(xk−1− x̂k−1|k−1)+ωk

(6)
It comes from eq. (6) that xk can be approximated as a

Gaussian with mean given by x̂k|k−1 = gk(x̂k−1|k−1) whose
covariance matrix becomes now dependent on θ and is given
by

Σ̂k|k−1(θ) = g′k(x̂k−1|k−1)Σ̂k−1|k−1(g′k(x̂k−1|k−1))T

+ Qk(θ)

B. Measurement update for state and parameter vector

The update problem amounts to achieve a better estimate
for xk and θ, and the corresponding covariance matrices of
the error affecting the estimates, starting from zk.

Proposition 4: Assume that xk is Gaussian with mean
x̂k|k−1 and covariance Σ̂k|k−1(θ). Then, conditioned on θ
and zk, the maximum a posteriori estimate of xk is the
minimizer of



l(xk, zk|θ) =
1
2

log det(2πRk(θ))

+
1
2
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‖zk − h(xk), Rk(θ)−1‖2

+
1
2
‖xk − x̂k|k−1, Σ̂k|k−1(θ)−1‖2 (7)

being l(xk, zk|θ) the minus log of the joint density of xk

and zk conditioned on θ.
Optimization of the objective l(.) can be performed by
exploiting a Gauss-Newton method, see e.g. [13]. Recall that
the iterated Kalman filter (IKF) update is exactly a Gauss-
Newton method, i.e. given the same initial point the sequence
of iterates generated by the Gauss-Newton method and the
sequence of iterates generated by IKF are identical, see [4].
Recall also that IKF corresponds to the extended Kalman
filter (EKF) when one performs just a single iteration. Thus,
an approximation of the minimizer of l(.) can be obtained
by defining inductively the sequences xi and Σi as follows

x0 = x̂k|k−1 Σ0 = Σ̂k|k−1(θ)

xi+1 = x̂k|k−1 + Ki
(
zk − h(xi)−Hi

(
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i

(
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i + Rk(θ)
)−1

After computing a sufficient number of iterations to reach
convergence, values of xi and Σi provide the updated es-
timate x̂k|k(θ) and covariance matrix of the error Σ̂k|k(θ),
respectively. However, both of these quantities depend on
θ and the question now arises as how to estimate the
unknown parameter vector. Let π(xk, zk|θ) be the joint
density for xk and zk conditioned on θ, i.e. π(xk, zk|θ) =
exp(−l(xk, zk|θ)). Let instead π(zk|θ) denote the marginal
likelihood of θ, i.e.

π(zk|θ) =
∫

π(xk, zk|θ)dxk (8)

This integral is useful since it allows to remove biases in
parameter estimation [14]. If πk−1(θ) denotes the current
”prior” for θ, i.e. a Gaussian with mean θ̂k−1 and covariance
Σ̂θ,k−1, our target estimate for θ is

θ̂ = argminθ − log [π(zk|θ)πk−1(θ)]

under nonnegative constraints for the components of θ. How-
ever, due to the nonlinear nature of function h, evaluation
of π(zk|θ) for a given θ requires solution of an integral in
eq.(8) which in general is analytically intractable. Now, we
show how computations performed by IKF for a given θ may
provide an approximation for such an integral. To this aim
let’s consider the affine approximation of l(xk, zk|θ) for xk

near y defined by
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The determinant of the Hessian of l̃ with respect to xk

can be easily computed and turns out to be
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The information matrix approximation for the marginal like-
lihood π(zk|θ) is denoted by π̃(zk|θ) and given by (see
[15][16])

det
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xk

l̃(xk, x̂k|k(θ), zk|θ)/(2π)
}−1/2

e−l(x̂k|k(θ),zk|θ)

(10)
In view of eq.(9) and eq.(10) it comes that such an approx-
imation requires x̂k|k(θ) and h′(x̂k|k(θ)) which represent
quantities returned by IKF. In other words, for every θ value
the IKF can be used to evaluate an objective function whose
optimization provides the estimate of θ. Thus, we are in the
position to define the estimate of θ, computed after seeing
data up to instant k, as the solution to the problem

θ̂k = argminθ − log [π̃(zk|θ)πk−1(θ)] (11)

while Σ̂θ,k is defined by

Σ̂θ,k =
(
−∂2

θ log
[
(π̃(zk|θ̂k)πk−1(θ̂k)

])−1

(12)

and can be computed numerically. This completes the
update for parameter θ. Finally, the entire measurement
update is completed by setting estimate of xk to x̂k|k(θ̂k)
with covariance matrix of the error given by Σ̂k|k(θ̂k).

IV. EXPERIMENTAL RESULTS

To test the relative performance of our method, we con-
sider two different cases where either matrices {Qk} or
{Rk} may depend on components of θ which are unknown.
We consider several Monte Carlo simulations involving a
large set of localization problems. Every Monte Carlo study
consists of 1000 runs and at every Monte carlo run mobile
nodes perform 100 steps. Parameter θ is given an initial
noninformative distribution which is always updated in the
first 10 steps, and only one out of 10 steps in the remain-
ing iterations. As concerns the moving nodes, their initial
positions are randomly drawn from a uniform density with
support on a square centered in the origin with side length
equal to 2. In the model of eq. (2) all the v

(i)
k are constant and

set to 0.4 while d
(i)
k equals 0.35 or −0.35 with probability

0.5. These assumption are consistent with currently used
mobile platforms. In fact, they amount to assuming that each
node moves at most 0.4m and rotates at most 20 degrees



in each time step, which can be assumed to be 1s. These
nominal values for the translational and rotational velocities,
as well as the initial positions of the nodes, are assumed
known during each simulated study. Finally, three nodes act
as landmarks, being located so as to form an equilateral
triangle with barycenter set in the origin and with side length
equal to 40. Initial conditions of fixed and mobile nodes
are assumed perfectly known. If a

(i)
k,j and b

(i)
k,j are the true

coordinates of the i-th node at the j-th Monte Carlo run, we
use â

(i)
k,j and b̂

(i)
k,j to denote the corresponding estimates. The

errors affecting the estimates, as a function of j, are then
denoted {εj} and given by
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A. Possibly unknown transition noise covariance

We first consider case studies where θ ∈ <3 and its
components are the three variances of the transition noise, i.e.
the diagonal elements of matrices {Qk}. Such variances may
be unknown. Matrices {Rk} are instead assumed perfectly
known. Several simulated studies (each consisting of 1000
Monte Carlo runs) are considered, differing in the number of
moving nodes, which may be 3, 6 or 9, and in the values of
the components of θ, which may be [0.052 0.052 0.052],
[0.12 0.12 0.12] or [0.22 0.22 0.22]. In each case, mea-
surements regarding distance among nodes are corrupted by
a Gaussian noise with a constant percentage coefficient of the
error (CV %) equal to 10. Robot trajectories and orientation
are then estimated by setting θ3 to its true value1 and

• assuming θ1 and θ2 known and using EKF (estimator
named Γ0)

• assuming θ1 and θ2 known and using IKF (Γ1)
• assuming θ1 and θ2 unknown and using the new ap-

proach described in the previous Section based on IKF
(Γ2)

• setting θ1 and θ2 to their true values divided by 16 (SD
of the transition noise is thus 4 times larger than the
true value) and using IKF (Γ3)

• setting θ1 and θ2 to their true values multiplied by 16
(SD of the transition noise is thus 4 times smaller than
the true value) and using IKF (Γ4)

In Fig. 1 we report values Av(ε), as a function of the
number of moving nodes employed in the Monte Carlo study,
achieved by the five estimators when the true SD of the
transition noise is 0.05 (top), 0.1 (middle) or 0.2 (bottom).
First of all, it is worth stressing how the performance of Γ0 is
significantly inferior than that regarding Γ1 and Γ2. Obtained
results thus show how in localization problems IKF (with
variances of the transition noise either known or unknown
and estimated by our approach) is much more robust than
EKF (with variances assumed known). We now compare
the performance of IKF-based estimators, i.e. of {Γi}. The

1experiments shown it is not worth trying to estimate variance θ3, due
to the limited amount of output information

Fig. 1. Possibly unknown transition noise covariance parameters: average
error, as a function of the moving nodes.

goodness of the proposed approach clearly surfaces since the
performance of Γ2 always appears close to that of Γ1. One
can also see that the performance of Γ2 is closer and closer
to that of Γ1 as the number of moving nodes increases. This
points out how the proposed method is able to efficiently
extract more and more useful information on the statistics of
the state dynamics as the size of the data set augments. On
the other hand, the use of Γ3 or Γ4 leads to a degradation
of the quality of the estimates. However, it is worth noticing
how the average error relative to Γ3 remains quite close to
that obtained by employing the true variances. An interpre-
tation of this result is that output measurements are able
to compensate quite well overestimation of transition noise
variances. In the next subsection, it will be shown that the
situation becomes much more critical when undermodeling
affects the statistics of the measurement noise.

B. Possibly unknown measurement noise covariance

Now, we consider case studies where matrices {Qk} are
assumed perfectly known while matrices {Rk} may be partly
unknown. In particular, system state has to be reconstructed
from measurements of two different types. Moving robots
may measure their mutual distances and the variance of
the noise affecting such measurements is known. To be
specific, this kind of output data are corrupted by a Gaussian
noise with a constant CV % equal to 10. Other available
measurements regard the distance between mobile robots and
landmarks. We assume that such data are corrupted by a



Gaussian noise with a constant CV % that is function of the
fixed node and assume values equal to 5, 10 or 20. These
CV values represent the components of θ ∈ <3 and may be
unknown. As in the previous case, several simulated studies
(each consisting of 1000 Monte Carlo runs) are considered,
differing in the number of moving nodes, which may be 3,
6 or 9, and in the variance of the transition noise, which
is the same for every moving node and may assume values
0.052, 0.12 or 0.22. Robot trajectories are estimated

• assuming θ known and using EKF (estimator Γ0)
• assuming θ known and using IKF (Γ1)
• assuming all the components of θ unknown and using

the novel estimation approach described in the previous
Section based on IKF (Γ2)

• setting all the components of θ so as to define a CV %
of the error affecting the measurements between all the
mobile and fixed nodes equal to 5 and using IKF (Γ3)

• setting all the components of θ so as to define a CV %
of the error affecting the measurements between all the
mobile and fixed nodes equal to 20 and using IKF (Γ4)

Fig. 2. Possibly unknown measurement noise covariance parameters:
average error, as a function of the moving nodes, when the true SD of
the transition noise is 0.05 (top), 0.1 (middle) or 0.2 (bottom).

Fig. 2 displays obtained results with the same rationale
adopted in Fig. 1. Obtained results still point out how IKF-
based schemes Γ1 and Γ2 are much more robust than Γ0

which relies upon EKF. As regards the performance of all
the IKF-based estimators, it is remarkable the fact that Γ2

performs very well, returning an average error which is very
similar to that achieved by Γ1. On the other hand, one can

easily notice how the use of Γ3 or Γ4 leads to a large
degradation of the quality of the estimates. As a matter of
fact, the average error may turn out also 3 times larger than
that obtained by using Γ1 or Γ2.

V. CONCLUSIONS

In this paper we have addressed the problem of cooperative
localization of multi-robot systems. The presented approach
is novel in many aspects. On the practical side, it drops
the assumption of proprioceptive sensors. It further assumes
that system and measurement noises are zero mean with
covariances which may contain unknown parameters that
are estimated online. On the theoretical side, the connection
between the proposed estimation problem and Tikhonov
regularization has been outlined. The importance of online
parameters estimation is noteworthy. First, it relieves the task
of estimating or measuring a priori system and measurement
noises. We clearly show that the online algorithm outper-
forms estimation based on noise levels too high or too low,
in particular when the statistics of the measurement sensors
are uncertain. Second, in the light of recent results producing
localization error bounds based on noise covariance matrices
[17], the ability to precisely estimate these variances online
allows the derivation of more precise bounds.
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