
The GRAPH-CLEAR problem: definition, theoretical properties and its
connections to multirobot aided surveillance

Andreas Kolling and Stefano Carpin
School of Engineering

University of California, Merced
Merced, CA, USA

Abstract— In this paper we present a novel graph theoretic
problem, called GRAPH-CLEAR, useful to model surveillance
tasks where multiple robots are used to detect all possible
intruders in a given indoor environment. We provide a formal
definition of the problem and we investigate its basic theoretical
properties, showing that the problem is NP-complete. We
then present an algorithm to compute a strategy for the
restriction of the problem to trees and present a method how
to use this solution in applications. The method is then tested
in simple simulations. GRAPH-CLEAR is useful to describe
multirobot pursuit evasion games when robots have limited
sensing capabilities, i.e. multiple agents are needed to perform
basic patrolling operations.

I. INTRODUCTION

One of the commonly envisioned applications of multi-
robot systems is in the field of surveillance of large areas,
like harbors, airports, etc. [1]. In a world where sensors
are getting cheaper and sensor networks are foreseen to
be soon deployed on a large scale, one could argue that
robots do not really offer an advantage. Instead, there are
indeed cases where teams of multiple robots are needed. If
intruders are being sought in an area not previously equipped
with sensors, or if the intruder maliciously or accidentally
neutralizes previously deployed sensors, the possibility to
have a set of moving sensors mounted on robots offers clear
advantages. For economical reasons it is preferred to deploy
as few robots as possible when completing such a task. In
this paper we investigate the theoretical foundations of this
problem. More specifically, we define a new graph theoretical
problem that models many situations where robots are used
to patrol complex environments. Our perspective differs from
previous work on graph searching and pursuit evasion in as
much as we take a practical stand with the goal of deploying
a team of robots with restricted sensing capabilities. Hence
we need multiple robots to execute actions like clearing a
room or guarding the door connecting rooms. In section
II we shortly discuss related work, both from the graph-
theoretical point of view and from the robotics perspective.
Section III describes the problem we investigate, showing
the connection between the abstract theoretical formulation
and practical situations. Then in section IV we proof that
GRAPH-CLEAR is NP-complete and present an algorithm
to compute a strategy for trees in section V. Finally, we
present an approach to apply the results in practical scenarios
in section VI, followed by future work and the conclusion
in section VII.

II. RELATED RESEARCH

Due to space limitations, only selected contributions com-
ing from the robotics and graph-theoretic communities will
be discussed here. The first instances of the graph-searching
problem were discussed by Parsons [2]. It consists of a graph
G with contaminated edges. The goal is to decontaminate,
i.e. to use agents that can execute certain actions turning
contaminated edges into clear edges. For the problem known
as edge-search agents can (1) be placed on a vertex, (2)
be removed from a vertex or (3) move along an edge. An
edge is cleared when an agent moves along the edge and
either all edges connected to the start vertex are clear or
another agent is placed on the start vertex. A clear edge is
re-contaminated if there exists a path from a contaminated
edge to this edge which is not containing vertices with
agents. The search number s(G) of the edge-search problem
is the smallest number of agents with which one can find
a sequence of actions, called strategy, such that all edges
become clear. Megiddo et al. in [3] show that determining
s(G) is NP-complete by reducing it to the MIN-CUT INTO
EQUAL-SIZED SUBSETS problem. Barriere et al. [4] first
considered the edge-search problem with weighted vertices
and edges. Therein more than one agent could be needed
to clear an edge (by moving along it), or more than one
agent could be needed to stay in a vertex and break a path
leading to recontamination. They also added the restrictions
that searchers cannot be removed from the graph and that at
any time all cleared edges form a connected subgraph. They
show that the general problem is NP-complete on graphs,
but can be solved with linear complexity on trees and give
an O(n) algorithm to solve this problem.

In the robotics community visibility-based pursuit evasion
problems have been considered for a while. The early work
by Suzuki and Yamashita [5] investigates how a pursuer can
detect intruders using a flashlight, i.e. a beam sensor with
unlimited range. In a series of papers LaValle and other
collaborators investigated different variations of this problem,
for example the case where the pursuer has a flashlight-like
omnidirectional sensor and is searching for an intruder in a
complex polygonal environment [6]. Subsequently, minimal-
ist strategies for simple pursuers were investigated. In [7] it is
shown how a single pursuer equipped with a gap sensor, i.e.
a sensor only capable of detecting discontinuities, can detect
an unpredictable target that moves with unbounded speed in

a simply-connected environment. More recently Gerkey et al.
[8] address the visibility based pursuit problem considering
a robot with limited field of view and showing also results
involving practical experiments.

III. PROBLEM DESCRIPTION

Before introducing the problem in formal terms we pro-
vide its practical grounding in multi-robot aided surveillance.
In case one or more robots are used to detect possible
intruders in a given indoor environment, it is convenient to
associate a graph with the given environment. Specifically,
we associate vertices with rooms (i.e. planar areas), and
edges to connections between different rooms, i.e. doors,
passages, and so on. We assume that robots are equipped
with limited range sensors. For example, more than one robot
may be needed in order to assure that no intruder traverses a
certain door. Similarly, more than one robot may be needed
to sweep a room and detect all possible intruders. Having this
scenario in mind, we turn to the formal problem statement.
In the sequel we use the terms agent and robot as synonyms.
They both indicate the moving device carrying a sensor that
can detect intruders.

Let G = (V,E) be an undirected graph, where V is
the set of vertices and E is the set of edges. Edges and
vertices can be clear or contaminated. A clear vertex or
edge is guaranteed to host no intruders, while a contaminated
vertex or edge could potentially hide one or more intruders.
G is said to be clear when all its vertices and edges are
clear. Contaminated vertices or edges can be cleared by
applying the Blocking and Clearing operations that will be
shortly introduced. However, a clear vertex v can become
contaminated again if there exists a path from v to another
contaminated vertex or edge1. A similar definition can be
given to describe edge recontamination. The following oper-
ations can be applied to edges or vertices:

1) Blocking - an action applied to an edge that does not
allow recontamination of any edge or vertex through a
path using the blocked edge or vertex. A blocked edge
becomes clear.

2) Clearing - an action applied to a vertex that ensures
that all intruders are detected, assuming no new in-
truders enter or leave the vertex. When this operation
is applied the vertex becomes clear.

In order to formally introduce the GRAPH-CLEAR prob-
lem, we first define the terminology.

Definition 1 (Weighted graph): A weighted graph G =
(V,E,w) is an undirected graph G = (V,E) endowed with
a weight function w : V ∪ E → N \ {0}. The weight of a
vertex v ∈ V , i.e. w(v), is the number of agents needed to
perform a clearing action on that vertex, while the weight of
an edge e ∈ E, i.e. w(e), is the number of agents necessary
to perform a blocking action on that edge.

1usually a path is defined as a sequence of vertices, while here we consider
also edges connecting two vertices in the path. This slight difference could
be formalized, but the notation would become heavier, so we prefer to leave
this notion at this intuitive level

When using multiple robots in order to clear an environ-
ment, we can deploy robots in edges or vertices in order
to perform the blocking and clearing actions. The policy
we follow when deploying robots is called strategy and is
captured by the following definition.

Definition 2 (Strategy): Let G = (V,E,w) be a weighted
graph. A strategy S on G is a function S : (V ∪E)×N→ N.

According to the above definition, if v ∈ V , then S(v, t)
is the number of agents deployed on vertex v at time t, while
S(e, t) is the number of agents deployed at time t on edge e.
Associated with each strategy there is a cost, i.e. the number
of agents needed in order to implement the strategy.

Definition 3 (Cost of a strategy): Let G = (V,E,w) be a
weighted graph, and let S be a strategy on G. The cost of
S is

ag(S) = max
t∈N

∑
x∈V ∪E

S(x, t)

We can now define the GRAPH-CLEAR problem.
Definition 4 (GRAPH-CLEAR problem): Let

G = (V,E,w) be a weighted graph with all edges
and vertices contaminated. Determine a strategy S on G
that clears G and is of minimal cost.

Let us illuminate a key difference to edge-search. In edge-
search an edge is cleared when one of the endpoints is
guarded and another agent is moved along the edge to the
other endpoint. If the first endpoint is not adjacent to any
other contaminated edges one can clear the edge by moving
only one searcher along it without keeping the first endpoint
guarded. If we think of this in practical terms it imposes a
severe restriction. Think of the agent as a mobile sensor that
moves from one vertex to another. In classical edge-search
it has to ensure that no target can possibly enter the first
endpoint during the movement along the edge. Furthermore,
once arrived at the second endpoint no target should be able
to enter the edge. In our variant this restriction is not present,
since for such a movement recontamination will occur. The
only way for a team of mobile sensors to travel from one
vertex to another, without re-contaminating the first endpoint,
is by blocking the edge and while it is blocked, clear and
block the second endpoint. Only then the block on the
edge can be released. This allows the usage of sophisticated
methods for the clearing action on the vertex, such as the
one presented in [7] using a single mobile gap detector with
sufficient range, without perfect control or any localization
capabilities, to clear unknown, simply connected, piece-wise
smooth and planar environments. We could, e.g. clear the
environment in the center of figure 1 with a single mobile
gap-detector while three other sensors observe only the grey
rectangular regions. Once done, the gap sensor can move into
a neighboring environment. It is hard to imagine how one
would guard such complex simply connected environments.

The following simple equation gives the cost to clear a
vertex safely, i.e. the cost to perform a clearing operation
on the vertex while blocking all the edges connected to it to
avoid immediate recontamination.

s(v) = w(v) +
∑

e∈Edges(v)

w(e). (1)

Fig. 1. A complicated environment that can be cleared with a single mobile
gap sensor while three other sensors block the rectangular entrances. The
corresponding graph with weights is displayed on the lower right. Dotted
lines indicate an arbitrary continuation.

Our definition allow us to place agents on multiple vertices
in one step. It is worth noting that a strategy clearing no
more than one vertex per step needs less agents than one
that places agents on more vertices in one step. Hence,
since we are looking for strategies of minimal cost, we will
restrict our attention to strategies that clear at most one vertex
per step. We conclude this section by observing that for a
given weighted graph G there can be multiple strategies S
of minimal cost. Let ag(G) denote the cost of any optimal
strategy for G.

IV. GRAPH-CLEAR IS NP-COMPLETE

The main result of this section is a proof showing that the
decision problem associated with the graph clearing problem
NP-complete. Formally, we consider the following decision
version of the GRAPH-CLEAR problem:

INSTANCE: G = (V,E,w) with w(x) = 1 ∀x ∈ V ∪ E,
and a natural number K

QUESTION: is ag(G) ≤ K?
Theorem 1: GRAPH-CLEAR is NP-complete.
Our proof also relies on a reduction to the MIN-CUT

INTO EQUAL-SIZED SUBSETS problem (MCIESS from
now on) that is known to be NP-complete [9]. For sake of
completeness, we shortly restate the MCIESS problem.

INSTANCE: An undirected graph G = (V,E) with an
even number of vertices, and a natural number K.

QUESTION: is there a partition of V into two subsets V1

and V2 with |V1| = |V2| = 1
2 |V | such that |{u, v} ∈ E : u ∈

V1, v ∈ V2| ≤ K?
The core part of the proof is analogue to the proof of NP-

completeness of edge-search on a graph given by Megiddo
et al. in [3]. The key difference is that instead of complete
graphs we have to use star-shaped graphs, as defined below.
We first prove some properties of graph clearing on star-
shaped graphs and then proof Theorem 1.

Definition 5 (Star shaped graph): A star shaped graph
Sn = (V,E,w) is a weighted graph where

• V = {v0, v1, . . . , vn}
• there exists a vertex vs ∈ V such that [vi, vj] ∈ E ⇔
vi = vs or vj = vs.

• w(x) = 1 ∀x ∈ V ∪ E.
The vertex vs is called center, while all other vertices are
called singletons.

Lemma 1 (Clearing a star shaped graph): Let Sn be a
star shaped graph. Then ag(Sn) = n+ 1.
Proof: Let v0 = vs. According to Eq. 1 one needs at least
n+1 agents to clear the vs, hence this is a lower bound. Con-
sider the following strategy: first clear v1 blocking [vs, v1];
then clear v2 blocking [vs, v1] and [vs, v2]; next clear v3
blocking [vs, v1], [vs, v2] and [vs, v3] and so on. Hence the
last singleton to be cleared needs n blocks and 1 agent to
clear it. Once vn has been cleared, vs can be cleared with
n + 1 agents (n to block the n edges and one to clear it).
Hence ag(Sn) = n+ 1.

Lemma 2 (Connectors of stars): Let Sn = (V,E,w) be a
star shaped graph with n ≥ 2, let vg be a new vertex and let
Sc

n = (V ∪{vg}, E ∪{[vc, vg]}, where vc ∈ V is a singleton
of Sn. Call the vc a connector of Sc

n. Then ag(Sn) = ag(Sc
n).

Proof: Clearing vg first requires 2 agents, then clearing vc

requires 3 agents2. To maintain vg and vc cleared we need
to keep edge [vs, vc] blocked with weight one. Clearing the
remaining vertices is equivalent to clearing Sn−1. Hence
ag(Sn) = ag(Sc

n). �

Lemma 3 (Connecting stars to graphs): Let Sn =
(V,E,w) be a star shaped graph n ≥ 2 and let
G = (V

′
, E

′
, w′) be any graph. Consider the instance

of Sc
n = {V ′′, E′′, w′′} built as follows:
• V ′′ = V ∪ V ′

• E′′ = E ∪ E′ ∪ {[vc, vg]} where vc ∈ V is a singleton
of Sn, vg is any vertex in G

• w′′([vc, vg]) = 1, w′′(x) = w(x) ∀x ∈ V ∪E, w′′(x) =
w′(x) ∀x ∈ V ′ ∪ E′

Call the vc a connector of Sn. Then max(ag(Sn), ag(G)) ≤
ag(Sc

n) ≤ max(ag(Sn), ag(G)) + 1.
Proof: First clear Sn by clearing all singletons first and then
the center. After clearing the center a total of n + 1 agents
were needed and only the block to vc has to remain. Then 3
agents suffice to clear the path from the center of Sn to vg ,
leaving the edge [vc, vg] blocked with one agent. Clearing
G will now require exactly ag(G) agents. Hence ag(Sc

n) ≤
max(ag(Sn), ag(G)) + 1. Clearly ag(G) and ag(Sn) are
lower bounds.�

Figure 2 shows a star shaped graph without and with
connector.

connector

singleton

center

singleton

a) b)

Fig. 2. a) A star shaped graph and b) a star shaped graph with connector.

2note that 3 ≤ ag(Sn) because we assumed n ≥ 2

Lemma 4 (Connecting multiple copies of stars): Let k ∈
N and Ci, 1 ≤ i ≤ m be m copies of Sn with n > k ·m.
For each pair Ci, Cj , j 6= i add k edges between singletons
to turn them into connectors. Call the resulting graph H .
Then ag(H) = n+ 1 + kbm−1

2 c · (m− 1− bm−1
2 c)

Proof: Trivially, to clear the first Cn0 we need at least n+1
agents. The following procedure clears Cn0 with n+1 agents.
We start by clearing all singletons in sequence and blocking
their edges to the center. Then we block all edges of the
center and clear it. This requires n+ 1 agents. Now we can
release all blocks on edges between center and singletons
while retaining k agents to block the edges connecting the
center to the connectors. The remaining contamination in
Cn0 is now precisely in the connectors whose edges are still
blocked. For each connector clear the path until the center
of the neighboring Cj . Each time we clear such a path we
have to leave precisely one agent blocking the center of
the neighboring Cj from its connector leading to Ci. After
clearing Cn0 we hence reduce the task of clearing all other
Cis from clearing an instance of Sn to clearing an instance of
Sn−1, since the one edge to Cn0 will constantly be blocked
until the center of Ci is also cleared. At step i let bi be
the number of agents needed for blocks between clear and
contaminated Ci’s and ai be the number of agents needed
to clear Cni

. Then

ai = n+ 1− i · k (2)
bi = i · k(m− i) (3)

Now, ag(H) = max0≤i≤m−1{ai + bi}. This maximum
occurs at i = bm−1

2 c and therefore:

ag(H) = n+ 1 + kbm− 1
2
c · (m− 1− bm− 1

2
c) (4)

�

With the previous lemmas the key ideas of the proof of
NP-completeness for edge-search by Meggido et al. [3] can
be adapted to conclude the proof of Theorem 1.

V. TREE CLEARING

Since GRAPH-CLEAR is NP-complete, let us turn to the
restriction of the problem to trees. In [10] we presented an
algorithm that computes a strategy S in the special case that
G is a tree with a proven upper bound but still with ag(G) ≤
ag(S). For the case of trees write T instead of G. Let us
restate the algorithm in a more general form with a notation
similar to Barriere’s notation in [4] where an algorithm to
compute a contiguous strategy for weighted edge-search on
trees is presented. Let T = (V,E,w) be a tree with a weight
function w : V ∪E → N\{0}. For any edge e = [vx, vy] let
there be two labels λvx and λvy . These labels will represent
the number of agents needed to clear the subtree rooted in vy

when coming from vx and vice versa. A label is computed as
follows: if vy is a leaf, then λvx

(e) = s(vy) = w(vy)+w(e).
Otherwise consider all neighbors of vy other than vx. Let
these be v2, . . . , vm with m = degree(vy). Let ei = [vy, vi]
and ρi := λvy (ei)−w(ei). W.l.o.g. the neighbors are ordered

s.t. ρi ≥ ρi+1. Now define the cost when clearing the subtree
at vi by c(vi) := λvy (ei) +

∑
2≤l<i w(el), i.e. we have to

use agents to block all edges to previously cleared subtrees
and then use agents to clear the subtree vi. Now let:

λvx(e) = max{s(vy), max
i=2,...,m

{c(vi)}}. (5)

The order defined by ρi minimizes this term. It is straight
forward to compute the labels in O(n). In [4] Barriere
provides details how this can be done in sequential time O(n)
and distributively with O(n) messages. Once the labels are
computed we can derive a strategy. Consider vertex v and all
its neighbors v1, . . . , vm with m = degree(v). The number
of agents needed for a strategy S(v) which starts clearing
the tree from v is

ag(v) = max
{
s(v), max

i=1,...,m
{cag(vi)}

}
,

where cag(vi) = λv(ei) +
∑

1≤l<i w(ei). It is executed by
following the edges in their order, always blocking edges
between cleared and contaminated parts of the tree. Once
all subtrees of a vertex are cleared the vertex itself will be
cleared by blocking all edges and then executing a clearing
action on it. Figure 3 shows how such a strategy.

Let us now consider a contiguous version of our algorithm,
i.e. one which produces a clearing strategy in which all
cleared vertices will always form a connected subtree at
every clearing step. To obtain a contiguous strategy we clear
and block vy before we clear all its subtrees. This also means
that when we start clearing the first subtree all edges to con-
taminated subtrees are blocked. It may also become easier to
clear the subtree rooted on vi since the edge to vy is already
blocked. Hence our labels will have to differ slightly. So we
define sc

vx
(vy) = s(vy)−w([vy, vx]), i.e. the cost of clearing

vy is reduced by w([vy, vx]), since this edge is blocked when
we enter the subtree rooted at vy . We shall use the superscript
c to denote the contiguous variants of our labels and func-
tions. We also need to order our subtrees differently, i.e. we
clear the subtrees in order vm, . . . , v2. The contiguous labels
are now computed as follows: if vy is a leaf, then λc

vx
(e) =

w(vy). Otherwise let cc(vi) := λc
vy

(ei) +
∑

2≤l≤i w(el).
λc

vx
(e) := max

{
sc

vx
(vy),maxi=2,...,m{cc(vi)}

}
. The num-

ber of agents needed to clear the tree starting from vertex v

vx

vy

v3 v1v4v5 v2

vx

vy

v3 v1v4v5 v2

Fig. 3. This figure shows how a noncontiguous strategy on a tree can be
executed. The dashed line separates clear and contaminated vertices. Edges
are represented by solid lines and blocked when crossed through twice.
The grey color indicates the subtree or vertex that is being cleared at the
presented step and arrows indicate movement of clearing robots.

now is:

agc(v) = max
{
s(v), max

i=1,...,m
{ccag}

}
.

where agc
ag = λc

v(vi) +
∑

1≤l≤i w(ei). The following com-
pares the contiguous variant to the noncontiguous one.

Lemma 5: Let T = (V,E,w) be a tree with a weight
function w : V ∪ E → N/{0}. Then ag(v) ≤ agc(v),∀v ∈
V .
Proof: Consider the computation of λc

vx
(e) and λvx

(e)
with the same notation as above. If vy is a leaf, trivially
λc

vx
(e) + w(e) = λvx(e). If not, then consider it neighbors

vi different from vx. If all vi are leaves, then either
λc

vx
(e) = λvx

(e) or λc
vx

(e) + w(e) = λvx
(e). Now if we

have one vj for which all children are leaves, then by above
λc

vj
(e) = λvj

(e) or λvj
(e) − λc

vj
(e) = w(ej). Therefore

−w(ei) ≤ λc
vx

(e)−λvx(e) ≤ w(e). Extending this argument
inductively gives us the simple fact that the contiguous label
can at most be better by w(e). Since this weight is added
in agc(v) we get ag(v) ≤ agc(v). �

Indeed this lemma says more. With sufficient depth the
noncontiguous label can become better than multiple edge
weights. We can also derive a bound on the maximum dif-
ference between the contiguous and noncontiguous version
in terms of the maximum edge-weight and depth of the tree
starting from the final root chosen for clearing the tree. Hence
the difference can become significant for deeper trees. This
shows that the trade-off for a contiguous strategy is that one
has to block more edges throughout the tree.

Interestingly a combination of the contiguous and non-
contiguous version can still be better than either one. This
is easiest to see by an example. Consider vx and edge
e = [vx, vy] and vy also connected to v2, v3, v4, v5, v6.
Let λvy

(ei) = a, 2 ≤ i ≤ 6, where a > 3 is some
constant and let w(vy) = w(e) = w(e2) = w(e3) =
1, w(e4) = 2, w(e5) = w(e6) = 3. Now λvx(e) = a + 7.
Consider an alternative of clearing the subtrees by clearing
v2, v3, v4, v5, vy and v6 in this order. We need a + 4 for
clearing the first four, then s(vy) = 12 for clearing vy ,
leaving w(e)+w(e6) = 4 agents to block contaminated parts
from cleared parts. Clearing v6 will require at most a agents.
Hence to maximum number of agents needed to clear the
subtree rooted in vy coming from vx with this new strategy is
a+4. Similarly, we can construct examples in which clearing
vy before clearing some of the subtrees requires more agents.
This shows that our previous algorithm is indeed not s.t. the
strategy S it produces satisfies ag(G) = ag(S), even if we
start the strategy at vertex v s.t. ag(v) is minimal.

For weighted edge-search Barriere proves that the pre-
sented algorithm from [4] indeed produces an optimal con-
tiguous strategy. It may well be that we can use a similar
approach to show the analogue for our contiguous variant.
But since we know that the non-contiguous version outper-
forms the contiguous we are rather interested in investigating
the case when the strategy is not contiguous.

Let us now formalize how an improved strategy, based on

the two examples shown above, may look like. For vertices
vx, vy as before and v2, . . . , vm partitioned into two sets of
vertices V1 and V2 define: h = maxvi∈V1{c(vi)}, hc =
maxvi∈V2{cc(vi)} + w(e), hu = max{h, hc}, λu =
max{s(v), hu}.

Note that this assumes that we do not have w(e) blocked
when we enter vy from vx, i.e. we assume that vy is one
of the vertices in V1 w.r.t. label λvz

([vz, vx]) for some other
neighbor of vz . Despite these details that merely complicate
notation we have one main challenge that remains to be
solved. Given the above find a partitioning V1, V2 that
minimizes hu. We know from our previous results that within
V1 and V2 the optimal order of vertices is ρi, i.e. strictly
speaking −ρ for V2.

Investigating this new problem and attempting to find an
algorithm that produces the optimal noncontiguous strategy
on a tree remains subject for further work.

VI. APPLICATION AND SIMULATIONS

A partition of an environment in a realistic application is
usually a graph. Since the general problem on graphs is NP-
complete, we need to develop heuristics or approximations in
order to obtain practical solutions. In [10] we first proposed
to calculate the minimum spanning tree (MST) on a graph
and then block all edges s.t. only MST edges remain. Let us
denote all edges not belonging to the MST as cycle edges.
Figure 4 shows an example of a simple environment with a
given partitioning and the resulting noncontiguous strategy
computed for the MST. As originally proposed, the cycle
edges would be blocked throughout the execution of the
strategy for the MST. Clearly, we can do a lot better. Once
the MST is computed we only need to block cycle edges
that connect a contaminated and a cleared vertex during
the clearing process. We shall call this approach dynamic
cycle blocking and the former constant cycle blocking. To
validate the new approach we designed the following simple
experiments.

2

2

2
1

1

1
1 1 1 1

1

1
1 1

11 1
1 c)a)

5

5

3

3

5

23 3 4

3
4

4 2

32
3

2

9

8

6
5 3

7

4

21d)

non-MST edgedeployment vertex

b)

Fig. 4. Part a) shows an environment with doors as grey rectangles and
walls as black lines. A sample robot is shown as a black dot with the area
covered by its sensor shown as a grey half circle. Part b) shows the graph
representation with weights on edges and vertices corresponding to how
many robots alike the sample robot are needed. Part c) shows the MST and
the noncontiguous labels w.r.t the direction from the deployment vertex. The
number of agents needed to clear a vertex are written on the vertex. Part d)
shows the order of clearing starting from 1.

A. Experimental set up

Random graphs with a given number of vertices and edges
are created with random weights in the range 1 to 12 for

Fig. 5. Results of the experiments with 9 sets of parameters. The upper
lines for each number of vertices is always the cost for the constant cycle
blocking strategy and the lower for the dynamic cycle blocking strategy.

TABLE I
REDUCTION OF THE NUMBER OF ROBOTS NEEDED WHEN USING

DYNAMIC CYCLE BLOCKING EXPRESSED IN TERMS OF THE PERCENTAGE

OF THE NUMBER OF AGENTS NEEDED TO BLOCK ALL CYCLES AT ONCE.

Edges per vertex 1 1.5 3
20 Vertices 47.74% 41.69% 40.40%
30 Vertices 55.49% 45.09% 42.85%
40 Vertices 62.24% 47.00% 45.32%

vertices and 1 to 6 for edges. Once the graph is constructed
we compute the MST and pick the root in the center of
the longest path in the tree and compute all labels into
the direction of the root vertex. The labels and the total
weight of all cycle edges give the cost for the constant
cycle blocking. To determine the costs for the dynamic
cycle blocking we execute the strategy and add/remove cycle
blocks as necessary. We defined 9 sets of parameters, 3 sets
with 20 vertices with 20, 30 and 40 edges, 3 sets with 30
vertices with 30, 45, and 60 edges and 3 sets 40 vertices with
40, 60 and 80 edges. For the experiments we constructed
1000 graphs for each set of parameters.

B. Experimental results and discussion

Figure 5 shows the number of robots needed for clearing
the graph for each set of parameters. It is apparent that the
costs for constant cycle blocking are considerably higher
and that the difference between constant and dynamic cycle
blocking becomes greater when more edges are present.
Table VI-B shows what percentage of the total costs for all
cycle blocks we are saving when blocking cycles dynami-
cally. While these experiments are very limited in scope and
validity they still serve as a strong indicator that the dynamic
cycle blocking can lead to a significant improvement, in
particular as the number of vertices grows.

VII. CONCLUSION AND FUTURE WORK

We presented the novel problem GRAPH-CLEAR that
emerged at the cross section between multirobot surveillance

applications and graph-theory. We proved that it is NP-
complete and provided heuristics for finding strategies based
on a reduction of the problem to trees by blocking cycles.
The non-contiguous variant of the algorithm to compute
strategies in trees was shown to not be optimal and a
new problem for finding an optimal strategy was proposed.
The presented methods were tested in simple simulations
comparing the two approaches for blocking cycles, constant
and dynamically, and validating the latter.

The results in this paper serve mainly as a theoretical
foundation. Our ultimate goal is to deploy a large, possibly
heterogeneous, team of robots with limited range sensors in a
large unknown, possibly dynamic, and complex environment
to carry out exploration and surveillance tasks. This line of
research started in [11] and continued in [12]. While the
experimental part in this paper is rather limited there is
now a sound theoretical basis. The major remaining issues
to be address now are the following: 1) Partitioning of the
environment to enable good clearing strategies. 2) Develop
an online variant. 3) Develop a distributed variant.

Furthermore, also the GRAPH-CLEAR problem has a few
more unanswered questions. One might be able to proof
that the contiguous version is optimal, i.e. it produces a
contiguous strategy that uses at most S(T) agents. But for
the most part we are interested in the non-contiguous variant
since it needs less agents. It remains to find an optimal
algorithm for the non-contiguous variant in trees.

REFERENCES

[1] L. E. Parker, “Distributed algorithms for multi-robot observation of
multiple moving targets,” Autonomous robots, vol. 12, pp. 231–255,
2002.

[2] T. Parsons, “Pursuit-evasion in a graph,” In Y. Alavi and D. R. Lick,
editors, Theory and Application of Graphs, pp. 426–441, 1976.

[3] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H.
Papadimitriou, “The complexity of searching a graph,” J. ACM,
vol. 35, no. 1, pp. 18–44, 1988.

[4] L. Barriere, P. Flocchini, P. Fraigniaud, and N. Santoro, “Capture of an
intruder by mobile agents,” in SPAA ’02: Proceedings of the fourteenth
annual ACM symposium on Parallel algorithms and architectures.
New York, NY, USA: ACM Press, 2002, pp. 200–209.

[5] I. Suzuki and M. Yamashita, “Searching for a mobile intruder in a
polygonal region,” SIAM Journal on Computing, vol. 21, no. 5, pp.
863–888, 1992.

[6] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani,
“A visibility-based pursuit-evasion problem,” International Journal of
Computational Geometry and Applications, vol. 9, no. 4/5, 1999.

[7] S. Sachs, S. Rajko, and S. M. LaValle, “Visibility-based pursuit-
evasion in an unknown planar environment,” International Journal of
Robotics Research, vol. 23, no. 1, pp. 3–26, Jan. 2004.

[8] B. P. Gerkey, S. Thrun, and G. Gordon, “Visibility-based pursuit-
evasion with limited field of view,” International Journal of Robotics
Research, vol. 25, no. 4, pp. 299–315, 2006.

[9] M. R. Garey and D. S. Johnson, “Computers and intractability: A guide
to the theory of np-completeness.” W.H. Freeman and Company, 1979.

[10] A. Kolling and S. Carpin, “Detecting intruders in complex envi-
ronments with limited range mobile sensors,” in Robot Motion and
Control 2007, LNCIS 360, K. Kozlowski, Ed. Springer-Verlag London
Limited 2007, 2007, pp. 417–426.

[11] ——, “Multirobot cooperation for surveillance of multiple moving
targets - a new behavioral approach,” Proceedings 2006 IEEE Inter-
national Conference on Robotics and Automation, pp. 1311– 1316,
2006.

[12] ——, “Cooperative observation of multiple moving targets: an al-
gorithm and its formalization,” International Journal of Robotics
Research (accepted for publication), 2007.

