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Abstract— We recently introduced HSM3D, an algorithm
to solve the six dimensional scan-matching problem without
relying on features in the input, and whose solution does not
depend on initial guesses. Building upon these new findings, in
this manuscript we present a more detailed experimental study
of the algorithm we proposed. In particular, we show how to
improve the algorithm’s performance also when matching point
clouds produced by stereo cameras, given that this kind of input
invalidates some of the assumptions we formerly identified in
order to accelerate HSM3D’s performance. We also show that
by incorporating color information into the the algorithm it
is possible to reduce the number of sporadic outliers in the
solution set, thus providing a more reliable algorithm.

I. INTRODUCTION

The increased availability of sensors capable of producing
three dimensional point clouds has invigorated the interest
in algorithms capable of estimating six dimensional rigid
transformations providing a satisfactory match between two
partially overlapping data sets. This problem is relevant in
a variety of domains and not only in robotics. The robotics
scenario is however challenging for a few reasons. Sensors
mounted on mobile robots often deliver noisy data sets, thus
offering little experimental evidence to validate or reject
possible solutions. Moreover, sensors mounted on mobile
robots change their position over time, and the inherent
uncertainty of the robot’s pose is transmitted to the sensor
location and orientation. Finally, the algorithm merging two
point clouds is commonly found inside more articulated
control loops, thus asking for utmost speed while searching
for a solution. Starting from these considerations, we recently
developed HSM3D (Hough Scan Matched in 3D), a novel
algorithm for registration of three dimensional point clouds
[4]. HSM3D has some interesting features overcoming some
of the outlined challenges:

« the algorithm is global, i.e. it does not require a starting
point to compute its solution. From this point of view
it is radically different from algorithms like Iterative
Closest/Corresponding Point (ICP) for which the result
of the iterative process depends on the starting point.
ICP and similar algorithms can be considered local,
i.e. they are well suited when there is a good initial
estimate of the solution, so that the search for the
optimal solution can be localized, and does not need
to span the whole solution space.
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« HSM3D does not rely on the presence of features in the
input.

o HSM3D does not provide a single solution, but it rather
computes a set of ranked hypotheses. This aspect is
particularly useful to detect ambiguous situations, and
can then be used to track multiple hypothesis, similarly
to the principles used in particle filters.

o Under the hypothesis of noise free input, HSM3D can
be proven to be complete, i.e. it computes the correct
solution (up to symmetries in the data).

In our initial study, we focussed our attention on data
sets produced by tilting range scanners. This particular
configuration delivers very dense data sets allowing very
efficient solutions. The hypothesis of dense data, however,
cannot be applied for sensors like stereo camera where the
denseness of the data is less evident and not uniform.

In this paper we illustrate how HSM3D can be modified
and improved in order to efficiently process data coming
from stereo cameras. In particular we show that for the case
under consideration it is still possible to find opportunistic
ways to reduce the computation time while retaining an
excellent performance. We also extend the solution ranking
method so that it takes into account the color information
delivered with the point cloud. This additional information
effectively reduces the number of occasional outliers found in
the solution set. For example when the environment exhibits
a high degree of geometrical symmetry, the original HSM3D
algorithm sometimes wrongly estimates the best solution by
taking a symmetric transformation. The paper is organized
as follows. Related literature is shortly described in Section
II, while the HSM3D algorithm is recalled in Section III.
Section IV discusses some computational aspects of HSM3D
and identifies possible improvements. These additions are
experimentally validated in Section V, and conclusions are
offered in Section VI.

II. RELATED LITERATURE

The use of scan matching algorithms for three dimensional
point clouds is mainly motivated by the need to develop
algorithms capable of producing three dimensional maps.
Most robotics research in the area has dealt with point clouds
produced by tilting range scanners. While there has been a
flurry of papers on the topic, it is possible to roughly classify
them into two categories. The majority of papers are based
on the use of the well known Iterative Closest/Corresponding
Point (ICP) algorithm [2]. ICP’s main advantage is its simple
implementation, but as evidenced in the introduction its
main limitation comes from the necessity of starting its



computation from an initial solution guess. In other words,
ICP is an iterative minimization algorithm whose point of
convergence is strongly influenced by the starting point for
the minimization process. Numerous mapping algorithms
based on ICP have been developed, and the reader is re-
ferred to the recent monograph by Niichter for an up-to-date
description of ICP-based methods [17], and to [12] for an
example of application in the 2D case. The Normal Distri-
bution Transformation (3DNDT) is a more recent approach
also based on an iterative principle [13], [10]. 3DNDT is
somehow similar to ICP inasmuch as it performs an iterative
optimization process whose final result depends from the
starting point. A recent paper attempts to make a comparison
between ICP and 3DNDT [14], but no definitive conclusion
can be derived, i.e. no algorithm prevails in an absolute sense.
The use of local methods like ICP and 3DNDT for the three
dimensional case has been mainly driven by the possibility
to use odometry information to build an initial position/pose
estimate. Few global algorithms have been proposed. The
algorithm most similar to HSM3D is [15] and the reader
is referred to [4] for a detailed comparison. Monocular,
omnidirectional, and stereo cameras have been used more
and more for localization and SLAM in recent years. Usually,
camera images are preprocessed to extract features which are
then tracked over multiple frames. For example, Davison et
al. [6] used features extracted from monocular images to
solve the SLAM problem. The more limited pose-tracking
problem with visual input (“visual odometry”) has been
approached earlier, with both monocular [16] and stereo
cameras [18]. This approach has been proven to be usable on
mobile robots in outdoor unstructured environments [1]. The
problems that these methods must solve are: 1) extracting
stable features (popular options are Lucas-Kanade and SIFT
features); 2) establishing feature correspondences across
frames. Note that the methods that use stereo input for visual
odometry only work on a subset of features, discarding most
of the 3D information which is computed by the comparison
of the two images. HSM3D, in comparison, use all the 3D
points extracted by the stereo computation, regardless of the
presence of particular features.

III. ALGORITHMIC REVIEW

A short overview of the HSM3D algorithm is offered in
this section. The reader is referred to [4] for an in depth
discussion.

A. Problem definition and notation

A 3D image is a function i : R> — R*. In the following,
images will be represented by finite sets of points in three
dimensions, therefore we will write p € ¢ to indicate that p
is a point of image 7. A rototranslation is a transformation
mapping a point in R? into a new point by first applying a 3D
rotation 7, and then a translation ¢. Depending on the context,
a rotation r will be either represented by a 3 x 3 rotation
matrix r, or using the axis angle-representation (a, ¢), where
a € R3 is a vector of unitary modulus. Given an image iy, a

new image i, is obtained by applying to ¢; a rototranslation
(r 1), ie.

io={p|p €irAp=rp +1t}.

In the sequel we will use the notation 707 and ¢ot to indicate
the image obtained after applying rotation r or translation ¢
to image i. The problem we aim to solve is the following:
given two images i1 and 75 such that ¢5 is obtained from %,
by applying an unknown rototranslation (r, ¢), recover r and
t. In the following we will also use the symbol S? to indicate
the unit sphere, i.e. the set of three dimensional vectors of
unary length. The reader should notice that elements of S?
represent 3D surface orientations. We will furthermore use
the symbol (-) to indicate the scalar product between vectors.

B. The 3D Hough Transform and Hough Spectrum

HSM3D works in two stages, i.e. it first recovers r and
then ¢. In order to recover r, arguably the hardest step, the
algorithm projects the input into the 3D Hough Spectrum,
a concept that in its 2D version was introduced in [5]. The
Hough Spectrum builds upon the Hough Transform of a 3D
image. As the Hough Transform does not depend on the
color of points in ¢, but only on their positions, it is helpful
to think to ¢ as the sum of Dirac’s impulses centered on the
points in 4, i.e. i(z) = X;0(p; — x). The Hough Transform
of a 3D image maps a 3D image into a function defined on
S? xR

HT: (R® - RT) = (S? x R — R™).

Given a kernel k£ : R — R* the value of HT[i] at point
(s,p) € S? x R is given by:

HT(s,p) = [ i0)k(s.0) = p)do

RS
In order to appreciate this definition, it is necessary to
consider that the set of oriented planes in R? is isomorphic
to S? x RT, i.e. each plane is univocally identified by
an orientation and a distance from the origin. HT[é](s, p)
therefore adds the contribution of all points in 7 towards
the plane identified by the couple s,p. The contribution
is weighted by the kernel k. The reader should then now
recognize that k((s,v) — p) indeed measures how much v
supports s, p.

The Hough Transform enjoys two properties that are
relevant for the derivation of the algorithm:

HTIi o r](s, p) = HT[i](r - 5, p) (1)
HTIi o t](s, p) = HT[i (s, p + (¢, 5)). @)

In plain words, the first property says that a rotation of
the input translates to a rotation of its transform, while the
second property states that a translation of the input maps
into a translation of the transform. Having defined the Hough
Transform, the definition of its spectrum is immediate. Let
g be any translation-invariant functional mapping a function
on the reals into the positive reals, like for example g : f —



[|f]|2- Then, the Hough Spectrum of a 3D image is a function
mapping S? into the positive reals

HS: (R® - RT) — (S* — RY)

and is defined as follows:

HS[i](s) = g[HT[i](s, -)]. 3)

In colloquial terms the Hough Spectrum accumulates the
Hough Transform along the directions identified by S?
according to the functional g. Given equations (1), (2) and
(3), it is evident that the Hough Spectrum is invariant to
translations, and that rotations of the input are mapped into
rotations of the Hough spectrum defined over S2. In order
to visualize the concept of Hough Spectrum, it may be
helpful to think to it as function defined over the sphere
S? identifying which surface directions are more common
on the input. The reader is however warned upfront that the
whole framework does not rely on the assumption that the
input features planar surfaces, and is instead well defined for
any kind of data (see Figure 1).

Fig. 1. The Hough Spectrum is a function defined over S? , and is
built by accumulating the values of the three dimensional Hough Transform
according to the functional g. The figure gives a graphical representation of
how the Hough Spectrum looks like.

C. Algorithmic steps

The two steps to recover first the rotation and then the
translation are here shortly summarized.

1) Recovering the rotation r: given i1 and is the algo-
rithm first computes their spectra, i.e. f; = HS[i1] and fo =
HS[iz]. In order to gain some insights about the algorithm
it is convenient to initially think that the two images are
free of noise, so that fy and f; are related by a rotation
in three dimensions. The overall rotation r is constructed as
the combination of two successive rotations r; and 7», i.e.

r = ry ory. Let m; and my be the global maximum' in

f1 and fo respectively. Rotation r; aims to move m; into
msy. In axis-angle representation the transformation can be
written in closed form as follows:

r1 = (m1 A mg,arccos({mi, msa))).

After applying r; the two maxima coincide, but the two
spectra may still not overlap because a further rotation 7
around ms is still needed, i.e.

To = (ml, 9)

The unknown angle 6 can be derived by cross correlation
between the spectra f; and f, into the smallest truncated
cylinder containing S? and parallel to the z axis. The precise
description of this step is rather long, and the reader is
referred to [4] for details.

2) Recovering the translation t: once r has been deter-
mined, ¢ can be recovered as follows. Pick at least three
linearly independent directions in S? , namely sy, s2, 3, . . . .
Next, project the Hough Transforms along these directions,
i.e. define the functions

hi*(p) = HT[i1](s:, p)
hy'(p) = HT[i2] (r - s, p).

These functions are unidimensional projections of the Hough
Transform along the considered directions. Because of Eq.
2 the following relationship holds:

hit(p) = h3'(p+ (7 - si,1)).

Henceforth, by cross correlating 47" and k5’ one can estimate
d; = (r- s;,t). Given three or more of these estimates it will
be possible to recover ¢ by solving a least square problem
like the following:

(7" . Sl)T d1
(r . SQ)T dg
(’I“ . Sg)T = d3

D. Multihypothesis ranking

The steps just described will not lead to a unique solution
for the problem. In fact, when recovering the rotation 7,
one should consider multiple local maxima in f; and fo and
try all possible combinations. Moreover, when recovering
both 75 and t, the search for maxima in cross correlations
will yield multiple peaks, and therefore in the end one is
provided with a set of possible solutions to the original
problem. This fact is not negative at all. On the contrary,
one is provided with multiple hypotheses, so that possible
ambiguous situations can be tracked. However, a method to
rank these solutions is needed. This is achieved using an
algorithm similar to RANSAC [8]. In order to rank a possible

'The global maximum may not exist, but at this level of the discussion
it helps assuming it does. In practice this step is repeated for the largest n
local maxima in the two spectra, so the step is well defined.



solution (r,t), a random subset of points are selected in
1o and transformed according to (r,t). Next, transformed
points are checked for consistency with the points in ¢,
and each successful correspondence votes for the solution
being evaluated. Rototranslations are eventually ranked by
the number of received votes.

IV. PERFORMANCE CONSIDERATIONS AND
IMPROVEMENTS

From a computational point of view, the algorithm relies
on the preliminary construction of the Hough Transform,
followed by the computation of its spectrum. Similarly to the
much studied bidimensional Hough Transform, a discretiza-
tion step is necessary for its approximated computation,
and the choice of the discretization resolution represents a
significant tradeoff between accuracy and speed. In practice,
we are faced with the problem of computing a three di-
mensional version of the discrete Hough Transform mostly
known in literature [?]. However, when stepping from two
to three dimensions the situation becomes more complicated,
as evidenced from the fact that in the 3D case the Hough
Transform is a function defined over S? x R, while in
2D it is defined over [0,27] X RT. As it is cumbersome to
directly define and compute an approximated function over
S2, the diffeomorphism between S? and the smallest cube
surrounding S? is exploited?, i.e. each patch on the surface
of the sphere is put into correspondence with a regular square
patch on the faces of the cube. A key parameter is then the
resolution used to divide each face of the cube into a number
of equally-sized squares that will correspond to patches on
the sphere. Moreover, for HT it is also necessary to consider
its p € R™ component, that will be discretized into a series
of equally sized segments within two extremes, say pPmin
and pPp,q,. Therefore, to compute the HT it is necessary to
compute the contribution of every point in the given images
towards every possible direction approximated on the cube,
and every possible distance from the origin as defined in p’s
discretization. It is evident that if this step is executed in
a brute-force manner it will be extremely time consuming.
As pointed out in [4], if points in ¢ are dense enough,
it is possible to extend the above definition to consider
the case of oriented points, i.e. points with an associated
orientation. Indeed, when points are generated by a sensor
that regularly samples a solid angle, for example tilting a
range scanner, the orientation of the surface supporting a
point can be reliably estimated by looking at the neighbors
of the point itself. This observation leads to a notable
improvement of the speed because it is not necessary to
consider the contribution of a point towards all possible
direction, and instead to restrict the computation only to the
directions similar to the orientation of the surface supporting
the point. In this paper, however, we focus our attention to
three dimensional point clouds produced by stereo cameras.
Preliminary experiments have outlined data delivered by this

2Thinking to S as the unitary sphere centered in the origin, the
diffeomorphism maps S? into the cube centered in the origin and with
edge length 2.

type of sensor is not dense enough to reliably extrapolate
the orientation of the supporting surface, and therefore the
accelerated version formerly described cannot be applied.
However, there are other possible ways to gain some speed.
As pointed out in [11] for the bidimensional case, the
Hough Transform is robust enough that it can be often
estimated by just considering a small subset of the input
points. This observation was exploited in [3], where a 2D
version of the algorithm here discussed was studied for the
special problem of merging occupancy grid maps produced
by multiple robots. The first improvement therefore consists
of embedding the randomized Hough Transform into the the
first step of the algorithm.

One of the strengths of HSM3D resides in its ability to
solve the global alignment problem, i.e. not requiring a pre-
liminary estimation of the solution. However, as evidenced in
[4], the best ranking solution is sometimes far from the real
solution. When this happens, it is very often the case that the
best solution exhibits an error of 180 degrees. This is easy to
explain in indoor environments, where large planar surfaces
like floors and ceilings contribute to the generation of highly
symmetric Hough Spectra leading to a rotation estimate in
which the best ranking solution is tilted upside down. While
this problem can be mitigated by tracking multiple hypothe-
sis, i.e. by considering not just the best ranking solution, but
the best n ranking solutions, it would still be beneficial to
minimize the occurrence of these sporadic outliers. This goal
can be achieved by integrating the provided color information
into the multihypothesis ranking step. To be precise, when
a solution candidate needs to be ranked, it is rewarded not
only for its ability to map corresponding points to nearby
positions, but also for finding agreements with the pixel
colors.

V. EXPERIMENTAL SETUP AND RESULTS

In [4] HSM3D was compared to ICP while processing 3D
images produced by a tilting laser range finder. In this paper
instead we process data points produced by a stereocamera.
A P3AT robot is remotely controlled and moves around
in an indoor office environment. A Bumblebee2 camera is
used to collect data. The camera captures two images with
resolution 320x240 and returns a 3D image. The 3D image
is obtained through a triangulation process performed by a
proprietary software library shipped with the camera. For
every point the sensor returns its spatial coordinates, its gray
scale color, and the point in the image plane that was used
to triangulate its position (this last piece of information is
not used in our algorithm). Source code and data sets used
in the experiments described in this section are available
for download on http://robotics.ucmerced.edu. The code is
written in C++, does not rely on external libraries, and at
the moment has not been engineered for high performance,
therefore timing information provided later on should only
be considered to extrapolate performance trends, and not as
indicators of absolute performance.
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Fig. 2. This test measures the change in performance of the HSM3D algorithm as the percentage of points considered to compute the Hough Transform
decreases. The top panel shows the average orientation error as a function of the percentage of randomly chosen points, while the bottom panel displays

the average translation error.

A. Use of the randomized Hough Transform

The first experiment aims to verify how the use of the
randomized Hough Transform affects the performance of
the algorithm and its time requirements. The experiment
is organized as follows. Given a 3D image i; we apply
a random transformation (r,t) to obtain is, and we then
pass these two images to HSM3D. The performance of the
algorithm is measured in terms of the difference between
(r,t) and the best ranking transformation returned by the
algorithm. This procedure is applied to a dataset consisting
of 20 3D images, and repeated for decreasing percentages of
considered points, from 100% down to 5%. Accuracy results
are presented in figure 2. It can be observed that even while
dramatically decreasing the percentage of considered points,
the performance of the algorithm does not significantly
deteriorate. Table I instead illustrates the average time spent
as a function of the percentage of considered points. As
a frame of reference, reported times are referred to the
execution of the algorithm on an Intel dual core at 3.06 GHz.
It can be observed that by reducing the number of considered
points the time significantly drops.

10 20 30 40 50 60 70 80 90 100
57 68 69 76 88 101 107 112 115 146
TABLE I

COMPUTATION TIME AS A FUNCTION OF THE PERCENTAGE OF POINTS.
ToP ROW: PERCENTAGE OF POINTS. BOTTOM ROW: COMPUTATION TIME
IN SECONDS.

B. Integration of color

The setup of this experiment is similar to the previous
one, i.e. a random transformation is applied to a 3D im-

age, and we measure the ability to recover it. Results are
illustrated in figure 3, where the hypotheses produced while
solving 1200 random tests have been ranked taking color
into consideration (data series combined) and then without
considering the color (data series weight). Given that random
transformations consider rotations varying from O to 180 de-
grees, the experiment confirms that performance of HSM3D
is independent from the entity of the random transformation
to be recovered. In addition, and more importantly, it also
shows that by integrating color information the number of
outlier solutions displaying a 180 degrees error is exactly
halved.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a thorough experimental
validation of the HSM3D algorithm we recently developed.
In particular, we have focussed our analysis on point clouds
produced by stereo cameras, thus complementing our former
findings obtained with tilting laser scanners. The use of this
type of input is particularly interesting because it invalidates
some of the conditions we formerly outlined to expedite
the algorithm. In order to overcome the limitations deriv-
ing from this different input, we introduced a randomized
version of the Hough Transform, and we verified that the
performance of the algorithm remains good even when a
large part of the input is disregarded. This result was known
for the 2D case, but the the best of our knowledge it was
never observed nor exploited for the 3D case. The use of
the randomized Hough Transform also significantly reduced
the time needed to solve the registration problem. Finally,
we have integrated the use of color into the hypothesis
ranking step, thus halving the number of sporadic solutions
affected by large errors in the orientation component. These
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Fig. 3. This test outlines the global performance of the algorithm over 1200 randomly chosen transformations. The top chart outlines that by incorporating
information color into the hypothesis ranking step the number of solutions exhibiting large rotation errors halves (green dots represent the error of the best
solution when ranking does not consider color, while blue crosses represent the error of the best solution when color is also taken into consideration). A

similar trend is observed for the translation error in the bottom panel.

erroneous hypotheses are typically caused by geometrical
symmetries in the environment under consideration, and can
be effectively rejected by taking color into consideration.
After carefully analyzing the performance of the algorithm,
it appears there are two directions to follow in order to obtain
further performance increases and shoot for an algorithm
that can be integrated into a robot controller with strict
time requirements. The first one consists in switching to
a different representation for the Hough Spectum domain,
i.e. for S2. The diffeomorphism with the cube should be
replaced with a different representation, like [9], so that one
is not bound to use a time consuming iterative approach
when building the Hough Transform by considering plenty
of uninteresting directions. Secondly, the algorithm could be
further accelerated by dismissing unpromising solutions early
during the computation. At the moment the algorithm builds
a numerous set of candidate solutions by pairwise matching
rotations and translations, even when it could be possible to
already rule out certain combinations that appear odd since
the very beginning. These research direction will be pursued
in the near future.
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