
Surveillance strategies for target detection with sweep lines

Andreas Kolling and Stefano Carpin

Abstract— In this paper we present a method to extract
surveillance graphs from occupancy grid maps. Surveillance
graphs are part of the Graph-Clear framework and model
the problem of detecting targets using multiple robots with
limited range sensors. Robots can only execute basic actions
called sweep and block on vertices and edges, respectively.
Sweep detects targets in vertices and block prevents them
from crossing edges. The extracted graphs accurately model
the complexity of the planar environment to be searched, and
are constructed as duals of the Voronoi Diagram. We give a
geometric embedding for blocking and sweeping actions of the
graph into the environment by directly associating them to
sweep lines that robots cover with their sensors. This paper
solves two open problems, namely the generation of surveillance
graphs and the implementation of actions on a robot team.
Sweep lines can then be directly translated into control inputs
to the robot team. The new method is superior to previous
heuristics for the extraction of graphs not only through its
direct geometric relationship to the environment, but also due to
its increased performance in direct experimental comparisons.
Additionally, it provides a basis for possible theoretical results
regarding the optimal coordination of multiple robots to detect
targets in an arbitrary planar environment.

I. INTRODUCTION

Our interest in target detection is with the coordination
of large robot teams with limited range sensors, each of
which is not sufficient to achieve any part of the task alone.
We assume the target is a worst-case adversary. This means
no knowledge about the target is available beforehand, but
instead a coordination solution is needed that will work for
any possible motion of any target. This gives a guaranteed
lower bound for the detection performance even when tar-
get properties are unknown. To this end we introduced a
graph-theoretical problem coined Graph-Clear [1], [2], [3].
Graph-Clear is defined on surveillance graphs which are
somehow similar to topological maps of the environment.
A surveillance graph relates the detection capabilities of the
robots to the spatial structure of a closed bounded planar
environment. Building blocks for the framework are the
sweep and block actions which correspond to the execution
of distributed routines on the robot team which respectively:
1) guarantee the detection of intruders within the region
associated to a vertex; 2) guarantee that no intruder crosses
an edge undetected. Actions have a cost which is the number
of robots needed to execute them. Graph-Clear asks to find
a sequence of sweep and block actions that can be executed
with the least robots and which guarantees detection of any
target possibly located in the graph. The possibility of a

A. Kolling and S. Carpin are with the School of Engineering, University
of California. Address: 5200 North Lake Rd, 95343, Merced, CA (USA).
E-mail: {akolling,scarpin}@ucmerced.edu

target being located in a vertex or edge is modelled by
the concept of contamination, an idea frequently used in
the pursuit-evasion literature on graphs. An optimal strategy
clears an initially contaminated graph with the least number
of robots. Practical applications of Graph-Clear hinge on the
ability to extract surveillance graphs from arbitrary planar
environments, as well as the ability to execute the resulting
strategies with the robot team. A first heuristic attempt to
extract surveillance graphs from occupancy grid maps was
given in [2]. This manuscript continues along this line of
work and provides a better solution for graph extraction as
well as better implementations for actions. More precisely
our main contributions are: 1) implementations for block
and sweep actions using sweep lines between obstacles;
2) an algorithm to construct surveillance graphs from any
grid map and compute surveillance strategies as a sequence
of sweep lines that can be executed by robot teams; 3)
experiments on grid maps and comparison of these strategies
to our previous work [2]. Additionally, we offer pointers on
theoretical ramifications of the sweep line approach.

A major related body of work in robotic surveillance is
concerned with visibility-based pursuit-evasion, introduced
in [4]. Therein the pursuit-evasion problem is directly em-
bedded into a planar environment and robots are equipped
with a number of unlimited range beams which detect targets
that are visible by these beams. The crucial point is that
beams have unlimited range. This is the major distinc-
tion to the Graph-Clear approach. Throughout the variety
of contributions to this topic, environments considered in
visibility-based pursuit-evasion range from simple polygons
to arbitrary curved environments. The later type of environ-
ment is assumed in [5]. Therein a simple omnidirectional
gap sensor can be used to detect all intruders, even under
imperfect control and without localization capabilities. Many
other variations of sensors have been investigated and a
survey is beyond the scope of this paper. However, most
interesting to note is one of the few theoretical relation-
ships between graph-searching and visibility-based pursuit-
evasion. In [6] it was shown that for any instance of edge-
searching one can construct a corresponding visibility-based
instance. This transports many theoretical properties such
as the NP-completeness proof from [7] to visibility-based
pursuit-evasion. The relationship remains single-sided and
does little to improve practicality of edge-searching for
robotic surveillance. The work presented in this paper goes
into the direction of establishing a relationship between pla-
nar environments and Graph-Clear, although in the opposite
direction, which is more important from a practical point of
view. We show that for any environment we can construct



an appropriate surveillance graph. This ability enhances the
usefulness since graph strategies can now be translated to
a coordination of movements for robots in planar envi-
ronments. It also presents a starting point for defining a
problem which shares the useful property with visibility-
based pursuit-evasion that it is naturally embedded in the
environment. The problem is coined Line-Clear and defines
how lines between obstacles can be used to restrict target
movement. The basic idea is related to [8] where a single line
is spanned between the edges of a simple polygon, and robots
cover it as it moves to clear the environment. In a way, we
are extending this approach to consider any environment and
multiple independently moving lines. Other line following
approaches include the capturing of intruders with a moving
chain of robots in open space [9]. The chain moves onto
a target once a single robot detects it, guaranteeing capture
of the target. Line following has the added benefit that a
control algorithm can be executed in a distributed fashion
ensuring the line is followed properly. This translates line
movement to individual robot movement. Various distributed
control algorithms achieving such and other similar tasks are
presented in [10]. Although the Line-Clear idea offers inter-
esting theoretical aspects to investigate, in this manuscript
we are primarily concerned with practical ramifications to
model the sensing capabilities of a robot team as lines
between obstacles. Theoretical investigations and definitions
making the Line-Clear approach formally precise are work
in progress. For now we consider a sweep line as a line
covered by the sensors of multiple robots which ensure that
no intruder can pass through. As the line moves through the
environment, robots continue to cover it with their sensors.
A line spanned between two obstacles can approach a third
obstacle with one of its mid points and then split into two.
Minimum length lines correspond to minima on an edge of
the Voronoi Diagram. At each vertex of the Voronoi Diagram
we can split the line on the third defining site for the vertex.
Then one has to choose with which line to continue first. This
question is answered by converting the Voronoi Diagram into
a surveillance graph. The paper is organized as follows. We
will first recap an algorithm for Graph-Clear in section II,
followed by details on the construction outlined above in
section III. Section IV presents a practical algorithm that
takes an occupancy grid map and computes a sequences of
lines based on the constructions from section II and III. Some
practical implementation details are offered in section IV.
Experimental results on two large maps are presented in V.
A comparison of the cost for executing the resulting strategy
and line movements to previous heuristic strategies from [2]
is also included therein. Finally, in section VI we conclude
with a discussion including the generation of robot paths
from a sequence of moving lines.

II. GRAPH-CLEAR

Graph-Clear is a graph theoretic problem to model target
detection in environments which are represented by surveil-
lance graphs. Each vertex is associated to a connected region
in the environment and vertices associated to adjacent regions

are connected by edges. Vertices and edges are denoted as
contaminated if a target could possibly be located therein.
Robots detect targets executing actions on vertices and edges
of the graph. A sweep action detects targets within the region
of a vertex and clears it from contamination. A block action
on an edge prevents targets from crossing between two re-
gions and hence prevents contamination to spread. According
to our worst-case assumption, contamination spreads every
time there is a chance for it. Block and sweep actions are
abstractions of algorithms implemented and executed on a
robot team. A strategy for a robot team is a sequence of
these actions on an initially fully contaminated graph. The
cost of each action is given by the weight of the vertex
or edge. The Graph-Clear problem asks to find strategies
with the lowest cost, i.e. the least number of robots needed
to executed them. We showed the decision version of this
problem is NP-hard [1]. Hence, we developed algorithms
for Graph-Clear for the special case of trees. There is a
useful distinction between so called contiguous strategies
and those that are not. A contiguous strategy guarantees that
all cleared vertices always form a connected sub-graph at
any time during the execution of the strategy. This property
can be useful when one needs to guarantee that a path free
from contamination between any two robots always exists.
Furthermore contiguous strategies are simpler.

We now outline a modified version of the contiguous
algorithm for trees from [1]. The main modification is that
we drop the requirement that when a vertex is swept all
its edges are blocked. This requirement was introduced to
allow implementations of a sweeping action for a robot team
which cannot guarantee that no target leaves the region of
the vertex, but can guarantee detection if no target enters or
leaves undetected. Hence the need for blocks on the edges.
In this paper we shall waive this requirement and propose
a different and more effective approach for our particular
sweeping and blocking implementations. We shortly recap
the basic notions for the algorithm.

The main idea is that contiguous strategies can be com-
puted with the help of labels associated to each edge for both
directions. The label shall represent the cost of clearing all
vertices when crossing the edge in the given direction. Using
these labels one can compare the cost of clearing subtrees
rooted at all neighbors. Figure 1 illustrates this idea.

1

3

2

1

3

2

1

3

2
1

1

1

1
22

1

2

1
1

Fig. 1. In this simple graph gray vertices are cleared vertices and white
vertices are contaminated. Arrows indicate possible continuations of a
strategy each of which has a cost described by labels.

Formally, a surveillance graph is Gsg = (V,E,w) with V
being a set of vertices, E ⊆ V × V a set of edges, and
w : V ∪ E → N a weight function. Let λvx

(e) denote
the label on an edge e = [vx, vy] for the direction from



vx towards vy . Labels can be computed by first considering
all vy that are leaves. Originally the cost of clearing a leaf
vy was w(vy) + w(e), i.e. in order to clear a leaf it was
also necessary to block its only edge. Here our modification
comes into play. We extend the weight function to describe
a directional weight, i.e. it matters from which edge a vertex
is cleared. Let us redefine w : (V × E) ∪ E → N and write
w(vy, e) for the cost of clearing vy entering from edge e.
We also drop the requirement for the block cost w(e), but
assume that w(vy, e) ≥ w(e). Now for all vy that are leaves
let λvx

(e) = w(vy, e). Once the labels towards leaves are
computed we can consider vertices which are not leaves but
for which all edges, except one, have an outgoing label. More
precisely let vx, vy be neighbors and m = degree(vy) − 1.
Write neighbors of vy different from vx as v1, . . . , vm. When
coming from vx the first step is always to clear vy , since the
strategy has to be contiguous and vx is assumed cleared.
Then vertices of the contaminated subtrees rooted at the
neighbors v1, . . . , vm can be cleared. To simplify the matter
we assume that once a subtree vi, i = 1, . . . ,m is entered
the robot team clears all its vertices, comes back and then
clears another subtree. This assumption makes the approach
simpler, but also leads to suboptimal solution in certain cases.
Following this simple procedure the goal is now to clear the
subtrees in an order that is least costly. Let ei = [vy, vi]. It
turns out that ordering v1, . . . , vm s.t. ρi = λvy (ei)− w(ei)
is descending and then clearing vm, . . . , v1 in this order has
minimum overall cost [1]. The cost at step i is given by
the cost of clearing subtree vi and blocking all ei towards
subtrees that are still contaminated. Assuming that we order
indices by ρi we can write this as:

c(vi) = λvy
(ei) +

i−1∑
l=1

w(el). (1)

The new label for vx then becomes the maximum
of clearing vy itself and the maximum cost occurred
while clearing any one of the subtrees: λvx(e) =
max{w(vy, e),maxi=1,...,m{c(vi)}}. Given these defini-
tions, computing all labels in a tree is straightforward.
Once these are computed the overall cost of clearing the
tree when starting at vertex v is determined by ag(v) =
max{w(v),max1≤i≤m{λvei +

∑i
l=1 w(ei)}}, where now

v1, . . . , vm are all neighbors of v, i.e. m = degree(v) and
w(v) = mine∈Edges(v){w(v, e) + w(e)}1. Finding the best
starting vertex leads to the best possible strategy that clears
each subtree in a depth-first manner. To compute strategies
on graphs with cycles one can apply the techniques presented
in [1] to convert the graph into a tree and then extend the a
strategies computed by the above algorithm to consider the
cycles. We will now show how to construct a surveillance
graph that is naturally embedded in the environment by a
dual Voronoi Diagram, i.e. both have the same number of
vertices and edges in free space. Furthermore, we will give

1Since we redefined w we need this to denote the cost of clearing v
coming from no edge. It emulates blocking e and then clearing v from
there while keeping it blocked.

Fig. 2. Illustration of the concept of moving and splitting sweep lines. The
arrows indicate the direction of movement of the sweep line on the left side
until it splits into two sweep lines which continue independently.

implementations for block and sweep actions that lead to
an embedding of strategies into the environment in form of
moving lines between obstacles. These lines in turn lead to
robot paths which a team can follow in a coordinated fashion.
We will focus on practical considerations and refrain from a
rigorous formalism on what it means to clear an environment
from contamination with moving lines. Such a formalism is
however of interest and the topic of work in progress.

III. CLEARING WITH LINES

At the core of our approach lies the idea to model the joint
sensing capabilities of the robot team as a set of moving
lines, each of which is spanned between obstacles. Recall
that targets are assumed to be worst-case adversary and
hence capable to exploit any weakness the robot team may
exhibit. Hence the robot team needs to restrict all possible
target movements until targets cannot possibly escape, which
then guarantees a detection. The fundamental ability a robot
team needs for this to succeed is to restrict target movement
between obstacle boundaries. Moreover, it needs to move
its sensor coverage continuously to extend the areas in
which no target could possibly be located without having
crossed a sensor. We shall denote a sweep line as any line
spanned between two obstacles. A moving sweep line is
one that moves continuously. A splitting sweep line is one
that is composed of two line segments with the mid point
approaching a third obstacle. Figure 2 illustrates this idea. It
is important to note that this sensing abstraction has serious
implications with respect to applicability and usefulness of
the algorithm presented in this manuscript. In particular, it is
suitable for very limited sensing ranges, i.e. ranges shorter
than most distances between obstacles. A robot with a large
sensing range could cover the area of two disjoint sweep
lines, which the model does not take into consideration.

The best sweep lines are obviously those with minimum
length. This observation justifies the use of the Voronoi
Diagram. We will use it to find short lines between obsta-
cles. A rigorous formalization and generalization of Voronoi
Diagrams to Generalized Voronoi Graphs (GVG) are found
in [11]. The following definitions are useful and come
from [11]. The environment is given as E ⊂ R2 denoting
free space and C1, . . . , Cno

, no ∈ N denoting no convex
obstacles. Let C =

⋃no

i=1 Ci and δA be the frontier of a
set A. The following functions define a distance function
towards obstacles which is the basis for the GVG:

di(x) = minc0∈Ci
‖x− c0‖, ∇di(x) =

x− c0
‖x− c0‖

.



With these one can construct equidistant surfaces and 2-
equidistance surjective surfaces via respectively:

Sij = {x ∈ R2 : di(x)− dj(x) = 0}
SSij = {x ∈ Sij : ∇di(x) 6= ∇dj(x)}

Subsets of these then make up 2-equidistant faces Fij =
{x ∈ SSij : di(x) ≤ dk(x) ∀k 6= i, j} which are
further restricted to 3-equidistance faces Fijk = Fij ∩
Fik. The 2-equidistant faces and 3-equidistant faces be-
come the edges and vertices of the GVG, respectively.
More precisely the GVG for two dimension is Ggvg =
(F2,F3) with F2 =

⋃no−1
i=1

⋃no

j=i+1 Fij and F3 =⋃no−2
i=1

⋃no−1
j=i+1

⋃no

k=j+1 Fijk. We will also make use of the
function qi(x) = argminc0∈Ci

‖x − c0‖ which returns the
closest point to x from obstacle Ci. The Voronoi Diagram
computed from a set of convex obstacles has useful proper-
ties to detect parts of the environment with small clearance
and naturally provides a topological map. This fact has often
been exploited for robot navigation [12]. Also Graph-Clear
benefits from surveillance graphs with small edge weights
and hence areas with small clearance provide good candi-
dates for borders between regions leading to edges with small
weights. But the relationship between Voronoi Diagrams
and surveillance graphs goes further. We can construct a
surveillance graph from a Voronoi Diagram by associating
with each vertex of the Voronoi Diagram a corresponding
vertex of the surveillance graph, and similarly for edges.
For this paper we will restrict our attention to polygonal
obstacles and consider each line segment of the polygonal
obstacles as an independent obstacle, although there is no
fundamental reason for requiring polygonal obstacles. It is
however practical from an implementation point of view.
Figure 3 shows a Voronoi Diagram that would be generated
by considering each segment as its own obstacle. In fact, one
segment leads to multiple obstacles since the endpoints are
treated as obstacles as well.

Fig. 3. Left: A Voronoi Diagram resulting from line segments of multiple
polygonal obstacles by considering each open segment and their endpoints
as independent obstacles. Right: Conversion of the Voronoi Diagram into a
surveillance graph. Dashed lines indicate lines that are associated to vertices
and edges and represent blocks and sweeps. The movement of lines is
represented by their thickness, i.e. thin lines move towards thicker lines.

For each vertex in F3 which is in free space E we create
a vertex for a surveillance graph Gsg and similarly add all
edges between these vertices. We can assume2 that any vertex

2If this is not the case, the requirement can be enforced by adding a small
random perturbation [13].

of F3 has degree 3 and hence no vertex of Gsg will have
degree larger than 3. The main problem of the construction
is now to associate weights and moving liens to vertices.
Figure 3 shows Gsg and a few lines we will associate to its
vertices. With this figure in mind let us make this idea more
precise.

Every vertex v ∈ V has exactly three defining sites, i.e.
distinct line segments or points from the polygon boundary.
For each pair of these sites there can be an edge in Gsg .
We need to create a sweeping routine and weights for v for
each edge and direction. Let ei,j be one of the edges of
v. Assume that ei,j has a sweep line spanned between its
two defining sites Ci and Cj . Call this line the block line
for ei,j . To move this line further and sweep v we need
to consider a splitting sweep line on the third defining site
of v in the Voronoi Diagram, written Ck. Let pk,i,j denote
lowest cost point for this split on Ck when coming from
the line between Ci and Cj . The splitting sweep line is
then composed of two line segments [pk,i,j , qi(pk,i,j)] and
[pk,i,j , qj(pk,i,j)]. Finding this point is simple with obstacles
as line segments and points. The splitting sweep line can be
reached from the block line by simply moving the endpoints
of the block line to the two endpoints of the split line on
Ci and Cj and then move a mid point towards pk,i,j . Once
pk,i,j is reached, the line splits into two lines which move
independently towards the blocking line of the respective
edges. For degree(v) = 3 these are two block line on
edges e2, e3; for degree(v) = 2 there is only one sweep
line and either [pk,i,j , qi(pk,i,j)] or [pk,i,j , qj(pk,i,j)] has zero
length. For degree(v) = 1 there will be no blocking lines
and the split line disappears on the boundary releasing the
robots covering it. Doing this for every direction gives up to
three critical points pk,i,j , pi,k,j and pj,k,i each representing
a sweep of v using their respective split lines.

We can now determine a precise location for the blocking
lines. Given qi(pk,i,j) and qj(pk,i,j), the blocking line of ei,j
is exactly the line between Ci and Cj of minimum length
before qi(pk,i,j) and qj(pk,i,j) are reached. Hence it is either
the line [qi(pk,i,j), qj(pk,i,j)] or a line with the minimum
distance between Ci and Cj with endpoints further from Ck.
Note that it may not intersect the Voronoi edge for ei,j , but
it certainly intersects Sij . Furthermore, the sum of distance
function di(x) + dj(x) has exactly one minimum for x ∈
Sij . We can now associate this line with the edge block on
ei,j . The weights of edges can be computed by taking the
length of its blocking line divided by r − δ. Here r is the
maximum line a robot can sense on, e.g the diameter of a
disk if the robot senses with an omnidirectional limited range
sensor. The parameter δ accounts for errors in localization,
navigation or approximations in the map. Other footprints
than disks could also be considered but for simplicity we
refer only to omnidirectional sensors. For a vertex v we set

w(v, ei,j) =
⌈‖[pk,i,j , qi(pk,i,j)]‖

r − δ

⌉
+
⌈‖[pk,i,j , qj(pk,i,j)]‖

r − δ

⌉
which is the cost of covering the split line at the critical point,
the most costly step during the sweep. A few properties of



r − δ

r − δ

Fig. 4. Multiple robots spanning a line between two obstacles. As the
distance between obstacles grows another robot is added.

the Voronoi Diagram are exploited in the above construction.
The block line does not depend on the direction from which
we compute it, i.e. with v1 and v2 as endpoints of ei,j it
does matter whether we compute the block line using the
above procedure for v1 or v2. This is due to the fact that
obstacles are convex and line segments. In practice, block
lines are often at the position right after the split on pk,i,j ,
in particular when one or more of Ci, Cj , Ck are points.
Fig. 4 shows how multiple robots maintain a line oriented
towards the left site, i.e. robots are placed uniformly on a
sweep line starting from the left site and placed at distance
r − δ from each other with the first robot having distance
r−δ
2 from the left site. As the distance between the obstacles

grows another robot will have to be added. Due to the left
bias this is trivially achieved. Following the split lines is
also easy and an illustration is shown in figure 5. A further
discussion of the significance of δ and how to arrange robots
on the line is found in VI.

IV. IMPLEMENTATION

The actual implementation to use the line clearing ap-
proach to construct a surveillance graph from an occupancy
grid map proceeds in several stages. First, to smoothen
the map we convert it to a polygon by computing its
α shape using the CGAL library [14]. These shapes are
frequently used to reconstruct the shape of a dense set
of points. Once we get the polygon boundary from the
occupied grip points we apply the Ramer-Douglas-Peucker
line-simplification algorithm [15] to get a polygon boundary
with less line segments. A parameter specifying the degree
of simplification is required which we shall denote as ε. We
will discuss the sensitivity to these parameters in section V.
After these two steps the polygon segments provide obstacles
sets that can be processed to compute the Voronoi Diagram.
Once the Voronoi Diagram is computed we proceed by
computing the critical points for each vertex and thereby its
directional weights. Edges also receive their critical points
at the minimum length line between its defining sites and
get their block weights. Given the weights we apply the
contiguous algorithm for trees described in section II as
well as the minimum spanning tree based cycle blocking.
This gives us a strategy in form of a sequence of vertices.
We compute the overall cost of the strategy as well as the
cost of clearing the tree without considering the cycle edges.
From here on it is a small step towards the actual motion of
the robots. Given the sequence of vertices we can construct

Fig. 5. Robots following a sweep line with δ overlap and splitting into
two sweep lines at a critical point. Robots with solid disks are moving
towards future positions marked as robots with dashed disks. Note that the
four robots require additional robots to reach the dashed positions.

a sequence of moving lines. The first vertex is cleared by
blocking one edge and clearing it coming with a new sweep
line starting from that edge, leading to blocks on all its
edges. From there on every next vertex is a movement of
one blocking line towards the critical point for the direction
the line is coming from. These continuously moving lines can
be followed by a team of robots. To account for localization
and navigation errors robots can be spaced with sensors
overlapping as seen in Figure 5. The δ parameter also helps
to offset possible approximation errors during the conversion
of the grid map into a polygon.

V. EXPERIMENTS

To validate the algorithm from section IV we ran it in
a variety of configurations on the grid maps from [2]. The
first grid map was obtained with a Pioneer P3AT mobile
platform equipped with a SICK PLS200 laser range finder.
The robot was driven through the 2nd floor of the UC
Merced Engineering and Science building to collect laser
data. The data was then used to build the map with the
Gmapping software [16]. Figure 6 shows the map after it
was processed by computing its α-shape and simplifying
the polygon boundary. We shall call this map UCM map.
The second map is obtained from the Radish online robotics
data repository [17] sdr site b data set. We will denote it
as SDR map. It is shown after processing in Figure 7. We
compare our algorithm to the one used in [2] which also
extracts surveillance graphs. The extraction in [2] is based
on a selection of local clearance minima on an approximation
of the Voronoi Diagram and creating edges at these minima.
For each minima a line is spanned between two closest
obstacles which leads to a partition of free space. For each
connected set in this partition a vertex is created. Weights
of vertices are computed by assuming they are swept like a
rectangle, i.e. the top-left and bottom-right point belonging to
the vertex are used to define a rectangle which is then swept
by moving robots on a horizontal or vertical line through
it. This very crude sweeping routine does not acknowledge
complexities in the environment within a vertex. On the
graph, strategies are computed with the hybrid algorithm
from [3]. These generally have lower cost than contiguous
strategies, but they do not satisfy contiguity. The evaluation
of the algorithm from [2] included the cost for strategies



Fig. 6. UCM map obtained from [2] after applying the α-shape and line
simplification with α = 10 and ε = 3. The graph is embedded with thin
lines as edges in free space. Distances are in pixel and horizontal lines of
length 5,10,20,40,60 and 100 pixel on the left illustrates scale.

Fig. 7. The SDR Map obtained from [2] just as Figure 6.

on the generated tree denoted by ag. Let agr denote the
cost of strategies extended to the entire graph. Since all non
minimum spanning tree were assumed blocked in [2] we set
agr to ag + bc, where bc is the cost for all cycle edges.
Let b denote the number of cycles. In our case, agr denotes
the cost for only blocking cycle edges when needed and
corresponds to the actual number of robots needed to clear
the environment by following the sweep lines associated to
vertices and edges. We write r for the sensing range in pixels
and δ for the parameter adjusting for errors.

An accompanying video shows a sequence of block and
split lines in the UCM map (ε = 3, α = 10, δ = 2, r = 40)
as red and green, respectively. Associated cost for lines is
show in red for blocks, green for split lines and blue for
block lines due to cycle edges. At each step part of the robot
team is moving from a red block line to a green split line.
Counters on the top left show the clearing step, current cost
and maximum encountered cost.

Table I summarizes the results from [2] for comparison

purposes. Of importance are primarily agr and ag as a
function of r. Tables II and III present results from executing

UCM map SDR map
r agr ag b bc agr ag b bc
5 73 58 3 15 67 36 8 31

10 37 28 3 9 36 19 7 17
20 20 14 3 6 19 9 7 10
40 11 8 3 3 14 6 8 8
60 9 6 3 3 11 5 6 6
100 7 4 3 3 10 4 6 6

TABLE I
SUMMARY OF THE EXPERIMENTAL RESULTS FROM [2].

the algorithm from section IV on the UCM and SDR maps.
Table II can be compared to table I since δ = 0. Despite
the additional constraint to require contiguous strategies the
new approach outperforms the one from [2] on the UCM map
for sensing ranges from 5 to 60. Also on the SDR map the
new approach produces better strategies on the tree (ag) for
sensing ranges 5 to 60. The similar performance for sensing
ranges at 100 result from the fact that the method from [2]
ignores the complexities of the environments when merging
it into a graph with 13 to 14 vertices each of which is swept
with the rectangular sweep.

It is also interesting to note that the new approach removes
the problem encountered in [2] in which two vertices are
merged leading to the removal of a cycle edge. The cycle
in the environment is then inside the vertex and effectively
ignored. The new approach continues to capture the geomet-
ric complexity without such heuristics and the number of
cycle edges remains relatively constant. There is, however, a
slight variation resulting from the processing of the grid map.
The produced alpha shapes are not deterministic and slightly
different alpha shapes may lead to a different surveillance
graph which can also lead to a slight variation in the number
of cycles, as well as slight variations in the tree and hence the
strategy cost. Usually these cycles are degenerate, resulting
from the particular computation of the Voronoi Diagram as
the dual of the Delaunay Graph. These, however, do not pose
a problem neither for computation nor for the execution of
the strategy.

δ = 0 δ = 2
Map r agr ag b bc agr ag b bc
UCM 5 56 46 3 15 90 75 3 24
UCM 10 32 24 3 9 36 30 3 10
UCM 20 18 13 3 6 20 14 3 6
UCM 40 9 7 3 3 10 8 3 3
UCM 60 9 6 3 3 8 6 3 3
UCM 100 7 5 3 3 6 4 3 3
SDR 5 45 31 14 48 72 47 14 73
SDR 10 26 16 14 27 30 18 15 31
SDR 20 14 8 14 17 15 9 15 18
SDR 40 11 6 14 11 10 6 14 11
SDR 60 10 5 14 10 8 5 14 10
SDR 100 9 5 14 10 7 4 15 10

TABLE II
SUMMARY OF THE EXPERIMENTAL RESULTS WITH α = 10, ε = 7. NOTE

THAT SOME MST-EDGES ARE DEGENERATE AND HAVE 0 WEIGHT.



As expected, increasing δ leads to slightly more costly
strategies as seen in table II. Obviously, robots with small
sensing ranges are affected more than those with large
sensing range since the ratio of δ to r matters. But already a
relatively small δ of 2 leads to cost increases across all sens-
ing ranges. Table III shows the effect of varying the degree
of simplification for the Ramer-Douglas-Peucker algorithm.
Setting ε from previously 7 (in table II) to 3 leads to no
significant differences in ag. The differences in agr can be
explained by an unfortunate selection of cycle edges due to a
different selection via the minimum spanning tree. Also note
that degenerate cycle edges disappeared for the SDR map.
All in all the experiments show that the algorithm is simple
to implement and robust while maintaining consideration
for the geometric complexities. The only approximations are
made during the polygon creation and simplification which
are marginal in comparison to the heuristics employed in [2].

UCM map SDR map
r agr ag b bc agr ag b bc
5 97 76 3 24 73 50 10 69
10 38 30 3 9 30 19 10 28
20 18 14 3 6 15 9 10 15
40 10 8 3 3 10 6 10 10
60 8 6 3 3 7 5 10 10
100 7 5 3 3 11 5 10 10

TABLE III
SUMMARY OF THE EXPERIMENTAL RESULTS WITH α = 10,δ = 2, ε = 3.
NOTE THAT DEGENERATE MST-EDGES FROM TABLE II DO NOT APPEAR.

VI. DISCUSSION AND CONCLUSION

We provided an improved method to relate surveillance
graphs to the planar environment they represent. This leads to
an efficient extraction of surveillance graphs from any robotic
grid map or polygonal environments. It also gives a starting
point for investigating the relationship between surveillance
graphs and line sweeping in 2d planar environments. Regard-
ing the computation of Graph-Clear strategies it is apparent
that the reduction to a tree is not entirely satisfactory and
motivates the study of approximation algorithms to the
problem on the graph. Furthermore, an optimal algorithm
for contiguous strategies on trees is obviously desirable and
hence subject of current work. From a practical point of view
the presented vertex sweeps and edge blocks can be executed
by a robot team which follows the lines that are associated
with the sweeps and stops at the blocks. Here a wide body of
literature is available and a control theoretic approach in the
spirit of [10] is a viable direction to pursue. The robots have
to follow a moving boundary which can be achieved with an
event-driven asynchronous robotic network as described in
Chapter 6 of [10]. Therein issues such as communication are
also addressed. Furthermore, the robot team requires some
coordination to assign paths that result from following the
lines to individual robots. Here performance parameters such
as time and travelled distance can start to play a role. A robot
which is not needed for a few vertex sweeps could already
travel to the vertex where it is needed next, speeding up the

overall execution. Also an interesting question is whether
a minimalist approach such as in [5] can be employed for
following sweep lines. Another important direction is the
consideration of probabilistic sensing and errors in control.
In [18] Graph-Clear is extended to a probabilistic sensing
model. The algorithm therein can be combined with the δ
parameter and together give a probabilistic guarantee that
no intruder passes through a sweep line. Failure to detect
may result from the sensor or an errors in following a sweep
line which can open up a gap. Increasing δ and using more
robots reduces this probability. Of greater interest, however,
is the geometric relationship of surveillance graphs with 2d
environments via Voronoi Diagrams. This opens up further
theoretical possibilities to study optimal movements of sweep
lines between obstacles.

REFERENCES

[1] A. Kolling and S. Carpin, “The graph-clear problem: definition, theo-
retical properties and its connections to multirobot aided surveillance,”
in Proc. of IEEE/RSJ Intl. Conf. On Int. Robots and Systems, 2007,
pp. 1003–1008.

[2] ——, “Extracting surveillance graphs from robot maps,” in Proc. of
IEEE/RSJ Intl. Conf. On Int. Robots and Systems, 2008, pp. 2323–
2328.

[3] ——, “Multi-robot surveillance: an improved algorithm for the graph-
clear problem,” in Proc. IEEE Intl. Conf. on Robotics and Automation,
2008, pp. 2360–2365.

[4] I. Suzuki and M. Yamashita, “Searching for a mobile intruder in a
polygonal region,” SIAM J. on Computing, vol. 21, no. 5, pp. 863–
888, 1992.

[5] S. Sachs, S. Rajko, and S. M. LaValle, “Visibility-based pursuit-
evasion in an unknown planar environment,” Int. J. Robotics Research,
vol. 23, no. 1, pp. 3–26, Jan. 2004.

[6] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani,
“A visibility-based pursuit-evasion problem,” Int. J. of Comp. Geom.
and Appl., vol. 9, pp. 471–494, 1999.

[7] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H.
Papadimitriou, “The complexity of searching a graph,” J. ACM,
vol. 35, no. 1, pp. 18–44, 1988.

[8] A. Efrat, L. J. Guibas, S. Har-Peled, D. C. Lin, J. S. B. Mitchell, and
T. M. Murali, “Sweeping simple polygons with a chain of guards,” in
Proc. of the 11th ACM-SIAM symp. on Disc. Alg., 2000, pp. 927–936.

[9] S. D. Bopardikar, F. Bullo, and J. P. Hespanha, “Cooperative pursuit
with sensing limitations,” in ACC, 2007, pp. 5394–5399.

[10] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of
Robotic Networks, ser. Applied Mathematics Series. Prince-
ton University Press, 2009, to appear. Electronically available at
http://coordinationbook.info.

[11] H. Choset and J. Burdick, “Sensor based planning, part I: The
generalized voronoi graph,” in Proc. IEEE Int. Conf. on Robotics and
Automation, vol. 2, 1995, pp. 1649 – 1655.

[12] S. Thrun, “Learning metric-topological maps for indoor mobile robot
navigation,” Artificial Intelligence, vol. 99, no. 1, pp. 21–71, 1998.

[13] M. de Berg, M. van Kreveld, M.Overmars, and O. Schwarzkopf,
Computational Geometry. Springer, 2000.

[14] T. K. F. Da, “2d alpha shapes,” in CGAL User and Reference
Manual, 3rd ed., C. E. Board, Ed., 2008. [Online]. Available:
http://www.cgal.org/

[15] U. Ramer, “An iterative procedure for the polygonal approximation
of plane curves,” Computer Graphics and Image Processing, vol. 1,
no. 2, pp. 244–256, 1972.

[16] G. Grisetti, C. Stachniss, and W. Burgard, “Gmapping - openslam.org.”
[Online]. Available: http://www.openslam.org/gmapping.html

[17] Radish: The robotics data set repository. [Online]. Available:
http://radish.sourceforge.net/

[18] A. Kolling and S. Carpin, “Probabilistic graph clear,” in Proc. IEEE
Int. Conf. on Robotics and Automation, 2009, pp. 3508–3514.


