
Motion Planning for Cooperative
Manipulators Folding Flexible Planar Objects

Benjamin Balaguer and Stefano Carpin

Abstract— Research on robotic manipulation has mostly
avoided the grasping of highly deformable objects, although
they account for a significant portion of everyday grasping
tasks. In this paper we address the problem of using cooperative
manipulators for folding tasks of cloth-like deformable objects,
from a motion planning perspective. We demonstrate that
complex deformable object models are unnecessary for robotic
applications. Consequently, a simple object model is exploited
to create a new algorithm capable of generating collision-
free folding motions for two cooperating manipulators. The
algorithm encompasses the essential properties of manipulator-
independence, parameterized fold quality, and speed. Numerous
experiments executed on a real and simulated dual-manipulator
robotic torso demonstrates the method’s effectiveness.

I. INTRODUCTION

Still in its early stages, research on manipulation has
focused primarily on sensor fusion, the incorporation of a
manipulator onto a moving platform, or a single manipulator
either grasping simple rigid objects or planning around
densely populated spaces using the popular RRTs [10] and
PRMs [9]. Additionally, the use of simulation has become
very popular, to the detriment of algorithms running on
real platforms. In this paper, we take an unprecedented first
step in solving what we believe to be some of the most
limiting issues: the lack of research involving cooperative
manipulators functioning collectively with highly deformable
objects. Opening letters, bags, boxes, or wrapping paper,
playing cards, sorting papers, journals, magazines, or books,
arranging clothes, bedding, or linens - all are examples of
everyday-tasks involving highly deformable objects that a
service robot might be expected to perform. Indeed, while
most objects in our world are inherently deformable, robotics
researchers have mostly skipped over the issue of grasping
deformable objects or have relaxed the definition of de-
formable by dealing with near-rigid objects (e.g. a bottle).
Evidently, we cannot tackle all of aforementioned tasks and,
as such, choose to focus our attention on a simple folding
task of a cloth object. A more detailed description of the task
is provided in the next Section.

We start by reviewing our problem definition in sec-
tion II, highlighting any assumptions made. In section III,
we describe previous work associated with the deformable
models, folding in robotics, and dual manipulator motion
planning. Section IV covers our motion planning algorithm,
followed, in section V, by experiments. Concluding remarks,
extensions, and future work are found in section VI.

School of Engineering, University of California, Merced, CA, USA,
{bbalaguer,scarpin}@ucmerced.edu

II. PROBLEM DEFINITION

We solve the motion planning problem for folding tasks
of planar deformable objects (e.g. napkin, towels). Since
there are many different ways cloth can be folded and scarce
former research, we impose specific constraints and use this
section to highlight our choices. Service robotics requires a
single platform capable of completing many different tasks.
As such, highly specialized robots built for a specific task
should be replaced by a single, more general, counterpart.
Consequently, our algorithm generalizes to any manipulator
of 6 or more degrees-of-freedom (DOF) capable of perform-
ing pinch grasps. We work with rectangular planar objects
and assume that we know their lengths, widths, rotation, and
one corner point. Both assumptions are valid since most, if
not all, towels and napkins are rectangular and capturing
their lengths, widths, and corner points using vision is a
straightforward process due to their geometrical shape and
specific color. Our algorithm specifically solves the problem
of a symmetric fold, where half of the object is repeatedly
folded on top of the other. Finally, since we could not find
previous work on deformable object grasp planers and are
focusing on motion planning, we do not attempt to physically
grasp the object and assume it is possible with a pinch grasp,
in a similar fashion to human grasping [6].

III. RELATED WORK

A detailed review of deformable object models is beyond
the scope of this paper and, due to space limitations, we
briefly mention the most popular models. Interested readers
are pointed to the survey in [8] for additional information.
Free Form Deformations [13] can be powerful for 3D objects,
but are not suitable for cloth since they do not take into
account the structural, topological, or material properties of
the object. Mass-spring systems [12] suffer from the stiffness
problem [3], which occurs when integration time steps are
too big and results in poor fidelity. Finite Element Methods
[17] are computationally expensive and work best with small
deformations. In robotics, representations of deformable ob-
jects have taken a different direction. The most popular one,
only utilized for folds, decomposes a deformable object into
a set of kinematic links composed of a face and a foldable
edge. This representation has successfully been exploited to
fold paper [14] and carton [11]. The faces are assumed to
be rigid and the foldable edges are known a priori. Being
simple, fast, and proven for folding in robotics, we use a
variant of this geometrical model.

Song et al. look at the problem of folding paper craft
in [14]. The authors formulate their work as a motion

planning problem whith the object being decomposed into
links and foldable edges. The formulation allows the usage of
a PRM to solve the folding problem, where the Configuration
space (C-space) encompasses each edge. Unfortunately the
folding process does not take into account an actuating
robot. A similar paper, using the same kinematic description,
is presented in [11] for carton folding. The work differs,
however, in that the authors use a tree instead of a PRM, are
looking to find all foldable solutions, and implement their
method on a real robot. The real robot implementation is
inadequate, however, since an operator chooses the best fold
sequence for the robot. Better robot frameworks exist for
origami [2] and T-Shirt [4] folding. Both papers offer robot-
dependent solutions, rendering the work useful in specialized
environments but unsuitable for service robotics.

Research on dual manipulator motion planning is more
readily available. In [16], Vahrenkamp et al. use two manip-
ulators in re-grasping tasks. Their solution is RRT-based and
the authors address the high DOFs of a dual-arm robot by
using a randomized IK solver to analytically solve 6 DOF of
the arms given randomly sampled values for the remaining
joints. They show that the this IK solver performs better than
a Jacobian-based solver. In a similar work [15], Tsai et al.
look at dual-arm manipulation using RRTs to plan paths in
dynamic environments comprised of moving objects. A RRT-
variant is formed, adding time and cost information to dictate
where the tree should grow and reduce redundant twists and
turns. Gharbi et al. also look at the planning problem for
dual-manipulators using a PRM-inspired technique [7]. More
specifically, they consider multi-manipulators for which a
PRM that takes into account the entire system will result
in slow performance due to the high number of DOFs.
Consequently, the authors decompose a multi-arm system
into sub-components that are exploited to increase the speed
of path planning.

IV. MOTION PLANNING

A. Trajectory Generation in Configuration-Space

Generating a trajectory for each manipulator is tied to the
deformable object model. Similarly to [14], [11], we choose
a geometrical approach specifically invented for robotic
folding, where a fold is represented as a kinematic chain
comprised of joints (i.e. creases) connected to rigid links
(i.e. faces). Given the length S, width W , object angle A,
and corner point R = Rx,Ry,Rz in Cartesian coordinates,
we formulate mathematical equations for each trajectory in
Cartesian coordinates. We uniformly sample data points from
the trajectory by using a variable V , ranging from 180 to 0
degrees with a defined step size. We have chosen -5 degrees
as our step size and have found it to be a good tradeoff be-
tween speed and data point density. The geometrical process,
highlighted in Figure 1, is governed by the equations below
for the right trajectory. The equations can be used for the
left trajectory, by generating a new point P = Px, Py, Pz
and substituting it for R. The new point P is computed
with Px = −W sin(A) + Rx, Py = W cos(A) + Ry, and
Pz = Rz.

X =
S

2
cos(V) cos(A) +

S

2
cos(A) +Rx

Y =
S

2
cos(V) sin(A) +

S

2
sin(A) +Ry

Z =
S

2
sin(V) +Rz

Fig. 1. Geometrical diagram used to derive the trajectories in Cartesian
space, showing each mathematical variable.

The data points generated in Cartesian coordinates need to
be converted to the robot’s C-space. Let L =

[
L1L2 · · ·LN

]
be the set of data points for one trajectory, with Li ∈ R3. The
conversion from Cartesian to C-space is achieved by using an
IK solver. Even though any manipulator IK solver will work,
we briefly describe the one we use with our platform, i.e. two
Barrett Arms and Hands (see Figure 3). More specifically,
each arm is anthropomorphic with a redundant DOF and
a spherical wrist. Given a wrist orientation, we solve for
IK analytically by treating the redundant joint as a free
parameter. Changing the free parameter effectively allows the
sampling of configurations for a given data point in Cartesian
space (i.e. a given Li). Rather than randomly sampling [16],
we sample uniformly from the redundant joint’s limits with
a step size of 4 degrees. Evidently, the step size involves a
tradeoff between speed and the density of solutions. The hand
is composed of three fingers, two of which are used for the
pinch grasp. The wrist orientation is constant, constrained to
be parallel to the table with the unused finger pointing away
from the other robotic arm. Finally, the IK solutions in C-
space are pruned by removing any configurations outside the
manipulator’s joint limits. Put differently, each data point in
L is replaced by a set of manipulator configurations C.

C =


C1,1 C2,1 · · · CN,1

C1,2 C2,2 · · · CN,2

...
...

. . .
...

C1,A C2,B · · · CN,C


Note that Ci,j ∈ RDOF , where DOF is the manipulator’s
DOF, and that the notation Ci,j(k) refers to the kth joint
value of configuration Ci,j . With our deformable object
model, we implicitly impose two constraints on the arms’
trajectories. First, the distance between the two grasping
points will remain the same throughout the motion. Second,
at any point on the trajectory, the relative height between the
two contact points will equal zero.

B. Graph/Roadmap Creation

With each trajectory point in C-space, we now focus
on building a motion planning graph. Similarly to [7], we
generate two graphs, one for each manipulator. Each vertex
represents a robot configuration and each edge represents
a path from one configuration to another. Each ”level” of
the graph corresponds to a distinct Cartesian coordinate, Li.
In other words, each level encompasses many vertices, all
representing the same Li. Each vertex in a level is connected
to all the vertices of the next level. A path that follows
the trajectory is generated by moving from one level to the
next (i.e. moving from one trajectory data point to the next).
An initial and final vertex, CI and CF , are added as the
first and last level of the graph, respectively. A graphical
representation of one roadmap is shown in Figure 2.

Fig. 2. Graphical representation of a roadmap.

To find the best path within this dense graph, we associate
weights to edges. More specifically, we have defined time,
boundary singularity, and collision weights as possibilities
for definitions of a ”best path”. To minimize the number
of calls to the collision detector, the collision weight is
implemented in the path selection process (next section). The
edge cost is represented as Ec = α ×Wt + β ×Wb, with
α + β = 1 and where Wt and Wb represent the time and
boundary singularity weights, respectively. The idea behind
the edge cost is that users can scale the weights based on their
definition of ”best path”. As an example, for a fast execution
time α would be increased whereas, for a safe execution,
β would be increased. To compute the time weight, we
use the fact that we rotate the robot’s joints at a constant
velocity. This reduces the problem to minimizing the amount
of rotations exerted on the joints. Specifically, given an edge
between two configurations, Cx,y and Cx+1,z , we find the
joint with the maximum rotational change, which will take
the longest to rotate into position. The maximum difference
between the positive and negative joint limits (pL and nL)
is used to scale the weight between 0 and 1.

Wt =
maxi[Cx,y(i)− Cx+1,z(i)]

maxi[pL(i)− nL(i)]

When α is set relatively high, the time weight induces an
interesting behavior. Since the best paths will have the mini-

mum rotation amount, they will stay very close to the starting
configuration, CI . As such, our choice for CI will dictate the
type of motion executed. In addition to reducing execution
time, the time weight now becomes a powerful tool. For the
boundary singularity weight, we want to severely penalize
rotations that are close to the joint limits for each joint.
Consequently, we use an exponential function, which we
scale to be between 0 and 1, where M = pL(i)− pL(i)−nL(i)

2 .

Wb =
DOF∑
i=1

e|Cx+1,z(i)−M | − 1
DOF × (e(pL(i)−M) − 1)

The boundary singularity weight is used for safe execution
and to steer the manipulator away from boundary singulari-
ties. Moreover, and similarly to the time weight, an implicit
characteristic of the weight can be deduced. Joints with
limits ranging from -180 to 180 degrees can generate invalid
paths as they approach one of the limits. Indeed, and as an
example, as the joint approaches -180 it will, at some point,
switch over to 180, resulting in a 360 degree rotation of
the joint. This phenomenon is undesirable, especially if the
manipulator is holding the deformable object. This weight
helps the manipulators stay away from these configurations.

C. Path Selection

Conversely to [7], we find the best paths in each roadmap
and merge the paths rather than merging the two roadmaps.
This procedure limits calls to a collision detector, an im-
portant feature of our algorithm, especially given our dense
graph. We have two weighted graphs and wish to find the best
combination of collision-free paths. We start by finding the
best t and u paths of the first and second graph, respectively,
by running Dijkstra’s shortest path algorithm starting with CI

and CF as starting and goal configurations. Every time a path
is found, we remove all the path’s edges from the graph and
repeat the process until no more paths are found (i.e. until
two levels are disconnected). We acknowledge that there are
different ways of pruning the graph to generate new paths
and have found this technique to be successful in finding
paths that are different from each other. Simply removing
one, or a few, edges would result in paths too similar from
each other. Once again, we have a tradeoff between speed
and solution density but our pruning method provides a good
balance between the two, generating anywhere between 20
and 50 paths per graph. Running the process on each graph
results in two sets of paths, the permutation of which gives
the total number of solutions. We propose two methods to
choose a path from this set. In the first, the set of solutions is
ranked by ascending costs and a collision detector determines
the first collision-free path. In the second method, we include
a new weight, Wc, to account for the distance between
the two manipulators. Calls to the collision detector are
made, returning the minimum distance, d, between the two
manipulators. Since we want to penalize close manipulators
more heavily, we use an exponential function. We introduce
two new variables, dRate and Margin, that dictate the rate
of descent of the function and the safety margin, respectively.

As a reference, we used 0.8 as the rate of descent and 0.1
(i.e. 10 centimeters) as the safety margin.

Wc = exp

(
−d

dRate×Margin

)
The weight, Wc, is calculated for each vertex and incor-
porated into the edge cost, to create a new cost function
Ec = α×Wt +β×Wb +γ×Wc, with α+β+γ = 1. With
the new costs, the paths are sorted in ascending order and the
best one is selected. As will be shown in the experiments,
the collision weight provides little improvement and suffers
from a huge performance hit due to distance calculations by
the collision detector. Consequently, we recommend using
the first method described.

V. EXPERIMENTAL RESULTS

We performed a series of experiments on our robotic
platform, a static torso with two Barrett Arms and Hands,
in simulation and on the real system (see Figure 3). For the
experiments that we present in this section, we run our algo-
rithm with two different deformable objects, a napkin and a
small towel. The napkin is 30cm (length) by 30cm (width)
and the small towel is 48cm (length) by 28cm (width). While
we have performed more experiments with differently sized
planar deformable objects, we omit them in this section due
to a limitation of our system. Since the robotic arms are
statically mounted, they have a limited workspace. Larger de-
formable objects would quickly extend past the reachability
subspace of our robot and, consequently and legitimately, our
algorithm would not find paths to execute the motion. This
drawback is strictly due to our manipulator configuration and
could be avoided by maximizing the reachability workspace
when mounting the arms. The objects are placed in front of
the robot such that they are within the workspace and are
rotated, around their center point, by angles varying from
-90 to 90 degrees to come up with numerous different test
cases, resulting in many diverse motions. We also chose to
run tests on a virtual representation of our system, simulated
in USARSim [5], since it allows to continuously apply the
different motions without having a human-in-the-loop, thus
greatly facilitating the amount of motion-dependent data that
can be acquired. There are only two, negligible, differences
between the simulated and real robots. First, the simulated
robot is not mounted exactly the same way. More specifically,
it is 10 centimeters closer to the table. Second, and less
importantly, the rotational speed of the joints do not match
those of the real robot. It is worthwhile to note that the code
implementing the aforementioned algorithm is impervious to
the type of robot used (i.e. simulated or real) and that the
only difference is the slightly modified robot configuration
file. This is consistent with our parallel ongoing research
about robot simulators [1]. We invite readers to watch our
accompanying video, which shows the same motion plan
being executed by the simulated and real robots.

A. Accuracy
Our first series of experiments attempt to validate how well

the robot follows a generated trajectory. This experiment can

Fig. 3. The simulated (left) and real (right) robots performing the same
folding motion. The object is the small towel and is not rotated.

only be performed in simulation since we need to record
the position of the finger tip at any given time. Capturing
the finger tip’s position of the real robot would require a
motion capturing system, plagued with the typical tracking
problems due to potential occlusions, which are very likely
in our scenario. We execute a series of 49 motions, randomly
selecting one of the two objects and rotating it by a random
amount, with each motion being comprised of 37 data points.
Each time the manipulators reach a data point, the finger tip
position is recorded and compared to the desired position.
This means that, for this experiment, we are comparing 1813
data points for each arm (i.e. 3626 data points total). As a
side note, this exemplifies the potential power of simulations,
where running the same series of tests on a real platform
would have taken both a longer amount of time and a
higher level of human supervision. No outliers were found
in this relatively large data set and the root mean square
error (RMSE), between the actual and desired position, is
1.6703cm and 1.6385cm for the right and left manipulators,
respectively. Even though readers might be tempted to think
that the simulation should follow the paths exactly (i.e. the
RMSE should be 0 for both arms), we have to keep in mind
that imperfections in the simulated model are bound to occur.
If the joints are not placed in exactly the same locations
as the real robot, discrepancies will occur due to small
differences between the DH parameters. These discrepancies
account for the aforementioned RMSE.

B. Path Generation

In this experiment, we look at the number of collision-
free paths that our algorithm is capable of generating. Since
the number of paths is highly dependent on the object’s
configuration and placement relative to the robot, we run
experiments using the two objects, the small towel and the
napkin, rotating each from -90 degrees to 90 degrees with
5 degrees increments. Consequently, we have two sets of
37 experiments. We use 0.5, 0.5, and 0 for α, β, and γ,
respectively. While we have run the experiment for both the
simulated and real platform, we only show the results of
the simulated data in Figure 4. The real platform’s result
followed the same shape but yielded, in general, a lower
number of collision-free paths, a fact that can be attributed
to the manipulators’ higher mounting point, reducing their

workspaces. The figure shows an almost symmetric pattern
between the positive and negative rotations. Even though one
might expect the graph to be perfectly symmetric around
the 0 degree rotation (e.g. the same series of configurations
should be used by the left arm at 10 degrees than the ones
used by the right arm at -10 degrees), the arms are not
mounted symmetrically from each other (one is rotated by 90
degrees while the other by -90 degrees) and their joint limits
are not necessarily symmetric (e.g. joint 4 goes from 180 to -
50 degrees). The figure also shows, as expected, a significant
difference between the two objects. Generally speaking, the
small towel has a greater number of collision-free paths than
the napkin, an outcome explicitly explained by their sizes.
The napkin being smaller than the small towel forces the
manipulators to be positioned closer together when executing
the trajectory, resulting in a lot more collisions. Last but not
least, the algorithm generates a huge amount of collision-free
paths (between 100 and 1000), which allows for either a fine
grain selection of the best one or opens a door to make the
algorithm faster by reducing the number of chosen paths.

Fig. 4. Number of collision-free paths generated by the algorithm as a
function of object rotation angle for the napkin and the small towel.

C. Effect of Time Weight on Motion Execution Time

The proposed algorithm uses weights to dictate how the
fold will be executed. In this experiment, we evaluate the
effect that the time weight factor, α, has on the overall exe-
cution time of the motion plan. For the same reasons as the
accuracy experiment, namely that running many consecutive
motions is faster and less human intensive in simulation than
on a real robot, the data presented in this section refers to the
simulation. We did run, however, similar motions on the real
robot (although, a lot less) and have noticed similar patterns
to those presented. This should come to no surprise since
the time weight is based on the amount of joint rotation.
For a given object and rotation, the time weight factor, α, is
changed from 0 to 1 with increments of 0.05, each time
running the best motion in simulation and recording the
total execution time. The collision weight factor, γ, is set
to 0 and the boundary singularity weight factor, β is set
to 1 − α. Figure 5 shows a few representative examples of
the results gathered from this experiment. The graph shows
that increasing the time weight factor reduces the overall
execution time of the motion by a factor of 18 to 22 percent
for the napkin and 30 to 38 percent for the small towel.

Folding the napkin takes less time than folding the small
towel, a logic observation since the napkin is smaller than
the small towel. As a result, the execution times of the small
towel can be improved more significantly than those of the
napkin.

Fig. 5. Motion execution time as a function of α. Data is shown for the
small towel at 15 and -90 degrees and the napkin at 60 degrees.

D. Effect of Collision Weight on Manipulator Distance

In this experiment, we focus our attention on the collision
weight factor, γ, to see if it helps force the manipulators keep
a safe distance from each other. Similarly to the previous
experiment, for a given object and rotation, the collision
weight factor, γ, is changed from 0 to 0.95 with increments
of 0.5, each time recording the minimum distance between
the two manipulators, as given by the collision detector.
The time weight factor, α, and the collision weight factor,
γ, are both set to (1 − γ)/2. We note that we cannot
increase the collision weight factor all the way 1 since
the other two weight factors will be 0, resulting in a cost
of 0 for every edge of the graph. Figure 6 shows a few
representative examples of the results gathered from this
experiment. Counter-intuitively to what one might expect,
the minimum distance between the two manipulators does
not change significantly. This otherwise peculiar observation
can be explained by our starting position that, as explained
earlier, affects the rest of our motion when using the time
weight (i.e. rewarding minimum rotations). In other words,
our starting position happens to be set in such a way that the
time weight produces motions that, indirectly, maximize the
arms’ distances from each other (e.g. the elbows are forced
to face away from each other).

Fig. 6. Minimum manipulator distance as a function of γ, shown for the
napkin at -55, 60, and -80 degrees and the small towel at -90 degrees.

Readers might wonder why, irrespectively of the object,
the motions perpendicular to the robot (e.g. 80 and -90
degrees in Figure 6) result in closer manipulators than for
motions more parallel to the robot (e.g. -55 and 60 degrees in
the Figure 6). This difference is explained by the fact that, for
perpendicular motions, the elbow of the manipulator closest
to the robot has to point away from itself, in the direction of
the other manipulator and, as a result, are very close together
(see Figure 7). Conversely, more parallel motions allow the
manipulator’s elbow to stay away from the other manipulator.
Figure 7.

Fig. 7. Pictures showing the difference between perpendicular motions
(right) and more parallel motions (left).

E. Algorithm Time

We conclude our experimental section with information
about our algorithm’s running time under two different
conditions, the result of which can be found in Figure 8.
The algorithm times were recorded on an Intel Quad Core
2.8GHz desktop computer and include the time spent on
allocating space for all the data structures. When γ 6= 0,
the algorithm is much slower since a lot more calls to the
collision detector are required. However, we have shown that
using the collision weight did not provide any significant
improvements. Consequently, we recommend setting γ to 0,
unless safety is of outmost importance. The other parts of
the algorithm are constant with respect to γ and relatively
fast.

Fig. 8. Timing information for each part of the algorithm.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a motion planning algorithm capable of
generating folding motions for rectangular planar deformable
objects. The algorithm’s strengths come from its speed, the
notion of parameterized fold quality, and the extendibility to

different manipulators provided they have at least 6 DOF and
perform pinch grasps. We have executed many experiments
both in simulation and on the real robotic platform, a
subset of which are presented in this paper, corroborating
some assumptions while elucidating others. A few different
directions can be taken for future work in this area. First, a
grasp planner for cloth-like objects needs to be incorporated
in order to be able to physically grasp the objects. Second,
it would be beneficial to calculate the position of the object
that would give the robot the highest chance of generating a
motion plan for it. Similarly, and for static robots, we could
calculate the position that they should be placed at such that
their folding (or other task) capabilities are maximized. We
see this paper as the first step towards a fully functional cloth
folding robot.

ACKNOWLEDGMENTS

We thank Roger Sloan for his help with the collision
detector implementation. This work is partially supported by
the National Science Foundation under grant BCS-0821766.

REFERENCES

[1] B. Balaguer, S. Balakirsky, S. Carpin, and A. Visser. Evaluating maps
produced by urban search and rescue robots: Lessons learned from
robocup. Autonomous Robots, 27(4):449–464, 2009.

[2] D. Balkcon. Robotic Origami Folding. PhD thesis, Carnegie Mellon
University, 2004.

[3] D. Baraff and A. Witkin. Large steps in cloth simulation. In
SIGGRAPH, pages 43–54, 1998.

[4] M. Bell and D. Balkcom. Grasping non-stretchable cloth polygons.
International Journal of Robotics Research, 2009.

[5] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper. US-
ARSim: a robot simulator for research and education. In Proceedings
of the IEEE International Conference on Robotics and Automation,
pages 1400–1405, 2007.

[6] L. Chang and N. Pollard. Video survey of pre-grasp interactions in
natural hand activities. In Workshop on Understanding the Human
Hand for Advancing Robotic Manipulation at RSS, 2009.

[7] M. Gharbi, J. Cortes, and T. Siméon. Roadmap composition for multi-
arm systems path planning. In International Conference on Intelligent
Robots and Systems, pages 2471–2476, 2009.

[8] S. Gibson and B. Mirtich. A survey of deformable modeling in
computer graphics. Technical report, Mitsubishi Electric Research
Laboratories, 1997.

[9] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

[10] S. LaValle and J. Kuffner. Rapidly-exploring random trees: Progress
and prospects. In International Workshop on the Algorithmic Founda-
tions of Robotics, 2000.

[11] L. Lu and S. Akella. Folding cartons with fixtures: A motion planning
approach. IEEE Transactions on Robotics and Automation, 16(4):346–
356, 2000.

[12] S. Platt and N. Badler. Animating facial expressions. Computer
Graphics, 15(3):245–252, 1981.

[13] T. Sederberg and S. Parry. Free-form deformation of solid geometric
models. In SIGGRAPH, pages 151–160, 1986.

[14] G. Song and N. Amato. A motion planning approach to folding:
From paper craft to protein folding. IEEE Transactions on Robotics
and Automation, 20(1):60–71, 2004.

[15] Y. Tsai and H. Huang. Motion planning of a dual-arm mobile
robot in the configuration-time space. In International Conference
on Intelligent Robots and Systems, pages 2458–2463, 2009.

[16] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R Dillmann.
Humanoid motion planning for dual-arm manipulation and re-grasping
tasks. In International Conference on Intelligent Robots and Systems,
pages 2464–2470, 2009.

[17] O. Zienkiewicz. The Finite Element Method Set. Butterworth-
Heinemann, 2005.

