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Abstract— We consider the problem of searching for an
unknown number of static targets inside an assigned area.
The search problem is tackled using Probabilisitic Quadtrees
(PQ), a data structure we recently introduced. Probabilistic
quadtrees allow for a variable resolution representation and
naturally induce a search problem where the searcher needs
to choose not only where to sense, but also the sensing
resolution. Through a Bayesian approach accommodating faulty
sensors returning both false positives and missed detections,
a posterior distribution about the location of the targets is
propagated during the search effort. In this paper we extend
our previous findings by considering the problem of searching
for an unknown number of targets. Moreover, we substitute our
formerly used heuristic with an approach based on information
gain and expected costs. Finally, we provide some convergence
results showing that in the worst case our model provides
the same results as uniform grids, thus guaranteeing that the
representation we propose gracefully degrades towards a known
model. Extensive simulation results substantiate the properties
of the method we propose, and we also show that our variable
resolution method outperforms traditional methods based on
uniform resolution grids.

I. INTRODUCTION

Autonomous robots are playing an increasingly important
role in search related tasks. Robotic searchers can be sent
to inaccessible or dangerous areas to locate items of inter-
est. Moreover, as these platforms become more and more
affordable and robust, the use of teams of aerial vehicles
that cooperatively and autonomously search an assigned area
is also becoming a viable alternative. Applications include
urban search and rescue, surveillance of sensitive areas, and
intruder detection, just to name a few.

In this context, the advent of easy to deploy and control
vertical take off and landing (VTOL) platforms offers novel
possibilities in the area of robotic search. The problem of
autonomous control of robotic helicopters has been studied
in depth because these platform offer numerous control
challenges [16]. On the contrary, quadrotor aerial platforms
like the AirRobot depicted in Fig. 1 are much simpler to
control and their increasing presence is spurring new energy
into the field of robotic search using aerial vehicles. When
compared with fixed wing vehicles, VTOL platforms offer
the advantage of being able to hover above an area of interest.
Moreover, when equipped with downward pointing cameras
for target detection, a change in elevation translates to a
change in size of the sensor footprint, as well as a variation
in the sensor accuracy. This fact was already noticed and
investigated in [17].
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Fig. 1. The AirRobot is an easy to control VTOL vehicle that can hover
over areas of interest. When the robot changes its elevation while keeping
its position the area covered by the downward pointing camera varies, as
well as the accuracy of the target detection algorithm.

These considerations recently motivated us to develop a
variable resolution data structure to study tasks where the
searcher is equipped with a sensor with variable footprint
and accuracy [4]. Using a Bayesian approach, throughout
the mission the searcher propagates a posterior about the
probability that an object of interest is located in a given area.
Our framework accommodates sensors with false positives
and missed detection, and dynamically updates the search
space in order to allocate more search effort where promising
locations emerge. The search algorithm determines not only
where to search next, but also the sensing accuracy. The
intuition is that the algorithm handles the tradeoff between
sensing a wide area with low resolution versus observing a
small region with higher precision.

Building upon our recent work, this paper offers three
novel contributions:
• While in [4] we considered the case of searching for a

single target, here we consider the more general case
where an unknown number of targets may be present
in the area being searched. This possibility implies
significant changes in the posterior being propagated
and in the complexity of the Bayesian update.

• In the planning stage we introduce a new information
gain based function in order to decide where to sense
next. Information gain largely outperforms our previ-
ously chosen heuristic based on probability only, and
also naturally leads to a simple statement of the search
stopping criterion.

• We provide theoretical results showing that in the limit a
hierarchical representation converges to a uniform one,
thus guaranteeing that under the assumption of infor-



mative sensors all targets will be eventually discovered.

The rest of the paper is organized as follows. Section
II shortly discusses related literature. The search problem
studied in this paper is formalized in Section III. The search
strategy based on entropic information gain is introduced
in Section IV, whereas Section V discusses the stopping
criterion and how decisions are formulated as the search
mission evolves. Theoretical properties are discussed in
section VI. Simulation results are illustrated in Section VII,
and conclusions and future work are presented in Section
VIII.

II. RELATED WORK

Search theory dates back to World War II, and the works
by Koopman [6] and Stone [15] offer a classic treatise of this
area from an operational research perspective. From a robotic
point of view the line of work most similar to our approach
was performed by Furukawa and colleagues in a series of
papers appeared in the last years [1], [2], [10], [19]. Therein
the authors cast the search problem as a Baysian framework
accounting for faulty sensors. The authors, however, rely on a
uniform representation of the environment, and when dealing
with multiple targets they assume their number is known.
Moreover, their implementation focuses on UAVs flying at
a constant elevation, and therefore sensor accuracy does not
vary during the mission. In [10] the authors present one of
the few examples of search architectures based on a spatial
representation that is reconfigured during the search. How-
ever their model does not feature any hierarchical layering,
but rather consists of planar shapes whose boundary varies
as the search evolves.

The problem of searching for an unknown number of
targets is considered less frequently, but is obviously more
important from a practical point of view. In a demining task
Bryant and Carthel [3] consider the problem of estimating
the overall unknown number of targets based on sensor
performance and number of detections. They show that
the number of missed targets follows a negative binomial
distribution. This result, however, is based on the assumption
that the sensor may miss targets, but does not provide for
false positives. In the controls community Hussein et al.
[18] also consider the problem of searching for an unknown
number of targets, and they also use information entropy
in order to formulate search decisions like where to search
next and when to stop. Their formulation, however, relies on
uniform grid representations and does not consider sensors
with variable performance.

For sake of completeness, we shall also mention that
Kraetzschmar et al. also used a data structured called Prob-
abilistic Quadtrees [8]. However, since their goal is solving
a different problem (i.e., mapping), the probabilistic updates
are completely different, and henceforth the similarity be-
tween the two works is just in the name and in the common
use of a well known variable resolution representation.

III. PROBLEM DEFINITION

We here revisit and modify the data structure we intro-
duced in [4] in order to account for the possible presence of
multiple targets. The data structure presented in [4] will be
called Type1 PQ in the following and it can be used only to
search for a single intruder. The data structure we present in
this paper is instead dubbed Type2 PQ because it can handle
multiple targets. For sake of simplicity, let us assume the
search domain A is a square with an edge L units long. At
most one intruder (also called target in the following) may
be located in a unit size square and therefore the number of
intruders in the area is an integer between 0 and L2. The
search area may then be notionally divided into L2 cells ci
of area 1, but this subdivision is purely conceptual, since
our method is explicitly designed to avoid dealing with this
uniform representation. The presence of a target inside cell c
is modeled by a Bernoulli random variable Xc. We assume
the various Xc are independent and identically distributed
(iid). A prior distribution about the variables Xc may or may
not be available. A single searcher is tasked with the goal of
sensing the environment and to eventually output a search
decision that may be either negative (no intruder detected) or
positive (one or more intruders detected). In the latter case
for every intruder located the searcher shall also identify the
cell where it is located.

A. Search space

We associate with the search domain A a probabilistic
quadtree (PQ) T . Quadtrees are a variable resolution, spatial
representation heavily used in computational geometry and
robotics [5]. In essence a quadtree is a rooted tree where
every internal node has four children. Every node is asso-
ciated with a planar square1 region, and the root of T is
associated with the whole region A. The recursive invariant
in a quadtree is that the region of an internal node is split
into four equally sized squares, and each of them is then
associated with one of the children. Given a node n ∈ T , we
indicate with R(n) ⊂ R2 the square region associated with
n. Throughout this paper we will consider quadtrees whose
leaves may be at different depths, thus fully exploiting their
variable resolution nature.

A probabilistic quadtree is a quadtree where every node
n in T is associated with a binary indicator random variable
Xn indicating the event at least one intruder present in area
R(n). The reader should note that Xn coincides with Xc only
when the region R(n) associated with node n coincides with
cell c. However, variables Xn are defined also for internal
nodes whose associated area is larger than 1 and may then
host more than one target. For every node we define

pn = Pr[Xn = 1].

Conversely, we introduce

qn = 1− pn = 1− Pr[Xn = 1] = Pr[Xn = 0], (1)

1In general it is rectangular, but for sake of simplicity we here assume it
is square.



i.e., qn is the probability that no targets are present in node
n. Because of the independence assumption, if ni and nj are
two nodes whose associated regions do not intersect, then

Pr[Xi = 1, Xj = 1] = Pr[Xi = 1]Pr[Xj = 1] = pipj .

If n is an internal node and n1, . . . , n4 are its children,
because of the independence assumption the following con-
straint holds

qn = q1q2q3q4 (2)

because the parent node is intruder free if and only if all
of its four children are intruder free. This relationship is
necessarily recursive, i.e., it is applied also to n’s children.
The probabilistic formulation is completed noting that the
model also allows study of situations where no intruder is
located in the search area. Therefore an outside node n∅ is
introduced, and its indicator variable In∅ is true when no
intruder is located inside A. If r is the root node in T , it
follows that

pn∅ = 1− pr.

We conclude this subsection assuming a maximum depth
D for T is given. Under this assumption, nodes at depth
D are associated with regions of area 1. That is to say
that in a full probabilistic tree with all leaves at depth D
its leaves provide the same partition of A induced by the
uniform grid. If the searcher reports Intruder located in cell
ci, then cell ci must be a region associated with a node at
maximum depth. In other words, the decision target detected
must be associated with a cell at the highest resolution. In
the following, if n is a node then d(n) is its depth, and we
assume the root is at depth 0. Finally, let L(T ) be the set of
leaves of T , and N (T ) be its set of nodes. It is important
to recall that leaves may or may not be at depth D.

B. Sensor model

The hierarchical search space is advantageous when it
can be coupled with a sensor offering variable resolution.
In fact this research is motivated by UAVs equipped with
downward pointing cameras. As the UAV varies its altitude,
the camera captures regions of different size. Moreover its
accuracy varies with altitude, i.e., identifying an object of
interest while flying at high elevation is harder than when
flying at close range [13]. Figure 2 shows some images
illustrating this standpoint.

The output of each sensor reading is assumed to be a
Bernoulli detection variable, assuming value 1 if and only if
at least one intruder is detected. In order to complete its task,
the searcher may sense at different locations. Given an area
A and its associated probabilistic quadtree T , we assume
the searcher cannot move and sense at arbitrary locations,
but is rather constrained to sense when it is placed at the
center of the region associated with one of the nodes n in
T . In this case we say that the searcher senses at node n.
According to this model, if the searcher queries its sensor
when it is located at node n, its sensor scans the associated
region R(n). It follows that when the searcher scans the area
associated with a node deep in the tree it flies at low elevation

Fig. 2. Aerial images collected by a UAV flying at Camp Roberts, CA.
The top image shows an image of two cars taken at close range. The bottom
image shows a picture of the same area taken from a much higher altitude.
While the scanned area greatly increased, the ability to recognize objects
of interest (cars in this case) almost vanished.

(and then small sensing area and high accuracy), whereas if
it scans an area associated with a node closer to the root
the searcher is located at a higher altitude. The Bernoulli
variable Zt

n is then the output of the sensor when used at
time t in node n. The sensor is assumed to be imperfect, i.e.,
prone to missed detections and false positives. These errors
are modeled as follows (note that we omit time because error
profiles are assumed stationary with respect to time):

Pr[Zn = 1|Xn = 0] = α(d(n))

Pr[Zn = 0|Xn = 1] = β(d(n)).

Therefore α measures the false positive rate, whereas β
relates to the missed detection error. Dependence on depth
d(n) signifies that accuracy depends on the size of the area
being sensed, or, equivalently, from the altitude of the UAV.
Such detection probabilities can be determined empirically,
as contained in search and rescue manuals [13], or from
theoretical models for altitude-dependent detections [7]. This
dependence is therefore captured by the depth of the node
d(n), with the intuition that when sensing at a higher
altitude a larger area is scanned, and therefore more errors
are possible. This notion is formalized by the following
inequalities:

1) d1 < d2 ⇒ α(d1) > α(d2)
2) d1 < d2 ⇒ β(d1) > β(d2)

where the reader should recall that nodes closer to the root
are associate with larger areas and have lower depth. These
inequalities therefore state that error rates of either type
increase when sensing larger areas.



C. Bayesian updates

The estimation process is bootstrapped assuming an initial
tree T is available (its construction is described in a later
section). It is assumed that for every leaf node n a prior
probability p

(0)
n = P [Xn = 1] is available. Therefore,

recursively applying Eq. 1 and Eq. 2 from the bottom up
we can compute the initial values of pn for every internal
node in T . By integrating successive sensor readings we aim
to compute the following posterior for each node

p(t)n = Pr[Xn = 1|Z1
n1
, Z2

n2
, . . . , Zt

nt
]

where the reader should note that the various readings may
have occurred also at nodes ni 6= n. The hierarchical
structure we are dealing with requires some extra care. If
we assume all readings happened on leaves of the tree, and
we consider only updating the posterior of the leaves, then
p
(t)
n can be computed using the standard recursive Bayesian

update rule

p(t)n =
Pr[Zt

nt
|Xn = 1]p

(t−1)
n

Pr[Zt
nt
]

. (3)

If nt 6= n, in Eq. 3 we set Pr[Zt
nt
] = 1 and Pr[Zt

nt
|Xn =

1] = 1, so that the posterior about node n is not altered after
sensing a different node2. Note that this is consistent with
the independence assumption we introduced, but is different
from the Type1 PQ structure where all nodes were correlated
with each other. If nt = n we instead use the sensor model
previously introduced and update the posterior. After sensing
leaf node nt at time t and having updated its posterior
according to Eq. 3, the posterior for all its ancestors can
be updated as well using again Eq. 1 and Eq. 2, and this
step concludes the update of the probabilistic quadtree. The
situation is different when the searcher senses an internal
node. This extension is detailed in the following.

Updates when sensing at an internal node. When sensing
at an internal node n, its posterior can be updated using
Eq. 3, and its ancestors’ probabilities can also be updated as
outlined above. However, the change in probability shall also
be propagated to the descendants of n. The precise formula
for this update depends on the sensor being used. In the
simulations presented later on we opt for a uniform approach,
i.e., the change is propagated from n to its four children
n1, . . . , n4, and then recursively to its descendants. Let

k =
log q

(t)
n

log q
(t−1)
n

.

Then, the updated q probability of each children ni is

q(t)ni
= (q(t−1)ni

)k. (4)

Eq. 4 ensures that the constraint given in Eq. 2 is preserved.
In a practical scenario, based on the characteristics of the
sensor being used one could implement the update differently
as long as the constraint expressed by Eq. 2 is preserved. We

2In practice one would not update those probabilities at all. However we
make this clear in order to get a model that can be consistently applied to
all nodes.

conclude this section noting that in the model we presented
in [4] the integration of every sensor reading had complexity
O(|N (T )|) because all nodes in the tree had to be updated
due to their correlation. On the contrary, for the model
proposed herein a sensor reading performed simply at a
single node at depth d can be integrated in time O(4D−d).
Considering that for a full tree we have |T | ∈ O(4D) the
speedup can be up to O(4d).

IV. ENTROPY OF A PROBABILISTIC QUADTREE AND
SEARCH BASED ON INFORMATION GAIN

In order to characterize the uncertainty of the search being
performed, a measure of entropy of probabilistic quadtrees
is introduced. The entropy of the T is defined as

H(T ) = −
∑

n∈L(T )

pn log2 pn (5)

i.e., it is the sum of entropy associated with every leaf.
Because of the symmetry in the definition of entropy we
can use either p or q = 1 − p when computing the entropy
of the individual binary random variables associated with
the leaves. The definition is supported by the independence
between the indicator variables associated with the leaves.
Indicator variables associated with internal nodes are deter-
ministic functions of the variables associated with the leaves.
Therefore Eq. 5 indeed is the entropy of the ensemble of
variables variables X1, . . . , X|T |, as defined in [12]. In fact,
all uncertainty in the tree is concentrated on the leaves,
because once the values of those random variables is known,
then there is no uncertainty in internal nodes.

Decisions about where3 to sense during the mission are
not taken offline, but the searcher rather decides its sensing
locations online, based on the posterior being iteratively
updated. In [4] we proposed selection of the next sensing
location as the node n ∈ T maximizing the following
function:

J
4
=
p(n) · 4d(n)

cost(n′, n)

where n′ is the current robot location and cost(n′, n) is the
cost of moving from n′ to n. The rationale for this heuristic
is to favor locations with high probability and at greater
depth while penalizing nodes too far away. This heuristic
behaves reasonably well in practice and has the advantage
of requiring only linear time for its evaluation. However, in
this paper we embrace a more principled approach based
on (expected) information gain, as already considered in the
area of robotic mapping [14]. Given a PQ T , the information
gain associated with node n is

I(n) = H(T )− EZn
[H(T |n)]

where EZn [H(T |n)] is the expected entropy of T with
respect to the sensor reading Zn obtained when sensing at

3The reader should recall that since the searcher is constrained to sense
at positions associated with nodes in the probabilistic quadtree then the
sensing location also defines the sensing resolution because the position is
univocally related to the depth d in the tree.



node n. In order to account also for travelled distance when
choosing where to sense next, we use the following weighted
function proposed in [14]

I ′(n) =

[
γ

I(n)

maxn′∈T I(n′)
− (1−γ) D(n∗, n)

maxn′∈T D(n∗, n′)

]
where D(n∗, n) is the Euclidean distance between node
n and the current searcher position n∗. Throughout the
experiments we use a value of γ = 0.5, i.e., distance and
information gain are equally weighted. Hence when the
searcher needs to decide where to sense next it will pick
the node n as follows:

n = argmax
n

I ′(n).

The reader shall however note that with this approach the
computation of n takes quadratic time in N (T ), whereas
using J takes linear time.

V. STOPPING THE SEARCH AND FORMULATING A
SEARCH DECISION

In a Type2 PQ the number of intruders present in the area
may be any number between 0 and L2. This number may or
may not be known beforehand. Moreover, the time devoted
to the search mission may or may not be fixed a priori.
The combination of these factors leads to numerous different
situations and to different decision criteria. If the number of
targets is known, the searcher may terminate the search effort
as soon as it reaches sufficient confidence about the location
of the targets. This may happen even before the whole search
domain is inspected. Conversely, if the number of targets is
unknown the presence of a target in a given region cannot
be ruled out before the area is sensed. We focus on the latter
situation because it is more general. Moreover, the searcher
has limited autonomy, i.e., there is an upper bound T on
the duration of the search mission, but we assume there is
an incentive in terminating the search as soon as sufficient
information is available to formulate a search decision. These
assumptions are coherent with indications provided by search
and rescue teams. We use the stopping criterion proposed in
[18]. Let the quantity U be defined as follows:

U(T ) =
∑

ni∈L(T )H(ni)

|L(T )|Hmax

where H(ni) = −pi log2 pi and Hmax is the largest entropy
for any node in the tree. The search effort terminates when
the allotted time T expires or when each leaf has an entropy
below ε ·U(T ). Evidently, by decreasing the value of ε one
forces the searcher to collect more information (i.e., decrease
entropy) before stopping the search.

Finally, one has to consider that decisions taken at the end
of the search mission suffer from two types of errors as it
is for sensing, i.e., there may be missed detections and false
positives. These two errors are not necessarily equally severe,
and therefore a cost-based approach is considered [11]4. Let

4Sometimes cost is called risk.

Dn be the binary decision made about node n at the end
of the search effort. The decision is binary with Dn = 0
indicating the decision No target. When decisions are based
on a single sensor reading the expected cost Cn associated
with node n is

Cn =Pr[Dn = 1|Xi = 0]Pr[Xi = 0]C10+

Pr[Dn = 0|Xi = 1]Pr[Xi = 1]C01+

Pr[Dn = 0|Xi = 0]Pr[Xi = 0]C00+

Pr[Dn = 1|Xi = 1]Pr[Xi = 1]C11.

Cij is the cost incurred when decision Dn = i is made and
Xn = j. In general one may consider situations where a cost
is incurred also when the correct decision is taken (hence Cii

terms are not null). In the simplest case Dn is formulated
based on a single sensor reading Z, and given a sensor model
Pr[Z|Xn] the problem is then how to map sensor readings
into decisions so that Cn is minimized. In this situation it is
known [11] that one should choose Dn = 0 if

Pr[Z|Xn = 0]

Pr[Z|Xn = 1]
>

(C11 − C01) Pr[Xn = 1]

(C00 − C10) Pr[Xn = 0]

and Dn = 1 otherwise. In the situation we consider in
this paper, multiple sensor readings are combined together
in order to propagate a posterior over time. Let T be the
duration of the search mission, and let Z1, . . . , Zm be the
sequence of sensor readings covering node n. This is in
general a subsequence of the whole set of sensor readings
the searcher collected during the mission; therefore m ≤ T .
Decision D(m)

i is therefore the decision concerning node n
after integrating all m sensor inputs. The previous decision
rule can then be generalized as follows: decide D(m)

i = 0 if

Pr[Zm|Xn = 0]

Pr[Zm|Xn = 1]
>

(C11 − C01) Pr[Xn = 1|Z1 . . . Zm−1]

(C00 − C10) Pr[Xn = 0|Z1 . . . Zm−1]
.

(6)
and 1 otherwise. From an implementation standpoint one
may be tempted to formulate a decision Dn for node n at
the end of the search process. However it is easily seen that
then one must recall for each node when it was sensed. It is
therefore more practical to update the decision variables Dn

after every sensing step. In this way the algorithm behaves
according to an anytime paradigm.

A. Search algorithm

At this point we have all the elements to offer an algo-
rithmic sketch of the search strategy we presented, outlined
in Algorithm 1. Inside a loop governed by the stopping
condition formerly described, the searcher selects the next
cell to sense (line 4), and after collecting a sensor reading
Zt
n it updates the posterior based on the rules enforcing the

Type2 PQ constraint (lines 6 to 11).
Line 12 shows how the tree T is iteratively refined during

the search, i.e., nodes are added to the tree when the sensor
returns a detection at a leaf node not at the maximum depth.
In this case the probability of the newly created nodes is
initialized by enforcing the constraint in Eq. 2. Next, the



Algorithm 1 Searching for multiple intruders with Type 2
PQ

1: T ←InitializeTree(Prior)
2: searchDone ← false
3: while not searchDone do
4: n← argmaxn I

′(n), n ∈ N (T )
5: Move to node n and get sensor reading Zt

n

6: Update pn using Eq. 3
7: Update decision for node n using Eq. 6
8: for all m s.t. m is an ancestor or descendant of n

do
9: Update pm using Eq. 2 (ancestor) or 4 (descendant)

10: Update decision for node m using Eq. 6
11: end for
12: if Zt

n = 1 and n ∈ L(T ) and d(n) < D then
13: Create 4 children for node n and initialize their

probability with q = 4
√
qn

14: end if
15: Compute U(T )
16: searchDone ← true
17: for all n ∈ L(T ) do
18: if −pn log pn > εU(T ) then
19: searchDone ← false
20: end if
21: end for
22: end while
23: return all leaves at depth D with Dn = 1

termination condition is evaluated (lines 15 to 21) and if it
is not satisfied the loop restarts. Finally, we note that in line
23 the searcher returns as confirmed target locations only the
leaves at maximum depth for which the decision variable Dn

has been set to 1. This is coherent with the requirement of
returning target locations only with maximum precision.

VI. THEORETICAL FINDINGS

In this section we sketch some convergence results for
Type 2 PQ based on the search strategy we formulated. The
take home message is that in the worst case scenario a Type2
PQ performs as a uniform grid. Hence, the performance of
this well studied search strategy provides an upper bound for
the performance of our new method. However, as it will be
evidenced in the next section, in practice Type 2 PQ never
approach this limit situation, thus providing a large increase
in performance.

We recall that N (T ) is the set of nodes in T and L(T ) is
the set of leaf nodes. Let F(T ) be the set of nodes in the full
tree of depth D. In other words, F(T ) is the full probabilistic
quadtree after it has been fully expanded, i.e., all its leaves
are at depth D. Because the topology of the quadtree changes
during the search, sets N (T ) and L(T ) should be indexed
by time, like Nt(T ) to indicate the set of nodes at time t.
Finally, for each time step t, Nt(T ) ⊆ F(T ).

Assumptions: ∀d : 0 < α(d) < 1, and 0 < β(d) < 1
i.e., the sensor has non-null error rates in the form of either

false positives or missed detections. Moreover, we assume
α(d), β(d) 6= 0.5.

The motivation of these two assumptions are both practical
and theoretical. If we had an error-free sensor some of
the convergence results do not hold anymore (for example
Lemma 2), although the main properties can still be stated in
a different way. However, we are interested in inference using
faulty sensors, and if one had a perfect sensor a different
strategy would be used. For example, one could permanently
prune part of the search space as soon as a no-detection is
returned. The second hypothesis, α(d), β(d) 6= 0.5, implies
that the sensor is informative, i.e., it does not return a reading
that is unrelated to the sensed region5.

Lemma 1: If the searcher does not stop searching, then
the number of times a leaf node is sensed is unbounded.
Proof. (sketch) A leaf node can not be permanently ignored
from a certain time because otherwise its entropy will not
decrease while the others will. Therefore, eventually, it will
be the node maximizing the function I ′ and will then be
selected. �

Lemma 2: When time diverges the probabilistic quadtree
becomes fully filled, i.e.,

lim
t→∞

Nt(T ) = F(T ).
Proof. The proof is by contradiction. Let us assume that
for each t, Nt(T ) 6= F(T ). Since the tree only expands and
never contracts, this means that there is at least one leaf node
n that is not at the maximum depth D. Let k (k = 0 or 1) be
the true value of the indicator variable Xn associated with
R(n). Because of the the hypotheses made about the sensor,
Pr[Zn = 0|Xn = k] < 1. After node n is sensed m times,
the probability that node is not expanded (and then remains
a leaf) is Pr[Zn = 0|Xn = k]m. Clearly, when m diverges
this probability converges to 0. Because of Lemma 1 node
n is visited infinitely often, and then the result follows. �
It is now straightforward to prove the following result.

Lemma 3: When time diverges the entropy of tree Tt
converges to 0:

lim
t→∞

H(Tt) = 0

Proof. (sketch). Based on our definition, the entropy of a tree
T is the sum of the entropy of its leaves. Hence it suffices to
show that the entropy of every indicator variable associated
with the leaves of T converges to 0 when the number of
steps grows. From Lemma 2 we know that for t → ∞ the
set of leaves of T approaches the set of leaves of F(T ),
i.e., the tree becomes full. Moreover, Lemma 1 states that
every leaf will be visited infinitely often. Hence, because
of the hypotheses we made about the sensor, in particular
α(d), β(d) 6= 0.5, it is straightforward to see that the for
each leaf node n at the deepest level, its associated posterior
pn will eventually converge to either 0 or 1 (see also [9]).
Therefore the entropy of every indicator variable associated
with the leaves converges to 0 and then the claim follows.
�

5A sensor with an error rate α(d), β(d) > 0.5, is still useful by
considering 1-α or 1− β; see also [9].



VII. SIMULATION RESULTS

In this section we present simulation results aiming to out-
line the performance of the approach we propose6. Through-
out this section we assume that the searcher is not provided
with any prior information about the number or location
of targets inside the search area. Therefore the probabilistic
quadtree is initialized using a uniform prior. To be specific,
the tree is initialized to be a full quadtree of depth 5, i.e., a
quadtree whose leaves are all at depth 5. The search area A
is assumed to be a square whose edge L is 256 units long.
Results presented refer to 100 different benchmark missions.
Every benchmark mission was generated assuming each of
the cells at maximum resolution hosts an intruder with a
certain probability pi. The value of pi was chosen so that
the expected7 number of targets is 5.

In all missions we assumed that C01, i.e., the cost for a
missed detection, is 1000, whereas C10, i.e., the cost for a
false positive is 10. Moreover we set the upper bound on the
search time to T = 25000.

We present two classes of experiments. The first batch
aims to display the properties of the approach we propose.
The second shows how a variable resolution representation
largely outperforms search strategies based on uniform rep-
resentations. A companion video also shows a full mission.

A. Performance of variable resolution search

Based on extensive tests we performed, the most critical
parameter is ε, i.e., the value governing when to terminate
the search. This value necessarily influences the accuracy
of results in terms of expected cost, but also the time
to terminate a search mission. Table I summarizes how
relevant quantities vary for different values of ε. The table
displays Expected Time to Termination (ETTT), the number
of instances in which the searcher had to terminate its search
because its allotted time expired (OT, overtime), the average
cost (C), the cumulative number of false positives (FP), and
the cumulative number of missed detections (MD).

ε ETTT OT C FP MD
0.1 19522.47 16 624 24 6
0.08 20189.54 19 424 24 4
0.05 21344.27 34 324 24 3

TABLE I
SEARCHER PERFORMANCE FOR DIFFERENT VALUES OF ε. DATA ARE

COLLECTED OUT OF 100 BENCHMARK TRIALS. NOTE THAT THE LAST

TWO COLUMNS DISPLAY CUMULATIVE VALUES, I.E., THE SUM OF ALL

FALSE POSITIVES AND MISSED DETECTION IN 100 RUNS.

The reader should note that in no mission is there more
than one missed detection, whereas the number of false
positives has been always below three per mission. It can
be observed that, as expected, a decrease in ε implies an

6Matlab code reproducing the results presented in this section is available
for download at http://robotics.ucmerced.edu.

7Random variables indicating the presence of a target inside a cell at
maxim depth are iid. The overall number of targets follows then a binomial
distribution of parameters B = (L2, pi) whose expectation is L2pi.

improvement in terms of performance (i.e., the number of
missed detections decreases) and an increase in time needed
to terminate a mission, with a significant growth in the
number of missions that terminate because the allotted time
limit has been reached (OT column in Table I). Without
changing other parameters, further decreases in ε will not
lead to any improvement in terms of missed detections
because the three missions where a missed detection occurred
terminated because the allotted time limit was reached. This
outcome should not be regarded as a failure of the algorithm,
but rather as a consequence of imposing a relatively short
upper bound time T in order to complete the assignment.

The companion video shows an example mission illustrat-
ing how the posterior pi varies during the effort (left panel)
and how the hierarchical representation is iteratively refined
during the search (right panel). The video also evidences
how the searcher changes its elevation during the search in
order to adjust the sensing resolution. Fig. 3 displays the
trend of U(T ) (blue line) for the search mission illustrated
in the video. The green line shows instead the number of
nodes with entropy larger than ε · U(T ). According to the
stopping criterion we implemented, the mission terminates
when this number reaches 0. The reader shall note that even
though the mission terminates after 17369 steps, U(T ) was
evaluated only 641 times, i.e., only after the posterior is
updated because of a sensor reading.

Fig. 3. Trend of U(T ) and number of nodes with entropy larger than
ε · U(T ) for the mission displayed in the companion video.

Finally, Fig. 4 shows a histogram of the number of nodes
in the quadtrees at the end of the search effort for the differ-
ent values of ε. This histogram outlines the effectiveness of
the proposed technique in terms of limiting the search space.
The uniform grid guaranteeing the same accuracy would
require 2562 = 65536 cells. In order to put the histogram
into the right perspective, in each trial the PQ is initialized
as a tree with 341 nodes.

B. Comparison with uniform representations

We finally compare our PQ based search with a search
method based on uniform representations. Using a uniform
grid at maximum resolution (i.e., where every leaf has unary



Fig. 4. Distribution of the number of nodes in the PQ at the end of 100
benchmark problems for different ε values.

area) is not feasible because in the search space (65536
cells, as mentioned above) is too large to be considered
within the time bound of T = 25000 (it takes one time
step for the robot to move from one cell to an adjacent
one). We therefore run a uniform search with a uniform grid
initialized as the uniform tree of depth 6, and leave all other
parameters unchanged. The reader should note that in this
case the searcher uses a grid where every cell has area 64 (8
×8); therefore the precision of an indication target present
is nominally 64 times less accurate than the one provided
by the PQ. However, because of the larger search space to
explore, the searcher fails to formulate any search decision
within the allotted time limit T , and also fails to identify any
intruder. Indeed, given the size of the search area A and the
variable resolution of the sensor, the chosen set of parameters
is unbearable for the searcher using a fixed resolution grid,
whereas it can be handled by a searcher using PQ. These
findings are consistent with what we found in [4] where
uniform grids were also found to underperform when dealing
with Type1 PQ.

VIII. CONCLUSIONS AND FUTURE WORK

With this paper we argue that the most basic theoretical
properties of probabilistic quadtrees have been investigated.
Extensive simulation results presented in this manuscript
and in [4] show that this representation offers a competi-
tive alternative to uniform spatial representation. From our
perspective the next major effort will therefore be devoted to
the implementation and field validation of this framework on
the AirRobot platform shown in Fig. 1. Efforts are underway
to define and implement a target detection algorithm using
the robot borne camera and to characterize its performance
in terms of false positives and missed detections. Additional
investigations into the sensitivity of search and decision
parameters, e.g., different costs of decision errors, are also
forthcoming in future studies. Finally, we plan to extend
this framework in order to coordinate multiple searchers
operating in the same area.
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