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Abstract— We consider the problem of team-based robot
mapping and localization using wireless signals broadcast from
access points embedded in today’s urban environments. We
map and localize in an unknown environment, where the access
points’ locations are unspecified and for which training data is a
priori unavailable. Our approach is based on an heterogeneous
method combining robots with different sensor payloads. The
algorithmic design assumes the ability of producing a map in
real-time from a sensor-full robot that can quickly be shared
by sensor-deprived robot team members. More specifically, we
cast WiFi localization as classification and regression problems
that we subsequently solve using machine learning techniques.
In order to produce a robust system, we take advantage of the
spatial and temporal information inherent in robot motion by
running Monte Carlo Localization on top of our regression
algorithm, greatly improving its effectiveness. A significant
amount of experiments are performed and presented to prove
the accuracy, effectiveness, and practicality of the algorithm.

I. INTRODUCTION

As a result of the evident necessity for robots to localize
and map unknown environments, a tremendous amount of
research has focused on implementing these primordial abil-
ities. Localization problems have been extensively studied
and a variety of solutions have been proposed, each assum-
ing different sensors, robotic platforms, and scenarios. The
increasingly popular trend of employing low-cost multi-robot
teams [14], as opposed to a single expensive robot, provides
additional constraints and challenges that have received less
attention. A tradeoff naturally arises, because reducing the
number of sensors will effectively decrease the robots’ price
while making the localization problem more challenging.
We anticipate that team-based robots will require WiFi
technology to exchange information between each other. We
also foresee robots will continue to supply rough estimations
of local movements, via odometry or similar inexpensive low
accuracy sensors. These team-based robots have the advan-
tage of being very affordable. It is clear, however, that these
robots would not be practical in unknown environments due
to their lack of perception abilities and, as such, we embrace
an heterogeneous setup pairing a lot of these simple robots
with a single robot capable of mapping an environment by
traditional means (e.g., SLAM using a laser range finder or
other sophisticated proximity sensors). Within this scenario,
our goal is to produce a map of an unknown environment
in real-time using the more capable robot, so that the less
sophisticated robots can localize themselves.

Given the sensory constraints imposed on the robots, we
exploit wireless signals from Access Points (APs) that have
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become omnipresent in today’s urban infrastructure. Wireless
signals are notoriously difficult to work with due to non-
linear fading, obstructions, and multipath effects, but a lo-
calizer based on WiFi offers its share of advantages. Indeed,
WiFi APs are uniquely identifiable, can be used indoor or
outdoor, and are already part of the unknown environment
to be mapped. Additionally, transmitted signals are available
to anyone within range, allowing robots to exploit APs
without ever connecting to them. We cast the problem of
WiFi localization as a machine learning problem, which
we initially solve using classification and regression theory.
Then, thanks to a Monte Carlo Localization (MCL) step, we
improve the localizer by exploiting the spatial and temporal
information inherently encoded within the robots’ odometry.
In this manuscript we offer the following contributions:

• we implement and contrast six algorithms, three pre-
viously published and three unpublished in the WiFi
localization literature, that solve the problem cast as
classification;

• we propose a novel regression algorithm that builds
upon the best classification algorithm;

• we develop an end-to-end WiFi localization algorithm
that adds odometry for robustness, implemented as
MCL;

• we outline crucial design choices with respect to the
algorithm’s applicability to unknown environments and
real-time performance;

• we evaluate and compare numerous algorithms across
different datasets, which is, to the best of our knowl-
edge, the first attempt to unequivocally establish the best
method for WiFi localization.

The rest of the paper is organized as follows. Section
II highlights previous work on WiFi localization, covering
both the classification and regression approaches. In sec-
tion III we describe the problem statement and introduce
mathematical definitions used throughout the paper. Since
each component of our localizer depends on the results of
the previous one, we structure the algorithm’s description
somewhat unorthodoxly. More specifically, we present our
first component, classification, in Section IV-A followed
directly by its results in Section IV-B. In Section V-A, our
findings from classification are exploited for our second
component, regression, the results of which are provided
in Section V-B. We finalize the algorithm in Section VI-
A, presenting the results in Section VI-B. Final remarks and
future work conclude the paper in Section VII.



II. RELATED WORK

The utilization of wireless signals transmitted from APs
or home-made sensors has enjoyed great interest from the
robotics community, in particular for its applicability to the
localization problem. In this area, the application of data-
driven methods has prevailed thanks to two distinct but
popular approaches. On one hand, the modeling approach
attempts to understand, through collected data, how the
signal propagates under different conditions, and the goal
is to generate a signal model that can then be exploited
for localization. On the other hand, the mapping approach
directly uses collected data by combining spatial coordinates
with wireless signal strengths to create maps from which a
robot can localize. Since signals are distorted due to “typical
wave phenomena like diffraction, scattering, reflection, and
absorption” [3], practical implementations of signal modeling
are not yet available for unknown environments since they
need to be trained in similar conditions to what will be
encountered (i.e., they require at least some a-priori infor-
mation about the environment) [21]. Moreover, it has been
shown in [11] that a signal strength map should yield better
localization results than a parametric model. Consequently,
the rest of this section highlights related works regarding
the mapping approach, which we employ for our algorithm.
Interested readers are referred to [9] for more information
on signal modeling techniques.

During a training phase, signal mapping techniques tie
a spatial coordinate with a set of observed signal strengths
from different APs, essentially creating a signal map. Given a
new set of observed signal strengths acquired at an unknown
coordinate, the goal is to use the map to retrieve the correct
spatial coordinate. A variety of methods have been devised to
solve this problem. Two of the earliest solutions used nearest
neighbor searches [1] and histograms of signal strengths for
each AP [20]. Starting from the observation that histograms
of signal strengths are generally normally distributed [8],
various other methods have recently been proposed using
Gaussian distributions to account for the inevitable variance
in received signal strengths [11], [15], [2]. Specifically, for
each location and each AP, a Gaussian distribution is derived
from training data. An unknown location described by a new
set of observed signal strengths is then determined using
Bayesian filtering. These methods exploit the inherently
available spatial and temporal information of a moving robot
through a Hidden Markov Model (HMM) [15] or MCL
[2], which, unlike the HMM, requires additional sensory
feedback (e.g., odometry). Another recent approach, from
the wireless network community, exploits Support Vector
Machines by formulating the problem, similarly to what we
propose in this manuscript, as a classification instance [19].

For completeness, we briefly mention the works of Duval-
let et al. [6], Ferris et al. [7], and Huang et al. [12] that are
based on Gaussian processes. Unfortunately, they require a
long parameter optimization step that makes them difficult
to use in our scenario, where real-time operation is required
and computational power limited.

III. SYSTEM SETUP AND PROBLEM DEFINITION

We consider a team of r robots, one of which is a
“sensor-full” robot, the mapper, capable of building a map
by traditional means (e.g., SLAM, GPS). The remaining r−1
are “low-cost robots”, the localizers, whose only sensors
are odometry and a WiFi card. The goal is to develop
a system where the mapper creates a WiFi map that the
localizers can successfully use to localize, strictly utilizing
their limited sensors. For experimental purposes, we use a
MobileRobots P3AT equipped with an LMS200 Laser Range
Finder (LRF) as our mapper and various iRobot Create
platforms as our localizers. The mapper robot uses gmapping
[10] to solve the SLAM problem. All of the code runs on a
typical consumer laptop, without relying on multiple cores,
GPUs, or extensive memory. Our approach is split into a
mapping phase, involving the mapper, and a localization
phase involving the localizers. During the mapping phase, the
mapper periodically collects WiFi signal strengths from all
the APs in range and associates them with current Cartesian
coordinates provided by gmapping. In terms of notation,
for every sample Cartesian position Cp = [Xp, Yp], an
observation Zp = [z1p, z

2
p, . . . , z

|a|
p ] is acquired using a WiFi

card, where |a| is the total number of APs seen throughout
the environment. Each signal strength zap is measured in dBm,
the most commonly provided measurement from hardware
WiFi cards that typically range from -90 to -10 dBm with
lower values (e.g., -90) indicating worst signal strengths [13].
We note that since the environment’s APs cannot all be
seen from a single location, the observation vector, Zp, is
dynamically increased as the robot moves in the environment
and identifies previously unseen APs. Additionally, since
some APs cannot be seen from certain locations, we set
zap = −100 for any AP a that cannot be seen from location
p. In order to obtain an indication of the signal strength
noise and increase the algorithm’s robustness, we collect
multiple observations at each location, resulting in a vector
of observations for each location, Zp = [Z1

p , Z
2
p , . . . , Z

|s|
p ],

where |s| is the total number of observations performed at
each location p. The entire data used to build a complete
WiFi map in real-time, acquired by the mapper, can then be
represented as a matrix T of locations and observations

T =


C1 Z1

1 Z2
1 . . . Z

|s|
1

C2 Z1
2 Z2

2 . . . Z
|s|
2

. . .

C|p| Z1
|p| Z2

|p| . . . Z
|s|
|p|


where |p| is the total number of positions for which WiFi
signals were acquired. Therefore, T is comprised of |s|
observations for each of the |p| locations and each of the |a|
access points in our map, where each observation is labeled
with its Cartesian coordinates acquired from gmapping, Cp.
A typical sample of the data collected for the WiFi map is
shown in Figure 1.

Two parameters are evidently important, the number of
locations to consider for the WiFi map, |p|, and the number
of observations performed at each of those locations, |s|.
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Fig. 1. Illustrative representation of the WiFi readings for 7 APs,
superimposed on the map. The size of each ring represents the AP’s signal
strength (the bigger, the better) and each color indicates a unique AP.

We have no control over the parameter |a|, the total num-
ber of APs, because it is dictated by the structure of the
unknown environment. Evidently, |p| will be proportional
to the mapped environment’s size and dependent on the
measurements’ density. We have experimentally found, as
have authors of [2], [15], that recording observations approx-
imately every meter yields accurate maps, but no restrictions
are placed on the locations’ alignment (i.e., they do not need
to be grid-aligned or follow any particular structure). The
parameter |s| encompasses an important tradeoff that we
analyze in Section IV-B since the higher the |s|, the better
the noise model but the longer the mapping process. We con-
clude this section by mentioning two important observations
from analyzing the data collected for this paper. First, we
have found signal strength readings to be consistent across
different robots having similar hardware, a fact corroborated
by [11] that implies the possibility of sharing WiFi maps
amongst robots. Second, signal strength measurements taken
at different days or times were, although different, not
significantly so, indicating that WiFi maps acquired at a
certain time can still be effective for robots operating in the
same environment at a later time.

IV. CLASSIFICATION

A. Description

Figure 1 gives a good qualitative indication that it is
possible to differentiate between different locations by only
considering signal strengths received from APs. We start
developing the WiFi localizer by casting it as a machine
learning classification problem. Mathematically, we produce
a function f : Z → p from the training data T acquired
by the mapper. Function f takes a new observation Z =
[z1, . . . , z|a|] acquired by one of the localizers and returns the
location p of the robot, from which we can easily look up the
Cartesian coordinate, Cp. We note that casting the problem
in such manner is a simplification, since a robot needs to be
positioned exactly at one of the locations in the training data
in order for f to return the exact coordinate Cp (i.e., classifi-
cation does not perform interpolation or regression). Solving
the classification problem is nevertheless an important step
since the effectiveness of various algorithms can be evaluated
and applied to build a better localizer, as will be shown in the
next sections. Computing f from T can be achieved using

different techniques and to the best of our knowledge, no
comparison has been made in the literature to find the best
performing algorithm. Consequently, we implement a total
of six algorithms, three of which have been published in
the WiFi localization literature (Gaussian Model, Support
Vector Machine, and Nearest Neighbor Search) and three
others that have enjoyed popularity in machine learning tasks
(Decision Tree, Random Forest, and Multinomial Logit). We
briefly present each algorithm in the context of our prob-
lem’s definition, the description of which are kept short due
to space restrictions, and provide references for interested
readers looking for more details.

Decision Tree [5]: a decision tree is a binary tree con-
structed automatically from the training data T . Each node
of the tree corresponds to a decision made on one of the
input parameters, zap , that divides the node’s data into two
new subsets, one for each of the node’s sub-trees, in such a
way that the same target variables, p, are in the same subsets.
The process is iterated in a top-down structure, working
from the root (whose data subset is T ) down to the leaves,
and stops when each node’s data subset contains one and
only one target variable or when adding new nodes becomes
ineffective. Various formulas have been proposed to compute
the “best” partitioning of a node’s data subset, the most
popular of which being the Gini coefficient, the twoing rule,
and the information gain. After experimental assessments,
we found the choice of partitioning criterion insignificant
in terms of localization accuracy and use, arbitrarily, the
Gini coefficient. In order to classify a new observation Z,
the appropriate parameter zi is compared at each node, the
decision of which dictates which branch is taken - a step that
is repeated until a leaf is reached. The target variable p at
the leaf is the location of the robot.

Random Forest [4]: random forests are an ensemble of
decision trees built to reduce over fitting behaviors often
observed in single decision trees. This is achieved by creating
a set of |d| trees, as described in the previous paragraph,
each with a different starting dataset, T̂d, selected randomly
with replacement from the full training data T . An additional
difference comes from the node splitting process, which is
performed by considering a random set of |q| input param-
eters as opposed to all of them. The partitioning criterion
is still used, but only the |q| randomly selected parameters
are considered. In order to classify a new observation Z, it
is processed by each of the |d| trees, resulting in |d| output
variables pd, some of which may be the same. In some sense,
each decision tree in the forest votes for an output variable
and the one with the most votes is chosen as the location
of the robot. It is important to note that a lot of information
can be extracted from this voting scheme, since the votes
can trivially be converted to the robot’s probability of being
at a particular location, P (p|Z) = Vp/|d|, where Vp is the
total number of votes received for location p with Cartesian
coordinate Cp. The number of trees |d| encompasses a
tradeoff between speed and accuracy. We set |d| = 50 after
determining that it yields the highest ratio of accuracy to the
number of trees.



Gaussian Model [11], [15], [2]: the Gaussian model
technique, proposed in the robotics literature, attempts to
model the inherent noise of signal strength readings through
a Gaussian distribution. For each location p and for each AP
a the mean and standard deviation of the signal strength
readings are computed, yielding µa

p and σa
p , respectively.

This means that a total of |p| × |a| Gaussian distributions
are calculated, where all µa

p and σa
p are computed from |s|

values (i.e., the total number of observations performed at
each location). The location, p, of a new observation, Z, is
derived using the Gaussian’s probability density function:

arg max
p

 |a|∏
a=1

1

σa
p

√
2π

exp

(
−

(za − µa
p)2

2(σa
p)2

)
Support Vector Machine [19]: support vector machines

work by constructing a set of hyperplanes in such a way
that they perfectly divide two data classes (i.e., they perform
binary classification). Generating the hyperplanes is essen-
tially an optimization problem that maximizes the distance
between the hyperplanes and the nearest training point of
either class. Although initially designed as a linear classifier,
the usage of kernels (e.g., polynomial, Gaussian) enables
non-linear classification. Since we are looking to divide our
training data T into |p| classes, we use a support vector
machine variant that works for multiple classes. We chose
the one-versus-all approach (we empirically determined it
was better than one-versus-one), which consists in building
|p| support vector machines that each try to separate one class
p from the rest of the other classes. This essentially creates
a set of |p| binary classification problems, each of which is
solved using the standard support vector machine algorithm
with a Gaussian kernel. Once all the support vector machines
are trained, we can localize given a new observation Z by
evaluating its high-dimensional position with respect to the
hyperplanes, for each support vector machine p. The class
p is chosen by the support vector machine that classifies Z
with the greatest distance from its hyperplanes.

Nearest Neighbor Search [1]: the nearest neighbor search
does not require any processing of the training data, T .
Instead, the distance between all the points in T and a new
observation Z is computed, yielding |p| × |s| distances Ds

p.
The location p of the new observation is then selected with
the formula: arg minp

(
Ds

p

)
. The only necessary decision for

this algorithm involves the choice of one of the numerous
proposed distance formulas (e.g., Euclidean, Mahalanobis,
City Block, Chebychev, Cosine). We use Euclidean distance
to rigorously follow the algorithm presented in [1].

Multinomial Logit [16]: multinomial logit is an exten-
sion of logistic regression allowing multiple classes to be
considered. Logistic regression separates two classes linearly
by fitting a binomial distribution to the training data (i.e.,
one class is set as a “success” and the other class as a
“failure”). This generalized linear model technique produces
a set of |a| + 1 regression coefficients βi that are used to
calculate the probability of a new observation being a “suc-
cess”. Conversely to the multi-class support vector machine,

multinomial logit follows a one-against-one methodology
where one class pref is trained against each of the remaining
classes. Consequently, |p|−1 logistic regressions are trained,
yielding |p| − 1 sets of regression coefficients, βp

i . Once
all the regression coefficients are learned, the probability
of being at location p given a new observation Z can be
calculated as follows:

P (p|Z) =
γp

1 +
∑|p|−1

j=1 exp(Z · βj)
, j 6= pref

where γp = exp(Z · βp) when p 6= pref and γp = 1 when
p = pref . The location p can then be selected as the maxi-
mum probability by utilizing the formula arg maxp P (p|Z).

B. Results
The experimental results of the WiFi localizer cast as

a classification problem greatly influenced our algorithmic
design choices for the end-to-end algorithm. Therefore, we
present the results before continuing with the algorithm’s
description. Specifically, we gathered a large indoor training
dataset at our university, stopping the robot at pre-determined
locations approximately 1 meter apart. The entire dataset is
comprised of 156 locations (|p| = 156), 20 signal strength
readings for each location (|s| = 20), and a total of 48
unique APs (|a| = 48). The results shown in this and
subsequent sections are performed by sub-sampling the entire
dataset. Specifically, |s| is varied from 1 to 19, essentially
representing a percentage of the dataset being used for train-
ing, and the remaining data is used for classification. This
procedure effectively mimics inevitable differences between
data acquired by the mapper and localizers. Moreover, the
training and classification data are randomly sampled 50
different times for each experiment in order to remove any
potential bias from a single sample. Presented results are
averages of those 50 samples and we omit error bars in our
graphs since the results’ standard deviation were all similar
and insignificant. We note, once again, that this process
does not represent a real-world scenario since it assumes
the mapper and localizers follow the exact same path. It
provides, however, a very good platform for comparing the
six presented classification algorithms in Section IV-A.

We start by analyzing each algorithm’s accuracy as a
function of the number of readings taken at each location,
|s|, a plot of which is shown in Figure 2. Since our goal is
to ultimately be able to map unknown environments in real-
time, the initial data acquisition performed by the mapper
needs to be efficient. It takes on average 411ms to get signal
strength readings from all the APs in range so we want to
minimize |s|. As expected, Figure 2 shows a tradeoff between
the algorithms’ localization accuracy and the number of
readings used during the training phase. Since we want to
limit the time it takes to gather the training data, setting the
number of readings per location to 3 (|s| = 3) provides a
good compromise between speed and accuracy, especially
since the graph shows an horizontal asymptote starting at or
around that point for the best algorithms. As such, the rest
of the results presented in the paper will be performed using
3 readings per location.
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Fig. 2. Average classification error, in meters, for each classification
algorithm as a function of increasing number of readings per location (|s|).

On average, when |s| = 3, the Random Forest’s classi-
fication error is 43.42%, 55.47%, and 57.23% better than
the previously published WiFi localization algorithms (Gaus-
sian Model, Support Vector Machine, and Nearest Neigh-
bor Search, respectively). Figure 3 shows the cumulative
probability of classifying a location within the error margin
indicated on the x-axis. This figure corroborates the findings
of Figure 2, showing that the best algorithm is the Random
Forest, which had never been exploited in the context of
WiFi localization. Moreover, the Random Forest can localize
a new observation, Z, to the exact location (i.e., zero margin
of error) 88.58% of the time.
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Fig. 3. Cumulative probability of correctly localizing as a function of
increasing error margin, for each classification algorithm.

In addition to our dataset, we use a publicly available
dataset provided by Ladd et al. [15], with data covering 3
floors of the computer science building at Rice University.
We process the Rice dataset in the exact same manner as
ours, dividing it in 50 random samples of training and
classification data for |s| = 3. The average error for each
algorithm and each dataset is shown in Figure 4. There are
a couple of interesting observations that can be made from
these results. Firstly, the trend is the same for both datasets.
In other words, the list of the algorithms from best to worst
average accuracy (i.e., Random Forest, Gaussian Model,
Support Vector Machine, Nearest Neighbor Search, Decision
Tree, and Multinomial Logit) is the same regardless of which

dataset is used. Secondly, the Rice dataset uses signal to
interference ratios for their observations as opposed to signal
strengths. Although both measures are loosely related, this
indicates that the classification algorithms are both general
and robust. These important findings indicate that the meth-
ods proposed are data- and environment-independent and that
we are not over fitting our particular dataset. Please note that
the overall higher average classification error observed in
the Rice dataset comes from sparser location samples: 3.33
meters on average as opposed to 0.91 meters for our dataset.
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Fig. 4. Average classification error, in meters, for each classification
algorithm executed on the UC Merced and Rice University datasets.

We conclude this section by mentioning that, when record-
ing 3 readings per location, all of the algorithms can be
trained in less than 30 seconds, apart from the Support Vector
Machine that takes 90 seconds. In addition, the training
process can be parallelized for all the algorithms, adding
a potential decrease in the computation of the WiFi map.
Put differently, once the mapper has acquired its training
data, the map can be built in less than 30 seconds, which
is very fast relative to the time it takes to explore the
environment. Once the WiFi map is created and given to the
localizers, they can localize in less than 200ms. Needless
to say that the presented algorithms are very effective, from
a computational standpoint, even in unknown environments
where map building needs to be performed in real-time.

V. REGRESSION

A. Description

Although the results of the classification algorithms are
very encouraging, they do not depict a real world scenario,
where locations explored by the mapper, upon which the
WiFi map will be created, will surely be different than
those explored by the localizers. Consequently, we re-cast
the WiFi localizer as a regression problem, where some
inference is performed to generate Cartesian coordinates for
locations that are not encompassed in the training data.
Although typical off-the-shelf regression algorithms (e.g.,
Neural Network, Radial Basis Functions, Support Vector
Regression) might seem like a good choice initially, they
get corrupted by the nature of our training data, the majority
of which depicts unseen APs (i.e., zap = −100). In addition,
it would be wise to exploit the good results exhibited by the



classification algorithms. We consequently design our own
regression algorithm that builds upon the best classification
algorithm: the Random Forest. In addition to providing the
best classification results, the Random Forest is appealing
due to its voting scheme, which can be interpreted as P (p|Z),
for each p ∈ T .

Our regression algorithm is based on a Gaussian Mixture
Model (GMM) [17] described in Algorithm 1. The GMM is
introduced to non-linearly propagate, in the two-dimensional
Cartesian space, results acquired from the Random Forest.
More specifically, we build a GMM comprised of |p| mixture
components (line 1). Each mixture component is constructed
from a Gaussian distribution with a mean µ(p) (line 2),
corresponding to the Cartesian coordinates in the training
data, covariance Σ(p) (line 3), and mixture weights φ(p)
that are acquired directly from the Random Forest’s voting
scheme (line 4). Line 4 highlights the key difference between
the classification and regression methodologies, which arises
from the fact that taking the mode of the Random Forest’s
results, as is done in classification, discards valuable infor-
mation that is instead exploited in our regression algorithm.
In some sense, the mixture weights are proportional to the
Random Forest’s belief of being at location p given the
observation Z (i.e., φ(p) = P (p|Z)).

Algorithm 1 Construct-GMM(Z)
1: for p← 1 to |p| do
2: µ(p)← Cp

3: Σ(p)← σ2I
4: φ(p)← P (p|Z)←Random-Forest-Predict(Z)
5: end for
6: return gmm←Build-GMM(µ, Σ, φ)

Algorithm 2 provides pseudo-code for the rest of the
regression algorithm. Once the GMM is built (line 1), a
couple of approaches are available, the most popular of
which consists in taking the weighted mean of the model or
drawing samples from the GMM with probability φ(p) and
computing the samples’ weighted mean. Instead of sampling
from the GMM, our regression algorithm uses a k Nearest
Neighbor Search (line 2) to provide k samples that are not
only dependent on the observation Z, but also come from
a different model than the Random Forest. This is a crucial
step that adds robustness to the algorithm by combining two
of the presented classification algorithms. In other words,
where and when one algorithm might fail, the other might
succeed. The choice of the Nearest Neighbor Search for this
step (as opposed to the Gaussian Model or the Support Vector
Machine) comes from the fact that |s| times more samples
can be drawn from it (a total of |s| × |p|, as opposed to
|p|). The returned Cartesian coordinate (line 3) is finally
calculated as the weighted mean of the k Nearest Neighbors,
where the weight of each Nearest Neighbor is set from the
Probability Distribution Function (PDF) of the GMM.

The entire regression algorithm requires two parameters
to be set, σ (Algorithm 1) and k (Algorithm 2). σ dictates

Algorithm 2 Regression(T , Z)
1: gmm← Construct-GMM(Z) // See Algorithm 1
2: nn←k-NN(T , Z, k)

3: Ĉ ←
∑k

i=1 nni × PDF(gmm,nni)∑k
i=1 PDF(gmm,nni)

4: return Ĉ

how much the Gaussian components influence each other and
should be approximately set to the distance between WiFi
readings in the training data. k should be as high as possible
in order to provide a lot of samples, yet low enough not
to incorporate “neighbors” that are too far away. We have
found setting k to 25% of all the observations in T (i.e.,
k = 0.25× |s| × |p|) to be a good solution for this tradeoff.

Given a new observation Z, the regression essentially
maps a three-dimensional surface to the X-Y Cartesian
space of the environment, where the higher the surface’s Z-
value the more probable the X-Y location. A representative
snapshot of the process is shown in Figure 5, highlighting
an important behavior of the presented regression algorithm.
Indeed, the algorithm is not only capable of generating
Cartesian coordinates that were not part of the initial training
data, but also takes into consideration neighboring votes
from the Random Forest classification. In the figure, the
highest Random Forest vote (represented by ‘*’) is somewhat
isolated and, consequently, its neighbors do not contribute to
the overall surface. The region close to the actual robot’s
location (denoted by ‘+’), however, is comprised of many
local neighbors whose combined votes outweigh those of the
Random Forest classification, resulting in a better regression
estimation (symbolized by ‘x’).

Fig. 5. Regression example, showing the PDF of the GMM overlaid on
top of a section the environment’s map. The markers +, x, and * represent
the ground truth, regression, and random forest classification locations,
respectively.

B. Results

In order to evaluate the accuracy of the regression algo-
rithm, it is necessary to gather new data that will mimic a
localizer exploring the environment and localizing it with
the regression algorithm trained on T . Consequently, we
perform 10 new runs (Ni), assuming no prior knowledge of
the locations covered by T . In other words, while the mapper
data (T ) and the localizer data (N ) approximately cover



the same environment, they are not acquired at the same
Cartesian coordinates. As such, this experiment provides
a direct measure of the regression algorithm’s strength.
For evaluation purposes, we manually record the robot’s
ground truth position at discrete locations so that we can
quantitatively evaluate the regression algorithm. Figure 6
shows the average accuracy (from the 10 runs and 50
random samples used for training) of the 4 best classification
algorithms compared against the regression algorithm. Not
surprisingly, the regression algorithm works very well by
outperforming the Random Forest, Gaussian Model, Support
Vector Machine, and Nearest Neighbor Search classification
algorithms by 29.77%, 37.95%, 34.07%, and 28.23%, re-
spectively. We conclude this section by mentioning that the
regression algorithm only takes 131ms to localize.
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Fig. 6. Average regression error, in meters, comparing the 4 best
classification algorithms (left) and the regression algorithm (right).

VI. MONTE CARLO LOCALIZATION

A. Description

Although the regression algorithm clearly improves the
WiFi localizer’s accuracy for real-world scenarios, further
improvements can be obtained by taking into account the
spatial and temporal constraints implicitly imposed by robot
motion. In other words, the classification and regression algo-
rithms discussed so far solve the localization problem with-
out taking into consideration the robot’s previous location,
or, more precisely the probability distribution of the robot’s
previous location. Specifically, we use an MCL algorithm,
built from the “standard” implementation presented in [18],
with a couple of modifications. The motion model, which
exploits the translational and rotational velocities of the
robot, is exactly the same as in [18]. The measurement model
is, evidently, different since it needs to take into account the
aforementioned WiFi localizer regression. The pseudo-code
is presented in Algorithm 3 and shows the effectiveness of
our GMM implementation (line 1), which can seamlessly
transition from regression to MCL. Indeed, the measurement
model needs to assign each particle (line 2) the probability of
being at the particle’s state given the sensor measurement Z.
Thanks to the GMM, the particle’s weight is easily retrieved
by using the PDF (line 3).

Algorithm 3 Measurement-Model(Z)
1: gmm← Construct-GMM(Z) // See Algorithm 1
2: for m← 1 to |m| do
3: m.weight ← PDF(gmm, m.state(X ,Y ))
4: end for

In addition to the measurement model, we modify the
particles’ initialization procedure. Instead of randomly or
uniformly sampling the particles’ state and giving each
particle an equal weight, we force the robot to perform a
measurement reading, Z, and initialize the particles using
that measurement, as shown in Algorithm 4. We start by
constructing the GMM (line 1) and, for each particle in our
filter (line 2), sample a data point from the GMM that will
serve as the particle’s X ,Y state (line 3). Since WiFi signal
strengths cannot infer the robot’s rotation, we randomly
sample the particle’s θ state (line 4). The particles’ weight
is calculated from the GMM’s PDF (line 5). In order to add
robustness to the previously mentioned problem with robots’
rotations, we pick the |v| best particles (line 7) and add y
new particles that are the same as v but have y different θ
states each randomly sampled between 0 and 2π (line 8).
Since we have augmented the total number of particles, we
finalize our particle initialization by keeping the best |m|
particles (line 9).

Algorithm 4 Initialize-Particles(Z)
1: gmm← Construct-GMM(Z) // See Algorithm 1
2: for m← 1 to |m| do
3: m.state(X ,Y ) ← sample(gmm)
4: m.state(θ) ← rand(0 to 2π)
5: m.weight ← PDF(gmm, m.state(X ,Y ))
6: end for
7: for all m with the top |v| weights do
8: Add y particles ny where

ny ← m, and
ny .state(θ) ← randy(0 to 2π)

9: end for
10: Select the |m| particles with highest weights

B. Results

In order to evaluate the MCL, we take advantage of
the same experimental data used for the regression results.
Namely, the algorithm is trained on T and we localize the
robot for each of the 10 Ni additional robot runs. The
MCL updates 5000 particles (i.e., |m| = 5000), where the
computation time takes, on average, 2.1ms and 145.6ms
for the motion model sampling and measurement model,
respectively. In order for the MCL to output a Cartesian
coordinate, we take the weighted average of all particles,
the result of which can be checked against ground truth.
Due to the random nature of the MCL, each of the 10 runs
are localized 100 different times. The average mean for the
100 trials of all 10 runs is 0.61 meters, with a low average
standard deviation of 0.0049m. Comparing these results to



an offline LRF SLAM algorithm [10], which produces an
average error of 0.27m, we observe a compelling tradeoff
between accuracy and sensor payload (or price) when using
the proposed WiFi localizer. An illustrative example of a
partial run is shown in Figure 7. We encourage readers
to watch the accompanied video, which visually shows the
outcome of the MCL, running on a robot, for every iteration.
Interested readers should also visit our website1, where they
will have access to the raw data, trained classifiers, and code
presented in this paper.
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Fig. 7. Localized run showing the output of LRF SLAM (straight line),
the WiFi localizer (dotted line), and Ground Truth (circles).

VII. CONCLUSIONS

We have presented an hybrid algorithm, mixing classifi-
cation and regression methods, capable of localizing, with
sub-meter accuracy, robots with a minimal sensor payload
consisting of a WiFi card and odometry. In fact, the end-to-
end WiFi localizer not only favorably compares to previously
published algorithms, but its performance is also competitive
with the full LFR SLAM solution. The evaluation and
comparison of our WiFi localizer against both published
and new algorithms, along with experiments performed on
different datasets, provide compelling evidence regarding the
robustness of our approach. Moreover, the algorithm is fast
enough to ensure real-time mapping and localization.

There are a few of interesting future directions that are to
be considered. First, we would like to modify our mapping
algorithm so that it can be built incrementally, allowing
the mapper to provide the localizers with partial maps or

1https://robotics.ucmerced.edu/Robotics/IROS2012/

sections of the environment. Random Forests would still
be a viable option in that scenario, although they would
require some modifications to increase the number of trees
when new data is available and to prune older trees that,
over time, will not encompass enough information. Second,
we believe that WiFi localization, thanks to its low sensor
requirement commonly found in robots, would be a great
middle-layer to merge heterogeneous maps together. Indeed,
WiFi localization could solve, for example, the difficult
problem of merging a Cartesian grid map with a topological
or visual map. Finally, if needed, the algorithms presented
can be made faster by parallelizing the training process.
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