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Abstract— We consider the problem of cooperatively covering
a group of static targets while simultaneously minimizing
exposure from a different set of static locations. Starting from
the work of Bullo et al. [8§] who formalized the problem
of cooperative sensor coverage as a multicenter optimization
problem, we show that also this problem can be formulated
and solved using related concepts. However, we evidence that
the resulting function to be optimized loses some desirable
properties and requires a more sophisticated controller. After
having identified the peculiar aspects of this new function
to be optimized and having studied its critical points, we
provide a controller and show that it will drive the system
to a stable local optimizer. The control strategy is distributed
in the sense of Voronoi, and it implements a distributed version
of the gradient projection method known in the optimization
literature. Numerical simulations illustrate how the controller
works, and we conclude sketching some theoretical properties.

I. INTRODUCTION

The use of teams of cooperative mobile robots for tasks
involving surveillance and search continues to be a major
driver for research in multi-robot systems. Surveillance is
here intended as the activity of continuous information
gathering (sensing) of areas of interest. Information gathered
by the robots is then passed to an inference system (or human
operator) making decisions based on the evidence collected.
A typical example consists in monitoring the entrances of
an area to prevent access by unauthorized subjects. Starting
from the seminal work by Bullo and co-workers [8], there
has been a flurry of results based on so-called multicenter
functions. In essence, the question is where a team of robots
should be deployed in order to provide optimal coverage of
a set of predetermined locations. The importance of these
locations is measured by a density function indicating which
locations are more relevant. A performance index is used
to measure the quality of a given deployment. This quality
is then influenced by the robots’ locations and the density
function, but also by the sensing capabilities of the robots.
Typically, the density function indicates the likelihood that a
certain event will occur at a given location, whereas sensing
quality determines how well a robot will cover a given point
from its current position. Besides the optimization aspect
there is a distributed control facet, i.e. a distributed control
law robustly driving the team to a desired final arrangement
is needed.

In this paper we consider a related problem where the
robot team is asked to provide coverage to certain locations
while simultaneously staying away from undesirable sites.

S. Carpin is with the School of Engineering, University of California,
Merced, California, USA. email:scarpin@Qucmerced.edu.

This scenario occurs in numerous situations. Undesirable
locations may be congested areas the robots should avoid
in order not to interfere with other agents, or areas charac-
terized by environmental features that may impair the robots
themselves, like excessive heat, or areas in proximity to elec-
tromagnetic sources that may jam the robots’ communication
equipment. If one assumes that hostile subjects are placed
at the locations to be avoided, the task may be thought
as the problem of simultaneously covering interesting lo-
cations while not being covered by the hostile subjects —
hence the title of this contribution. We address this problem
building upon the aforementioned multicenter optimization
framework. The multicenter approach is attractive because it
allows us to formally define and reason about simple control
laws that have immediate meaning. However, its formal
setting leads to principled design and analysis, as opposed
to heuristic methods often used for this class of problems,
e.g. when using behavior-based controllers. Moreover, by
building upon this line of work we benefit from a significant
body of recently developed results in this area. Nevertheless,
we show that even though the problems are formulated
using similar concepts, the functions to be optimized have
structurally different properties. Not surprisingly, the func-
tion we consider in this paper is more complicated, because
it aims at solving a problem which is more general than
coverage. Indeed it is easily seen that coverage problems are
a simplified instance of the questions we ask in this paper.
However, by carefully analyzing the analytic structure of the
function we propose, it is possible to identify its peculiar
aspects and devise an appropriate distributed control law
that enjoys most of the properties possessed by formerly
developed algorithms for cooperative coverage.
The contributions of this paper are the following:

o the problem of covert observation is formalized as a
multicenter optimization problem;

o we provide a thorough study of the function to be
optimized, outlining fundamental differences with those
used in coverage-only problems. Differences emerge in
the nature of the function’s critical points, and in the
gradient descent control law.

o we provide a control policy that is guaranteed to con-
verge towards a local optimum and is distributed in the
sense of Voronoi.

The above analytical findings are complemented by a section
showing some examples of produced paths and perfor-
mances.

This paper is organized as follows. Related work is briefly
summarized in Section II. Section III provides the mathemat-



ical formulation of the problem and introduces the function
to be optimized. Next, in Section IV we study the critical
points of the function and identify necessary conditions
for optimality. A distributed controller is then presented in
Section V, and simulation results are shown in Section VI.
Theoretical properties are summarized in Section VII, and
finally in Section VIII we identify a number of directions
for further study and we summarize the results presented.

II. RELATED WORK

Coverage problems have been extensively studied and
a systematic discussion goes beyond the scope of this
manuscript. One may identify two main threads. Behavior-
based approaches have been proposed and practically im-
plemented on real robots. Parker’s Cooperative Multirobot
Observation of Multiple Moving Targets (CMOMMT) [14]
shows how simple rules may lead to a rich group behavior
attaining a complex task like observing multiple moving
targets. The drawback of behavior-based systems is in their
inherently heuristic nature, and in the impossibility to derive
quantitative conclusions. At the other side of the spectrum
are approaches developed in the control theory community,
more sophisticated from a mathematical point of view, but
less frequently implemented and tested on robotic hardware
(see however [16] for a practical implementation of the
methods discussed in the following). Bullo, Cortéz, and
Martinez have proposed to treat this problem as a multicenter
optimization routine executed by a distributed robot team.
Their recent book [5] provides a comprehensive guide to
the topic, and the next section offers a formal mathematical
introduction borrowed from their work. Starting from [8]
various extensions were considered, like the case of robots
where the density function is incrementally discovered [12],
or the case of heterogenous teams with different sensors [15].
Breitenmoser et al. [4] study the problem of coverage in non-
convex environment. In this situation it is possible that robots
will be pushed outside the environment while trying to move
according to their control law — an aspect characterizing
also the problem we study in this paper. However, in [4]
this aspect is handled by an application of a bug algorithm,
whereas we solve it using tools from optimization theory.
Schwager et al. propose a general treatment of deployment
methods based on potential field approaches [17]. We notice
however that their framework does not cover the case we
study in this paper because, as it will be evidenced in the
next section, the performance function we optimize is defined
in terms of a service function that can be both positive and
negative, while they require strict positiveness.

The problem of completing a task while not being ob-
served has been investigated less extensively, and is some-
times known in literature as covert robotics or stealth obser-
vation, where covertness is the term used to indicate a robot
does not fall within the sensing range of an hostile entity. One
of our former contributions in this area is formalized within
the CMOMMT framework and proposes coordinated actions
to let multiple robots escape multiple mobile observers [11].
The paper however considers covertness only, i.e. it does

not require to concurrently perform a coverage assignment.
Sukhatme and colleagues have also investigated this area,
starting from the problem of a single robot remaining hidden
while reaching an assigned location [3], then considering
multiple evaders and a single static observer [19], and
finally considering dynamic environments [18]. Adopting a
behavior-based design, these papers do not provide formal
performance bounds or analytic criteria establishing con-
vergence. Similar ideas, although defined on a discretized
environment, were proposed by Marzouqi and Jarvis [13].
Hsu et al [2] considered the problem of covert approaching,
i.e. tracking a moving object without falling within its
sensing range. The authors do not assume prior knowledge of
the environment or of the target motion, and propose a greedy
strategy. The problem of performing a cooperative coverage
task while avoiding exposure to multiple observers appears
therefore to be novel, and the use of multicenter functions
has not been explored in the area of covert robotics.

III. MATHEMATICAL FOUNDATIONS

A. Notation

We first introduce some notation used in this manuscript
and we embrace the notation presented in [5]. Let R be
the set of real numbers, RT be the set of positive real
numbers, and Rar be the set of non negative real numbers.
Let x1,...,z, be n points in R?, and let a:ll,:cf be the
components of x;. We say that the 2n dimensional vector
(z1,...,2n) 18 a non singular configuration if i # j = x; #
z;, i.e. there are no repeated points. Given a set S C R? of
strictly positive measure and a function ¢ : R? — R, the
generalized area and center of mass of .S are, respectively

Au(S) = /S og)dg  CMy(S) = A:(S) /S 46(q)da.

Note that since ¢ is defined to be positive in .S, then A, (.5)
is always postitive and then CM,(.S) is well-defined. The
reader should also note that despite ¢ is often referred to
as “density”, it is not a probability density function, so no
normalization is required. Let (z1,...,x,) be a non singular
configuration. Its points induce a Voronoi subdivision of the
plane, i.e. every point z; is associated with the set V(x;)
defined as follows [9]:

V(z)={peR|llp—aill2 <|lp— 25|l Vj #1 }.

In the following & C R? will indicate a convex planar
region with polygonal boundary. The planar region bounded
by £ is given by the intersection of m halfplanes defined by
inequalities like the following:

a121 + aswe < b.
where (z1,22) € R2. Given a function G : RF = R, we

indicate with V@ its gradient. Moreover, we will use V;G
to designate individual components of the gradient.



B. Function to be optimized

Robots are requested to cover certain locations while
avoiding to be too close to certain other regions. This
requirement is formalized introducing two functions ¢; :
& — RT, with ¢ € {1,2}. In the following ¢; identifies
the regions to cover, and ¢, the areas to stay away from.
Next, we introduce a performance function f : RSL — R.
The performance function is used to model the intensity of
interaction occurring between a robot and a site of either
kind. We assume that f is continuous, differentiable, and
non-increasing. In other words, the closer the robot to a site,
the stronger the interaction, either positive (with sites of the
first type) or negative (with sites of the second type). The
intuition behind these hypotheses is that the farther a robot
is to a location, the weaker the observation is possible, either
from the robot to the area to be covered, or from the hostile
observer to the robot.

While in general one may envision different performance
functions for sites of interest and sites to be avoided, this
complication is here circumvented, and differences will be
accounted for by introducing suitable scaling factors k; and
ko (see next equation). We now introduce the multicenter
function that is the main topic of this paper:

M) = [ [k max f(lo=ailla)ér )

ie{l...n}

~ ks max [l will)ér(a) | o (D)

i
ie{l...n}

Throughout this manuscript we assume both k; and ks
are strictly positive, otherwise Eq. 1 simplifies to the simple
coverage case. H consists of an additive term accounting for
how well the robots cover sites of interest, and a subtractive
term penalizing robots staying too close to sites to be
avoided. The ratio between factors k£; and ko allows us to
rescale the importance of these contrasting goals. The use of
max functions indicates that we consider the best coverage
robots offer to different points in £, and also the worst covert
they experience from points in £. These contributions are
weighted by the respective densities, hence it is possible to
model different distributions of the various sites. Function H
is to be interpreted as an average accounting for combined
coverage and covertness. The problem we wish to study is
twofold. First we wish to identify robot locations maximizing
Eq. 1, i.e. we aim to solve the following optimization
problem:
m;_ij(eg?’-[(x17...7mn). 2)

Ty...x
It will soon become evident that while solving this optimiza-
tion problem one has to be content with a local optimizer.
Next we need to define control laws driving the robots to
such a point. We conclude this section outlining that in the

remaining part of this paper we assume' f(x) = —z2.

IThe choice of a quadratic function is somehow standard in multicenter
optimization because it leads to easy to treat derivatives.

Remark: The reader may mistakenly believe Eq. 1 can
be reduced to the model given in [8] by introducing a
single function accounting for the difference between ¢,
and ¢o, like ( = k11 — kogs. This is not the case for
two reasons. First, the framework introduced in [8] requires
a strictly positive density function, whereas a ¢ defined as
above would in general not satisfy this hypothesis. Moreover,
max(d1+¢2) # max ¢ +max ¢o, hence positiveness cannot
be recovered by adding a large constant. These limitations
imply that to study the problem considered in this manuscript
it is necessary to consider the multicenter function defined
in Eq. 1. This inherent difference leads to different critical
points and will require a different controller. An additional
aspect corroborating the fact that the two models are different
is that the model presented in [8] is invariant with respect to
singular configurations, whereas Eq. 1 is not invariant (see
Section VII for more details about invariance).

IV. CRITICAL POINTS OF THE COVERAGE FUNCTION

Let us rewrite Eq. 1 considering the Voronoi partition
of &£ induced by x1,...,x, [5]. Since f was assumed to
be non-increasing, then 7{ can then be rewritten as follows
(from now onwards, to ease notation, we omit to explicitly
mention the constraint z; € &; this requirement will however
be explicitly enforced when describing the control law):

TR

—b%/wmmlq—xi|2>¢2<q>dq. 3

flg = zill2)¢1(q)dq

This expression shows that the overall performance is ob-
tained considering 2n contributions. The first n terms reward
for the coverage offered by the n robots, whilst the last
n terms penalizes for lack of covertness. It is important
to observe that robot z;’s contribution, either positive or
negative, is exclusively determined by its associated Voronoi
region V(x;). To determine the critical points of 7 the
following theorem, adapted2 from [7], is needed.

Theorem 1 (Cortés et al., [7]): Let £ be a simple closed
convex polygon in R?, let 21, ..., z, be n distinct points in
E, let ¢ : Q — R be a bounded measurable function on
E, and let f : Ra“ — R be a non-increasing differentiable
function. Then, the following function

Aore ) = [ e flla=wll)ods @

is continuously differentiable on every non-singular config-

uration, and for ¢ € {1...n}:
OH 0

— = — —x; dg. 5

o= oo gt lle—wlo@de

By applying Theorem 1 to Eq. 1 we see that for each non
singular configuration the components of the gradient are:

2The original theorem considers also the case where f is only piecewise
differentiable with finite jump discontinuities. This generalization is not
needed here, hence the statement is accordingly simplified.
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Since we assumed f(x) = —2, Eq. 6 can be rewritten as

follows (see [5], page 116)
oH
9z, = 2krhe (V(@))[CMg, (V(2:)) — ]
= 2k2Ag, (V(2:))[CMg, (V(2:)) — il (D)

Critical points of H occur where every component of the
gradient vector is zero, i.e. for each z;

k1Ag, (V(2:))[CMy, (V (2:)) — xi] =

kaAg, (V(2:))[CMg, (V (1)) — i].
Recalling that ¢; 2 were assumed to be strictly positive
over &, and kq, ko > 0, it follows that both k1 Ay, (V(z;))

and koA, (V(x;)) are strictly positive for every ¢. Therefore
the i-th component is zero if and only if

CMg, (V(2:)) — @3 = G[CMg, (V (i) — 2] (8)
where the positive constant ( is defined as
kaAg, (V (i)
= 9
4T Ko, (V(w) ©

In other words, the two vectors [CMy, (V(z;)) — ]
and [CMy, (V(x;)) — x;] must be parallel and point to the
same direction’. Finally, it is worth recalling that A has
multiple critical points, and the search for an optimizer has
to be intended in a local sense and depends from the initial
distribution of the x;s.

A. Remarks

When coverage is sought without considering covertness
(i.e. the case of Eq. 4), then Eq. 5 assumes the form:

OH

83%
Hence, the i-th component of the gradient is zero if and only
if robot z; is located at the center of mass (according to ¢)
of its associated Voronoi cell, i.e. [CMy(V (z;)) — z;] = 0.
Moreover, for each x; the gradient points in the direction
from z; to CMy(V (x;)). Eq. 7 describes instead a more
complex situation that is visually portrayed in Fig. 1.

The gradient points in a direction that compromises
between getting closer to CMy, (V(z;)), ie. increasing
coverage, and farther from CMyg,(V (z;)), i.e. increasing
covertness. Factors k; and ko modulate the relative
importance between these two concurrent needs, hence

= 284(V(2:))[CMy(V (2)) — 2] (10)

3The reader should note that the these vectors point indeed in the same
direction, and not in the opposite one, as implied from the fact that {; > 0.
Cancellation between these two vectors occur because of the negative sign
in the function being optimized.

M, (V (1)) CMg, (V (1))

OH
ox;

Fig. 1.  For the case of observing while maintaining covertness, the
gradient for z; aims to get closer to CMg

(V(z)) and farther from
oH

CMy, (V/ (1)), hence the resulting vector g* depicted in the figure.

the precise direction is influenced not only by the density
distributions ¢; and ¢2 but also by the the ratio k;/ks. The
geometric situation depicted in Fig. 1 not only reconciles
our intuition with the analytic results given by Eq. 7, but
also gives a visual representation of the condition given
by Eq. 8. A critical point is reached when the two vectors
[CMg, (V(z;)) — x;] and [CMg, (V(x;)) — x;] are parallel
and pointing in the same direction.

Finally, the reader should notice that the expression for the
gradient of H (Eq. 6) is distributed in the sense of Voronoi,
as defined in [8]. That is to say that in order to compute
OM /Ox; robot x; does not need to know the positions of
all robots, but only of those contributing to the definition
of V(x;), i.e. those located in a Voronoi region sharing an
edge with V' (z;). This observation is fundamental in order
to implement a distributed controller for the team.

V. RoBOT CONTROL

We next consider the problem of designing a distributed
robot controller to move the robot team to a configuration
that is a local maximum for H. We assume the motion of
each robot can be modeled using a first order differential
equation, i.e.

(an

An intuitive way to maximize multicenter functions is by
imposing that each robot z; follows the gradient so that the
system reaches a stable configuration that locally optimizes
‘H — a strategy also known as the continuous-time Lloyd
algorithm. This approach is at the basis of Bullo et al. work.
Unfortunately, this idea cannot be applied to the problem we
are considering. In fact, one can prove that while following
the gradient of # the robots will never reach a singular
configuration nor will they exit the assigned area £ [7]. On
the contrary it is simple to determine two functions ¢; and
¢2 such that for points on the boundary of £ the gradient of
‘H points to the outside (see Fig. 2). This complication also
follows from the fact that one cannot combine ¢; and ¢- into
a single function. The two must be treated separately, and the
fact that their difference can be both positive and negative
leads to situations where the gradient points outside &.

A more sophisticated control technique is therefore
needed. Two eventually equivalent approaches can be fol-

i‘i = U;.



Fig. 2. In the situation depicted in this figure where the higher peak is
associated with ¢1 and the lower peak is associated with ¢2, when the ratio
k2 /k:1 is sufficiently large a robot located in the vertex marked by the arrow
will be subject to a gradient pointing outside the region.

lowed. The first one casts the problem as a constrained
optimization problem and leads to a control strategy that
can be implemented following a distributed paradigm. An
alternative method could be envisioned by resorting to non-
smooth fields [6] to force the robots to remain inside £ once
they reach its boundary. Intuitively, if a robot is located on
the boundary and its gradient points to the outside, it should
not follow its gradient but rather slide along the boundary
of £ according to the projection of the gradient on it (hence
the non-smoothness of the field). This technique however
immediately raises the question of how to choose these
sliding motions, and how to prove convergence. Therefore
we analyze the system as a constrained optimization problem
and we will eventually obtain a control strategy that indeed
translates to sliding motions on the boundary.

A. Distributed control as distributed constrained optimiza-
tion
Let us rewrite the optimization problem defined in Eq. 2
as follows:
max H(zi,...
T1...Tp

subjectto z; € £ 1 <i<n

axn)

where each of the n constraints z; € £ is equivalent to a set
of m linear inequalities involving z;. That is to say the set
of constraints is given by nm linear inequalities:

ag_iﬁ + aigx? < bg with1 <j<m, 1<i<n.

This problem can be solved using the gradient projection
method (see [10] for more details; we here follow the
notation introduced therein). For sake of completeness we
shortly recap the method. Starting from a given configuration
(z1,...,z,) we seek a direction d = (dy,...,d,) such
that VH - d > 0, i.e. by moving along d the value of the
objective function increases. d is called feasible direction.
As long as none of the x; is located on the boundary of
£ we choose d = V#H, and the motion coincides with the
formerly mentioned Lloyd algorithm. If one or more robots
are located on the boundary of £ then some of the constraints
are actually an equality. These equalities are called active
constraints. Let A g be the kx2n matrix obtained by stacking

the coefficients of the k active constraints, and let P be the
2n x 2n matrix defined as follows:

P=1- AqT(AquT)ilAq

where I is the identity matrix of order 2n. Then, we set
d =P -VHT. If d # 0 a feasible direction is found and
robot x; moves along this direction with u; = d;. On the
contrary, if d = 0 the Karush-Kuhn-Tucker (KKT) criterion
tells if a local maxima was reached. Let

A= —(AqAq" ) TALVHT.

If all its components are non positive, then the point is
a local maxima and the optimization process terminates.
Otherwise one drops from Aq the row corresponding to the
A; component most positive and recomputes d with the new
Aq.

The essence of the gradient projection method emerges

when one or more active constraints are present. In that
case by setting d = P - VHT one determines a control
where one or more robots slide along the boundary of £.
This observation reconciles this method with the non-smooth
approach we formerly mentioned.
A more careful analysis of the constraints reveals that P is a
block diagonal matrix made of n blocks of dimension 2 x 2.
Let P; be these blocks. If robot x; is not located on the
boundary of £ then none of its constraints are active and
P; is the 2 x 2 identity matrix. In that situation, P - VH”
gives d; = V,HT and robot z; follows the gradient. If
instead z; is located on the boundary of &, then one (if
it is on an edge) or two (if it is on a vertex) of its linear
constraints are active. In that case then d; is the projection of
ViHT along the active constraint(s) and generates the sliding
motion. The decomposition of P into blocks translates into
a distributed control strategy. Provided that every robot can
autonomously localize itself, then it can determine its set
of active constraints and compute its matrix P;. Given Pj,
direction d; can be computed by using V;H”. Therefore the
outlined control strategy is also distributed in the sense of
Voronoi.

B. Remarks

One should note that the various multicenter problems
considered in [5] and related papers are in fact all constrained
problems because it is always implied that robots never leave
the area of interest. However, because to the assumptions
made about the function to be optimized and the density
functions considered therein, these constraints do not need
to be explicitly taken into account because the gradient flow
never pushes the robots outside. These favorable hypotheses
however do not hold for the problem at hand, and so the
constrained version needs to be explicitly considered.

VI. SIMULATION RESULTS

We here present the results of some simulations aimed to
outline how different performances emerge when changing
the ratio between k; and k3 and by varying the number of
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(a) k1 =3,k2 =2

Fig. 3.

(b) k1 =3,ky =6

(C) k1=3,k2=8

The red contour shows the boundary of the assigned area £, whereas the blue lines show the Voronoi partition induced by the final robot

configuration. Black paths display the trajectories followed by the robots while moving towards their final destination. Points of interest are marked by the

symbolsy, whereas locations to be avoided are marked by the symbol A.

robots*. Results are graphically displayed in Fig. 3, and the
companion video shows the corresponding evolution over
time. Density function ¢; is given by a sum of Gaussians
centered on the points marked by the symbol <7, whereas ¢o
is given by a sum of Gaussians centered on the points marked
by the symbol A. In the first two experiments Gaussians in
¢1 have the same 02 = 0.5, while Gaussians in ¢, have the
same 02 = 0.1. In the last experiment Gaussians in ¢, have
instead 02 = 0.6.

Figures 3(a) and 3(b) show how the same initial distri-
butions of robots lead to different final configurations by
varying the ratio ki /ko. In particular figure 3(b) shows a
case with a larger value for ky while keeping k; constant.
It may then be seen that robots 1 and 5 take further cover
from the ¢ peak located in the top right of the region, i.e.
they still approach the same peak of ¢1, but stop at a greater
distance. On the bottom left, different trajectories are also
produced by robots 6,7, and 9. On the contrary, robots 2,3,
and 10 are deployed sufficiently clear of peaks of ¢ and
their final trajectories do not show significant variations.

Finally, Fig. 3(c) displays a case where sliding motions
occur. Two robots are deployed in £ with a different distri-
butions of peaks for ¢; and ¢5, as evidenced by the different
layout of the symbols 57 and A. Moreover, k; = 1 and
ke = 8, so that the objective function strongly rewards
covertness over coverage. As seen from the trajectories, both
robot 1 and robot 2 are pushed towards the boundary of £
while trying to improve the value of H by gaining covertness.
In particular, robot 1 soon approaches the boundary and then
slides along the edge until it reaches a vertex where it stops
because no feasible direction can be found. Robot 2 also
reaches the boundary end then stop because its gradient
at that point is orthogonal to the boundary and then its
projection is 0.

4Matlab® code producing these results is available for download
at http://robotics.ucmerced.edu. We acknowledge the use of
Voronoi routines made available by Andrew Kwok at UC San Diego.

VII. THEORETICAL PROPERTIES

We shortly discuss three theoretical aspects concerning
the dynamical system and controller we studied, namely
optimality, convergence, and invariance.

Optimality. The function H being optimized is non con-
vex, continuous and defined on a closed, bounded set.’ By
Weierstrass theorem it then admits minimum and maximum
in £. Since we our controller follows the gradient, we will
therefore end up (see next discussion about convergence) in
a local extrema, but without any guarantee about its global
nature. It is easy seeing that determining the global optimum
is a NP-hard problem. In fact, if one sets ko = 0 in Eq. 1,
then the original problem studied in [8] is obtained. It is
known that finding the optimal solution to this problem is in
general NP-hard [1], and therefore by reduction our problem
shares the same complexity.

Convergence. Related works in the area of coverage
algorithms based on Voronoi tessellation usually establish
convergence using LaSalle’s principle [5], [17]. However,
as evidenced already, our problem is different because de-
ployment takes place in a bounded domain and simply
following the gradient for  may push the agents outside
the area. Convergence towards a critical point minimizing
‘H, however, can still be guaranteed even without using
LaSalle’s principle. In fact, the method described in section
V is nothing but the gradient projection method known in
optimization literature, and this is known to converge to a
local optimum (see for example [10], chapter 11, section 4).

Invariance. Invariance is here defined as the property
of remaining in non-singular configurations after starting
from a non-singular configuration. In different terms, while
following the control law, robots should not collide with each
when starting from distinct positions. The basic coverage
problem enjoys this property, as proven in [7]. As additional
evidence of the different nature of the function H we
considered, this is not the case for the problem presented
in this paper. In fact, one can easily construct problem

SNote that the function is well defined also for singular configurations.



instances where two or more robots will eventually move to
the same location. This situation can nevertheless be avoided
using the approach presented in [15] where a set of linear
constraints is included to account for finite robot dimensions.
This extension is easily integrated in the framework we
propose because it would just add additional constraints that
could be accommodated using the gradient projection method
formerly illustrated.

VIII. CONCLUSIONS

We defined and formalized a novel coverage problem that
combines two objectives at once, i.e. providing coverage
to a set of known locations and minimizing exposure to
a different set of known locations. The problem has been
formulated using the theory of multicenter functions, and
we have identified fundamental differences with the simpler
case considering coverage only. Hence, the proposed control
strategy turns out to be more involved and better understood
by casting it as an instance of constrained optimization.
Various outstanding questions remain for the problem we
investigated in this paper. The first one concerns the existence
and convergence of distributed discrete time controllers that
converge to a local maxima of H. The control law proposed
in this manuscript is continuous, but distributed discrete
controllers have been shown to exist for the simpler case
dealing with coverage only. The existence of distributed
discrete time controllers for the problem at hand is still an
open problem, also considering that the system follows a
radically different flow. Next, considering the hostile nature
of locations to avoid, it would be interesting to modify the
problem formulation to account for the cumulative penalty
accrued by being covered while reaching the final config-
uration. By integrating this penalty over time it is expected
different trajectories will emerge, with agents possibly taking
detour paths around hostile locations.
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