Deploying Teams of Heterogeneous UAVs
in Cooperative Two-Level Surveillance Missions

Nicola Basilico

Abstract— We consider the problem of providing surveillance
to a grid area using multiple heterogeneous UAVs, named sen-
tinels and searchers, with complementary sensing and actuation
capabilities. We consider probabilistic attacks and we analyze
the expected performance with respect to the team deployment.
We then introduce the problem of finding minmax deployments
that result in the most desirable worst case performance caused
by an attack. We present an algorithm to compute deployments
while trading off solution’s quality and computational effort and
we qualitatively and quantitatively analyze it.

I. INTRODUCTION

Intelligence, surveillance, and reconnaissance (ISR) ap-
plications continue to receive growing attention from the
multi-robot systems research community. In this domain,
autonomous robots (and UAVs in particular) can introduce
advantages like increased efficiency, resilience and lower
risks for humans. Recent research showed how performing
surveillance at multiple levels of granularity can be effective.
Alongside works where the environment is modeled using
multi-scale representations [2], [8], recent interest has been
devoted to two-level paradigms, where broad-area surveil-
lance provides wide-scope but imprecise detections, trig-
gering local-investigation operations to disambiguate such
detections by close inspection [3]. Applications include for
example wildfire detection [11] and monitoring of agricul-
tural fields [9], where the large extension of the environment
makes an accurate whole coverage not viable and requires
to balance surveillance scope and accuracy.

In this paper, we use the two-level paradigm on a hierarchi-
cal surveillance framework with heterogeneous UAVs we call
sentinels and searchers. Sentinels are tasked with guarding
large areas to detect domain-relevant events we shall call
attacks. Upon detection, a sentinel dispatches one or more
searchers to collect local information and continues its moni-
toring task. In this approach robots undertake complementary
tasks. Sentinels fly at higher elevations, are subject to higher
error rates, but can scan larger areas of the environment
recognizing the presence of an attack. They are, however,
unable to gather additional information about its precise
location. Searchers, instead, operate at lower elevations and
have lower error rates. They are capable of localizing attacks
once they are notified by a sentinel, but they lack the initial
detection ability. After an attack occurs, sentinels cooperate
to dispatch a searcher and localize it.

N. Basilico is with the Computer Science Department, University of
Milan, Milan, Italy.

S. Carpin is with the School of Engineering, University of California,
Merced, CA, USA.

Stefano Carpin

Building upon our previous work [3], we provide an
analytical description of the expected performance of a
system of this kind and we leverage such characterization
to formulate the problem of computing the optimal system
deployment. We take a minmax stance, seeking for the
smallest worst damage an attack could cause to the monitored
environment, and we define an algorithm for this purpose
trying to balance the needed computational efforts with
the solution quality. We then experimentally evaluate our
solutions with a qualitative analysis and we assess their
performance with respect to different parameterizations.

The rest of the paper is organized as follows. Related work
is discussed in Section II and Section III introduces our set-
ting. The deployment problem is addressed in Section IV and
experiments are presented in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK

Search theory goes back to world war II and has been
extensively studied in an offline setting [12], [17]. Contin-
uous developments in the area of autonomous vehicles and
the recent explosion in the use of UAVs have added further
momentum to this line of research. The reader is referred to
[6] and references therein for a detailed assessment of the
state of the art. In our previous work, we have considered
variable resolution search with a single agent [2], [6], [7], [8].
The elevation-resolution tradeoff was first observed in [18],
and similar ideas were recently proposed in [15] where the
variable resolution coverage methods proved to introduce a
number of advantages with respect to state-of-the-art uniform
coverage approaches. Our method exploits basic concepts
from queuing theory to characterize the performance of the
collective search over an area. Such general approach has
been introduced by Bullo et al. [5]. However, their method
does not consider sensing errors. Other works considering
settings where the use of autonomous agents provides un-
interrupted monitoring over a search domain are, for exam-
ple, [10], [16]. With respect to such contributions, we address
a more general scenario, allowing teams of heterogeneous
agents. The problem of finding an optimal deployment for
our system builds on top of the scenario we introduced in [3]
where we studied the quality of a fixed and non-overlapping
arrangement of sentinels. In this work, we extend such model
to obtain a formulation of the deployment problem and we
study a method to solve it. To the best of our knowledge,
this formulation is novel. Some similarities with well-known
environment partitioning methods can be recognized [14].

However, the addressed scenario and method we study is
radically different from the classical partitioning problem.

III. BASIC SETTING

Environment. Let G be the search domain assumed to be a
discrete representation of some area A C R? to be protected
and modeled as a rectangular grid partitioned into equally
sized square cells. A cell is indicated as c, the coordinates
of its center are (cg,c,) € A, and each cell’s edge length is
denoted with e. Every cell represents some area within which
attacks can take place. The presence of an attack in cell ¢
produces a penalty that we model with a loss value [(c).
Such value represents the penalty per time unit incurred by
the system while an attack is present in cell c. At each time,
multiple attacks may occur in G, and if more than one attack
target the same cell at the same time we treat them a single
joint attack for that cell. Once a cell is attacked, the attack
persists until it is detected. As explained in the following,
this will be performed by a searcher agent which tries to
localize attacks. Let a(c,t) be a binary function indicating
whether cell ¢ is under attack at time ¢, i.e., a(c, t) = 1 if and
only if there is an attack in cell c at time ¢. If we consider a
finite time horizon T, the overall loss accrued by the system
over the whole environment is defined as follows:

L= Zl(c)/O a(e, t)dt. (1)

ceg

This quantity will be our performance metric for evaluating
our surveillance system. The objective is to deploy sentinels
and searchers to contain the loss L.

Attacks. We model attacks probabilistically, along a tem-
poral and a spatial dimension. First, we model the inter-
arrival time between attacks as a random variable with
a known probability density function. Second, when an
attack takes place, we assume that the targeted cell c is
drawn from a probability mass distribution p(c) over G. As
common in literature, we assume independent arrivals and
p(c) proportional to {(c). Considering a probabilistic model
like this can be effective in situations where the attacker’s
behavior does not depend on the surveillance strategy. Doing
otherwise would entail a number of assumptions on the
attacker planning and observation capabilities as well as
different resolution techniques that in literature often came
under game theoretical frameworks [4], [1]. Our model,
instead, only requires that the environment is known to
an attacker, making it more inclined to target those more
profitable regions with higher [values.

Sentinels and searchers. The surveillance team is com-
posed by M sentinels and N searchers which are tasked
with localizing and removing attacks in order to contain
the overall loss L. Each sentinel is assigned to monitor a
rectangular sub-grid of G denoted as G;. The ith sentinel
repeatedly scans its area with period A. Each scan returns a
binary reading, indicating whether an attack is present in G;
or not. We allow the various G;s not to form a partition of G.
In particular, they may have different size, we allow overlaps
between areas monitored by different sentinels, and we admit

situations where G is not fully covered by the union of all
the G;s (for example, if it is acceptable not to cover a subset
of G when it is known that no attack will occur therein).
This hypothesis marks a strong difference from our recent
work presented in [3], where we analyzed only partitions of
G made of equally sized sub-areas. Notice also that in [3] we
just considered the problem of analyzing a given deployment,
whereas in this work the goal is to construct deployments
optimizing an objective function defined in the sequel. Scans
operated by each sentinels are affected by errors. We indicate
with «; the probability that sentinel ¢ receives a false
positive, and with /3; the probability of a missed detection.
As corroborated by the field experiments presented in [6],
we assume a correlation between the size of G; and the error
rates. In particular, larger areas are associated with higher
probabilities of getting false positives and missed detections.
Due to the possible sensing errors, the outcome of each scan
is a random variable. When considering the sequence of
readings performed by a single sentinel, we assume that the
random variables are independent and identically distributed.
Furthermore, we assume independence between readings by
different sentinels. Once a sentinel ¢ gets a detection, a
searcher is dispatched over G; with the task of localizing the
possible attack. To accomplish this goal, the searcher scans
individual cells of G; employing some search strategy. Its
scans incur in the same sensing error/area correlation adopted
for the sentinel. However, sensors readings for searchers will
be more accurate than sentinels’ because they scan single
cells on the grid. Moreover, each searcher has a limited
traveling budget B. That is, if the searcher locates the attack
before traveling B distance units, it removes it and terminates
its mission. If instead the searcher does not locate any
attack within the distance budget, it terminates its mission
and reports to the sentinel that no attack was found. For
simplicity, we assume that searchers move at constant speed,
thus we do not distinguish between temporal and distance
costs. Under such assumption the time to travel from a cell
to the adjacent one is e.

In this work, we extend [3] by considering multiple
sentinels that can be placed in the environment without
restrictions, allowing overlaps and uncovered zones. We
then leverage our theoretical analysis in dealing with the
sentinel placement problem, i.e., determining the area G;
to associate to each sentinel to bound the loss L. This is
a fundamental and challenging requirement for our basic
setting, especially when considering realistic deployments.
In our analysis, we hypothesize to know the spatiotemporal
distribution characterizing the attacks, the error ratios asso-
ciated with each agent, and the search strategy employed by
each searcher. Such hypotheses simplify our model, but also
favor analytical tractability allowing us to derive a set of
results to evaluate more realistic scenarios from a baseline
comparison perspective.

IV. THE SENTINEL PLACEMENT PROBLEM

We address the problem of finding a placement for each

sentinel such that £ is minimized. Let s; = (i, ¢}, h') be

the pose of the ¢th sentinel, meaning that it is positioned at
elevation h' above a cell whose center coordinates are c!,
and c; (we will omit superscript ¢ when not necessary). Let
S be a set of n allowable poses. Formally, a deployment
E is defined as £ = (s1,82,...,8m), with s; € S.
Note that although in the sequel it may seem that E is
a sequence, it is in fact a subset of S, so no repeated
elements are allowed (therefore there cannot be two sentinels
in the same place) and the order does not matter because all
sentinels have the same sensing capabilities and can then
be swapped. We start by defining a method to evaluate the
value of a single sentinel’s pose and we extend such method
to the evaluation of a whole deployment of M sentinels.
Assuming each sentinel is equipped with the same sensor,
e.g., a downward pointing camera, there is a one-to-one
correspondence between s; = (cfn,cg, h?) and the assigned
area G; (see Figure 1(a)). Hence, we will use s; as a proxy
for G;, and vice versa.

To evaluate the performance of a sentinel located at
some pose s we need to provide a description of the
process generating the attacks. As common in literature,
we hypothesize that the inter-arrival time between attacks is
distributed according to an exponential random variable with
intensity A. Each attack will target cell ¢ with probability
p(c) = % Against this background, we define how
to computéean upper bound for v,(c), that is the expected
loss that a single sentinel located at s would expect to receive
from cell c. Such quantity is formally defined as:

T
vs(c) =E ll(c)/o al(c, t)dt] . (2)

Let G; be the area associated with s;. Every cell in G; can
be identified with a row and a column indexes 1 < ¢ < [and
1 < j < J, respectively, and we will indicate as c; ; the cells
in G; (notice that I and J also denote the height and width of
sub-grid G;). Once dispatched, a searcher will cover G; using
a lawn mower pattern, i.e., it starts sweeping from cell c¢; 1
up to cell ¢z,1, then moves to cell ¢y 2 sweeps up to cell ¢ o
and so on until cell ¢y, ; is eventually reached (see Fig. 1(b)).
At that point it reverses its direction of travel and repeats
the same pattern in the opposite direction. We assume that
moving from one cell to an adjacent one takes a travel cost
of e and that such back-and-forth sweep pattern is repeated
until either the whole budget B is consumed or an attack
is found. Finally we assume searchers operate independently
from one another.

Requiring each searcher to follow this predetermined non-
informed sweep strategy is a simplification we introduced to
make the theoretical analysis of the model’s performance
more tractable. Indeed, characterizing the possible proba-
bilistic realizations of an informed (on-line) search strategy
as well as the synergies arising when two or more searchers
operate in the same sub-grid is not an easy task and would
narrow the scope of our findings to the search strategies
obeying to such assumptions. Instead, we can safely state
that an upper bound for vs(c) under such sweep strategy is

(@ (b)

Fig. 1. (a) A scheme of sentinels deployment (surveillance area in gray);
(b) the sweep pattern of searchers (in this example I = J = 5).

an upper bound for other better informed search methods,
since predetermined fully covering patterns like this can
be thought as baseline methods. In addition, lawn mower
patterns are strategies currently used in many domains, e.g.,
maritime search. Operatively, an upper bound for vs(c) can
be computed as {(c)W,, where W, is an upper bound for the
expected waiting time of an attack in ¢ before it is detected.
To compute W, we need to account for the following terms:

o the time between the arrival of an attack at ¢ € G; and a
scan performed by sentinel ¢, we denote it as { € [0, A];

o given that an attack is in G;, the number of scans that
a sentinel has to perform before dispatching the first
searcher, we denote it as t;,. > 0;

« given that an attack is present in G;, the number of scans
that a sentinel has to perform before dispatching the ith
searcher with ¢ > 1, we denote it as ti,. > 0;

« the number of dispatches (searchers) that a sentinel has
to perform to obtain the first successful dispatch, that is
dispatching the searcher that will detect the attack, we
denote it as ng;

« the time employed by the successful searcher to detect
the attack, we denote this value as s.

By calling A\, = Ap(c) the attack arrival rate limited to cell
¢, and N the probability that an attack takes place somewhere
in G; during an interval of A time units, we can compute
E[¢], E[t{,], and E[t;,] (see [3] for details):

1 —e e _ N\ Ae A
Ae(l — e 2eB)

E[] = A

1
1= (1=N)(1=pi(h)) + Nai(h)

E[ttr] =

Bi(h)
1= Naj(h) = (1= N)(1 = Bi(h))
Notice that we made the dependency from the sentinel’s

altitude h explicit in the error rates «;(h) and 5;(h).
Given the sweep pattern, any cell ¢ is guaranteed to

Eft,] =1-Bi(h) +

be scanned at least m times, where m = 1%]
Then, the expected number of dispatches required to have
the successful one is given by the mean of a geometric

variable as E[n,] = ﬁ where we indicated with [the

false negatives rate for a searcher (we do not highlight the
dependency from the altitude since we assume that every
searcher operates at the same constant altitude.) Finally, the
expected time the successful searcher has to spend to detect
the attack in a cell ¢, , € G, can be obtained defining the
following function:

D(k) = D; if k is odd
N Dy otherwise

where D; is the time (distance) required to travel from cell
c1,1 to cell ¢, ., whereas D5 is the time (distance) between
cells ¢, , and cy ;. Thus, we define the time at which the
successful searcher performs the k-th visit to cell ¢, as
t(k) = D(k)+ (k—1)(IJ —1)e. Therefore, by applying the
definition of expected value we have that
Els] = > #(k)Bs(hs)* (1 = Bs(hs))-
k=1
We can now derive the following upper bound:

vs(c) < We(E[¢] + Elty,] + (E[ng] — 1)E[te] + E[s]). (3)

We will refer to the right hand side of the previous
inequality as ¥s(c). For every cell ¢ € G; such value is
computed as per Eq. 3 whereas when ¢ does not fall in the
area covered by the sentinel we set U5(c) = oo if I(c) > 0
and U5(c) = 0 otherwise. This choice of values models the
fact that when a cell is not covered by the sentinel, arbitrarily
large penalties can be incurred (recall that here we consider a
single sentinel) while if the cell will not be subject to attacks,
its expected penalty will be null independently on whether
it is covered or not.

Given such values, we introduce our definition of optimal
deployment as the one that minimizes a value function which,
for a given deployment E, is defined as follows:

v(E) = max 1:%1]21 Ts(c). 4)

The rationale behind Eq. 4 is the following. Given a cell

¢, different sentinels will cover it depending on their poses
in E, inducing different values for the expected loss upper
bound. Combining such values in some aggregation function
would require to consider synergy relations arising between
sentinels sharing the same cell c. Instead of trying to model
such dynamics we take a bounding approach, considering
the minimum value, that is, the best performance achieved
by one of the sentinels above c. Since we are not accounting
for interferences, such value constitutes an upper bound for
c’s expected loss when multiple sentinels operate on it. Then
we take the maximum to adopt a worst-case stance, namely
we define the performance of a deployment E as the worst
penalty a single attack can cause. In Table I, we show a
straightforward numeric example of the application of such
method in a small setting with 4 cells and 4 candidate
poses (rows correspond to deployments, columns to cells
and the values denote the obtained expected loss). Obviously,

| i o ez ca | v({si})
S1 11 15 16 13 16
S2 10 18 20 12 20
S3 12 16 12 10 16
s4 | oo 4 7 o) 0o
| 1 c2 3 ca | w(E)
E={s1,52,55] |10 15 12 10| 15
E = {s1,s2,83,84} | 10 4 7 10 10

TABLE I
SIMPLE EXAMPLE ON THE APPLICATION OF EQ. 4.

searching for the deployment providing a best worst case is
not the only rationale that can be followed when computing
an effective deployment of sentinels, and several different
functions can be proposed as an alternative to Eq. 4. How-
ever, such a function does not require any parametrization,
simplifying the task of analyzing its solutions.

Algorithm 1 FindDeployment(p)
. E={}
2: for all k€ {1... [%]} do
3: Q <« set of deployments with min{p, M — p(k — 1)}
sentinels
4: * = Ay E
Q" = argmax Ay (Q | E)
5: E=FUQ"
6: end for

In Algorithm 1, we provide a method to compute deploy-
ments for teams of sentinels which makes use of the eval-
uation method we defined. The algorithm decomposes the
problem of finding an optimal deployment for M sentinels
into a number of subproblems where, at each of them, an
optimal deployment Q* on a number p € [1, M] of sentinels
is computed. The optimality of a deployment () at the ith
iteration is defined by the maximization of the marginal gain
obtained in v when including () in the union of the previously
computed deployments (E). Such quantity is defined as
A,(Q | E) =v(E)-V(EUQ). Clearly, such decomposition
of the problem is not without loss of optimality, but it
enables a trade-off between the required computation time
and the obtained solution’s quality, which is controllable by
means of parameter p. When p = 1 the algorithm is purely
greedy, whereas when p = M the algorithm performs a
brute force search over set of all possible deployments. It is
useful to keep these two extremes in mind when considering
the computational complexity and optimality. Notice that,
contrarily to what intuition would suggest, function v is not
submodular. Considering again the example of Table I, it
easy to see that adding pose s4 to {s1, so, s3} yields a strictly
larger marginal gain than adding the same pose to {sq, s2}.
As a consequence, no simple approximation bound can be
derived for the greedy version of the algorithm (see [13] for
a discussion on this subject).

A. Computational complexity

We recall that M is the number of sentinels and n = |S|
is the set of possible sentinel locations. Let g = |G| be the

number of cells in the grid G. For p = 1 the algorithm
greedily grows E by adding sentinels one after one. At each
of the M iterations the algorithm computes O(ng) values
for 5(c) (see Egs. 2, 3 and 4) to determine where to place
the next sentinel and so the overall complexity is O(Mnyg).
However, a more efficient computation for the greedy method
is possible. In time O(ng) one can precompute the value
Us(c) for each combination of cell in G and pose in S (see
Eqgs. 3 and 4). These values can be though as arranged in a
table with n rows and g columns. Then, for each of the n we
can determine the maximum in complexity O(ng). After this
step, for each row (i.e., sentinel pose), we have determined
the cell in G giving the worst performance (highest loss). At
this point the algorithm needs to pick the M rows with the
worst case largest value, and this can be efficiently done by
sorting the maximum values and extracting M rows with the
largest values. Adding all complexities together, the greedy
approach can then be implemented with time complexity
O(ng + nlogn).

At the other end of the spectrum, when p = M we have
the optimal brute force algorithm evaluating each of the (J&)
possible deployments. Assuming again that one precomputes
all values for 75(c) in time O(ng) and stores the maximum
of the row, its complexity is then O(n!) and is evidently
intractable for cases of practical interest.

The intermediate solution allocating blocks of p sentinels
at a time, has complexity O(%(Z)) This result follows
because we solve by brute force 2/ instances of the problem
with p sentinels and each subproblem implies the evaluation
of (2) candidate solutions. For small values of p the overall
complexity can be approximated as O(Mn”). Note that in
this case we assumed that the precomputation time O(ng)
is dominated and then ignored.

V. EXPERIMENTAL EVALUATION

We considered a variable number of sentinels with the task
of protecting a 16 x 16 grid. Since we assume that UAVs are
the reference implementation for our system, we faced the
problem of defining a realistic sensing model. To this aim,
we adopted a model inspired by the one we studied in our
previous work [6] where the obtained data were supported
by field experiments with a real UAV. More precisely, we
considered five different altitudes reserving the lowest one
to searchers. In the same way, false positive and missed
detection rates trends are derived from the data we gathered
in such experimental campaign. For each altitude, we con-
sidered 162 candidate poses, each one of them assumed to
be above the center of a cell of G. Notice that the resolution
of § is a sensitive parameter for the problem we are trying
to solve. Obviously, fine grained discretizations would led to
better solutions whereas having coarse spaces can introduce
potentially arbitrary suboptimality. On the other hand having
a sparse space of locations can be advantageous in terms
of computation time. Determining an optimal density for S
is an interesting problem which can be tackled exploiting
different properties of our setting. For example, it is easy to
show that there exists an altitude & such that poses above it

Elevation
Elevation

(@ (b)

Fig. 2. Example of two deployments found with Algorithm 1 for a team
of M = 8 sentinels with p =1 (a) and p = M (b).

can be safely discarded and that a principle of locality holds,
that is close locations tend to provide the same performance
suggesting that good solutions should show some kind of
uniform spatial distribution. We leave the study of such
problem as future work and we concentrate instead on what
results could be obtained with our method given S defined
as described above.

An example of deployment found with our method is
depicted in Fig 2. In this experimental phase, we used a team
of 8 sentinels and a bimodal loss distribution obtained by
adding two Gaussian functions. In the figures, the asterisks
represent sentinels while gray rectangles depict sub-areas
G;s. We can qualitatively compare the deployment found by
setting p = 1 in Algorithm 1 (Fig. 2(a)) against the optimal
deployment found through exhaustive search (Fig. 2(b)). The
first feature that can be observed is that both deployments
tend to concentrate more resources above the areas with
higher loss, indeed both allocate a number of sentinels at
low altitude in order to contain the expect loss from the
cells which are likely to cause more damage if under attack.
A difference can be noticed when considering how the two
cover the environment as a whole. The greedy method,
being forced by construction to select a pose at a time,
first tries to guarantee complete coverage by selecting a
high altitude pose, then it tries to refine the solution in the
same iterative way. The optimal method, instead, was able
to find a better allocation to guarantee complete coverage in
which no sentinel has to dispatch searchers on the whole
grid. Allocating sentinels at lower altitudes, the optimal
deployments provides potential benefits also in terms of
energy consumption. This is a trend we observed rather
frequently when comparing greedy (and, in general, those
found with p < M) with optimal solutions.

Fig. 3 shows the trade-off between solution’s quality and
the required computational effort and gives some insights
on how to tune p. We considered a team of 10 sentinels
with random loss distribution where each I(c¢) is drawn from
with uniform probability from [1,100] (each point is the
average over 10 different runs). Fig. 3(a) shows how the
solution’s quality converges to the optimum as we adopt
increasing values of p while Fig. 3(b) shows the correspond-
ing computation times exposing the exponential growth rate
as Algorithm 1 performs exhaustive searches. The trade-off

138 500

136 9 8 400 /
4 o /
S 13
: 134 IS 300
3 5
8 132 § 200
& 3
w &5 o
130 £ 100
© © (]
128 0 PPN S
0 2 4 6 8 10 0 2 4 6 8 10
P P
(@ (b)
Fig. 3. Values and computation times obtained for different values of p

with M = 10 sentinels and random loss distribution.

300
—e—p=1
X p=2
g 2500 =3
3 OO 0O OOO T p=4
3 200} Tp=5
3 o baseline
& .
44501 :
100
0 5 10 15 20 25

Number of sentinels (M)

Fig. 4. Varying the number of sentinels for different values of p.

described by such curves suggests that we could obtain fairly
good solution within a reasonable time (for the settings we
considered, the solution improvements are small for p > 5).

Finally, Fig. 4 depicts how the expected loss improves
when adding more sentinels in a setting with a random
loss distribution. The graph gives an insight on the trend
of marginal gains achieved by the different iterations of
Algorithm 1 and it provides an assessment on how profitable
adding a sentinel to an already deployed team can be. As it
can be seen, the curves for different values of p converge
towards the same optimal value entailing the existence of a
maximum number of sentinels beyond which no significant
improvement can be obtained. This can be an important
aspect when choosing the number of sentinels to deploy to
protect a given environment. The figure also shows results
with a non-informed baseline deployment strategy that works
as follows. It deploys sentinels one by one filling altitude
levels from the the highest to the lowest. A level is considered
filled as soon as each cell of the environment can be
perceived by at least one sentinel in that level (locations
are chosen trying to keep the amount of cells in G; the
same for each sentinel 7). The comparison with such method
shows how, in general, non-informed strategies achieve poor
performance when compared to informed ones. The steps
that can be observed in the curve correspond to situations
where the added sentinel starts seeing the cell causing
the maximum expected loss. Since we use a random loss
distribution, such maximum value is provided by more cells,
randomly scattered on the grid. A drop in the penalty is then
observed each time a level is filled.

VI. CONCLUSIONS AND FUTURE WORK

We studied the problem of finding deployments for a
surveillance team composed by heterogeneous robots that we
called sentinels and searchers. Sentinels persistently monitor
large portions of the environment and dispatch searchers
once the presence of an attack is detected. Searchers have to
localize the attack after having been dispatched. We defined
the problem of finding the optimal deployment as the one that
results in the minimum penalty against the most damaging
attack and we provided a simple algorithm to search for it.

In the future, we will include heuristic techniques to
reduce the size of the set of candidate locations trying to
bound the loss in terms of solution quality. Along the same
lines, comparisons with other evaluation approaches, other
than the minmax, are possible, including the use of functions
which could achieve some degree of approximation when
optimized with simple methods (e.g., submodular functions).

REFERENCES

[1] N. Agmon, V. Sadov, G. Kaminka, and S. Kraus. The impact of
adversarial knowledge on adversarial planning in perimeter patrol. In
AAMAS, pages 55-62, 2008.

[2] N. Basilico and S. Carpin. Online patrolling using hierarchical spatial
representations. In JCRA, pages 2163-2169, 2012.

[3] N. Basilico, T.H. Chung, and S. Carpin. Distributed online patrolling
with multi-agent teams of sentinels and searchers. In DARS, 2014.

[4] N. Basilico, N. Gatti, and F. Amigoni. Patrolling security games:
Definition and algorithms for solving large instances with single
patroller and single intruder. ARTIF INTELL, 184-185:78-123, 2012.

[5]1 F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S.L. Smith. Dynamic
vehicle routing for robotic systems. Proceedings of the IEEE,
99(9):1482-1504, 2011.

[6] S. Carpin, D. Burch, N. Basilico, T.H. Chung, and M. K&lsch. Variable
resolution search with quadrotors: theory and practice. J FIELD
ROBOT, 30(5):685-701, 2013.

[7]1 S. Carpin, D.A. Burch, and T.H. Chung. Searching for multiple targets
using probabilistic quadtrees. In IROS, pages 45364543, 2011.

[8] T.H. Chung and S. Carpin. Multiscale search using probabilistic
quadtrees. In ICRA, pages 2546-2543, 2011.

[9] A.-J. Garcia-Sanchez, F. Garcia-Sanchez, and J. Garcia-Haro. Wire-
less sensor network deployment for integrating video-surveillance
and data-monitoring in precision agriculture over distributed crops.
Computers and Electronics in Agriculture, 75(2):288 — 303, 2011.

[10] V. A. Huynh, J. J. Enright, and E. Frazzoli. Persistent patrol with
limited-range on-board sensors. In CDC, pages 7661-7668. IEEE,
2010.

[11] B.C. Ko, J.O. Park, and J.-Y. Nam. Spatiotemporal bag-of-features
for early wildfire smoke detection. Image and Vision Computing,
31(10):786 — 795, 2013.

[12] B.O. Koopman. The Theory of Search, Part {II}. Target Detection.
OPER RES, 4(5):503-531, 1956.

[13] A. Krause and C. Guestrin. Submodularity and its applications in
optimized information gathering. ACM TIST, 2(4), 2011.

[14] M. Pavone, A Arsie, E. Frazzoli, and F. Bullo. Distributed algorithms
for environment partitioning in mobile robotic networks. IEEE T
AUTOMAT CONTR, 56(8):1834-1848, 2011.

[15] S.A. Sadat, J. Wawerla, and R.T. Vaughan. Recursive non-uniform
coverage of unknown terrains for uavs. In IROS, 2014.

[16] M. Schwager, B.J. Julian, M. Angermann, and D. Rus. Eyes in the sky:
Decentralized control for the deployment of robotic camera networks.
Proceedings of the IEEE, 99(9):1541-1561, 2011.

[17] L.D. Stone. Theory of optimal search. MAS of INFORMS, 2nd
edition, 2007.

[18] S. Waharte, A. Symington, and N. Trigoni. Probabilistic search with
agile UAVs. In ICRA, pages 2840-2845, 2010.

