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Abstract— The use of autonomous robots for surveillance is
one of the most interesting applications of graph-patrolling
algorithms. In recent years, considerable effort has been de-
voted to tackling the problem of efficiently computing effective
patrolling strategies. One of the mainstream approaches is
adversarial patrolling, where a model of a strategic attacker
is explicitly taken into account. A common assumption made
by these techniques is to consider a worst-case attacker, char-
acterized by ubiquitous and perfect observation capabilities.
Motivated by the domain of robotic applications, we instead
consider a more realistic and limited attacker model capable
of gathering noisy observations in a locally limited range of
the environment. We assume that the modeled attacker follows
a behavior induced by its observations. Thus, we devise a
randomized patrolling strategy based on Markov chains that
makes observations reveal very little information, while still
maintaining a reasonable level of protection in the environment.
Our experimental results obtained in simulation confirm time-
variance as a practical approach for our objective.

I. INTRODUCTION

With increasing levels of intelligence and automation mo-
bile robots are now an enabling technology for autonomous
patrolling of indoor and outdoor environments [16]. Pa-
trolling is a repetitive and potentially dangerous task whose
execution costs can be mitigated by deploying surveillance
robots in the area of interest. Because these systems are
designed to be autonomous, the high-level planning of the
surveillance activities emerges as one of the most critical
challenges to achieving good performance and, ultimately,
detecting and preventing malicious activities in the envi-
ronment. Research in multi-agent and multi-robot systems
has produced decision-making algorithms for this problem.
Issues like how to plan efficient paths, where and when to
schedule surveillance actions, and how to coordinate with
teammates have been tackled by models encoding some envi-
ronment representation (for example, continuous or discrete)
and assumptions on agents capabilities and behaviors.

Generally speaking, this sub-field moved from single-
agent optimization models to more sophisticated adversarial
settings. The effort has constantly been that of capturing
more realistic situations to better model real-life applications,
and consequently provide more effective solutions. With
this perspective, models have been developed to include
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features such as cost measures, uncertainties, the presence of
adversaries with bounded rationality or agents with limited
knowledge available to them (see our review of related work
in Section II).

In this work, we concentrate on adversarial patrolling on
a graph with a single mobile robot and a single attacker. We
start from a common graph-based patrolling setting [7], and
extend it by introducing an attacker model whose ability of
acquiring strategic knowledge is restricted. Specifically, we
assume an attacker that can access only a local view of the
the environment and its features, and that can only make local
observations of the patrolling robot. These assumptions cap-
ture situations where acquiring strategic information about
patrolling activities is hard. This could be due, for example,
to the impossibility of gaining multiple and concurrent
observation spots in a cluttered or vast environment, or to
non-affordable costs for conducting widespread intelligence
activities before deciding where and when to attack. We fo-
cus on the problem of ensuring protection to the environment
while, at the same time, hindering as much as possible the
process with which the attacker propagates a belief from
the collected observations with the aim of evaluating the
probability of success for a potential attack.

Our contributions build on our previous work, discussed
in [6], where we introduced a model for patrolling against
a local observer and we provided the first solution based on
the idea of strategically injecting delays in the paths followed
by the robot (see Section IV for a summary). With respect to
such work, here we extend the basic model by introducing
observation errors in the attacker model, proposing the use
of time-variant Markov strategies to decrease the level of
correlations in the sequence of observations made by the at-
tacker (hence making it more difficult to construct a belief to
exploit), and conducting extensive experimental tests against
a broader set of learning strategies used by the attacker.

II. STATE OF THE ART

The use of mobile robots for surveillance is one of the
flagship applications of the field attracting a significant
amount of research [20]. Here, the central planning problem
is that of computing a patrolling strategy for orchestrating,
in space and time, the surveillance activities of a robot.

A first formalization and analysis of this problem in
multi-agent terms has been proposed in [10]. This, and
other seminal works dealing with patrolling on a graph-
represented environment, framed the search for effective pa-
trolling strategies as optimization problems where idleness-
based metrics were adopted as initial candidate objective



functions. The rationale behind this class of works is the
optimization of the inter-visit delays on some vertices of
the graph, each under specific modeling and operational
assumptions. The main limitation of these contributions is
the fact that they neglect the adversarial nature of many
patrolling problems which often model the presence of a
rational observer who can learn how patrolling is carried
out, predict the next moves up to some uncertainty, and
devise a best attacking response that takes into account such
knowledge. Despite such shortcomings and the availability
of more sophisticated methods dealing with it (see below),
these techniques still enjoy widespread use in real-world
implementations of robotic patrolling systems [22].

Security games [24] introduced game-theoretical models
for strategic resource allocation in the presence of adver-
saries. Robotic patrolling can be seen as one of these
problems where the resource to allocate is a robot moving on
a graph while the adversary (attacker) tries to compromise
some vertex. One common assumption is to adopt a Leader-
Follower interaction model [11], where the patrolling strat-
egy is common knowledge since the attacker can observe
its execution for an arbitrary amount of time. The approach
prescribes to commit to the best patrolling strategy given that
the attacker will best respond to it.

The Leader-Follower assumption implies full observability
of the environment and unlimited observation capabilities of
the attacker, two features that properly define a worst case
scenario but that are rarely satisfied in reality. A number
of works challenged these assumptions, like we do in this
work. In [2], the case of perimeter patrolling is considered.
In such work, different degrees of knowledge possessed by
the attacker are analyzed, from a zero-knowledge attacker to
a fully informed one and some resolution methods are pro-
posed and compared. However, the work considers gathered
knowledge from a general point of view without adopting
an explicit observation model for the attacker. Similarly,
other works have investigated the presence of noise in the
patrolling strategy observed by the attacker and devised
robust resolution methods. One example has been proposed
in [19] where bounded rationality is also considered for the
attacker. A similar approach is adopted in [26] where the
authors assume that the attacker cannot always observe the
current allocation of patrolling resources in the environment.
In [4] the attacker is allowed to perform a limited number of
observations from which it can propagate a belief over the
patrolling strategy, while in [25] the patrolling strategy is as-
sumed to be known but the attacker has no access to its real-
time realization (that is, it cannot assess the protection status
of the targets). This last work introduces leakage as a way
to episodically obtain such a knowledge from the target of
interest. Other examples are found in [3] where the attacker
constructs a belief of the patrolling strategy by performing
costly observations and dealing with a trade-off between cost
of observation and risk of capture. Finally, in [8] the authors
consider a similar belief-based observing attacker and show
that planning against the strongest observer might induce
limited losses of utility.

The approaches discussed above cast the limited obser-
vation capabilities of the attacker to some degree of uncer-
tainty in the knowledge it considers in computing its best
response. However, even if affected by errors or sometimes
not accessible, observations are assumed to entirely span an
environment whose structure is known by the attacker (with
the exception of [25] where the patrolling strategy is assumed
to be known). In this work, we adopt a local observation
model that allows the attacker to collect information only for
a single target. As a consequence, the environment and the
patrolling strategy are always unknown while its realization
can only be accessed at a single and fixed vertex. Attacker’s
locality has been investigated in [5], but not in relation to
the observation process. Instead, it is exploited in fixing one
attacker behavior according to when it positions itself at a
target and then, exploiting a local view, starts its attack as
soon as the patroller leaves for other targets.

Markov chains where states encode the current patroller’s
location have been extensively used to encode patrolling
strategies on graph-represented environments (see, for ex-
ample, [12], [1], [7]) despite their poor scalability when
extending states to a history of previous visits [7] (a lim-
itation recently addressed in [15] where response to sequen-
tial attacks is studied) and despite their possible failure to
describe the optimal patrolling strategy [14]. To the best of
our knowledge, the use of time-variance in the transition
matrix to deal with an observing attacker has never been
investigated.

III. PROBLEM SETTING

We adopt a patrolling model built on a customary setting
that has been adopted in numerous works dealing with
patrolling robots (see, for example [7]). We consider a
discretized environment consisting of n locations of interest
that we call targets and that will be indicated by the set
T = {ti,ta,...,t,}. The targets represent locations that
might be under risk of attack and that must be kept under
surveillance. Our discrete representation abstracts away from
other possible non-target locations and from the topology
with which target and non-target locations are connected.
Instead, we assume that given two (not necessarily different)
targets ¢; and t; there always exists at least one path
connecting them, that any path between them can be traveled
in both directions, and that the shortest path between them
has a temporal traveling cost known in advance and indicated
as d;; € R in the following.

The value of a target t;, a quantity proportional to its
importance, is denoted as v; € RT while the target’s
resilience to attacks is given by the attack time a; € RT.
The attack time measures the temporal cost that an attacker
must spend to successfully compromise the target’s security.
While it is reasonable to assume that most valuable targets
have the highest attack times, we do not make any a priori
assumption regarding this aspect.

In this context, a patrolling task is carried out by a single
mobile robot/agent traveling from target to target. We assume
that the robot has the capability of detecting the presence of



an ongoing attack and undertaking some action to potentially
stop it (for example, raising an alarm or alerting a human).
Such a capability is localized to the target currently visited
by the robot. Thus, if the robot visits target ¢; at time 7
and an attack on that target has started at a time within the
interval [max{0, T — a;}, 7), then the attack is detected and
neutralized. The status of a target is protected if the patroller
is located in it and it becomes unprotected when the patroller
leaves it.

The threat we assume to face is modeled as coming from
an attacker agent that, at any time 7, can start an attack to a
target ¢;. Once the attack is started, the time window [7, 7 +
a;) represents an exposure interval during which the attacker
can be stopped if the patrolling robot visits ¢;. As commonly
done in security games, we assume an underlying constant-
sum interaction between the patroller and the attacker. More
precisely, in the case where the patroller stops an attack on
target ¢; it receives a utility of U = .1, v; while the
attacker gets 0. On the contrary, if the attack on target ¢;
is successfully completed the patroller receives a utility of
U — v; while the attacker will conquer the target’s value v;.
The patroller’s movements in the environment are defined by
a Markov chain process where a state represents the currently
visited target. The n X n transition matrix P, where the entry
p;; represents the probability of transitioning from target t;
to target t;, defines the patrolling strategy used to protect
the environment. In the following, we shall assume that P
is irreducible and aperiodic [21], [18].

With respect to the classic literature on security games,
we propose two relaxations (introduced in [6], here ex-
tended with observation errors) that allow us to capture
some realistic aspects encountered in real-world applications.
The first is about the patroller’s movement model. The
mainstream approach prescribes that temporal traveling costs
of shortest paths (in our setting defined as d;;s) should
always correspond to the actual times spent by the patroller
for moving between targets. Indeed, in standard strategical
settings it can be relatively easy to show how following such
rationale weakly dominates the opposite. In our model, we
embrace only this basic requirement:

a) we interpret d;; as a lower bound for the time spent
traveling between ¢; and t; allowing for occurrences
where the patroller takes some extra additional time to
transfer.

As we will show, this feature can be useful in scenarios when
dealing with a non-fully informed attacker.

The second relaxation we introduce involves the model of
the attacker. Typically the attacker is modeled as a rational
and fully informed agent that has access to the environment
topology, the patrolling strategy being executed by the robot,
and its current position. The derived game is hence solved
according to a leader-follower paradigm where the attacker
substantially best responds to the observed patrolling strategy
and the patroller’s current position. In our model we instead
assume an attacker that is still rational, but that is not
fully informed. More specifically, our attacker model is
characterized by the following features:

b) the environment topology and, as a consequence, the
values of v; and d;; for all ¢;,¢; are not known and not
accessible;

c) the patrolling robot cannot be observed while it executes
its task in any location of the environment, meaning
that the current position is, in general, unknown and no
observation-induced belief over the patrolling strategy
can be maintained;

d) the attacker' is hidden and ready to attack at an un-
known target where it can gather local observations
under the assumptions described below.

When observing a target during a time where it is unpro-
tected, the collected information will not be affected by
errors. In other words, we assume a null false-positives rate
a = P(protected | unprotected) = 0. On the contrary, if
the attacker is observing a target whose state is protected,
with probability 5 it will not detect the presence of the
patroller independently of how long the patroller stays on
that target an it will be mislead into believing that the target
has been unprotected for the whole time. In other words, we
assume a non-null false-negative rate 8 = P(unprotected |
protected) > 0.

With the model a)-d), we relax some of the assumptions
made in security games, namely, that the patrolling setting
is fully observable. Instead, the attacker model we consider
does not have any prior knowledge on the patrolling setting
but only relies on locally limited and noisy observations of a
single target. These features capture realistic settings where
the planning activities of an attacker take place locally to
the target itself and, at the same time, the context in which
the patroller is operating (its current position, the set of
targets, and the patrolling strategy) are out of reach due
to inaccessibility or high intelligence costs. As a concrete
example consider a large site protected by an autonomous
patrolling unit. Our attacker does not have enough power to
monitor the whole site for a long time because it would
take too much effort. As a consequence it cannot derive
the environment discretization used by the patroller and the
surveillance strategy. What it can do, instead, is to loiter at
the chosen target area and evaluate its chances on the basis
of what it observes there.

IV. PATROLLING AGAINST A LOCAL OBSERVER

The scenario described above induces a situation where
the patrolling agent travels from target to target by following
a transition matrix P. The attacker, hidden at an unknown
target that we denote as t¢;, observes a sequence of state
changes on that target: from uncovered to protected as soon
as the patroller visits ¢; and the opposite when it leaves
(up to false negatives). Since the success or failure of an
attack depends on the patroller’s visit within an exposure
interval, the attacker is incentivized to log state changes
with a timestamp and to extract a time-series defined as
subsequent realizations of a random variable R; modeling

'Despite we will generically refer to a single attacker, our model
would work also under the interpretation of up to n equally defined and
uncoordinated attackers.



the patroller’s return time (or inter-arrival time) to target t;.
In the long run, the attacker will take advantage of such
knowledge by deriving a belief on P[R; > a;], that is the
probability that the target will stay uncovered for enough
time to complete an attack. In short, we shall call it attack
probability. Due to assumptions a) and b), no inference
on the environment topology can be exploited. Specifically,
notice that assumption a) also applies to self loops, allowing
the patroller to leave ¢; and then returning to it after an
arbitrarily small amount of time. For such reason, the attacker
does not have incentives in waiting some extra time after the
target has become uncovered, meaning that, if the attack must
start, it will initiate as soon as the patroller has left the target
(thus justifying the use of R;).

The problem we face when computing a patrolling strategy
for such a local observer is a standard constant-sum setting,
namely finding P such that the maximum attack probability
is minimized. Recall that, due to assumption d), the target
at which the attacker is hidden is unknown. Because of
the difficulty in computing the exact probability, in [6] we
provided a first, approximate answer to this question by using
the upper bound given by Markov’s inequality [17]

E[R;]

P[Rj > Clj] <
a;

= U;
and in this work we use this same solution?.

The objective we seek for the patrolling task is twofold.
From one side the patrolling strategy should provide the max-
imum protection at convergence. That is, it must optimize
the attack probability when working under the condition in
which the attacker has managed to derive a correct belief
over it. At the same time, it is desirable that such condition
is hard to meet by the attacker, making the construction of
a belief from the observations of R; as difficult as possible.

One first method that we introduced in [6] is based on
the idea of decoupling spatial and temporal decisions when
patrolling the environment. This is achieved by an iterative
two-step decision process. Let us suppose that the current
target occupied by the patroller is ¢;. In the first step the next
target t; is selected according to a Markov chain strategy
expressed by P. In the second step the patroller draws
a value §;; from the uniform distribution U[d;;,d;; + A]
where A € R{ is a parameter representing the maximum
delay to be applied. Finally, the patroller constraints itself
to spend d;; to reach t; starting from ¢;. In [6] we have
shown that the random delay causes the attacker to see a
sequence of return times that have the characteristics of
white noise. This strategy is summarized in Algorithm 1,
where with © = (71, 7a,...,7,) we denote the stationary
distribution induced by P. Notice that since we assumed that
P is irreducible and aperiodic, 7 is unique and guaranteed
to exist.

When adopting a strategy of the form described in Algo-
rithm 1 the upper bound on the attack probability can be
written as

2A numerical algorithm iteratively converging to the correct attack
probability is the subject of ongoing research.

Input: T, distances d;;s, values vy, vs,. .., vy, attack
times a1, as,...,a,, A, transition matrix P;
Select the start target ¢; ~ r;
while true do
Select the next target ¢; with probability p;;;
Generate a random time 6;; ~ U[d;;, d;; + Al;
Move to t; spending time J;;;
t; < t]’;
Algorithm 1: Time-delayed patrolling strategy.

n
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and solving for the optimal stationary distribution 7r*, that
is the one that minimizes the maximum upper bound of the
attack probability, gives the following (see [6] for details):

. _ vs

T = an Vit; € T, with u; = i
Do Hy '
i=1

Given the stationary distribution 7*, a time-delayed
patrolling strategy can be implemented by running the
Metropolis-Hastings algorithm to obtain P (see details in
the next section). The rationale behind this strategy is that by
tuning the parameter A we can lower the autocorrelation in
the time series of inter-arrival times observed by the attacker,
hence making it harder to forecast.

V. TIME-VARIANT STRATEGIES

An additional way to increase the difficulty of forecast-
ing inter-arrival times is to introduce time-variance in the
transition matrix derived with the approach described in
the previous section. We introduce time-variant patrolling
strategies which are obtained by changing the matrix P
used to determine which vertex to visit next. The key fact
to implement this approach is that we can determine an
infinite number of transition matrices P all having the same
optimal stationary distribution 7v*. To see this, we just use the
Metropolis-Hastings algorithm [23] with a random proposal.
More precisely, for a given 7* to generate P we start with
a random?® transition matrix Q whose entries are all strictly
positive. Let ¢; ; be the (4, j) entry of such matrix, and let

* ..

—mind 1 %
Q; j = mMin 5

) * L.

7T7; 7%,3

Then, for i # j we set p; j; = ¢;;0 5, and py; is set so that
all rows add up to one.

From this premise, we consider four different methods,
each defined by the rule used to decide when to drop the
current transition matrix P(*) and switch to a new matrix
P(5+1)_ Furthermore, we introduce the concept of duration

3This can be easily created by repeatedly calling a uniform random
number generator with strictly positive support to fill up the matrix, and
then normalizing each row to add up to one.



of a transition matrix, a quantity that determines the time
span during which the same transition matrix is used.

In the constant-transition strategy the duration of a transi-
tion matrix is defined as a constant number of transitions, say
M. That is to say that the patroller keeps an internal counter
that is increased every time a new target is visited. When the
counter reaches M, a new transition matrix is generated and
the counter is reset. Evidently, M is a parameter that needs
to be picked upfront. The random-transition strategy is a
modification of the previous strategy where the duration of
each transition matrix is not given by a constant number of
transitions, but is rather distributed according to a Poisson
distribution with parameter \. Every time a new transition
matrix is generated, its duration is sampled from the Poisson
distribution. In other words, each transition matrix is associ-
ated with its own randomly defined duration. The constant-
time strategy relates the duration of a transition matrix to
the time spent by the patroller to move from vertex to vertex
(differently from the previous two methods that use the
number of transitions to determine when to change transition
matrix). Specifically, when moving from ¢; to ¢; the patroller
spends time d;; (recall Algorithm 1). In the constant time
approach, a fixed threshold Th;4x is defined, and as the
patroller moves from vertex to vertex a cumulative variable T’
is used to add all the various d;;. When T exceeds Thsax, a
new transition matrix is generated and the variable 7" is reset
to 0. In this strategy T4 x is a constant parameter playing a
role similar to M in the constant transition strategy. Finally
the random-time strategy works exactly as the previous
one, except that Th;4x is not a constant, but is rather
sampled from an exponential distribution with parameter 1*.
Similarly to the random transition strategy described above,
every time a new transition matrix is generated, its duration
is determined sampling from the exponential distribution and
therefore every transition matrix has a different duration. The
time-variant strategies are summarized in Algorithm 2.

Input: T, distances d;;s, values vy, vs,. .., vy, attack
times ai,as,...,a,, A, stationary distribution 7r;
k < 0 while true do

Generate P* from m;

while the duration of P* has not expired do

‘ Set P «+ P* and run Algorithm 1;
k+—k+1
Algorithm 2: Time-variant patrolling strategy.

All the above strategies depend on a parameter defining
when to change the transition matrix. This choice could
be made in different ways. One approach, embraced in
the next section, is to perform a preliminary search for a
given set of benchmark graphs, and then pick the value
of the parameter that maximizes a performance function
(see later discussion about possible metrics). This method
is off-line, i.e., the parameter is decided upfront and remains

“4For the exponential distribution we use the parametrization where ) is
the expectation.

constant throughout the run. In the conclusions we will
discuss another possible on-line approach where the decision
on when to change matrix is rather taken on the fly.

VI. EVALUATION

We generated 50 environments of different sizes consid-
ering complete graphs with 10, 20, 30, 40, and 50 targets,
and, for each size, we generated 10 random instances. The
graphs vertices were created by randomly placing points on
a 100 x 100 plane and then setting each edge’s temporal cost
d; ; to the Euclidean distance between t; and t;. The value of
each target v; was drawn from 1 + /[0, 10] while the attack
time was drawn from U[D,3D] where D is the average of
the temporal costs d; ;.

While in [6] we considered a single strategy for the
attacker, in this paper we test our algorithm against three dif-
ferent types of observing attackers. In each case the attacker
computes a prediction of the next inter-arrival time at the
target as soon as a transition from protected to unprotected
is observed. If the predicted value is greater than the target’s
attack time, the attack is attempted. Starting from its local
observations, each type of attacker uses a different method
to predict the time when the attacker will visit the vertex
again.

The first type of attacker assumes that inter-arrival times
at target ¢; follow an exponential distribution with parameter
A; and uses a maximum likelihood approach to estimate such
parameter. The attacker then derives a prediction for the next
inter-arrival time by taking 1/);, that is the expectation of
the hypothesized exponential distribution.

The second type of attacker uses a nearest neighbor
(NN) approach to forecast a time series [9]. The attacker
observing target ¢; acquires a sequence of observations O =
(RY, R, R?,...) for the inter-arrival times. It then considers
all the sub-sequences of length m, where m can be thought
as the attacker’s finite memory, and computes the distance
between each of these sequences and the last m inter-arrival
times that have been observed. The closest sub-sequence
(different from the last one) is selected and the inter-arrival
time observed immediately after such sub-sequence is taken
as the prediction. In all our experiments, m = 10.

The last type of attacker exploits a deep neural network
(DNN) consisting of a fully connected regression network
with 200 hidden units using a long short-memory layer [13].
Owing to the necessity of having enough training data, this
method uses the first 500 observations to train the network
and then makes predictions for the times of the remaining
visits. The parameter 500 was obtained after manual tuning,
and never represents more than 90% of the data available
for training and testing. It shall be noted that, owing to the
large number of parameters to tune, this method requires
significantly more data than the other two and from a practi-
cal standpoint one could argue that when observations have
a cost, an attacker would be unlikely to use it. Nonetheless,
due to the vast popularity of these methods, it is interesting to
use this approach to assess intrinsic strengths or weaknesses
of our patrolling strategy.



We define an evaluation metric denoted as protection
ratio. This quantity is obtained empirically, by simulating
a deployment of the patrolling strategy we want to evaluate.
First we simulate the strategy for a total of K transitions.
(In our experiments, K was set to 10000 for the first two
methods and to 100000 for the DNN, due to the necessity
of generating sufficient training data). Afterwards, for each
target ¢; we consider K; as the set of transitions after which
the status of ¢; changed from protected to unprotected. For
each £ € K; we run the three attacker types feeding them
with the whole history of inter-arrival times generated at
t; by all the transitions preceding k. We then record each
attacker’s decision and, if that decision was to start an attack,
we label the attack as successful/unsuccessful by looking at
how the patrolling mission would unfold ahead of k. Call
N4(¢) and NY(i) the number of attack attempts and the
number of unsuccessful attacks generated by such procedure
on target t;, respectively. The protection ratio for target ¢; is
then defined as v; N%(i)/N*(i). Ideally, this metric should
be high, i.e., for high-value targets we prefer patrolling
strategies causing the attacker to perform many unsuccessful
attacks. In the experiments we present, the choice for the
parameters defining the four time-variant strategies (shown
at the top of the figures) were informed by a preliminary
comparative evaluation of different choices. In particular,
we run the algorithms on a set of benchmark problems
and picked the values giving the best performance averaged
across all instances. Also, the plots we show (obtained in
instances with 30 targets) are a representative selection of
the results obtained for the other cases that, for reasons of
space and clarity, we do not show.
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Fig. 1. Protection ratio for each vertex with attacker using a NN strategy.
In Figures 1 and 2 we start by contrasting the time-
variant strategies with the time-invariant method we proposed
in [6]. In particular, we plot the protection ratio for one of
the environments with 30 vertices. In this case the attacker
used the NN approach. As it can be seen, the temporal
variant strategies outperform the time-invariant strategy at
the majority of targets ensuring a more extensive protection.
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Fig. 2. Protection ratio for each vertex with attacker using a NN strategy.

Vertices where the gaps are marginal are those typically
characterized by small attack times. For such vertices, the
patroller can do little to prevent an attack since they represent
locations intrinsically difficult to protect.
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Fig. 3. Protection ratio for each vertex with attacker using a maximum
likelihood strategy.

Next, in Figures 3 and 4 we display analog results, by
considering the case where the attacker uses the maximum
likelihood method. It can be observed that the performance
is rather similar, with time-variance outperforming the non-
variant strategy. A possible explanation behind such trends
is that time-variance makes these patrolling strategies harder
to learn and hence predicting inter-arrival times is likely to
be subject to errors. Slightly more complex methods such as
NN do not tend to outperform simpler approaches like the
prediction based on maximum likelihood (similar results we
obtained with number of targets between 10 and 50).

This intuition about the hardness of forecasting these
strategies is confirmed by the results obtained when the
attacker uses a DNN. This is shown in Figures 5 and 6.
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Fig. 4. Protection ratio for each vertex with attacker using a maximum
likelihood strategy.
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Fig. 5. Protection ratio for each vertex with attacker using a DNN.

First, observe that the absolute values for the protection
ratio are essentially comparable to those obtained with the
other types of attacker. Therefore even if the attacker uses a
more sophisticated technique to forecast the next visit to the
vertex, the performance does not improve. We explain this
result with the intrinsic hardness of predicting the time series
generated by our patrolling strategies. This is particularly
relevant because the tests with the DNN were on purpose
skewed in favor of the attacker: the network was trained with
significantly more data than the samples made available to
the attackers based on the NN or maximum likelihood. The
only outlier case appears to be the protection ratio for vertex
23 in Figure 6. Due to the black box nature of the forecast
approach implemented by the DNN, it is difficult to explain
why this happens. However, this single outlier does not
hinder the overall conclusions we derived, although further
investigations will be done in the future. Figure 7 further
corroborates our assessment that data intensive methods like
DNN do not significantly outperform simple strategies. The
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Fig. 6. Protection ratio for each vertex with attacker using a DNN.

figure shows the protection ratio for a testcase graph when
the attacker uses the three different strategies we considered.
While the maximum likelihood and the NN offer comparable
performance, the DNN almost uniformly performs worse
that the other two strategies in terms of ability to correctly
predict the next arrival time, while at the same time requiring
significantly more data to train.
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Fig. 7. Comparison between the protection ratio achieved on a testcase
graph against three different attack strategies.

In the last experiment we present, we assess the perfor-
mance of our strategies with respect to the false negatives rate
B. We analyze how the average protection ratio varies with
respect to what we denote as observation accuracy, defined
as 1 — 3. The lower this accuracy, the more frequently the
attacker will believe that the target has been unattended even
if the patroller has actually been there to check it.

In Figures 8 and 9, we report this analysis for the random-
time strategy and for the time-invariant one against the
maximum likelihood attacker. The intuitive trend that would
be expected from an attacker affected by increasing levels of
observation noise is that of an increase in the protection ratio.
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Fig. 8. Protection ratio for each vertex with the random-time strategy and
the maximum likelihood attacker for different observation accuracy.
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Fig. 9. Protection ratio for each vertex with the time-invariant strategy and
the maximum likelihood attacker with different observation accuracy.

That is, attackers with higher false negatives rates should be,
on average, performing worse against our patroller. However,
the figures reported below draw a less intuitive and more
insightful picture. We notice that for not remarkably low, and
hence reasonable, values of accuracy (> 0.8) no significant
difference can be observed in the average protection ratio for
both strategies.

VII. CONCLUSIONS AND FUTURE WORK

We studied an adversarial patrolling setting where the
attacker is characterized by an observation model allowing it
to gather information only locally to a target. We proposed
heuristic methods to generate patrolling strategies that, using
delays and time-variance, provide protection and are difficult
to forecast. A compelling future direction for the present
work is the study of on-line techniques to adapt time-
variance. One possible approach is to have the patroller

running an online model of a baseline attacker (e.g., one
that runs a maximum likelihood estimator) and use it in the
decision of when to switch from a strategy to another. This
extension is left for future work.
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