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Abstract

This paper presents a variable resolution framework for autonomously searching
stationary targets in a bounded area. Theoretical formulations are also described
for using a probabilistic quadtree data structure, which incorporates imperfect
Bayesian (false positive and false negative) detections and informs the searcher’s
route based on optimizing information gain. Live-fly field experimentation results
using a quadrotor unmanned aerial vehicle validate the proposed methodologies
and demonstrate an integrated system with autonomous control and embedded
object detection for probabilistic search in realistic operational settings. Lessons
learned from these field trials include characterization of altitude-dependent de-
tection performance and we also present a benchmark data set of outdoor aerial
imagery for search and detection applications.



1 Introduction

The prominence of and the increasing reliance on unmanned systems for information gathering tasks
in military and civilian contexts have been met with equally fervent advances in the theoretical and
applied robotics communities. Especially invaluable in intelligence, surveillance, and reconnaissance
(ISR) missions, a growing family of unmanned aerial vehicles (UAVs) has significantly and positively
impacted mission areas such as homeland security for border protection; maritime domain awareness
such as in counter piracy operations; force protection of personnel, e.g., in supply convoys; and urban
search and rescue. The advent of smaller, tactical UAVs, such as the quadrotor platform, offers
enhanced, if not novel, capabilities for collecting mission-relevant information in these and other
contexts. For example, quadrotors offer motion control authority in any direction, can loiter in
place, and can move vertically, thus varying the field of view while remaining stationed above the
same point. These properties make them ideal for missions where the goal is the tactical search for
an object or person of interest, such as in the detection of a stolen vehicle or the search and rescue
of a downed aircraft or pilot.

Yet with these platforms and a constantly expanding set of sensing modalities also comes a deluge
of sensor data, exceeding the abilities of operators and analysts alike to process, exploit, and
disseminate the information in the form of actionable decisions relevant to the mission. Though
offline processing of the data is possible albeit still intensive, many tasks require real-time decisions
to be made based on the observed scene. In particular, in missions such as physical search for
one or more targets, the ability to adaptively update the search route with new information from
observations is key to optimizing the probability of detection or time until the target(s) are found.
The intuition that adaptive search performs better than offline methods has been investigated in
Hubenco et al. (2011), where it is shown that when the sensor is informative an adaptive search
strategy outperforms offline approaches ignoring data acquired while the mission develops. The
approach we propose falls under the category of online, adaptive search methods.

It is in these information-rich contexts where guidance for the operators in the form of decision
support tools (also known as tactical decision aids) can make significant improvements in mission
performance. In particular, the operator or commander can utilize a given decision support tool
which automates much of the decision processes. Recognizing the inextricable interactions necessary
between humans and their robotic counterparts when conducting complex missions, a growing
trend in these manned-unmanned teams is to use decision support tools to facilitate cooperation
and a common informational picture. Integral elements to such an interface in the context of
target search includes: (a) optimized search route recommendations stemming from algorithmic or
analytic methods, and also (b) automated detection and perception of targets using machine vision
techniques.

This paper proposes a theoretical framework to address both of these elements and also demon-
strates its effectiveness and applicability through field experiments with a quadrotor UAV in a
realistic operational environment. The main contributions of the presented work include a novel
variable resolution data structure and theoretical approach for conducting probabilistic search of a
target. Further, the field experiments in an outdoor, large-scale setting described herein and the
experimental validation of the proposed approach using a quadrotor UAV provide valuable data
and operational insights into realistic applications of search.



The remainder of this manuscript is organized as follows. Related work is discussed in Section 2.
We formulate a model for variable resolution search in Section 3 that leverages the quadrotor’s
strengths as an ISR platform and introduces the probabilistic quadtree data structure. Section 4
describes the variable resolution search process which includes computing optimized search paths
and updating the searcher’s belief of target presence or absence. These analytic methods are
experimentally validated in outdoor field conditions, from which collection of a unique image dataset
and characterization of the automated detection methods are summarized in Section 5. Section 6
concludes the paper with discussions and avenues for future work.

2 Related work

The problem of search for objects stems from Koopman (1979) and the theory of search, where
applied probability models coupled with mathematical optimization led not only to the effective
defense against U-boats in World War II but also to the birth of operations research as a discipline.
Since this time, many researchers have explored the mathematical foundations of search theory.
For a survey of the literature, see Benkoski et al. (1991) for works through 1991 and Chung et al.
(2011) for more recent results. These classical works largely investigate the offline optimization of
search allocation, where optimized plans are determined (often laboriously) and executed without
incorporating newly gathered information or potentially changing objectives. The primary measures
of performance used in these studies include metrics such as maximal probability of detection of
the target(s) or the minimal time until detection occurs for one or more targets. A recent work
that combines both these two metrics within a search and rescue application domain has been
presented in (Lin and Goodrich, 2009). Constant altitude UAVs with fixed camera footprint size are
considered. Given a prior probability distribution, the problem is to generate paths that maximize
detection probability and minimize needed time. Such a problem is modeled with combinatorial
optimization and different algorithms to tackle it are proposed.

However, with the advent of improved computational resources, adaptive search plans (Stone, 1989)
are possible. These methods, such as optimal control techniques for search trajectories (Foraker,
2011) or computational constructs like POMDPs (Eagle, 1984), incorporate new observations to
inform their next actions, which benefits from the most updated information to guide the search
process. Works aligned with the search models presented in this paper include those by Furukawa,
Hedrick and respective colleagues. In particular, Bourgault et al. (2006) and Lavis et al. (2008) cast
the search problem as a Bayesian framework that accounts for imperfect sensors, that is, sensors
providing false positive and negative detections. Likewise, Tisdale et al. (2009) exploit Bayesian
filtering over a grid where sensing and localization errors are integrated to provide a control policy.
Optimal search paths are planned in a receding horizon setting, with the aim of guiding a team
of searching UAVs. Authors discuss paths evaluation in terms of entropy-based information gain
and expected detection probability. Sometimes, assumptions about the probabilistic framework can
improve the search strategy. Some work in this direction has been recently presented in (Bonnie
et al., 2012). This work studies the problem of probabilistic search in a continuous domain where
a robot is endowed with a binary faulty sensor. In building a probabilistic framework, authors
adopt a sensor model whose accuracy is affected by the distance between the robot and the object
to be found. Under the hypothesis that prior and sensor model belong to the exponential family



of distributions, some properties about the posterior are shown, i.e., that it belongs to a finitely
parameterizable family of functions. Exploiting this result, a probabilistic search strategy is defined
via gradient ascent methods. Recently, some interest has been devoted to the study of this problem
under unreliable prior probability distributions. A work following this research line is (Sisso et al.,
2010) where robustness to initial uncertainty is explicit considered in optimizing search strategies.
The development of adaptive plans stemming from the search literature extends also to similar
domains such as patrolling. Relevant work in this domain has been carried on by Frazzoli and
colleagues (Huynh et al., 2010). The authors consider the problem of detecting a number of dynamic
targets, searching for effective strategies and analyzing their performance. A common line in these
works, much like the majority of other related works, is the reliance on a uniform representation of
the environment in which the search strategy is constrained to operate.

Another common aspect of such works, and of search literature in general, is the assumption of a
model for the object to be searched for, also called the target. Broadly speaking, a target model
can be described along two main dimensions: stationary/moving target and single/multiple targets.
Considering this, the aforementioned sample of works can be divided as follows. Bourgault et al.
(2006), Lin and Goodrich (2009), Tisdale et al. (2009), and Bonnie et al. (2012) deal with a single
stationary target while Huynh et al. (2010) and Sisso et al. (2010) consider multiple stationary
ones. Eagle (1984) and Bourgault et al. (2006) address the case of a single moving target while
techniques suitable for multiple moving ones are proposed by Lavis et al. (2008) and Foraker (2011).
Maintaining probabilistic knowledge about multiple targets or integrating a target’s movement
model in the decision process can challenge a search strategy’s definition and obtained performance,
see for example (Carpin et al., 2011). To align with the performed field experiments and to primarily
focus on probabilistic quadtrees, this work builds on (Chung and Carpin, 2011) and considers a
single and stationary target.

Though still nascent, efforts to conduct live-fly experiments with unmanned aerial vehicles continues
to motivate this line of research in search and surveillance problems (see Kendoul (2012) for a recent
survey on unmanned rotorcraft systems). Besides ISR applications, search and rescue and disaster
mitigation continue to be areas where the use of UAVs promises to bring great benefits (Goodrich
et al., 2008; Pratt et al., 2009; Schmid et al., 2012). The use of search models in a decision
support context to guide the search has also been demonstrated by Jones et al. (2011), where the
authors deployed an integrated system employing fixed-wing UAVs to conduct search for target
vehicles in the field. This work combines various elements necessary for real-world implementation,
including guidance, navigation and control and networked flight assets with search planning and
automated image processing. Similarly, the search problem formulated as a mixed integer program
is demonstrated in field experiments in Chung et al. (2009), allowing for allocation of multiple
heterogeneous aerial sensors looking for walking individuals to conduct a search and identification
mission. However, in both of the previous works, the sensor platforms are also limited to fixed
sensor footprints and an arbitrary uniform discretization of the search area.

A key challenge to robust implementation, however, remains the computational tractability of
the above approaches, especially with the demand of adaptive and iterative calculations necessary
to update the (probabilistic) representations of the current information state. Specifically, the
representations in the aforementioned works rely on uniform discretization and/or static partitioning
of the search environment. However, this representation at fixed resolution restricts the problem



solutions to be either computationally infeasible (for cases of moderate resolutions) or operationally
irrelevant (for solvable but low resolutions). Such is the nature of search problems, where the
search regions are large but the subject of search is relatively small (National Search And Rescue
Committee, 2000).

In this manner, multi-scale methods, i.e., those that can vary the resolution of the search effort
and/or environment representation during the course of the search process, are both requisite
and promising for addressing search scenarios of practical interest. Broadly speaking, multi-scale
representations are largely adopted in different research fields such as Computer Graphics (see (Pa-
jarola and Gobbetti, 2007) for a particular application example) and Computational Geometry
(see (de Berg et al., 2000) for an extensive treatment of the subject). Considering our domain, re-
cent works by Schwager et al. (2011) explore discretizing the environment using Voronoi partitions,
adapting the sizes based on a balancing of information content within these partitions. However,
this formulation does not lend itself to computational advantages offered by a multi-resolution data
structure. In other works, Waharte et al. (2010) examine how varying altitudes of an aerial sen-
sor platform induces observations of partial areas which may overlap multiple grid cells; however,
these insights are not explicitly used to construct a variable resolution representation of the search
environment nor to inform the search process.

3 A model for variable resolution search

In this section we present our variable resolution model. The model is developed to solve search
problems where the UAV looks for one or more stationary items of interest possibly located inside
a given area. Our assumptions, corroborated by our experimental setup described in Section 5, are
the following.

1. The UAV searcher is equipped with a downward pointing camera and the area captured
by the camera therefore varies as the UAV alters its elevation. This variation in the sensed
area, already evidenced in Waharte et al. (2010), implies that objects of interest appear in
images at different sizes, depending on the searcher elevation.

2. The searcher uses a target detection algorithm to identify objects of interest inside acquired
imagery. The target detection algorithm is prone to false positive and missed detections
and its performance depends on the elevation. We assume error rates are known before the
mission starts, i.e., they can be estimated off-line from previously acquired imagery.

These two assumptions are discussed in more detail in the following.

3.1 Probabilistic quadtrees (PQs)

The first hypothesis calls for a variable resolution spatial representation accounting for the trade
off between field of view and elevation. We opt for a representation based on quadtrees, a popular
data structure heavily used in computational geometry (de Berg et al., 2000). Figure 1 illustrates



the idea. When the searcher hovers at a higher elevation its camera sees a larger area, while at
lower elevations the area is smaller. With a fixed resolution camera this means a lower accuracy at
higher elevations and vice versa.

Figure 1: When flying at different elevations, the nadir-pointing camera captures areas of different
size. The probabilistic quadtree structure is used to model this tradeoff.

According to its classic definition, a quadtree T is a rooted tree in which every node n is associated
with a square1 area A(n). Every internal node n has four children, and the area associated with
its children is obtained by splitting A(n) in four equally sized squares. In our search application
we dictate that the node at the root of the tree is associated with the entire search area. Note that
there is a well defined relationship between the size A(n), the depth of node n in the tree, and the
elevation of the UAV when taking a picture covering A(n). Specific examples will be given while
discussing the experimental setup in Section 5. To every node n we associate a binary random
variable Xn indicating whether one or more targets are located inside A(n) or not, and we define
pn = Pr[Xn = 1], i.e., pn is the probability that a target is inside A(n). Because of the association
between nodes and random variables, we dubbed this data structure probabilistic quadtree (PQ).
Note that A needs not be a full tree, i.e., its leaves may have different depth. Therefore the
tree may have deeper branches (and thus higher resolution) in some areas and shallower ones
in others. Probabilistic quadtrees introduce a novelty with respect to the customary approach
embraced by numerous techniques in literature where search develops over uniform representations
(see, for example, Lavis et al. (2008) and Lin and Goodrich (2009)). A full probabilistic quadtree is
associated with a stack of regular grids (see also Figure 4), i.e., one for each level. Once a maximum
depth d is defined for a PQ, the grid associated with the maximum depth induces the maximum
resolution achievable, i.e., the size of A(n) when n is a node at the maximum depth. We close
this section introducing two additional symbols used in the following. For a tree T we use L(T ) to
indicate the set of leaves of T , and k to indicate the number of nodes in T .

In our model the searcher uses its target detection algorithm only when it is located at a position
associated with a node in the PQ. When traveling between nodes in the tree the target detection

1We here assume it is a square for simplicity, but the approach equally works when the area is a rectangle.



algorithm is not used. This hypothesis is corroborated by our field experience. With a lightweight
quadrotor images taken while moving from point to point are very blurry and greatly compromise
the performance of the target detection algorithm. Therefore images are only captured when the
robot is stationary after having reached a planned target point.

3.2 Target detection algorithm

The second hypothesis defines the behavior of the target detection algorithm. Target detection
operates as a binary classifier that, given an image, returns 0 if no targets are located inside the
image and 1 otherwise. Because of unavoidable errors, its functioning is described probabilistically
as follows. Let Zn be the value returned by the target detector after analyzing an image covering
A(n). Zn is modeled as a binary random variable and we define

Pr[Zn = 1|Xn = 0] = α(d(n)),

Pr[Zn = 0|Xn = 1] = β(d(n)).

where d(n) is the depth of n in quadtree T . In the remaining of this paper we hypothesize these
probabilities are known to the searcher. The formulas formalize our assumption that error rates for
false positive α and missed detection β are elevation dependent (recall that there is a one-to-one
correspondence between elevation and node depth d(n) and that Xn indicates whether there is a
target in A(n) or not). Although one could anticipate error rates are monotonic, our experience
with off-the-shelf target detection algorithm shows this is not always the case (see Section 5.3) and
the trend depends on the specific detector being used.

4 Aerial search with probabilistic quadtrees

We use probabilistic quadtrees to solve two types of search problems. In the first one, coined Type1
PQ and introduced in (Chung and Carpin, 2011), at most one target is located inside the search
area. In the second one (Type2 PQ), an arbitrary number of targets may be present. We here
discuss Type1 PQ only, because it is related to the field experiments presented later on. We refer
the reader to (Carpin et al., 2011) for a discussion about the case with multiple targets. For the
sake of completeness, in the following we include a comprehensive discussion about Type1 PQ.

In our search problem a target is found when it is localized inside a square with a given size s. Once
a square search area S and a desired size s are specified, the maximum PQ depth D is therefore
determined.2 During the search effort new nodes will be added to the PQ and its depth will increase
with the objective of generating leaves at depth D covering the area where the target is located.
This tree expansion is a prerequisite for being able to eventually locate a target inside a cell of side
s.

2To be precise, one should further assume that the ratio between the side of S and s is a power of 2. When this
is not the case the ratio can be achieved by arbitrarily enlarging S. Without loss of generality, in the following we
will ignore this technicality.



A Type1 PQ problem is defined as follows. Let T be a PQ and let r be its root node with A(r) = S,
i.e., the root of the tree is associated with the entire search area. Assuming there is at most one
target inside S, plan a sequence of sensing operations so that the searcher eventually terminates
with a search decision. A search decision can either be No target present or Target found in node
n where n is a node in T at maximum depth D.

Before discussing the individual steps to solve the search problem, we remark that if n is an internal
node in a Type1 PQ T and n1, n2, n3, n4 are its four children, then the following relationship holds
because there is at most one target:

pn = p1 + p2 + p3 + p4. (1)

Moreover, notice that knowing there is at most one target implies all variables Xn associated with
leaves are correlated, as already observed in (Chung, 2010).

4.1 Initializing a probabilistic quadtree

Probabilistic quadtrees can be initialized by taking advantage of informative priors about the loca-
tion of targets, or based on uniform uninformative priors when such information is not available. We
assume priors represented on a uniform grid discretization of the environment are provided to the
algorithm, as this is the format commonly used by human operators performing search operations
in the field (see e.g., National SAR Committee (2000)). The goal of the initialization procedure is
therefore to compress a prior given over a uniform, fine-grain grid into a coarser, faster-to-search
PQ structure. To this end, we start building a full, maximum depth PQ whose leaves are associ-
ated with the same grid cells provided by the uniform grid. Then, the tree is iteratively pruned to
reduce its size to a target value so that processing can be faster. Pruning works as follows. For
every internal node n we compute the difference between the highest and lowest probability stored
in its four children. We call this value disparity and store it with the node. Next, we sort internal
nodes in ascending order by their disparity value and repeatedly remove their children from the tree
starting from those with lowest disparity. Every time a set of children is removed the size of the tree
decreases. However, because of Eq. 1 every parent stores the sum of the probability of its children,
and therefore prior information stored in nodes being removed is not lost, but rather aggregated
on the parent. We stop this process when the tree size falls below a target size. The rationale
behind this idea is that nodes with low disparity have a set of children with similar probability and
these can be adequately represented by their parent. Following this method, the final PQ will have
a higher resolution where the prior significantly varies, and a lower resolution in areas where the
prior is flat, thus truly exploiting its variable resolution nature. Figure 2 illustrates this idea with
some examples. One should finally notice that different pruning strategies could be implemented
to reduce the size of the initially full tree, but the rest of the search strategy would not be affected,
though results are, of course, in general dependent on the specific initialization performed.

Initialization is finalized by creating a dummy node n∅ representing the event that no target is
located inside the search area. Its probability pn∅ is always set to 1 −

∑
n∈L(T ) pn, i.e., its value

normalizes the overall probability to 1 (i.e., a target is present or is not present.) Note that we
consider n∅ to be a leaf, so it belongs to the previously defined set L(T ). While n∅ is introduced



(a) Prior (b) PQ prior with 150 nodes
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(c) Quadtree with 150 nodes

(d) PQ prior with 500 nodes
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(e) Quadtree with 500 nodes

Figure 2: Subfigure a) shows a prior represented over a uniform grid with 65536 cells. Subfigures b)
and d) show the PQ representing the same prior with 150 and 500 nodes, respectively. Subfigures
c) and e) show the variable resolution spatial representation induced by the leaves of the quadtrees.
For the PQs, note that high peaks are associated with large areas because they account for the total
probability of the area. Note also that the spatial subdivision is finer in areas with high variability
in the prior and coarser where there is less variability.

primarily for normalization purposes, its explicit inclusion in L(T ) will simplify the notation used
in some derivations presented in the Appendix.

4.2 Updating a probabilistic quadtree

During the search mission the searcher repeatedly acquires images of area A(n) for different nodes
n and then runs the target detector obtaining a detection result Zn. Based on this value, all
probabilities associated with nodes in T are updated and the tree is possibly expanded. These two
steps are described in the following.

Probability updates. First, pn is updated using Bayes formula and the aforementioned sensor model.
This update will violate the constraint given by Eq. 1 and therefore changes need to be propagated
to both ancestors and descendants of n, if any. Probability values for all nodes’ ancestors of n are
updated by recursively applying Eq. 1 from the parent of n towards the root. If n is an internal
node, then its probability change needs to be recursively propagated to its descendants as well. This
update could be done in different ways and we opt for a proportional propagation. More precisely,
let δp = ptn − pt−1n be the change of probability in pn due to the Bayes update between time t− 1



and t. Let pt−1ni
and ptni

be the probability associated with its i-th child of n at time t − 1 and t,
i.e., before and after the update. These values are then related by the following equation

ptni
= pt−1ni

+

(
pt−1ni

pt−1n

)
δp. (2)

i.e., variation δ is proportionally redistributed over all children of n. This update is then recursively
propagated to all descendants of n. The reader should notice that any downwards propagating
strategy preserving the constraint given by Eq. 1 is legitimate. The update in Eq. 2 favors
simplicity and fits well the hypothesis that the target detection algorithm just indicates whether
a target is inside the image, but does not provide information about its position (see Section 3.2).
Under these assumptions, it appears meaningful to spread the update on all descendants based on
their prior, rather than favoring one of them.

Finally, since at most one target is present in the search area, all random variables Xi associated
with leafs in T are correlated and a change in the probability value associated with one leaf implies
a change in all other leaves because these value must add to 1. Evidently, the process just described
generates a change of probability in one or more leaf descendants of n, and therefore the probability
values for all leaves need to be updated. The following closed-form formulas were derived in (Chung,
2010). We start by defining Φ and Ψ, two functions of the detection variable obtained scanning
node n at time t:

Φ(Zt
n) = (1− Zt

n)(1− α(d(n))) + Zt
nα(d(n))

Ψ(Zt
n) = (1− Zt

n)β(d(n)) + Zt
n(1− β(d(n)))

These two functions introduce the role of false positive and false negative error conditional probabil-
ities and are related to the normalization factor for the following Bayesian update for the posterior
of cell m given that sensing happened in cell n

ptm =
Θm(Zt

n)pt−1m

Φ(Zt
n)(1− ptn) + Ψ(Zt

n)ptn
. (3)

where the term

Θm(Zt
n) =

{
Ψ(Zt

n) if m = n
Φ(Zt

m) if m 6= n

considers the case where sensing happened in m or in n. Recognizing that the posterior depends
not only on the detection variable itself but also on the sensed location, the above compact form
for the Bayesian update succinctly captures the various cases found in discrete search.

After all leaves have been updated, Eq. 1 is repeatedly computed from the leaves to the root to
restore the constraint at the internal nodes. We conclude this discussion noting that the complexity
of the update is O(k), i.e., linear in the number of nodes in T . It is important to remember that
this linear complexity is not a major drawback for a PQ, because the data structure has far fewer
nodes when compared to a grid with uniform resolution.

Tree expansion. Tree T will be expanded when n is a leaf node at depth d < D and Zn = 1.
This approach to refinement is motivated by the requirement that a target can be localized only



within a leaf of maximum depth D, i.e., in a cell with the finest resolution. Therefore, refinement
of the variable resolution data structure occurs only when a detection is returned at a resolution
insufficient to positively localize a target. Expansion consists in making n an internal node by
adding four children. The probability of the four new nodes is initialized by equally splitting pn in
four, thus immediately enforcing the constraint given in Eq. 1.

4.3 Planning where to sense next

The role of the planner is to decide where the UAV searcher should sense next. We opt for a weighted
information-gain approach, similar to (Stachniss, 2009). When deciding where to sense next, the
searcher chooses the cell maximizing the expected information gain, i.e., the cell maximizing the
expected decrease of entropy of the tree. In a Type 1 PQ the entropy is easily determined to be the
sum of the entropies associated with the leaves, where the entropy of a leaf node n is −pn log2 pn.
In order to avoid oscillating behaviors between far away cells, information gain is combined with
traveled distance. When deciding where to go next, the searcher computes the following function
for every node n in T :

I ′(n) =

[
γ

I(n)

maxn′∈T I(n′)
− (1−γ)

D(n∗, n)

maxn′∈T D(n∗, n′)

]
. (4)

In the former equation, I(n) is the expected information gain obtained when sensing node n,
and D(n, n∗) is the distance between candidate node n and node n∗ where the UAV is currently
located. Parameter γ sets the relative weight of the two components, and in Section 5 we will
evaluate how it impacts the performance of the algorithm. One could also notice that γ balances
between exploration and exploitation. A large value of γ produces a global search behavior with
the searcher more inclined to travel longer distances to inspect promising areas, whereas smaller
γ values induce a more local behavior. A different way to describe this search strategy is saying
that it is spatially global but temporally greedy, because it embraces a single step plan. It should
also be noted that one could consider a multi-step strategy, but this comes at a significantly higher
computational cost, and our preliminary experiments did not outline a meaningful performance
increase. After I ′(n) has been computed for all nodes, the UAV then travels to the node nnext
defined as

nnext = arg max
n∈T

I ′(n). (5)

Note that nnext encodes both a position on the grid and an elevation because it is en element in
the PQ structure. A straightforward computation for nnext leads to an algorithm with complexity
O(k2). The reason is that to compute nnext one has to be compute I ′(n) for each of the k nodes
in T , and from Eq. 4 one can compute I ′(n) in O(k) because of the need to compute maxn′∈T .
However, exploiting the structural properties we introduced when defining a PQ and the fact that
all the random variables Xn associated with leaves are correlated, it is possible to determine nnext
in O(k). A detailed derivation of these results is offered in the Appendix.



4.4 Terminating the search

The search terminates when either pn∅ exceeds a certain threshold pnt (no target), or when the
probability of a node n at maximum depth D crosses a possibly different threshold ptf (target
found). Evidently, in the former case the searcher output for the search decision will be No target
present whereas in the latter the decision will be Target found in node n.

5 Field Experiments

The proposed search algorithm has been experimentally validated on a data set collected at the
McMillan air field at Camp Roberts, California on November 5-6, 20113.

5.1 Aerial Platform

Aerial imagery was collected using an AirRobot commercial platform (see Figure 3). The AirRobot
is a quadrotor with brushless and gearless electric motors with a diameter of 1m. The platform
can fly up to 300m with a maximum climbing speed of 2m/s and maximum horizontal speed of
10m/s. Its battery ensures a flight time of up to 30 minutes. The AirRobot has a payload of 200g
and is equipped with a gimbaled color camera with a resolution of 640×480 pixels. Being a closed
proprietary platform, it is not easy to exchange its camera for a better one; therefore we used the
default one even though, as evidenced later, it is often far from optimal. Additional sensors include
GPS, an elevation sensor, and a gyroscope. The platform has minimal onboard computational
capabilities and receives commands through a digital communication channel ensuring a deployment
radius of up to 1500m with direct line of sight. The AirRobot can be operated either manually with
an operator control unit, or via a proprietary API. Irrespective of the control mode, data from the
robot (imagery and telemetry) can be streamed to a PC connected to the communication station
for online processing or storage.

5.2 Data set

Autonomous operation of UAVs at Camp Roberts is limited due to safety concerns; therefore
it has not been possible to run the planner while controlling the AirRobot in real time. Our
data collection effort has therefore been aimed to collect images and telemetry data to be able to
synthesize various offline missions at a later time. During data collection the AirRobot was manually
flown though waypoints of interest while time-stamped images and telemetry data (GPS, elevation,
roll/pitch/yaw) were recorded at a frequency of 30 Hz. Due to other air traffic and deconfliction
rules, during the first day the platform was restricted to fly below 400ft (122m), whereas sustained
winds on the second day imposed a ceiling at 200ft (61m). These constraints determined the size of
the probabilistic quadtrees considered in the two experiments. Given that in both cases leaf nodes
were located at 25ft (7.62m), it followed that during the first experiment the quadtree had depth

3Code implementing the experiments described in this section is available for download on
http://robotics.ucmerced.edu Datasets are also available upon request.



Figure 3: The AirRobot aerial platform used for field experiments. In the background the control
station and the laptop logging information collected during the mission can be seen.

5, whereas in the second one it had depth 4. Figure 4 displays the grids composing the depth 5 PQ
generated on the first day, as well as a top view of the area.

Figure 4: The left figure shows the five levels associated with a PQ of depth 5. The top level (white)
is at 400 feet, the second (yellow) is at 200, the third (green) is at 100, the fourth (blue) is at 50
and the fifth (red) is at 25 feet. The grids are overlaid to the area at Camp Roberts where data
collection took place. The white rectangle is 252 × 336 m2, whereas red cells measure 15.75 × 21
m2. The right figure features a top view of the area where data collection took place.

During the two days different objects were positioned in the dirt next to the McMillan air strip
and served as targets being sought. In the first day the target was a car, whereas on the second
day a mannequin and boxes of different sizes and color were placed in the same area. Figure 5
displays pictures of the car captured by the onboard camera while the AirRobot flew at the different
elevations associated with the depth 5 PQ used in the first day. Figure 6 shows instead various
pictures of the targets used during the second day.



Figure 5: The figure shows five pictures of the car taken by the onboard AirRobot camera. Pictures
were taken at the elevations associated with the depth 5 PQ used during the first day, i.e. 25ft,
50ft, 100ft, 200ft, and 400ft.

The reader shall notice that because of environmental conditions (bright sun, sustained wind) and
limitations of the used camera images turned out to be overexposed and often blurred, thus posing
additional challenges for the target detection algorithm described in the next subsection.



Figure 6: Top left: image of a box taken from the AirRobot flying at 25 ft, i.e., at the deepest level
in the PQ. The center and right image show the mannequin from an elevation of 50 ft and 25ft.

Experiments presented in Section 5.4 rely on the first day’s dataset. Images were filtered to retain
only those taken at elevations consistent with the depth 5 PQ shown in Figure 4, and were later
manually labeled to separate images showing the target car from those not showing it. This process
produced 829 images showing the car from different elevations and 16264 not showing it. Data sets
are available to the community upon request.

5.3 Target Detection

Target recognition was implemented using the off-the-shelf object detector provided with OpenCV
(Bradski and Kaehler, 2008). The method is based on the Viola-Jones method and uses Haar
features while being trained using both positive and negative examples. Training was performed
using a different set of aerial images taken at Camp Robert by a different UAV. Training images
feature a variety of backgrounds and image quality was in general much higher than what we
experienced during our field experiments (Zaborowski, 2011). The object detector is capable of
returning multiple detections in the same image and it also localizes the detected object within the
image. However, to integrate it with our framework we treat its output as binary, i.e., we simply
look at whether one or more targets were detected or not. Images captured by the AirRobot,
in fact, suffered from motion blur and overexposure and returned in general a large number of
false positives (in general, multiple per image). To mitigate this problem a set of depth-dependent
thresholds were used to disambiguate positive from negative detections. Figure 7 shows how error
rates α and β vary with the elevation. The reader will notice that the performance of the sensor
is far from optimal, and is particularly bad at high elevations. However, as it will be evidenced in
this section, the performance of the searcher is not too negatively influenced by the poor sensor,
thus showing that this method can be used also when the sensor is not carefully tuned.

5.4 Search mission under realistic conditions

We have tested the proposed framework synthesizing numerous missions from the first day data set
formerly described. We recall that the PQ has depth 5 and therefore its deepest level is associated
with a 16×16 grid. During data collection the car was always parked at the same spot, and
therefore to test the algorithm under a variety of conditions, missions are synthesized as follows. At
the beginning of every mission the car is randomly assigned to one of the 256 cells at the deepest
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Figure 7: Error trends for false positives (α) and missed detections (β) as function of the elevation.

level. Based on this information we pre-compute, for every elevation, from which grid cells the car
will be visible or not. Next, when the planner executes the mission, images are passed to the image
detector after being randomly chosen from the appropriate set, i.e., the set of positives or negatives
associated with the current AirRobot elevation. Random image selection exposes the classifier to
positive or negative images taken from the appropriate elevation but varying in pitch, roll, blur,
and captured area, thus more closely resembling the unavoidable time variance that would occur in
a real world mission.

In our set of experiments the prior was chosen to be a symmetric Gaussian distribution centered in
the middle of the searching area. To test the algorithm under different conditions the covariance of
the Gaussian assumed different values (see Figure 8 and Table 1 for details).

The planner was therefore exposed to both cases where a narrow prior indicating strong confidence
was given, as well as cases where a less certain a priori knowledge was presented. In all cases the
algorithm started assuming that a target was present in the search area with probability 0.75. The
search algorithm terminates when it reaches a confidence of 0.97 that the target is in a given cell,
or outside the area. A time budget of 10000 time steps was also included, i.e., the searcher quits
the mission if it has not arrived at a search decision within this limit (which mimics the limited
endurance of the UAV). To put this number into perspective, in the simulation it is assumed that
querying the sensor costs 5 time steps, and moving diagonally through the environment takes 362
time steps. For every prior we run 256 experiments, varying the position of the car through all cells
associated with the deepest level of the PQ. The reader should therefore note that because of the
given σ2, the prior is fixed whereas the position of the car varies, we are testing the search algorithm
using both correct and incorrect priors. Table 1 summarizes the results. In this experiment, the
parameter γ in Eq. 4 is set to 0.6, as we experimentally determined that this value offers the best
trade off (see later discussion).



Figure 8: Different priors used in the experiments described in the following.

σ2 = 768 σ2 = 1280 σ2 = 1792 σ2 = 2304 σ2 = 2816 σ2 = 2816
# detections 254 253 249 252 250 252

# false alarms 2 2 6 3 3 3
# timeouts 0 1 1 1 3 1
Avg. TTD 4159.57 3469.91 2943.67 2641.12 2484.49 2516.60

Std. dev. TTD 2224.87 1648.06 1628.32 1644.04 1517.31 1466.04

Table 1: Performance of the search algorithm with γ = 0.6 for priors with increasing variance
(TTD: Time To Detection in time steps, as defined in Section 5.4).

Table 1 shows a rather consistent performance in terms of number of correct detections, with more
than 97% of the search missions correctly terminating with a correct detection. Eq. 4 defines the
behavior of the planner and critically depends on the choice of parameter γ. Values of γ larger
than 0.5 yield a more myopic behavior with the searcher aggressively moving towards locations with
high expected information gain, whereas lower γ values implement a more conservative approach
aiming to minimize traveled distance. To assess the sensitivity to γ, we have repeated the former
experiment with different γ values. Figure 9 displays how the average time to detection varies with
σ2 for different values of γ. Note that displayed times refer only to missions when the searcher
terminates with a correct decision.

It can be seen that for each γ value, the trend of the average time to detection is the same, i.e., it
decreases as σ2 increases. This trend is justified by the fact that averages are taken over all possible
locations of the target in the search area. Sharp priors induced by low σ2 values assume strong



σ2 = 768 σ2 = 1280 σ2 = 1792 σ2 = 2304 σ2 = 2816 σ2 = 2816
# detections 230 230 229 231 240 234

# false alarms 0 0 0 0 0 0
# timeouts 26 26 27 25 16 22
Avg. TTD 3836.22 3578.09 3445.53 3409.54 3995.27 3506.07

Std. dev. TTD 2546.70 2413.36 2315.37 2191.20 2383.65 2386.06

Table 2: Performance of the algorithm operating on the uniform grid using an on-line lawn mower
search strategy (TTD: Time To Detection in time steps, as defined in Section 5.4).

σ2 = 768 σ2 = 1280 σ2 = 1792 σ2 = 2304 σ2 = 2816 σ2 = 2816
# detections 120 143 162 177 190 207

# false alarms 0 0 0 0 0 0
# timeouts 126 113 94 79 66 49
Avg. TTD 3541.54 3854.91 4136.43 4242.72 4447.07 4634.27

Std. dev. TTD 2755.18 2892.32 2790.06 2768.21 2875.92 2937.76

Table 3: Performance of the algorithm operating on the uniform grid with γ = 0.6 for priors with
increasing variance (TTD: Time To Detection in time steps, as defined in Section 5.4).

a priori confidence that the target is located in the central area, but in most tests this is not the
case because the position of the target varies throughout the search area. On average, therefore,
smoother priors offer better performance for this specific batch of experiments. Nevertheless, the
observed trend is the same for every γ. Our former considerations about the impact of priors are
corroborated by Figure 10.

Figure 10 shows how the average time to detection varies with σ2 when the target is located in the
central area. To be precise, we define the central area to be the 3 × 3 square centrally located in
the search domain4. Averages are taken with respect to all γ values considered. This figure shows
that when the location of the target is coherent with the given prior, sharper a priori information
indeed gives an advantage. The last figure we include, Figure 11, provides the rationale for the
choice of γ = 0.6.

Considering both Figure 9 and Figure 11, we see that γ = 0.6 offers the best trade off in terms of
speed and accuracy. In fact, while Figure 9 shows that γ = 0.4 and γ = 0.5 exhibit better time
performance when the target is located, Figure 11 evidences that these two values yield a higher
percentage of missions ending with a timeout, i.e., the searcher does not formulate a decision within
the allotted time budget. This behavior is consistent with the more conservative search pattern
induced by lower γ values, as the searcher tends to be more stationary and therefore explores less.
Figure 11(c) shows instead that the percentage of false alarms (i.e., those searches terminating
with the searcher reporting the target in the wrong location) is consistently low for each γ values.
Therefore, in conclusion we opt for γ = 0.6 as the preferred value. Of course, in a different
operational scenario, this value could be different. The above considerations, however, give some
indications about how to pick such a value.

4Recall that the planner operates on a 16× 16 grid at the deepest level.
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5.5 Comparison with other search techniques

We conclude this section with two additional sets of experiments aimed at highlighting the strength
of the hierarchical method we propose. In particular, we want to show the inherent advantage of the
hierarchical model and search algorithm when compared with strategies based on non-hierarchical
representations. The comparison is then against two strategies operating on a uniform grid. The
resolution of the uniform grid is the same as the resolution of the deepest level in the PQ. To ensure
a fair comparison, the searcher is equipped with the same sensor and incurs the same travel costs.
Note that in this case, the searcher always uses the sensor at its best resolution, because it operates
at the deepest level. All other parameters were also tuned equally.

5.5.1 Lawn mower on a uniform grid

A classic search strategy is the lawn mower pattern, in which the searcher moves along a predeter-
mined pattern on a regular grid. This strategy can be on-line or off-line. In an on-line version, the
searcher decides whether it should move to the next grid cell or remain at the current one based
on the last sensed value. A simple rule to implement this approach consists of moving forward if
the sensor did not detect any target, or remain in the same cell and sense again if a target was
detected. Because of the inherent sensing errors, it takes more than one positive detection to push
the posterior of a grid cell above the critical threshold ptf , and the on-line strategy is motivated by
this observation. In an off-line version, on the contrary, the decision to move to the next grid cell or
stay stationary is unrelated to the values returned by the sensor. For example, the searcher could
scan each cell a fixed number of times before moving forward. In the experiments we performed,
we used the on-line version we previously described. Table 2 summarizes the results we obtained
and should be compared to Table 1.
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Figure 10: Average time to detection when the target is located in the central area of the search
domain.

As expected, the performance of the searcher is basically independent from σ2 because the sequence
of actions taken by the searcher is not influenced by the prior. However, in this case the searcher
suffers a much higher number of timeouts.

5.5.2 Information gain on a uniform grid

Finally, we implemented a strategy where the searcher decides where to sense next based on infor-
mation gain (i.e., Eq. 4 and Eq. 5) but its search space is given by the uniform grid. Note that,
like the method we presented in this paper, this strategy is spatially global but temporally greedy,
thus providing a fair baseline for comparison. In this case we fix γ = 0.6 because of the conclusions
we drew while evaluating the PQ strategy. Different values of γ do not give significantly different
results. Table 3 shows the results we obtained when searching on the uniform grid and should be
contrasted with Table 1.

A quick inspection of the tables shows two facts. First, the strategy operating on the uniform grid
incurs a much higher number of timeouts when the prior is sharply concentrated in one region
(that is, due to smaller values of σ2). On the contrary, the PQ algorithm is basically insensitive
to this parameter and thus much more robust to misleading priors. The second conclusion is that
even when a target is correctly located, the uniform algorithm spends significantly more time, as
evidenced by comparing the Average Time To Detection row in the tables.
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6 Discussion and Conclusions

We presented a novel framework for probabilistic search with a quadrotor aerial robot, leveraging
its robust capabilities to dynamically improve the search for targets. By introducing the probabilis-
tic quadtree data structure, we provided the analytic foundation which enables variable resolution
search in a computationally efficient manner, including algorithms for Bayesian updates to the PQ
from imperfect detections and for computing the most informative location and resolution to in-
spect next. Such automated computations are essential for providing real-time and mathematically
grounded recommendations to operators and commanders in decision support contexts. Further, the
proposed models were implemented and experimentally validated in realistic operational contexts
at Camp Roberts, leveraging access to airspace and real field conditions such as changing terrain,
variable weather, and joint flight operations. A major contribution of this work stemmed from ex-
perimental characterization of detection models for variable resolution applications. The integrated
system presented in this paper, combining the capable aerial robot platform, autonomous search
planning, and automated target detection using machine vision, addresses a current and future need
for enhanced operations of tactical UAVs such as the quadrotor. Future directions include further



experimental validations of both platform and detection methods, with potential deployment of the
proposed variable resolution search algorithms using other aerial platforms and/or sensor payloads.

Appendix: the complexity of deciding where to sense next

We show how the node nnext defined in Eq. 5 can be computed in time O(k). Based on its
definition, to compute nnext it is necessary to determine I ′(n) for every node in T . Referring to Eq.
4, it is immediate to see that the second term involving D(n∗, n)/maxn′∈T D(n∗, n′) leads to an
aggregate time complexity of O(k). For a given node n the term D(n∗, n) can, in fact, be computed
in constant time because n∗ is fixed, whereas the denominator can be precomputed in O(k).

The first term involving I(n) in Eq. 4 requires instead a more careful analysis. The expected
information gain when sensing at node n is defined as

I(n) = H(T )− EZn
[H(T |Zn)]

where EZn
is the expectation with respect to the value Zn sensed when scanning node n, and H(T )

is the entropy5 of T before incorporating the sensor reading Zn. Because the probability values
stored in all leaves are correlated, when computing H(T |Zn) for a specific sensor reading Zn one
needs to compute not only how pn will change, but also how the probabilities in all leaves will
change. The computational approach described in Section 4.2 can be used for this computation
and has time complexity O(k). Since this computation is needed for all nodes in T , the overall
time complexity to compute nnext would then be O(k2). To improve this bound, we need to exploit
the inherent properties of the PQ structure. We start by observing that a sensing operation at
node n partitions the set L(T ) in two sets, i.e., the leaves having n as ancestor, and the remaining
ones. We indicate the former set as In(T ) and the latter as On(T ). In(T ) is the set of leaves seen
when sensing at node n (inside the field for view, hence the letter I) whereas the On(T ) are those
outside the field of view. Based on this notation, assuming that sensing happens at time t − 1 we
can therefore rewrite the conditional entropy as follows:

H(T |Zn) = −
∑

i∈In(T )

pti log2 p
t
i −

∑
i∈On(T )

pti log2 p
t
i (6)

where the various pti are the probability values at time t after incorporating the reading Zn into
the posterior at time t− 1.

By exploiting the quadtree structure and by explicitly considering the distinction between inside
and outside leaves, we can differently write the Bayes update rule. Given an observation Zn at
node n we define

ηn =
Pr[Zn = z|Xn = 1]

Pr[Zn = z]

5We recall that H(T ) is defined as H(T ) =
∑

i∈L(T )−pi log2 pi.



so that ptn = ηnp
t−1
n . Combining this definition with Eq. 2, it is easy to see that for every node

i ∈ In(T ) the same relationship holds, i.e., pti = ηnp
t−1
i .

A similar reasoning can be applied to nodes in On(T ). More precisely, we define

ζn =
Pr[Zn = z|Xn = 0]

Pr[Zn = z]

and then for every i ∈ On(T ) we can write pti = ζnp
t−1
i .

Using these symbols, Eq. 6 can then be rewritten as

H(T |Zn) = −
∑

i∈In(T )

ηnp
t−1
i log2 ηnp

t−1
i −

∑
i∈On(T )

ζnp
t−1
i log2 ζnp

t−1
i .

Using the logarithm property log(ab) = log a+ log b we have that:

H(T |Zn) =−
∑

i∈In(T )

[
ηnp

t−1
i log2 ηn + ηnp

t−1
i log2 p

t−1
i

]
−

∑
i∈On(T )

[
ζnp

t−1
i log2 ζn + ζnp

t−1
i log2 p

t−1
i

]

and by simple algebraic manipulation we have:

H(T |Zn) =− ηn log2 ηn
∑

i∈In(T )

pt−1i − ηn
∑

i∈In(T )

pt−1i log2 p
t−1
i

− ζn log2 ζn
∑

i∈On(T )

pt−1i − ζn
∑

i∈On(T )

pt−1i log2 p
t−1
i .

Because of the PQ constraint defined in Eq. 1, we have that
∑

i∈In(T ) p
t−1
i = pt−1n and∑

i∈On(T ) p
t−1
i = 1− pt−1n . Furthermore, for leaf nodes in the tree we define ht−1i = pt−1i log2 p

t−1
i

and we therefore obtain the following expression for H(T |Zn)

H(T |Zn) = −ηn log2 ηnp
t−1
n − ηn

∑
i∈In(T )

ht−1i − ζn log2 ζn(1− pt−1n )− ζn
∑

i∈On(T )

ht−1i .

To remove the remaining two sums we have to extend the definition of h for internal nodes too. For
an internal node n we define ht−1n as the sum of the h values at time t− 1 of all the leaves having



n as ancestor. A simple bottom up algorithm sweeping T from the leaves to the root can be used
to compute ht−1n for all nodes in the T in time O(k). With this definition of h, we get the final
expression for H(T |Zn) where we use the fact that

∑
i∈On(T ) h

t−1
i = −H(T )− ht−1n

H(T |Zn) = −ηn
[
log2 ηnp

t−1
n + ht−1n

]
− ζn

[
log2 ζn(1− pt−1n ) + (−H(T )− ht−1n )

]
.

In this final expression, all quantities are known upfront (probabilities at time t − 1), can be
computed in constant time (ηn and ζn), or can be found in a lookup table (ht−1n ) that is computed
once for all nodes in time O(k). Therefore, nnext can be computed in O(k).
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