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ABSTRACT
We present a set of task-based performance evaluation cri-
teria designed to measure the quality of appearance based
maps. Instead of aiming to measure a map’s overall good-
ness, metrics defined in this paper focus on individual tasks,
namely localization, planning, and navigation, and the qual-
ity of the map with respect to the their successful execution.
The performance of a map in terms of localization is mea-
sured by the amount of information captured from the en-
vironment and the accuracy of this information. The plan-
ning metric favors instead maps with high connectivity and
measures the validity of these connections. The navigation
criterion, on the other hand, computes the robustness and
stability associated with the paths that a robot will extract
from the map. These metrics are tested on appearance maps
created in our lab and their distinctiveness is shown.

1. INTRODUCTION
Perception is one of the keys to build intelligent robotic

systems operating in unstructured environments. Most of-
ten robots gather information through their sensors and
build a map, i.e. spatial model of the environment they
operate in. By using this internal representation they can
accomplish complex tasks and autonomously operate in a
given environment. Therefore, not surprisingly mapping is
one of the most studied problems in robotics. Up to now
most of the research efforts have been devoted to metric
maps, i.e. maps providing metric information about the el-
ements in the map [18]. However, thanks to recent develop-
ments in sensor technology and computer vision algorithms,
appearance based maps have recently surfaced and are gain-
ing momentum1. Systems based on omni-directional [20]
and monocular cameras [15, 9] work in image space and do
not necessarily need metric localization for mapping or nav-
igation purposes. In other words, localization and mapping

1For sake of completeness one should also mention a third
approach, namely topological maps. These however will not
be further considered in this paper
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hinges on an appearance based map.
An appearance map2 is an undirected weighted graph

G = (V,E) in which each vertex v ∈ V represents an image
captured by a camera at a certain position in the workspace.
An edge eij ∈ E connects two distinct vertices vi, vj when-
ever the associated images are sufficiently similar, accord-
ingly to a given similarity metric. A frequent way to define
similarity between two images is to extract salient features
from each image and count the number of common ones.
The number of matching features is considered as the indi-
cation of similarity and is then set as the weight of that edge.
Hence, the weight wij associated with an edge measures the
similarity between images assigned to vertices vi and vj . An
example appearance graph is shown in Fig. 1.

Figure 1: The figure shows an appearance based
map with 7 vertices. Edges are added between suf-
ficiently similar images.

Appearance based maps are gaining momentum because
they can be built with the only aid of a monocular camera,
thus offering a cheap alternative to solutions based on dif-
ferent sensors. Also, by incorporating visual elements, they
may be easier to integrate into intelligent systems expected
to interact with untrained human users.

In this paper we propose a set of evaluation criteria for
appearance based maps. The topic of map benchmarking

2At the moment there is no universally accepted definition
of appearance map, however the one we embrace in this
manuscript is consistent with a significant fraction of for-
merly published papers on the topic.



has recently generated much interest also for metric maps.
However, despite some proposals, no consensus exists yet for
metric maps (see [2] and references therein). Due to their
more recent introduction, no metrics have been proposed
yet for appearance based maps. There are many reasons to
justify the creation of metrics for appearance based maps,
and for maps in general. The main one is that robotics re-
searchers are in great need of objective quality measures to
evaluate the impact of the countless ideas proposed in this
quickly growing field. To date, for most problems it is impos-
sible to compare two different solutions according to widely
accepted criteria. The peculiar nature of robotics research
also undermines the experimental replication of published
results. However, given the recent dramatic changes in in-
formation technology, it is nowadays possible and needed
to converge towards accepted performance measures, and to
disseminate experimental data so that these assessments can
be performed and repeated by an arbitrary third party.

The intrinsic purpose of a map evaluation metric is to
measure the quality of different maps and determine which
map is the best in general or in terms of some specific crite-
ria. The maps to be evaluated can be generated by different
agents using different algorithms. On the other hand, this
metric can also be used to measure the effectiveness of one
part of the mapping algorithm. For instance, by using the
same set of images different appearance maps can be built
by changing the parameters or the algorithms used in the
map building procedure. In this paper, focusing on the for-
mer goal, we present evaluation criteria measuring the qual-
ity of a map independently of the algorithm used to build it.
Hence, during the evaluation of a map the building blocks of
the map creation algorithm are treated as black boxes, and
the metric is designed in a way that minimizes the effects of
these building blocks.

2. EVALUATION OF VISUAL MAPS
The ideal quality-assessment of a map would be performed

by comparing it to the ground truth, i.e. the real value of
the variable to be estimated. However, in most cases ground
truth might not be easily accessible, or it may be time con-
suming to acquire. This is a well-known problem for any
kind of map. In addition, approaches based on appearance
graphs sample 3D environments with 2D images, and it is
therefore impractical to generate a map serving as ground
truth. In fact, the real environment is the only source which
can be used as ground truth. Hence, the quality of an ap-
pearance graph can be best measured by evaluating how
well it captures the desired properties of the environment it
models.

A map by definition is a representation of the environ-
ment, and therefore, it may be natural to conclude that the
map with most resemblance has the utmost quality. How-
ever, this point of view skips the basic motivation behind
the need of a map, i.e. its utilization for the successful com-
pletion of a given task. A robot creates some form of an
internal representation of the environment as a tool to suc-
cessfully achieve its assigned mission. Thus, for the map to
be most useful to the robot, it has to offer enough infor-
mation to complete the assignment. Consider for example a
robot performing inside a warehouse whose task is to quickly
navigate between target locations revealed during the mis-
sion. One cannot rule out the possibility that a robot using
a map with good geometric accuracy, but possibly cumber-

some, may be outperformed by one using a model with an
inferior geometric accuracy but easier to process.

With this motivation, we advocate that the assessment
shall not be detached form the task at hand. Despite the fact
that this statement may seem fairly trivial, in the context
of occupancy grid maps one faces a significant amount of
scholar work where maps are most often treated as images,
and therefore contrasted and evaluated using algorithms and
metrics that have little to do with the ultimate task the maps
are needed for. On the contrary, we propose three task-
centric evaluation criteria, namely localization, navigation,
and planning.

2.1 Localization
The ability to estimate its own position is one of the very

fundamental robot abilities enabling the successful comple-
tion of a variety of tasks. Hence, it is natural to evaluate a
map with respect to its usefulness for localization. Unlike in
metric maps, localization in appearance graphs is realized
by finding within the map the image most similar to the one
perceived by the robot when it needs to localize itself3. The
robot is declared lost if it cannot localize itself to any image
in the map.

The utility of the map with respect to localization is mea-
sured by the robot’s localization performance using that
map. A good metric should assign high utility to maps pro-
viding good localization. The goodness of localization in
appearance graphs can be defined in two ways: 1) coverage
2) accuracy. The coverage metric measures the amount of
information in the environment captured by the images in
the appearance graph. To this end, we propose to collect
a set of pictures captured at random locations in the envi-
ronment where the map is created and use them as query
images.

This method of evaluation of a map’s merit based on its lo-
calization performance requires the use of an image retrieval
algorithm in order to find the vertex with the most similar
image in the graph. Over the years, several nearest neighbor
search based approaches using kd-trees and k-means cluster-
ing have been proposed as solutions for the image retrieval
problem [9, 14]. Today, SIFT features [11] and the bag-of-
words image representation [17] are at the core of state-of-art
large scale image retrieval systems. Hence, several versions
of bag-of-words algorithm have been proposed as the basis
of the localization procedure within a visual map [1, 8, 10,
19]. Nevertheless, even the most successful image retrieval
algorithms have sub-perfect performances. In other words,
the image retrieval algorithm used for localization can re-
turn an invalid image/feature matching resulting in wrong
localization. Therefore, the erroneous localization ratio de-
pends on the performance of the image retrieval algorithm
and less on the quality of the map being evaluated. In or-
der to minimize the effect of the image retrieval algorithm
on the quality score of the map, the proposed method will
ignore false image matchings and focus only on valid image
correspondences.

Having set the scene, the coverage of a map is defined as

3We acknowledge this standpoint is somewhat simplified be-
cause one would likely get better results by considering not
just the current image, but a sequence. This extension is
subject to further investigations.



the percentage of successful localizations:

lcov =
Lsuccess

Ltotal
. (1)

Localization accuracy, on the other hand, describes the
closeness of the estimated location to the real location of
the robot. From the appearance graph perspective the robot
will benefit from an accurate localization when the returned
and query image look alike. Since similarity between images
is encoded by the number of matched features, the accu-
racy has a positive correlation with the number of correct
feature matches. Besides sharing features originating from
the same objects in the environment, in similar images these
objects should appear in close proximity in terms of image
coordinates. In order to capture this idea, the accuracy er-
ror is defined as the average distance between corresponding
features’ image coordinates.

lacc =

N∑
i=1

d (ai, qi)

N
(2)

where d(.) is the Euclidean distance function, a and q are
corresponding features from the retrieved and query image
respectively, and N is the number of feature matches be-
tween these two images.

Then, the average localization accuracy error of all queries
is assigned as the overall accuracy error of the map.

The localization accuracy metric favors appearance graphs
with large number of vertices since the probability of hav-
ing a similar image for a random query image increases with
the number of images in the map. On the other hand, if
the number of vertices in the map are limited due to the
amount of data that can be stored, then a map consisting of
images taken all around the environment will be preferred
since it will reduce the number of times the robot gets lost.
However, when the robot localizes itself, the localization will
have less accuracy for a random query image since the im-
ages are spread around. Hence, for a fixed number of vertices
allowed in the map, there is a balance between accuracy and
coverage.

The reader should also note that neither accuracy nor cov-
erage metrics consider the edges in the graph, but they both
focus exclusively on the amount of information captured by
the images encoded in the vertices.

2.2 Planning
In order to reach full autonomy, robots need to choose

their actions by themselves. Planning can be realized us-
ing the so-called state space which provides an abstraction
of the overall system. Similarly, an appearance graph with
vertices corresponding to states and edges corresponding to
actions can be used for path planning, i.e. finding the short-
est path in the appearance space between two nodes in the
graph. In the literature there are several search algorithms
which work directly on undirected weighted graphs such as
Dijkstra’s algorithm. The time complexity of any planning
algorithm working on graphs will increase with the number
of vertices and edges. Hence, from the perspective of plan-
ning efficiency, maps with less vertices and edges will be
preferred. Furthermore, the number of extracted features
are correlated with the number of vertices and have a direct
effect on the running time of the planner since most of the
image matching algorithms utilize nearest neighbor search

in the high dimensional feature space. Hence, it can be con-
cluded that the amount of data required to store the map
is an indication of its performance in planning tasks, and
data size comparison should be a part of the general map
evaluation process.

For planning tasks, it is important that a map is well
connected and contains a good representation of passages
between places. Such a map will have a higher utilization
rate than a map which reflects an accurate and detailed rep-
resentation of the environment in general, but also includes
an edge between two images of two places that are physi-
cally separated. Hence, a metric to measure the usefulness
of a map with respect to path planning should consider the
ability to plan paths that are valid in the real environment.
Inspired from the work by Collins et. al. [5], we would like
to measure the validity of the paths in a map by comparing
paths generated within both the appearance graph and the
actual environment.

In this test representing the exactness of the map, the
ratio of paths that are valid in the map, but invalid the
real environment will be calculated. To measure the ratio
of these paths, also known as false positives, two connected
vertices are randomly selected from the appearance graph.
Then, it is tested whether two places identified from these
images are actually connected in the real environment. The
physical connectivity assessment can be performed either vi-
sually or by teleoperating the robot which constructed the
map from one place to another. Even though one can ar-
gue that the visual inspection introduces some subjectivity
into the metric, for robots with well-known kinematics and
structured environments it is expected it will provide an ac-
curate approximation. A generated path failing this test is
identified as the false positive. The false positive ratio is
then estimated by repeatedly generating random paths and
counting the ones that fail the connectivity test.

Alternatively, as proposed in [5] to evaluate metric maps,
a map can also be evaluated in terms of completeness by the
ratio of the paths that actually exist in the environment, but
are not captured in the map, i.e. so-called false negatives.
Borrowing the same idea that we used to compute false pos-
itive paths, two images from the map are randomly selected
and a graph search algorithm is used to find a path connect-
ing these two images. If this path cannot be computed due
to the fact that two images lie in disconnected components
of the graph but the path exists in the real environment, the
path will be declared as a false negative. The ratio of false
negatives will reflect the inability of the planner to find a
path using the map.

One could argue that two random images should be ran-
domly selected from the environment instead of the map if
the completeness of the map is to be measured. However,
in that case, first, each random image sampled from the
environment should be localized in the map. As stated in
section 2.1, this localization procedure measures the cover-
age of the map and may result in failure either if the map
has low coverage score or if the localization algorithm fails
to find the valid match in the map. Therefore, to measure
the utility of each task separately, query images are sampled
from the images in the map. Applying this criterion in the
selection of query images, this metric, however, will return
zero false negative scores for any appearance graph consist-
ing of only one connected segment since there will always be
a path between any two vertices of the graph.



2.3 Navigation
Navigation, defined as the ability to reach an assigned

target location from the robot’s current position, is another
fundamental level of competence that is greatly influenced
by the available spatial model.

The evaluation criterion based on the planning task de-
fined in section 2.2 punishing invalid paths generated using
the map also evaluates maps with respect to the robust nav-
igation criterion. Maps receiving high scores in this met-
ric will be the ones representing environments that consist
of physically apart places with similar appearances. Due
to the computed similarity between them, the mapping al-
gorithm may create an edge between the images of these
places and since an edge encoding a similarity is interpreted
as traversable, a graph search will return a path in between
which is in fact invalid. Thus, a map with high false pos-
itive ratio will provide the robot a medium in which the
probability of bumping into an obstacle is high. However,
the contrary is not necessarily true. In a different scenario,
navigation between two vertices vi and vk sharing an edge
due to their similar visual signatures may not be possible.
In other words, a visual similarity criterion for edge creation
depends on the map building algorithm and an edge may not
necessarily encode an indication of traversibility. This path
will not be distinguished by the planning metric and clas-
sified as a false positive since these vertices may be indeed
physically connected. However, the robot trying to follow
this direct path may not be able to navigate in between.

Motivated from this idea the quality of the map should
also be evaluated with respect to navigational criterion. We
therefore embraced the idea of measuring the navigability
of a map by computing the stability and robustness of its
internal paths in terms of robot navigation. This metric is
applied to the random paths generated to evaluate the plan-
ning quality. Since most of the proposed algorithms [7, 4, 13,
6, 16] base their servoing algorithm on multi-view geometry
or more specifically on the fundamental matrix, we grasped
the idea of measuring the quality of the fundamental matrix,
F , for each pair of consecutive images in the path. Given two
matched images their corresponding features are extracted.
Then, a RANSAC algorithm as described in [12] is utilized
to compute the fundamental matrix based on a number of
randomly selected tentative feature matches. Based on [3],
the error in the computed fundamental matrix is computed
as the mean distance of points to their epipolar lines in the
second image.

ErrF =

N∑
i=1

d (xi, Fxi) + dist
(
xi, F

Txi

)
2N

where (xi,xi), i = 1, . . . , N are the N corresponding fea-
tures and d(.) is the distance between a point and a line.

The average error of the fundamental matrix along the
path is computed and returned as navigation error of the
path. The overall navigation error of the map is then as-
signed as the average navigation error of all randomly cre-
ated paths.

3. RESULTS
In this section we exemplify how the proposed metric work

on a set of appearance based maps. In order to capture a
broader spectrum of maps, a P3AT robot equipped with a

monocular camera is teleoperated in the environment twice
resulting in image sequences from two independent runs.
These images are fed as the input to our map creation algo-
rithm described in [7]. The paths followed during these runs
and the test runs are shown in figure 2. A total of 1064 test
images are collected by teleoperating a P3AT robot in the
environment. The test image sequence is divided into three
subpaths as shown in different colors in Fig. 2.

In order to increase heterogeneity, different parameters are
used while building the two maps. In the first run (repre-
sented with blue circles in Fig. 2), a higher image capturing
frequency is used resulting in map, m1 with a larger num-
ber of images. Furthermore, comparing to the second map
m2, a more conservative approach is taken in the image re-
trieval algorithm by increasing the required number of fea-
ture matches for an image in the map to be matched with
a query image. As a result two very different appearance
graphs are created.

3.1 Localization
The core component in localization procedure in appear-

ance graphs is the image matching function. As mentioned
before, the quality of the localization results are mainly de-
pendent on the image retrieval algorithm. Therefore, im-
age matches should be verified for each localization test.
Since no ground truth data is available stating which image
matches are valid, each image match has to be visually veri-
fied by the person evaluating the map. Due to the simplicity
of an image match verification task to humans, we believe at
this point no subjectivity is introduced into the evaluation.
This way false positives are eliminated. In order to also ac-
count for false negatives, a human should verify if a query
image has actually a corresponding image in the map that
the image retrieval algorithm could not locate. However,
this task is not trivial and unlike comparing just two images
to detect a false positive, it requires to go through all the im-
ages in the map. Hence, we choose the best possible image
retrieval algorithm and think it as a black-box that behaves
like an independent external source introducing this noise in
terms of false negative image matches. Due to the fact that
this algorithm affects both of the maps being evaluated, no
bias is introduced into quality evaluation.

From each test run n = 10 images are chosen randomly.
Each image is fed as the query image into the image re-
trieval algorithm and localization in the map is declared if
the algorithm can match that image within the map and
the user visually verifies it. For each successful localization,
coverage ratio is increased and the accuracy of the match
is calculated based on equation 2. Some examples of suc-
cessful localizations are shown in figure 3. This procedure
is repeated m = 10 times and the average scores are re-
turned as the result of the evaluation of appearance maps
in terms of localization task which are presented in table 1.
As expected, m1 with 148 vertices incurred in lower accu-
racy error when compared to m2 with 99 vertices due to the
higher probability of containing a similar image to a random
image. On the other hand, in terms of localization coverage,
m1 scored almost the same in the first two test runs whereas
m2 scored almost twice as m1 in the third test run. As it can
be seen in Fig. 2, the two paths followed to collect images
to build maps are almost identical except the small loop in
the second map. The images in the third run were collected
while the robot was traversing in the middle of the lab fol-



Image collection for map building Image collection for testing

(a) (b)

Run 1 
Run 2 
Run 3

Map 1 
Map 2

Figure 2: a) The paths followed by the robot during the map building processes are shown. b) Three paths
followed to collect test images are shown.

lowing the opposite direction of the map generation runs.
Therefore, as expected, images pointing the opposite direc-
tion did not match to any of the images in m1, whereas they
matched the images captured while the robot was making a
full turn.

Table 1: Localization quality
Run1 Run2 Run3

cov erracc cov erracc cov erracc
m1 0.52 27.02 0.78 34.48 0.22 21.74
m2 0.50 43.47 0.77 33.32 0.37 37.03

3.2 Planning
As presented above, the first map benefits from having

more vertices and obtained a higher score in localization ac-
curacy. Theoretically, a map with infinite number of images
should have the utmost accuracy. On the other hand, this
map will gain high scores from one side, but will lose perfor-
mance in planning tasks due to high number of vertices and
associated features. Table 2 summarizes the elements of the
maps and the amount of data required to store them.

Table 2: Amount of data captured within maps
‖V ‖ ‖E‖ ‖D‖ dataSize(MB)

m1 148 1396 24487 2.43
m2 99 408 15824 1.56

In order to measure the exactness and completeness of the
set of paths which can be generated within a map, n = 10
image pairs are randomly selected from the map. Then,
Dijkstra’s algorithm is utilized to find a path connecting
these two images where the number of matching features
are used as costs. Repeating this procedure m = 10 times,

the total number of false negatives are counted. The ratio
of the number of false negatives to the total number of path
computing requests shows the connectivity of the map. In-
stead of counting the number of disconnected components in
the map, this score considers the size of each disconnected
component. For instance, failing to create an edge between
second and third vertex has much less effect than failing it
between two vertices from two large disconnected graphs.

The ratio of false negatives are measured for two maps
being evaluated. The second map m2 is fully connected and
therefore gets completeness score of 1. On the other hand,
m1 has multiple connected components and therefore gets
non-zero false negatives. In order to demonstrate how this
metric behaves in the presence of only few edges, the pa-
rameter TS is used to set the minimum number of feature
matches required to declare two images as a match. In dif-
ferent tests the value of TS varies and the performance is
evaluated as a function of TS. The increase in the thresh-
old results in a map with edges only between very similar
images. Due to this decrease in connectivity the false neg-
ative ratio increases as shown in Fig. 4. The sudden jump
between TS = 30 and TS = 40 is the result of losing connec-
tivity in the middle of the path causing the map to split into
two components with large number of vertices. Therefore,
the probability of randomly selecting both vertices from the
same connected subgraph decreases drastically.

The measure of exactness, on the other hand, captures the
idea of detecting false positives, i.e. paths that do not exist
in the real environment. In other words, the map should
contain images captured in disconnected parts of the envi-
ronment. However, a map generated from a single run will
not have such images since the robot will only be able to
travel between physically connected places. Hence, it will
get an exactness score of 1.

The value of this metric will become apparent only when



Figure 3: Sample image matches are shown. The
left column contains query images whereas the re-
trieved images are shown in the right column. Local-
ization accuracy errors computed for these matches
are: 19.13, 50.26, 72.01 (top-down)

evaluating maps that are the results of a multi-robot map
merging process. In a scenario where robots create local
maps of different floors of a building, they can exchange in-
formation wirelessly without the necessity to share the same
physical environment. The merged map, on the other hand,
may contain links between similar images, even though they
might belong to physically disconnected parts of the envi-
ronment. This metric, measuring the ratio of such paths, i.e.
false positives, will evaluate the exactness of merged maps.
Hence, we leave the validation of this metric for future work,
since visual map merging algorithms are not currently avail-
able.

3.3 Navigation
The navigability score associated with an appearance map

is defined as the average quality of the fundamental matrix
between consecutive images of a random image sequence.
By design this metric favors maps which use a more conser-
vative approach by only creating edges between very similar
images. In order to show this effect, navigability metric is
applied on the maps built in the previous section by chang-
ing the threshold responsible for determining when an edge
is created. Fig. 5 presents the trend of this error as the
edge selection procedure gets more selective. As expected,
the more similarity required to create an edge, the lower
navigation error is obtained for that map.

4. DISCUSSION AND CONCLUSIONS
The proposed metrics measure the performance of appear-

ance based maps with respect to different tasks. These met-
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Figure 4: The effect of the number of feature cor-
respondences to declare an image match, TS, on
the number of false negatives of path validity test
is shown.
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Figure 5: The effect of the number of feature corre-
spondences to declare an image match, TS, on the
average navigation error of randomly selected paths
is shown.

rics focusing on different aspects of the map may not agree
on one final map being the best for all tasks, but will mea-
sure the map’s specific task-based performance. However,
these objective measures should be repeatable so that other
researchers can reproduce the same experiments to compare
published results with their own algorithms. Since the real
environment is used as ground truth and providing access to
it is not feasible, the data that is used in the computation of
the performance metrics should be shared in an online pub-
lic repository. First of all, images that are captured during
the navigation of the robot are needed in order to generate a
map of the environment. Different map creation algorithms
can be tested on this image set and then evaluated by the
task based measures proposed in this paper. In addition to
this image set, the computation of the localization metric
needs images captured at random locations in the environ-
ment. The planning metric, on the other hand, requires the
information whether there is actually a physical path in the
real environment between the locations encoded in the ran-
domly selected images from the map. This information can
be captured in a binary connectivity matrix which stores all
possible image combinations. Each element in this matrix
stores true if two images corresponding to this element are
physically connected, and false otherwise. Similarly, in order
to count false negatives to calculate the planning metric, we



need to know whether random images from the environment
are physically connected. In summary, in order to make vi-
sual map generation and benchmarking possible even with-
out the privilege of accessing the real environment, the fol-
lowing elements should be made available to third parties:
1) the image set collected by the robot along its path; 2) ran-
dom test images captured in the same environment; 3) their
connectivity matrices. Only then the experiments can be
repeated and the performance of map generation algorithms
can be compared.
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