
Fast Grasp Quality Evaluation with Partial Convex Hull Computation

Shuo Liu Stefano Carpin

Abstract— We present Partial Quick Hull (PQH), an algo-
rithm to efficiently compute one of the most commonly used
grasp quality metrics. The metric relies on the computation
of the convex hull of a set of points in a six dimensional
space. Built on top of widely used QuickHull algorithm, PQH
exploits the relationship between the convex hull and the grasp
quality metric to avoid computing the whole convex hull. PQH
determines at run time when the computation can be ended
because the grasp quality metric can be already determined
from a partially computed convex hull – hence the name of the
algorithm. This improvement greatly accelerates grasp quality
evaluation for force closure grasps. When the grasp is not force
closure, the partial computation does not apply and PQH then
behaves exactly like QuickHull. A large set of experimental
tests show how PQH largely outperforms QuickHull and better
scales with the size of the input.

I. INTRODUCTION

Grasping with multifingered hands continues to be one of
the areas of great interest in robotics and automation, and to
date the problem cannot be considered to be solved, neither
from a hardware nor from an algorithmic perspective. Form
closure grasps immobilize an object by implementing an
enveloping grasp preventing motion in any direction. These
grasps can be useful in many situations, but cannot be used
to solve every problem. Force closure grasps instead are
implemented by a finger placement capable of resisting an
arbitrary external wrench (i.e., a combination of force and
torque). Force closure grasps are often needed when the
robot is supposed to manipulate a restrained object, e.g.,
using a tool. Continuous progress in the development of
multifingered hands (like the Barrett Hand, the Shunk hand,
and the Robonaut hand, just to name a few) is intertwined
with advancements in algorithms planning force closure
grasps. Informally speaking, the challenge is to decide where
to position the fingers in order to achieve force closure on a
given object. Given that in general the problem has multiple
solutions, grasp quality metrics have been developed since
quite some time (see Section II for more details). In many
instances, the planner performs a search in the grasp space
guided by the quality measure. Since the search space is
large and the planner often evaluates numerous grasps,
it is essential to expedite quality evaluation. The most
common grasp quality measures require the computation

S. Liu and S. Carpin are with the School of Engineering, University of
California, Merced, CA, USA.

This work is supported by the National Institute of Standards and
Technology under cooperative agreement 70NANB12H143. Any opinions,
findings, and conclusions or recommendations expressed in these materials
are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of the funding agencies of the
U.S. Government.

of a convex hull in six dimensions, and it has become
customary to use the freely available QuickHull software
library solve this problem. Using QuickHull requires to
compromise between accuracy and speed because in many
implementations the friction cones at the contact points
are approximated using a finite discretization. On the one
hand, one would prefer a coarse discretization to reduce
the size of the input set and expedite the computation of
the convex hull. On the other hand, one would favor a
fine grain discretization to reduce the approximation error,
but this would slow down the computation of the convex hull.

In this paper we show how in many cases it is possible
to greatly expedite quality evaluation by considering the
relationship between the measure sought and the convex hull
being computed. We dub our method Partial Quick Hull
(PQH) because it determines on the fly when the computation
of the full convex hull can be terminated because the quality
measure can be already determined with the partial result.
Our improved method provides large performance gains
when evaluating the quality of force closure grasps, whereas
its computation coincides with QuickHull when the grasp is
not force closure. Therefore, it is always convenient to use
PQH instead of QuickHull. Numerous experiments show that
the performance gap between Quick Hull and PQH increases
with the size of the input. Therefore, PQH allows to use a
high resolution discretization for the friction cone because it
scales well with the size of the input. Our implementation
is freely available to the scientific community1 and builds
upon the QuickHull implementation, thus taking advantage
of a highly optimized and debugged code base.

The remainder of this paper is organized as follows.
Related work is discussed in Section II and Section III
defines the problem and introduces relevant notation. The
PQH algorithm is discussed in Section IV, and a thorough
experimental comparison is given in Section V. Section VI
summarizes the lesson learned and outlines directions for
further improvements.

II. RELATED WORK

In this section we discuss related work from computational
geometry and robotics related to grasp quality evaluation.

A. Convex hull algorithms

Convex hull computation is a core problem in computa-
tional geometry [5]. Three parameters are used to character-
ize the computational complexity of convex hull algorithms,

1Code is available on http://robotics.ucmerced.edu.

namely the number of points n, the size of the resulting
convex hull h, and the dimensionality of the space d. For the
planar case (d = 2), various algorithms matching the known
Ω(n log n) lower bound [16] have been proposed. Among
these, the Graham’s scan algorithm is perhaps the most well
known [7]. Since the convex hull is typically defined by
just a subset of the input points, methods whose complexity
depends on the size of the result (output sensitive complexity)
have also been investigated. Algorithms with complexity
O(n log h) have been discovered [8], [2]. Note that the
O(n log h) complexity is optimal [8] in R2. Algorithms to
compute convex hulls of points in Rd with d > 2 have been
investigated as well. For d = 3, the convex hull can still be
computed in O(n log n) [14]. In fact, in R3 the complexity
of the convex hull, defined as the number of facets or edges,
is linear in the number of points n (see e.g., [5], chapter 11).
However, for d > 3 the complexity of the convex hull h is
no longer linear in the number of input points n, so output
sensitive algorithms are no longer necessarily the best choice.
Chazelle has shown [3] that if d is constant then the convex
hull can be computed inO(n log n+nbd/2c). From a practical
standpoint the QuickHull algorithm [1] is perhaps the most
common choice when computing convex hulls in higher
dimensions, also because of a widely used freely available
implementation.2 Quickhull builds upon ideas introduced in
the randomized algorithm presented in [4], but it differs
because rather than extending the convex hull by picking a
random vertex, it always extends the partial result by picking
an extremal point (these ideas will be further expanded in
Section IV). Its performance is evaluated in empirical terms
and is observed to be O(n log r) where r is the number of
vertices processed during the computation. So far, an analytic
characterization of its computational complexity has not been
determined.

B. Grasp metrics for force closure

Given two distinct grasps achieving force closure, a natural
question to ask is which one should be preferred. Various
metrics have been developed to answer this question [15].
A criterion meanwhile largely accepted suggests to prefer
the grasp that can resist an arbitrary external wrench while
exerting limited effort. This idea, originally proposed in [9]
and then further elaborated in [6], has become the de facto
metric used to rank grasps, and is also used to inform the
behavior of numerous grasp planning algorithms. As further
discussed in Section III, this property can be quantitatively
measured using the distance between the origin of R6 and
the convex hull of a set of elementary wrenches. This
distance is often referred to Q distance or using similar
names. The connection between grasp metrics and convex
hull computation is therefore evident. Many grasp planners
or grasp evaluation systems rely on QuickHull for the
computation of this measure, e.g., [11]. However, because
of the computational cost associated with QuickHull, there
have been various attempts to replace it with alternative,

2http://www.qhull.org

faster techniques. Recently, Zheng proposed an algorithm
that iteratively approximates the convex hull by growing
a polytope guaranteed to be inside the convex hull [17].
His algorithm, however, cannot be applied when evaluating
grasps that do not achieve force closure, whereas PQH can
be applied in both cases. Note that when a grasp is not
force closure the origin is outside the convex hull, but the
distance between the hull and the origin is still useful to
guide the planning process [18]. Pokorny and Kragic [12]
provide the first accurate study of the analytical properties
of the Q distance and of its approximations. In particular they
introduce an efficient algorithm to reject unstable grasps, but
their algorithm does not rank stable ones, i.e., they do not
compute the grasp quality metric. Importantly, [12] offers an
analytic bound for the approximation error introduced by the
discretization of the friction cone. In the following, we make
use of this result. Zheng and Qian propose one of the few
methods not relying on the discretization of the convex hull
[18]. The problem formulation however leads to a nonlinear
optimization problem that is computationally demanding.

III. PROBLEM DEFINITION AND NOTATION

We here define the grasp quality evaluation problem and
introduce relevant notation. The reader is referred to [13] and
references therein for an in depth discussion. We assume a
rigid body B is grasped using a multifingered hand with n
fingers. Three different models for friction are commonly
used, namely frictionless contact, contact with friction (also
known has hard finger model), and the soft finger model.
For sake of simplicity, in the following we consider just the
contact with friction model, but our findings are independent
of the underlying model. A grasp G is represented by
n contact points p1, . . . ,pn ∈ R3 and n contact forces
f1, . . . , fn ∈ R3. The coordinates of the points are expressed
with respect to a frame whose origin coincides with the
center of mass or B. The effect of every force is a wrench,
i.e., the combination of a force and a torque. The wrench
wi generated by the i-th force is the six dimensional vector
wi = [fi pi × fi]

T . At each contact point we define an
orthogonal reference system with three unit vectors ni, oi,
ti, where ni is the unit inward normal, and oi, ti are the
unit tangent vectors. Each contact force fi ∈ R3 is written
as fi = [fi1 fi2 fi3]T where fi1 is the component along
ni and fi2 and fi3 are the components along oi and ti.
To prevent slippage at contact pi, fi must lie within the
friction cone F (pi) defined at pi. The opening of cone
F (pi) is determined by the friction coefficient µi between
the ith finger and the object. For simplicity, in the following
we assume all these coefficients are equal to µ. The set of
contact forces F (pi) that do not cause slippage or separation
at contact point pi is defined as:

F (pi) =

{
fi ∈ R3|fi1 ≥ 0,

√
f2i2 + f2i3 ≤ µfi1

}
.

where fi1 ≥ 0 implies no separation and
√
f2i2 + f2i3 ≤ µfi1

implies no slippage. The set F (pi) defines a cone in R3,
hence the name friction cone. In most cases the cone is

d
j+1
i

d
j
i

pi

ni

d
j−1
i

Fig. 1: The friction cone is almost always approximated
using a pyramid with k edges.

represented using an approximation consisting of a regular
pyramid with k edges (see Fig. 1). Using this approximation,
every contact force can be written as fi =

∑k
j=1 αi,jfi,j

where fi,j are the component vectors along the edges of the
pyramid approximating the friction cone, and αi,j are non
negative factors adding up to 1. Based on this decomposition,
the wrench generated by the ith force can then be written as

wi =

k∑
i=1

αi,jwi,j =

k∑
i=1

αi,j

[
fi,j

pi × fi,j

]
Following the notation introduced in [6], let us define

W1 = CH(

n⊕
i=1

{wi,1, . . .wi,k})

W2 = CH(

n⋃
i=1

{wi,1, . . .wi,k})

where CH indicates the convex hull and
⊕

is the Minkovski
sum. A grasp is force closure if and only if the origin is inside
W1 or W2. For the force closure case, two grasp quality
metric are defined as [6]:

Qi = min
x∈Wi

||x||2.

Qi is the distance from the origin to the convex hull
defining W1 or W2, i.e., it is the radius of the largest ball
centered at the origin and completely inside the convex
hull. The two different sets Wi correspond to two different
physical conditions. The first one aims at minimizing the
maximum finger force, whereas the second minimizes the
sum of all the forces from all the fingers. In either case, a
convex hull computation is needed. The reader is referred to
[6] for a thorough discussion about why these are a good
metrics. As a matter of fact, the Qi metrics have become the
most used used grasp quality metric.
Remarks. The definition of W1 relies on the Minkovski sum
of a finite set of elements. It is known that this is a finite
set itself. Therefore for both W1 and W2 it is necessary to
compute the convex hull of a finite set of points in R6. The
algorithm we present in the following therefore can be used
in both cases.

IV. FAST DISTANCE COMPUTATION

A. QuickHull
To present our contribution, we briefly review the Quick-

Hull algorithm. The reader is referred to [1] for a more
detailed discussion. We recall that the convex hull C is
represented by its vertices (a subset of the input set), and
a set of (d− 1)-dimensional hyperplanes called facets. Each
facet is a convex subset of an hyperplane in Rd called the
hyperplane supporting the facet. Given n points in Rd in
general position,3 QuickHull proceeds as follows. An initial
simplex with d + 1 points is created. To create the initial
simplex, QuickHull picks extremal points. This expedient
further accelerates the computation by reducing the number
of successive iterations. Every facet is supported by an
hyperplane splitting Rd in two half spaces, one of which
includes the simplex. For each facet, a set of outside points
is created. The outside set of a face consists of all input
points lying on the half space not including the simplex (see
Figure 2.a). Note that in general a point may belong to the
outside set of more than one face.

(a) (b)

Fig. 2: a) QuickHull initialization. In R2 the initial simplex
includes 3 points and every facet is a segment. The outside
set of each facet is displayed using the same color of the
facet. Black points are inside the simplex and not assigned
to any outside set. b) QuickHull expansion. The cyan facet is
expanded and replaced by two new facets (red and purple),
and their respective outside sets are computed.

From the initial simplex, the convex hull is iteratively
grown. If there exists a facet with a non empty outside
set, the convex hull is expanded by growing the convex
hull to include the farthest point in the outside set. This
process, called expansion, eliminates one facet (the one
being expanded), and generates new facets for which their
respective outside sets are created (see Figure 2.b). Once the
outside sets of all facets are empty, the process terminates
and the simplex is equal to the convex hull. By greedily
growing the convex hull towards the farthest point at each
iteration, it was shown that QuickHull outperforms other
algorithms utilizing different criteria to expand the current
hull, e.g., [4].

B. Partial QuickHull
Let us now consider the specific case where the convex

hull is computed to determine the grasp quality metric. Note

3As usual in computational geometry, this assumption can be enforced
using a small perturbation of the input.

that in this case we are operating in R6, as per the definition
of Wi and wi,j . Two distinct situations may arise, i.e., the
origin of R6 lies inside the convex hull, or not.
Origin inside the convex hull. If the origin is inside, then the
grasp is force closure and the distance of the convex hull
from the origin provides the needed grasp quality measure.
To greatly accelerate the computation in this case, it is
essential to observe that the computation can be interrupted
as soon as the closest face to the origin is determined,
because the grasp quality metric is given by the distance
between this face and the origin, and the computation of
the remaining part of the convex hull carries no additional
information.
Origin outside the convex hull. In this case the grasp is not
force closure and the grasp quality measure is not defined.
However, the distance between the origin and the convex
hull still provides valuable information because it indicates
how far a grasp is from achieving force closure [18]. In this
case it is necessary to compute the whole convex hull.

It is important to notice that when the computation starts
one does not know if the origin lies inside the convex hull or
not. Therefore this decision must be made online. Moreover,
we want to compute the distance between the origin and
the convex hull both for force closure and non-force closure
grasps, because it is useful in both cases. The conditions to
identify the correct case are given by two lemmas building
upon the following definitions.

Definition 1: Let P be a hyperplane in Rd and y a point
in Rd. We define d(P,y) as the Euclidean distance between
P and y.

Definition 2: An oriented hyperplane is an hyperplane P
associated with a unary vector nP orthogonal to P .

The role of nP is to identify one of the two halfspaces
defined by P . As QuickHull and PQH incrementally build
the resulting convex hull, both algorithms maintains for each
facet an orthogonal unit-length vector pointing outside the
convex hull.
Assumption: Let F be a facet of a convex hull C and let nF
be a unit length vector orthogonal to F and oriented towards
the outside of C. The oriented hyper-plane associated to F
is obtained by setting nF = nP for the oriented hyperplane
supporting F .

Definition 3: Let P be an oriented hyper-plane in Rd and
y ∈ Rd. We define o(P,y) (offset from y to hyperplane P)
as

o(P,y) = d(P,y)sgn((pP − y) · nP)

where pP is any point on the hyperplane P , · is the dot
product, and sgn is the signum function.

From the above definitions it follows that d(P,y) is
always non-negative, whereas o(P,y) can be positive, nega-
tive, or zero. The offset o(P,y) can be interpreted as a signed
distance, i.e., it is d(P,y) when y is not in the halfplane
identified by nP and it is −d(P,y) otherwise.

Definition 4: Let F be a facet on the convex hull, P be

the hyperplane supporting F , and P(y) the projection4 of y
onto P . We define o(F ,y) (offset from point y to facet F)
as

o(F ,y) =

{
o(P,y) if P(y) ∈ F
sgn(o(P,y)) · min

x∈VF
||x− y||2 otherwise.

where VF is vertex set on F and · is the dot product.

Starting from these definitions we can state the two lem-
mas supporting the PQH algorithm (their proofs are omitted
for lack of space).

Lemma 1: Let C be the convex hull of n points in Rd. If
x is inside C, then the offset from point x to all the oriented
hyperplanes supporting all facets of C is larger than 0. In
contrast, if x is outside C, there exists at least one facet
of C for which x has negative offset from the supporting
hyperplane.

Lemma 2: Let x be inside the convex hull C. Then the
distance from the closest facet F of C to x is equal to the
offset of d(F ,x) and the distance of every other facet of C
to x is larger than d(F ,x).

Algorithm 1 sketches the algorithmic details of PQH. For
every facet F of the convex hull, we indicate with P(F)
the associated supporting oriented hyperplane. The algorithm
creates the initial simplex as QuickHull (line 1). Inside the
main loop the algorithm looks for the next facet to expand,
Fe. The first for loop (lines 4 to 8) builds upon lemma 1.
If the origin is outside C, then the algorithm behaves like
QuickHull and Fe is selected using QuickHull’s selection
method. However, as soon as the origin is determined to
be inside C, the facet selection criterion changes, and the
algorithm tries the expand the facet closest to the origin
(line 10). Building upon Lemma 2, if the outside set of the
facet closest to the origin is empty (line 11), the algorithm
terminates and returns the distance from the origin (line 12).

Algorithm 1 Partial Quick Hull algorithm
1: Create initial simplex C with d+ 1 points
2: loop
3: Fe ←nil
4: for all F ∈ C do
5: if o(P(F), 0) < 0 then
6: Fe ←QuickHullSelectFacet
7: end if
8: end for
9: if Fe = nil then

10: Fe ← facet with smallest offset from 0
11: if outside set of of Fe = ∅ then
12: return o(P(Fe), 0)
13: end if
14: end if
15: Expand Fe

16: end loop

4The projection of y into P is the point obtained by the intersection
between P and the line through y parallel to nP .

In our current implementation the search for the facet with
the smallest offset (line 10) uses a brute force approach, i.e.,
all faces are analyzed. As it will be shown in Section V,
despite this suboptimal choice the gain in performance is
still significant. However, in the future we will further refine
the algorithm and replace the complete search with a priority
queue, thus further enhancing PQH.

C. Computational complexity

QuickHull is observed to be competitive in practice, but its
computational complexity has not been formally determined
and its performance analysis is mostly empirical. Conse-
quently, no accurate computational complexity analysis is
available for PQH, although one can say that by construc-
tion QuickHull’s (conjectured) computational complexity
O(n log r) is an upper bound for PQH.

V. EVALUATION

In order to perform a fair comparison between PQH
and QuickHull, our implementation is based on the public
available QuickHull implementation written in C. As per
Algorithm 1, PQH is obtained modifying the main cycle
governing the expansion of the simplex. Our code is freely
available on our website, together with the datasets used to
generate the results presented in this section.

A. Comparison

We start comparing QuickHull with PQH over sets of
randomly generated points in R6. The objective of these first
tests is to compare the two algorithms for large input sets
and contrast how their performance scales with the size of
the input. In the first study we compute the convex hull
of 100 sets of 10000 points uniformly distributed inside
a cube. In each case the origin lies inside the resulting
convex hull, and therefore PQH always operates in its most
favorable condition. For both PQH and QuickHull we record
the number of points added to the convex hull and the
number of hyperplanes generated during the computation.
As pointed out in [1], these two quantities are meaningful
indicators of the computational effort. In particular, the most
expensive part is the creation and removal of the hyperplanes.
In addition, to give a better sense of the relative efficiency
of the algorithms, for this first test we also measure the
time spent on a 2.8GHz Intel i7 with 8 Gb RAM running
Linux. Figure 3 shows the results. The top panel displays a
comparison between the two algorithms, whereas the bottom
figure presents the ratio between the three performance
indices. It can be seen that for each of the three measures
there is a speedup always exceeding a factor of 10. Note
that in this case the average time spent by QuickHull is 2.06
seconds, whereas PQH spends on average 160 milliseconds.
In the successive test we vary the number of points from
10000 to 40000 to show how the performance gain scales
with the size of the input. In this set of tests the origin is
again always inside the resulting convex hull. In this case we
just plot the number of points and the number of hyperplanes.
For each size, we provide the average of 100 different runs

0 20 40 60 80 100
0

1000

2000

P
o

in
ts

0 20 40 60 80 100
0

1

2
x 10

5

H
y
p

e
rl
a

n
e

s

20 40 60 80 100

500
1000
1500
2000

T
im

e
(m

s
)

(a)

0 20 40 60 80 100
10

15

20

P
o
in

ts

0 20 40 60 80 100
10

20

30

H
y
p
e
rp

la
n
e
s

0 20 40 60 80 100
10

15

20

T
im

e

(b)

Fig. 3: a) Performance of QuickHull (blue) and PQH (green)
on 100 different input sets consisting of 10000 points in
which the origin is always inside the resulting hull. b) Ratio
between the two performances.

(standard deviations are not shown since they are negligible).
Figure 4 shows the results. Figure 4.b shows that as the
input size grows the performance gap between QuickHull
and PQH widens, thus showing that when operating in its
most favorable regime PQH scales better with the size.

Having assessed that PQH significantly outperforms
QuickHull when the origin is inside the convex hull, in
the next test we compare the two algorithms over sets of
10000 points where the origin may or may not be inside the
convex hull. The results are shown in Figure 5 and should
be contrasted with Figure 3. The spiky trend for PQH (green
line) confirms that PQH behaves like QuickHull when the
origin is not inside the convex hull, and is instead much
faster when it is inside. Therefore when the two lines overlap
it means that the origin is not inside the convex hull, whereas
there is a gap when the origin is inside. The examples shown
so far dealt with randomly generated input sets uniformly
distributed inside a cube in R6. Next, we repeat the last
experiment, but with input sets generated from actual grasps.
A set of 100 random grasps with 4 contact points and an
approximation of the friction cone with 32 edges is used. The
object being grasped is a bar. Since the grasps are randomly
generated, some of them are force closure and some are not.
The results shown in figure 6 are therefore similar to Figure

1 1.5 2 2.5 3 3.5 4

x 10
4

1000

2000

3000

P
o

in
ts

1 1.5 2 2.5 3 3.5 4

x 10
4

1

2

3

x 10
5

H
y
p

e
rp

la
n

e
s

(a)

1 1.5 2 2.5 3 3.5 4

x 10
4

16

18

20

22

P
o
in

ts

1 1.5 2 2.5 3 3.5 4

x 10
4

18

20

22

24

26

28

H
y
p
e
rp

la
n
e
s

(b)

Fig. 4: a) Performance of QuickHull (blue) and PQH (green)
for different sizes of the input set. b) Ratio between the two
performances.

5 in the sense that PQH behaves like QuickHull when the
grasp is not force closure and is much faster when the grasp
is force closure. However, figure 6.b shows that for the case
where the grasp is force closure the ratio between the number
of generated hyperplanes is much more favorable for PQH
(compare with figure 5.b). As stated in the beginning, in
a practical scenario one is interested in approximating the
friction cone using a large number of edges to approximate
its circular section. There is evidently a linear relationship
between the number of edges and the number of points for
which the convex hull will be computed. Figure 7 shows
the ratio between QuickHull and PQH’s performance as a
function of the number of edges approximating the friction
cone. Figures 4 and 7 are particularly important in light of the
findings presented in [12]. Pokorny and Kragic have shown
that when the grasp is force closure the approximation error
introduced by discretizing the friction cone with k edges
is M(1 − cos(π/k)) where M is a constant accounting
for geometric aspects unrelated to k. Using PQH one can
afford to use large k values to approximate the cone. For
example, for k = 64 PQH is still extremely fast and
(1 − cos(π/k)) ≈ 0.0012. A final consideration is in order.
PQH expedites the computation of the grasp metric when
the origin is inside the convex hull. Its performance instead

20 40 60 80 100

500

1000

1500

P
o

in
ts

20 40 60 80 100

5

10

15

x 10
4

H
y
p

e
rp

la
n
e

s

(a)

20 40 60 80 100

5

10

15

P
o
in

ts
20 40 60 80 100

5

10

15

20

H
y
p
e
rp

la
n
e
s

(b)

Fig. 5: a) Performance of QuickHull (blue) and PQH (green)
random configurations that may or may not include the
origin. b) Ratio between the two performances.

coincides with QuickHull when this is not the case. When
used within a grasp planner, the effective performance gain
will then depend on the types of grasps for which the metric
is computed. In particular, the speedup depends on the ratio
between the number of evaluations of force closure grasps
and the number of evaluations of non-force closure grasps.
This ratio depends on the planning process. When the grasp
planner explores the space of possible grasps and guides its
search using the grasp metric, one can anticipate that in the
initial stages the planner will test grasps of both types, but
as the search progresses it will concentrate on the subspace
of force closure grasps, i.e., the regime favorable to PQH. To
put this consideration into context, Table I shows the results
we obtained with one planner we developed that implements
a search similar to the one we described (the planner is
described in a separate paper [10]). Each row describes the
result of a planning problem and shows the number of force
closure grasps evaluated (FC) versus the number of non force
closure grasps (NFC). The last column shows the percentage
of cases in which PQH operates in its favorable condition.
Similar trends can be expected with comparable planners5.

5Unfortunately, most grasp planners presented in literature are not re-
leased as open source to the community, thus making an experimental
comparison impossible.

0 20 40 60 80 100
0

100

200

300

P
o

in
ts

0 20 40 60 80 100
0

5

10

15
x 10

4

H
y
p

e
rp

la
n

e
s

(a)

0 20 40 60 80 100
0

10

20

P
o
in

ts

0 20 40 60 80 100
0

500

1000

H
y
p
e
rp

la
n
e
s

(b)

Fig. 6: a) Performance of QuickHull (blue) and PQH (green)
for randomly generated grasps that may or may not be force
closure. b) Ratio between the two performances.

FC NFC FC Percentage
369150 94056 79.7
377277 95115 79.9
435475 98459 81.5
373505 87823 80.9
361924 95870 79.0

TABLE I: Number of force closure grasps evaluated (FC) vs
number of non force closure grasps (NFC) for five different
grasp problems.

VI. CONCLUSIONS

We have presented PQH, a modification of the QuickHull
algorithm tailored for the computation of grasp quality
metrics. Our algorithm builds upon the insight that for the
force closure case most of the computation of the convex
hull is irrelevant to the definition of the metric, and can
therefore be omitted, thus yielding large performance gains.
When the grasp is not force closure PQH behaves exactly
like QuickHull. Therefore, from a practical point of view
PQH is always convenient and one can safely substitute
QuickHull with PQH when computing grasp quality metrics.
In the future we will refine our current implementation to
obtain further performance improvements, e.g., using priority
queues to quickly determine the face closest to the origin.
In addition, we will use PQH to develop efficient planners
using the grasp quality metric to guide the search process.

8 16 24 32 40 48 56 64

2

3

4

5

P
o
in

ts

Number of Edges

8 16 24 32 40 48 56 64
5

10

15

20

25

H
y
p
e
rp

la
n
e
s

Number of Edges

Fig. 7: Ratio between the performance of QuickHull and
PQH as a function of the number of edges used to approxi-
mate the friction cone.

REFERENCES

[1] C. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quickhull algorithm
for convex hulls. ACM Transactions on Mathematical Software,
22(4):469–483, 1996.

[2] T. M. Chan. Output-sensitive results on convex hulls, extreme points
and related problems. Discrete Computational Geometry, 16:369–387,
1996.

[3] B. Chazelle. An optimal convex hull algorithm in any fixed dimension.
Discrete Computational Geometry, 10:377–409, 1993.

[4] K. Clarkson and P. Shor. Applications of random sampling in
computational geometry. Discrete Computational Geometry, 4:387–
421, 1989.

[5] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Compu-
tational Geometry. Springer, 3rd edition, 2008.

[6] C. Ferrari and J. Canny. Planning optimal grasps. In Proceedings
of the IEEE International Conference on Robotics and Automation,
pages 2290–2295. IEEE, 1992.

[7] R. L. Graham. An efficient algorithm for determining the convex hull
of a finite planar set. Information processing letters, 1(132-133), 1972.

[8] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull
algorithm? SIAM Journal of Computation, 15:287–299, 1986.

[9] D.G. Kirkpatrick, B. Mishra, and C.K. Yap. Quantitative Steintz’s
theorems with applications to multifingered grasping. In Proceedings
of the ACM Symposium on Theory of Computing, pages 341–351,
1990.

[10] S. Liu and S. Carpin. Global grasp planning exploiting triangular
meshes. In Proceedings of the IEEE International Conference on
Robotics and Automation, 2015 (submitted).

[11] A.T. Miller and P.K. Allen. Graspit! a versatile simulator for robotic
grasping. IEEE Robotics Automation Magazine, 11(4):110–122, 2004.

[12] F.T. Pokorny and D. Kragic. Classical grasp quality evaluation: New
theory and algorithms. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3493– 3500,
2013.

[13] D. Pratticchizzo and J.C. Trinkle. Grasping. In B. Siciliano and
O. Khatib, editors, Handbook of robotics, chapter 28, pages 671–700.
Springer, 2008.

[14] F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points
in two and three dimensions. Communications of the ACM, 20:87–93,
1977.

[15] R. Suárez, M. Roa, and J. Cornella. Grasp quality measures. Techni-
cal Report IOC-DT-P-2006-10, Universitat politècnica de Catalunya,
March 2006.

[16] A. C. Yao. A lower bound to finding convex hulls. Journal of the
ACM, 28(780-787), 1981.

[17] T. Zheng. An efficient algorithm for a grasp quality measure. IEEE
Transactions on Robotics, 29(2):579–585, 2013.

[18] Y. Zheng and W.-H. Qian. Improving grasp quality evaluation.
Robotics and Autonomous Systems, 57:665–673, 2009.

