A Fast Algorithm for Grasp Quality Evaluation
Using the Object Wrench Space

Shuo Liu

Abstract— Grasp quality evaluation is an important problem
when multifingered robotic hands are used to restrain objects
in automation and manufacturing. In this paper we present
a new algorithm to greatly expedite the evaluation of grasp
quality considering the so-called object wrench space, i.e., the
set of all disturbance wrenches that may be generated by a
disturbance force acting on the object being grasped. While this
metric has been known since a while, its practical use inside
grasp planners has been limited because its exact computation
is time consuming and thus prevents its use when many grasps
have to be repeatedly evaluated during the planning process.
Building on some geometric insights related to convex hulls, our
algorithm determines on the fly which subset of the input data
needs to be processed, and stops the computation as soon as it is
known that the exact value of the metric has been determined.
We show that our new algorithm significantly decreases the time
needed to compute the grasping quality measure thus enabling
grasp planners to use this metric to search the space of possible
grasps.

I. INTRODUCTION

The ability to restrain an object with a robotic hand is
a fundamental building block for numerous tasks related to
robotics and automation. Grasp planning is the problem of
determining where to establish contact points on the surface
of an object in order to restrain it. It is a problem that has
been extensively studied and can be seen as search problem
in the space of feasible grasps.! The search is commonly
informed by a grasp evaluation function. In fact, for a given
grasp planning problem there exist multiple solutions, and
the question of which one should be preferred naturally
arises. In the context of force closure grasps, a quality metric
proposed by Ferrari and Canny more than two decades ago
has been widely embraced [1]. In essence their criterion
favors grasps that can resist arbitrary disturbances (wrenches)
with the least effort. While this idea makes sense in theory,
it turns out to be often too conservative in practice. In
fact, the torque component of the disturbance wrench can
hardly appear alone and is almost always induced by a
disturbance force. Building upon this observation, Strandberg
and Wahlberg proposed a new method for grasp evaluation
aiming at assessing the ability to reject disturbance forces

S. Liu and S. Carpin are with the School of Engineering, University of
California, Merced, CA, USA.

This work is supported by the National Institute of Standards and
Technology under cooperative agreement 70NANB12H143. Any opinions,
findings, and conclusions or recommendations expressed in these materials
are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of the funding agencies of the
U.S. Government.

I'Throughout the paper we exclusively consider force closure grasps.

Stefano Carpin

[2]. Besides being more realistic and less conservative, their
method enjoys additional desirable properties like scale in-
variance — an aspect missing in [1]. Despite these advantages,
however, this method has not enjoyed wide use in the
community. One of the reasons is that its computational
requirements are quite onerous and this negatively affects
the planning cycle where many tentative grasps have to be
evaluated.

In this paper, building upon our recent results presented in
[3], we present an algorithm that significantly expedites the
computation of the metric proposed in [2], thus paving the
way for its use in practice. Our method exploits the same
principle we presented in [3], namely that in many practical
situations a complete computation of the geometric objects
defining the metric is unnecessary because the result can be
inferred from a partial computation. The similarity however
ends here, in the sense that the method we presented in [3]
is tailored for the Ferrari-Canny metric, whereas we here
tackle a significantly different measure. Our experimental
evaluation shows that a basic implementation of our algo-
rithm achieves a more than tenfold acceleration over the
brute force method and is comparable with the optimized
implementation we presented in [3] for the Ferrari-Canny
metric.

The rest of the paper is organized as follows. Related work
is presented in Section II and the necessary mathematical
background is given in Section III. Our method is then
presented in Section IV and experimentally evaluated in
Section V. Finally, conclusions and future work are discussed
in Section VI

II. RELATED WORK

The problem of evaluating the quality of a force closure
grasp has been extensively studied (see [?] for a survey).
Ferrari and Canny introduced the most commonly used grasp
metric (often called) measure) built upon the associated
concept of grasp wrench space (GWS), i.e., the set of grasps
that can be resisted by a grasp [1]. From a computational
point of view their method requires the computation of the
convex hull of a set of points in 6 dimensions (elementary
wrenches), and this is usually achieved using the QuickHull
algorithm [4]. The @@ measure is defined as the radius of
the largest ball centered on the origin and fully contained
in convex hull of the set of elementary wrenches. Recently
[3], we have shown that the computation of this metric can
be greatly increased using a partial quick hull computation,
i.e., stopping the computation of the convex hull as soon

as enough information is available to compute the) met-
ric. Pollard introduced the concept of object wrench space
(OWS) [5], i.e., the set of all wrenches that can be exerted
on an object by an external disturbance force. Borst et al. [6]
propose a method to approximate the object wrench space
computing an enclosing ellipsoid rather than the exact shape.
This ellipsoid is then transformed into a sphere using a linear
transformation and then a grasp quality estimate is produced
taking the radius of the largest sphere inside the grasp wrench
space (as in the original definition of the () measure). This
method however is approximate because there can be quite
some mismatch between the actual object wrench space
and the enclosing ellipsoid. Strandberg and Wahlberg [2]
proposed a method for the exact computation of a grasp
metric based on the object wrench space. Their argument
is that using the grasp wrench space to evaluate the quality
of a grasp is too conservative, since this approach fails to
consider that from a practical point of view disturbance
wrenches are the consequence of disturbance forces, and it
then makes sense to only consider those wrenches (i.e., the
object wrench space), as opposed to all possible wrenches.
A suitable metric is then defined considering how much the
object wrench space can be inflated before it reaches the
boundary of the grasp wrench space. This is in contrast to
considering the radius of the largest ball, i.e., considering all
possible wrenches. From a computational point of view, their
method resembles a brute force approach, with only some
minor improvements introduced through some bucketing. A
similar method was proposed in [7]. Pushing even further
the idea that a grasp should only be evaluated with regard
to its ability to resist the wrenches it will encounter in
practice, the task wrench space was defined in [8]. The task
wrench space is the set of all external wrenches that can
be generated during the execution of a specific task with an
object. However, while this idea makes sense in theory, it
has been scarcely used in practice because it is not easy to
determine this set in general.

III. BACKGROUND

In this section we provide a short recap on grasping
metrics and introduce relevant notation used in the remainder
of the paper. The reader is referred to [9] for a more thorough
discussion.

A. Object Wrench Space and Grasp Wrench Space

A wrench w is a six dimensional vector in which the first
three components are a force f and the last three components
are the torque generated by the force. The wrench generated
by a force f exerted at point p on the surface of an object

is
B f
W= pxf |’

The coordinates of point p are expressed with respect to a
reference frame normally placed at the center of mass of the
object. The object wrench space (OWS from now onwards)
is the union of all wrenches that can be generated by a unit
length disturbance force acting on the surface of the object

being grasped. Let B be the object being grasped and let
D be its surface. Let e; be a unit length vector. The object
wrench space is then defined as

€;
OWS = U [a; x € }aj €D.e; GFC(aj)

a;,e;

Note that in the definition the contact point a; spans the
whole surface of the object, but we constrain the vector e;
to be inside the friction cone FC(a;) at the contact point (to
prevent slippage). In the sequel, it is convenient to assume the
surface D is expressed as a collection of triangles. Indeed,
this is a representation often used in digital design and often
also assumed in grasp planning [10], [11]. Indicating with
V1, Vg, vy the three vertices of a triangle, any contact point
point a; inside the triangle can then be written as a convex
combination of the vertieces, i.e., a; = Eizl o VE where
22:1 ar = 1 and ap > 0. The wrench generated by e;
acting at a; can then be written as

€;

q= 3
Zkzl QEV; X €;

Therefore the wrench generated by e; acting on any point
of the surface D can be expressed as a convex combination
of the wrenches generated when the forces act on the vertices
of the triangles. Assuming the surface D is composed of m
triangles, OWS can then be alternatively defined as follows

ows={J|JcH ({ Vﬁ:; N } (1)

€i Vjk

j=1...mk=1,23 eiEFC(VLk))

where CH indicates the convex hull and v; ; is the k—th
vertex of the j—th triangle on the triangle mesh.

Following a similar notation, the space of all wrenches
that can be generated by a grasp with n contact points can be
defined. To this end, let e; be the unary length force acting at
contact point p;. To prevent slippage the force must lie inside
the friction cone at point p;. It is customary to discretize the
friction cone with a pyramid with d edges, and then e; can

be written as
d
k
e = Z Birt;
k=1

where fF is the kth component of the discretization of the
friction cone (see Figure 1). The wrench generated by the
1-th normalized contact force can then be written as

d
> Birkf d
w; = k=1, => Buw}.
| STAD Z ﬂikfz k=1
k=1

Pi

Fig. 1. When defining the grasp wrench space it is convenient to
approximate the friction cone at the contact point with a regular pyramid
with d edges.

Building upon this notation, assuming there are n contact
points, the grasp wrench space (GWS) is then defined as

follows:
GWS = CH (U{w}, . .w§}> .

i=1

The set of nd wrenches appearing in the definition GWS
(w?) is commonly referred to as set of elementary wrenches.

B. Grasp Quality Measures

The most commonly used grasp quality metric, often
indicated as () measure is defined as the radius of the largest
ball within GWS [1]. The) measure formalizes the idea
that we should prefer grasps capable of resisting arbitrary
external disturbance wrenches using the smallest forces at the
contact points. However, as pointed out in [2] this criteria is
practically too conservative because it considers all possible
external wrenches, but in practice wrenches are generated
only from disturbance forces. Therefore GWS is formulated
with respect to many wrenches that in practice may never
occur (e.g., a wrench consisting of just a torque component
without a force). Building upon this insight, a different
quality measure was therefore proposed in [2], namely

Qows = max {r - OWS C GWS}

Qows by the definition is how much one can inflate OWS
(through the parameter r) before reaching the boundary of
GWS. Hence Qows rectifies the definition of () by consider-
ing only the wrenches that can be generated by disturbance
forces, as per the definition of OWS. The following theorem,
whose easy proof is omitted in the interest of space, offers
an alternative and more efficient way to compute Qows.

Theorem 1: Let OWS be an object wrench space and
GWS be a grasp wrench space. Then,

max {r - CH(OWS) C GWS} = max {r - OWS C GWS}.
"Theorem 1 is important because Ihe convex hull of OWS
includes much less vertices than OWS as defined in Eq. 1,
and this will have important consequences in the following.
If we consider the structure of a convex hull, it is clear that
the largest value for r will be achieved when CH(OWS)
intersects GWS, and the intersection point occur between a
vertex of CH(OWS) and a point on one of the boundaries

on the facets defining the boundary of GWS Therefore the
expression to compute Qows can be further rewritten as

Qows = mrin {r -V ﬂ GWS £ 0,v; € V(CH(OWS))}
2
where V (CH(OWS)) is the set of vertices defining the convex
hull of OWS.

Remark: while we here only consider Qows, the same
principles can be applied towards the task wrench space
(TWS), i.e., the space of wrenches that can be generated
during the execution of a given task [8]. In fact, TWS is a
subset of OWS and hence the same inflation principles apply.

C. QuickHull algorithm

The QuickHull algorithm is commonly used to compute
(@@ and we here introduce some of its terms that we will
use in the following (the reader is referred to [4] or [3] for
more details). Given n points in space, QuickHull iteratively
grows the convex hull following an heuristic that works well
in practice. The convex hull consists of a set of facets and
each facets is supported by an hyperplane. For each facet the
algorithm maintains a unit normal vector pointing outside
the convex hull and the offset (distance) from the origin.
Moreover, for each facet, the outside set of the facet is
defined as the set of input points not yet included in the
convex hull and located in the halfplane identified by the
normal vector.

IV. Qows CALCULATION

Building upon the definitions and observations given in
the previous section, we here present an efficient method to
compute QQows based on partial convex hull computation.
As per Eq. 2, we need to determine the maximum factor r
by which we can inflate CH(OWS) until one of its vertices
intersects GWS. It is useful to recall that GWS is by defini-
tion the convex hull of a set of points, and hence a convex
set bounded by a set of hyperplanes in six dimensions. A
brute force approach to determine r could therefore iterate
over all possible vertices in OWS and hyperplanes supporting
the facets of GWS and determine by how much each vertex
could be expanded before touching the hyperplane. For the
1-th vertex v; and the j-th hyperplane H; we define

O(Hj) O)
rz,] - v; - n(Hj) (3)
where o(H;,0) is the offset from the origin of hyperplane
H;, n(H;) is the outward normal to Hj, and v, - n(H;) is
the internal product between the two vectors. Based on these
computations, the needed metric is then

Qows = min{r; j|r; ; > 0}.

Note that in the following we will ensure that the set
of positive 7; ; values is never empty, so Qows is well
defined. While this method provides the needed result, it
is too demanding because it runs in ©(VowsHgws) where
Vows is the number of vertices defining the OWS convex

hull and Hgws is the number of hyperplanes in the convex
hull of GWS. This last term is particularly important because
the number of hyperplanes can be as high as ©(VZy)
where Vgws is the number of vertices in GWS?2. The reader
should also notice that when approximating the friction cone
with a pyramid one has interest in increasing the number
of edges d, and this further increases the size of of Vgws.
One should further notice in a grasping planning OWS can
be pre-computed once and it does not change, but GWS
is directly related to the grasp being evaluated and this
repeatedly changes during the planning process, so that one
has to defer most of the computation at run time.

In order to overcome this computational bottleneck, we
present in the following a strategy to compute QQows based
on a partial computation of the convex hull of GWS. This
expedient greatly reduces the computational time without
introducing any approximation.

A. Partial convex hull for Qows

The main idea of the algorithm we propose is to iteratively
grow the convex hull leading to GWS similarly to what the
QuickHull algorithm does, and to stop the growth as soon as
the correct value for the (Qows metric can be determined.
In the following, when we refer to GWS we are in fact
referring to a partial convex hull because it is the convex
hull of just a subset of the elementary wrenches and not
of the full set. To determine when the computation of the
convex hull can be stopped, we assign each vertex of OWS
to one of the facets in the partial convex hull of GWS. The
objective of the association is to compute the inflation ratio
only between associated vertices and facets, thus avoiding a
brute force search as in Eq. 3. The main challenge, of course,
is in efficiently establishing and updating these associations
while the convex hull is iteratively growing and changing
with facets being added and deleted. The following lemma
provides the foundation for our algorithm.

Lemma 1: Let V be the set of vertices in CH(OWS) and
H be the set of hyperplanes supporting the facets of the
convex hull GWS. If v; € V and H; € H achieve the
minimum in the expression given by Eq. 3, then r; ;v; lies
on the boundary of the convex hull GWS, i.e., it lies in one
of its facets.

The algorithm works as follows. Initially, as per Theorem
1, CH(OWS) is computed. As in Eq. 2, we indicate with
V(CH(OWS)) the set of vertices of this convex hull. Next,
a partial convex hull for the space of elementary wrenches
is initialized with 7 vertices®, as per the QuickHull [4] or
PQH [3] algorithms. The initial convex hull is then iteratively
expanded until it includes the origin. This precondition is
necessary to ensure the correctness of the successive steps.
Figure 2 shows the initialization phase.

It is known that the convex hull of n points in R? can include up
to @(nud“'l)/ﬂ) facets. Since our algorithm is applied in RS our claim
follows.

3In general, when computing a convex hull in R™ with QuickHull, one
should initialize the convex hull with n + 1 points. However, our algorithm
is exclusively applied in the special case in which the input consists of
wrenches, i.e., points in RS, so the initialization is completed with 7 points.

Fig. 2. Initialization step for the algorithm. CH(OWS) is computed (gray)
as well as a partial convex hull over the set of elementary wrenches (black
dots). The process stops when the origin is included the partial convex
hull (blue). The figure shows a two dimensional depiction of a computation
happening in RS.

At this point the initial association between vertices of
OWS and facets of GWS takes place. Each vertex is associ-
ated with the facets with which it will intersect when inflated.
The search for the correct face to associate is done brute
force over the set of all hyperplanes supporting the facets in
the current partial convex hull. Lemma 1 assures that taking
the smallest value computed for each vertex will identify the
correct facet. Note that even though this association requires
to iterate over all facets of the partial convex hull, the effort
is modest because the iteration happens over a set of facets
significantly smaller than the whole GWS (see Figure 3).
Note also that since the association starts after the origin has
been included in the partial GWS, each vertex in OWS is
associated with a positive inflation ratio.

[] CH(aws)
[.
[<=—amin r
[]

L

Fig. 3. Initial association between vertices OWS with facets in the partial
GWS. Associations are shown by corresponding colors. Note that for some
vertices (e.g., the purple ones) the actual inflation factor is smaller than 1.
The figure also shows the facet associated with the vertex with the smallest
inflation ratio.

Next, the algorithm proceeds expanding the partial convex
hull adding a new vertex to to it. Since our objective is to
determine the smallest inflation ratio, we expand the facet
associated with the point with the smallest inflation ratio.
The facet is expanded by adding the farthest point in its
outside set (see Figure 4). During the expansion, the facet
is replaced by a set of new facets, and each point in OWS
formerly associated with the removed facet is associated with
one of the new facets. It is important to notice that these
points can only be associated with one of the new facets,
and it is therefore not necessary to search the whole set of
facts in the partial convex hull.

This expansion process is iterated until the hyperplane
associated with the vertex with the smallest positive inflation

L
[] CH(ows

Fig. 4. Expansion set. The green facet in Figure 3 is removed to grow the
convex hull towards the farthest vertex in its outside cell. Two new facets
are created and the vertices of OWS formerly associated with the green face
are now associated with the two new facets.

rate has an empty outside set. At that point the computation
can be stopped because the smallest inflation rate has then
been determined and this value is indeed Qows.

Algorithm 1 sketches the pseudocode for the strategy we
just described. In line 1 we create the initial simplex C as in
the QuickHull algorithm. Next, (loop from line 3 to 13) we
iteratively expand the partial convex hull until the origin is
included. This condition is satisfied when the offset of the
hyperplane supporting every facet is not negative. If this is
not the case, the simplex is expanded by selecting among
the facets with a non-empty outside set the one with the
smallest offset (lines 11 and 12). This heuristic accelerates
the process. The initial assignment of vertices of CH(OWS)
to the facets is performed in lines 14-17 through a search over
the set of facets in the partial convex hull. For each facet F,
Tmin(F) is the smallest inflation factor among all vertices
associated with the facet. Then, in the final loop (lines 18-
25) the convex hull is iteratively expanded. At each iteration
the facet with the smallest value for r,,,;, (F) is expanded, if
possible, (line 19-21) and after the expansion the assignment
of vertices to facets is updated. If the facet with the smallest
value for 7,,;,(F) cannot be expanded, then the algorithm
terminates and returns the corresponding inflation value (line
25).

V. EVALUATION

In this section we experimentally evaluate our algorithm
for the computation of Qows. Our code is based on the public
available QuickHull implementation* and is freely available
on our website® together with the datasets used to generate
the results presented in this section.

We compare our algorithm against two alternative methods
to compute Qows. The first one implements the brute force
strategy formerly illustrated. The method is evidently slow,
but produces the exact result. The second method implements
the principle described in [6] to approximate Qows. Therein
the authors propose to approximate OWS with an ellipsoid
and to then transform it into a sphere through a linear
transformation. After this transformation the grasp quality
is determined as the maximum radius of the sphere so that
it is fully contained in GWS, and then the complexity of

4http://www.ghull.org/
Shttp://robotics.ucmerced.edu

Algorithm 1 Partial Quick Hull for Qows algorithm

1: Create intial simplex C with 7 points

2: Originlnside < false

3: while not Originlnside do

4: FCflage 1

5: forall FeCdo
6: if o((F,0) < 0 then
7
8
9

FCflag+ 0
if FCflag=1 then
Originlnside + true
10: else
11 Fset = {F | outsideset(F) # 0}

12: Fe + arg }_mjitn o(P(F),0)
EFset
13: Expand F. and update C

14: for all facets F; € C do

15: for all v; € V(CH(OWS)) do

16: Compute r; ; as per Eq. 3.

17: Associate each v; to the facet F; with smallest r; ;
18: loop

190 F, < arg mj_in Trmin (F)

20 if outsideset(F,) # () then

21: Expand F,

22: Reassign vertices associated with F. to the new
facets (Frew)

23: Calculate 7, for the new facets (Frew)

24: else

25: return 7, (Fe)

the method is equivalent to computing the) measure. It is
important however to recall that this approach just provides
and approximation and not the exact value for Qows. Since
this method ultimately requires to compute the () measure,
we consider two different (although equivalent) implementa-
tions, i.e., one based on the QuickHull library and the other
based on our recent much faster algorithm PQH. Figure 5
shows the time comparison for the various methods over 100
different grasps for the same OWS. Note that every method
requires the preliminary computation of OWS, so this time
is excluded from the comparison because is done upfront
once for all for all algorithms. Our method (blue line) largely
outperforms the brute force exact method (red line) and is
faster than the implementation using QuickHull. It is slightly
slower than the approach based on PQH, but both provide
an approximation and not the exact result. In addition, one
should consider that to the best of our knowledge the quality
of such approximation is not known. In conclusion, the
figure demonstrates that the method we propose is clearly
to be preferred because it provides the exact result and its
computational requirements are comparable with the faster
of the implementations for the approximate methods.

The next experiment is to show that grasps evaluated
using @ or Qows are indeed ranked differently and this has
practical importance. Figure 6 shows two different grasps
(in red and blue) each with four contact points. The grasp in
blue is favored by Qows whereas the one in red is preferred

D 4o} — PQows
£ QuickHull
o == Brute Force
E 5ol Partial QuickHull
=
20
10}
OWQAM
0 10 20 30 40 50 60 70 8 90 100

Number of Episodes

Fig. 5. Time comparison between our method, Quickhull and the brute
force algorithm.

by the Q measure. However, the intensity of the maximum
disturbance that can be resisted by the blue grasp is 0.0604,
while the scale is 0.0514 for the grasp in red. The quality
of the two grasps can be seen in figures 7 and 8 where for
every direction in three dimensions we plot the intensity of
the maximum force that can be resisted by the blue grasp
(Figure 7) and by the red grasp (Figure 8). The surfaces show
that the blue grasp can resist a much larger set of forces, as
indicated by the larger volume enclosed by the surface.

N Otject
® Qows Preferred
® 0 Preferred
Front View Back View
Fig. 6. Two grasps either favoring Qows or Q.

Fig. 7. Disturbance force surface for the grasp favored by Qows.-

VI. CONCLUSIONS

In this paper we have presented a novel algorithm to com-
pute a grasp quality metric force based on the object wrench
space. This metric Qows considers only the disturbance

Fig. 8. Disturbance force surface for the grasp favored by Q.

wrenches that may be generated by disturbance forces, so it is
less conservative than the more commonly used () measure.
However, since it is computationally more demanding, it is
rarely used in practice. Our algorithm exploits some insights
from computational geometry and allows to compute Qows
through a partial computation of a convex hull. The method
does not introduce any approximation and its performance is
comparable with the more advanced methods used to com-
pute Q. We believe that this new algorithmic advancement
will enable to integrate the Qows into the grasp planning
cycle, thus generating grasp configurations that will be more
robust and useful in an automation environment.

REFERENCES

[1] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proceedings
of the IEEE International Conference on Robotics and Automation,
1992, pp. 2290-2295.

[2] M. Strandberg and B. Wahlberg, “A method for grasp evaluation
based on disturbance force rejection,” IEEE Transactions on Robotics,
vol. 22, no. 3, pp. 461-469, 2006.

[3] S. Liu and S. Carpin, “Fast grasp quality evaluation with partial
convex hull computation,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2015, pp. 4279-4285.

[4] C. Barber, D. P. Dobkin, and H. Huhdanpaa, “The Quickhull algorithm
for convex hulls,” ACM Transactions on Mathematical Software,
vol. 22, no. 4, pp. 469-483, 1996.

[5] N. Pollard, “Parallel methods for synthesizing whole-hand grasps from
generalized prototypes,” Ph.D. dissertation, MIT, 1994.

[6] C. Borst, M. Fischer, and G. Hirzinger, “Grasp planning: how to
choose a suitable task wrench space,” in Proceedings of the IEEE
International Conference on Robotics and Automation, 2006, pp. 319—
325.

[71 H. Jeong and J. Cheong, “Evaluation of 3D grasps with physical
interpretations using object wrench space,” Robotica, vol. 30, no. 3,
pp. 405-417, 2012.

[8] Z. Li and S. Sastry, “Task oriented optimal grasping by multifingered
robot hands,” IEEE Journal of Robotics and Automation, vol. 4, no. 1,
pp. 3244, 1988.

[9] D. Pratticchizzo and J. Trinkle, “Grasping,” in Handbook of robotics,
B. Siciliano and O. Khatib, Eds. Springer, 2008, ch. 28, pp. 671-700.

[10] K. Hang, J. Stork, F. Pokorny, and D. Kragic, “Combinatorial opti-
mization for hierarchical contact-level grasping,” in Proceedings of the
IEEE International Conference on Robotics and Automation, 2014, pp.
381-388.

[11] S.Liuand S. Carpin, “Global grasp planning using triangular meshes,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, 2015, pp. 4904—4910.

