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ABSTRACT

Micro-aerial vehicle (MAV) swarms are a new class
of mobile sensor networks with many applications in-
cluding search and rescue, urban surveillance, radiation
monitoring, etc. These sensing applications require au-
tonomously deploying a high number of low-cost, low-
complexity MAV sensor nodes at suitable locations in
hazardous environments. We propose a collaborative al-
gorithm for resource-constrained MAV nodes to quickly
and efficiently deploy at preassigned locations in multi-
room scenarios. Through large-scale simulations we
show that the proposed technique provides significant
benefit over existing autonomous deployment strategies.

1. INTRODUCTION

In sensing applications with hostile, dangerous, or
otherwise inaccessible environments (such as urban
search and rescue, environmental monitoring, surveil-
lance, etc.), in-situ sensor data is very valuable but
manual deployment of sensors is often not feasible.

Micro-aerial vehicle (MAV) swarms are an emerging
class of networked mobile systems with widespread ap-
plications in such domains. These swarms consist of
miniature aerial sensor nodes with limited individual
sensing, computing and communication capabilities [13]
7]. Initial work in the operation of MAVs has focused
on outdoor or highly instrumented environments that
rely on external sensors to control individual devices [2].
However, such centralized sensing approaches are ham-
pered in indoor environments by obstructions (walls,
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floors, furniture, etc.). At the same time, reliance on
infrastructure implies the requirement for a large de-
ployment of support sensors covering all the locations
that a MAV may visit [11]. Thus these approaches are
only applicable in pre-surveyed locations.

This paper presents an algorithm for the cooperative
deployment of swarms of Micro-Aerial sensors in envi-
ronments not formerly preconditioned for their opera-
tion. The key focus behind this networked MAV swarm
research is to rely on collaboration to overcome the
limitations of individual nodes and efficiently achieve
system-wide sensing objectives.

In the proposed approach, the MAV swarm self-
establishes a temporary infrastructure of a few landed
MAV’s acting as radio beacons. Using radio signature
or fingerprints from beacon nodes, the algorithm detects
intersections in trajectories of exploring mobile MAV
nodes. The algorithm combines noisy dead-reckoning
measurements from multiple MAV’s at the detected
intersections to improve the accuracy of the MAVS’
location estimates. Most importantly, the algorithm
adaptively plans trajectories of MAV nodes according
to the certainty of their location estimates — directing
movement to improve location estimates when certainty
is low, and directing them to follow a map bias when
certainty of location estimates is high.

The main contributions of this paper is a combined
location estimation and planning algorithm that deter-
mines the certainty of location estimates and uses it to
adaptively plan node motion.

2. OVERVIEW

Potential MAV swarm sensing applications will re-
quire mobile sensors to autonomously deploy in multi-
room operating environments with no localization in-
frastructure. In this paper, we address the problem of
how a network of mobile sensors can be deployed to
pre-determined deployment positions under time and
accuracy constraints.

The system begins operation with a swarm of MAV’s
being introduced into a multi-room connected space
through an opening. We make the assumption that
a coarse map of the building is available and can be
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Figure 1: The figure shows architecture of our de-
ployment system. The mobile MAV nodes send dead-
reckoning sensor data and radio signatures to a base
station. The base station runs our estimation and
planning algorithm and issues movement commands
to individual MAV nodes.

utilized by domain experts to pre-determine suitable

placement of sensors. The system uses the rough map

to extract a connectivity graph of the various spaces

(rooms) in the deployment environment and determine

deployment locations.

The proposed system has 3 major operational phases,
setup, estimation and planning (the latter two proceed
in conjunction) —

e Setup: The system autonomously establishes a tran-
sient infrastructure of stationary MAV nodes acting
as wireless beacons. These nodes land on being in-
troduced into the area and remain stationary during
the deployment process. These nodes use a simple
dispersion algorithm [6] that lets them spread out
in the environment without any estimation of their
location.

e Estimation: The system then estimates the loca-
tions of nodes and guides them to their deployment
locations. To realize this, the system first uses dead
reckoning sensors such as an optical flow velocity
sensor and gyroscope (in our test MAV platform) to
get a rough estimate of the motion path of mobile
nodes. Second, the system uses radio fingerprints,
collected by mobile nodes from the self-established
wireless beacons, to determine rendezvous points, i.e.
points where nodes visit locations already visited by
other nodes or by themselves.

The radio fingerprints are collected in an online fash-

ion, i.e., the nodes discover fingerprints as they ex-

plore. These fingerprints are sent to the Base and
matched with a database of previously discovered sig-
natures. If the signature matches an existing signa-
ture in the database (decided by a distance metric),
the point is classified as a rendezvous, and a correction
can be applied. If the signature does not match any

existing signature, it is added to the database as a

new entry.

Finally, the system uses the rendezvous points to

combine location estimates from multiple nodes and

collaboratively improve location estimates of the en-

tire swarm. Combining estimates is a chicken and
egg problem that requires a rendezvous point to esti-
mate and update its own location from visiting mobile
nodes, and subsequently, use the updated location to
correct the estimates of the visiting mobile nodes.
To achieve this, we employ a particle filter based
approach. A particle filter [12] is a Bayesian esti-
mation method used to estimate system state based
on multiple noisy sensor measurements. We use a
particle filter to track the position and orientation of
each mobile node. Similarly, we use a particle filter
to track the position of each rendezvous point as it
is discovered and visited by the MAV nodes. Every
visit to a rendezvous point by a mobile node, results
in the the mobile node correcting the estimates of
the particles of the rendezvous point, which in turn
corrects the estimates of the particles of the mobile
node.

e Planning: Having estimated locations, the system
commands the nodes to follow a path to subsequent
deployment positions. However, the quality of the
planned path depends greatly on the accuracy of the
initial location estimate of nodes. The novel aspect of
our system is that it considers the quality of location
estimates in planning node paths. The path planner
commands node movement such that they increase
rendezvous points and potentially improve location
estimates when the quality of their estimates is likely
to be low. On the other hand, when the location
estimates are likely to be more accurate, the plan-
ner uses the map to direct them to their designated
deployment locations.

Figure [1] shows the architecture of the system. The
system deploys Stationary M AV Nodes through dis-
persion that act as wireless beacons. Mobile MAV
Nodes explore, obtaining dead-reckoning measurements
from their on-board sensors and radio RF-signatures
from the stationary beacons. The mobile nodes relay
this to a Base. The Base stores a database of known
radio signatures (Signature DB) that is used to deter-
mine rendezvous in node paths and apply corrections to
their dead-reckoning estimates. The corrected location
estimates are used by the Base in conjunction with a
Connectivity Graph (extracted from the coarse map)
of the environment to command the subsequent move-
ments of MAV nodes.

2.1 Adaptive Path Planning

We described how a rendezvous between the paths
of nodes can be utilized to improve their location esti-
mates.

In order to reach the deployment regions, we use the
floor plan to produce a graph of connected regions of
the environment. Each room or space is a node in the
graph and the edges represent the connecting openings
between them. The graph enables us to bias the di-
rection of movement of nodes towards predetermined
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(2a) The figure shows the
50m x 50m 6-room house
floor-plan used in the simu-
lation experiments with the

connectivity graph. biased walk, and random walk.

deployment regions, if the current location of the node
in the map can be reasonably determined. However,
due to noisy sensors, the location of individual nodes
cannot always be estimated correctly making it difficult
to consistently plan correct paths. The system attempts
to solve this by operating in two modes —

e Exploration: In this mode, the MAV node attempts
to seek rendezvous points that can potentially im-
prove the location estimates of the MAV node. This
is executed when the quality of location estimates
(determined by the entropy of the tracking particle
filter distribution) is low.

e Navigation: In this mode, the MAV node attempts
to follow the direction of the bias from the deployment
graph using the estimated location from the Drunk-
Walk algorithm. This is executed when the quality of
location estimates is high.

It is easy to see that the performance of the navigation
step depends on the outcome of exploration step. How-
ever, the exploration step requires extra use of resources
that increase the time of deployment. Therefore, the
proposed algorithm seeks to optimize this trade-off by
adaptively switching between these two modes.

3. EVALUATION

In this section we evaluate the performance of our
system in deploying in multi-room operating environ-
ments through simulations using the SensorFly MAV [9)
simulator. The evaluation focuses on characterizing the
performance of the system in terms of time to complete
deployment and average accuracy of deployment in com-
parison to existing deployment approaches.

3.1 Simulation Environment

We extend a MAV simulation environment [9] for the
SensorFly MAV indoor sensor swarm to evaluate our
deployment algorithms at scale in a realistic scenario.
The simulator supports inclusion of realistic physical
arenas, sensors with configurable sensor noise models,
MAYV nodes with mobility models, indoor radio propa-
gation models, and environment sensing. The simulator

(2b) The figure shows the % deployment completed
over time (6-room map) for 10 nodes using 3 differ-
ent strategies - Our approach, dead-reckoning based
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(2¢) The figure shows the location error as a
function of time using our estimation approach
and dead reckoning alone, using 10 nodes in
the 6-room map scenario.

allows users to program the logic for actuation of MAV’s
and implement control and planning algorithms.

For our evaluations we configure the simulator as fol-
lows. We assume a multi-room indoor scenario, where
nodes are required to autonomously deploy over all
rooms. Figure [2a] represents a typical indoor 6-room
apartment scenario where such systems may be de-
ployed in search and rescue applications. The sensor
nodes in the simulation are modeled after the Sensor-
Fly [7] MAV platform. Each node has a 802.15.4 radio
and dead-reckoning sensors — gyroscope, an optical flow
velocity sensor, an ultrasonic altitude measurement sen-
sor. The MAV nodes can turn by a commanded angle
and move for a commanded time and velocity. We set
the velocity to 0.25 m/s. The velocity of course varies in
accordance with the noisiness of the optical flow sensor,
that provides feedback to each MAV’s control algorithm.
The simulation time-step is chosen as 1sec. The simula-
tion supports estimating received signal strength (RSS).
The RSS is computed using shadowing with a path loss
exponent of 3, which is an estimate for an indoor single-
floor scenario [10].

3.2 Results

We evaluate our system by comparing the percent-
age of deployment completed in the 6-room scenario
as a function of time. We compare our approach to
two other deployment strategies that do not require
any location infrastructure. They are — (1) Random
Walk: This is a popular strategy for simple robots
with few sensors and has been extensively researched
for use in scenarios where no location infrastructure
exists |3]. We use this as a baseline for comparison. (2)
Dead-Reckoning with Map Bias: Dead-reckoning is
another infrastructure-free technique used to estimate
a node’s location in unknown environments [1]. The
method uses measurements from motion sensors to es-
timate the change in position of the node. Having an
estimate of location we use the map to bias the direction
of the node’s movement.

All experiments were performed 25 times and the
error bars show the standard deviation of the measured
values. Figure shows the percentage of deployment



completed as a function of time using our approach,
Dead-Reckoning with map bias, and Random Walk.
The simulation uses 10 nodes for each strategy in the
6-room map (Figure. The nodes are introduced into
room 1 and the objective is to deploy at least one node in
each of the 6-rooms of the map. We run the simulation
for a time period of 1000 seconds (15 minutes) corre-
sponding to the typical battery life of current generation
MAYV nodes. The dead-reckoning sensor noise models
are set 0 = 20% and radio fingerprint accuracy is 1m.

Our approach is significantly faster at deployment and
also manages to complete the deployment before other
strategies. Dead-reckoning achieved 80% deployment
at the end of the node lifetime, while Random Walk
managed 30%. The poor performance of Random Walk
is expected in multi-room scenarios with small openings
between rooms since the probability of robots making
it to subsequent rooms is low. The better planning and
location accuracy of our approach enables it to perform
better than dead-reckoning, especially later in the de-
ployment when dead-reckoning error becomes extremely
large.

Figure shows the location error as a function of
time using our proposed estimation approach and dead
reckoning alone. Our approach reduces the location by
more than 3x.

4. RELATED WORK

Howard et al. [4] present techniques for mobile sen-
sor network deployment in an unknown environment.
Their approach constructs fields such that each node is
repelled by both obstacles and by other nodes, enabling
the network to spread itself throughout the environ-
ment. Similarly, Batalin et al. [5] present a deployment
algorithm for robot teams without access to maps or
location. The robots are assumed to be equipped with
vision sensors and range finders and select a direction
away from all their immediate sensed neighbors and
move in that direction. The algorithm does not allow
nodes to be deployed at designated locations. The do-
main experts have no control over the emergent deploy-
ment locations of the nodes.

The problem addressed in this paper can be seen
as an instance of the Simultaneous Localization And
Mapping (SLAM) problem that has been extensively
studied in robotics [12]. These approaches, however,
have been mostly applied to solve instance of the SLAM
problem where mobile agents are equipped with sensors
returning distances (e.g., laser range finders, or sonars)
or cameras (either monocular or stereo). Purohit et
al. [8] present a system for infrastructure-free single
room sweep coverage with MAV sensor swarms. Their
approach however does not support deploying nodes to
pre-assigned destinations.

To the best of our knowledge, this paper presents the
first attempt to solve a SLAM problem using a swarm of
MAVs that combines location estimation and planning
to improve the speed and accuracy of deployment.

S. CONCLUSION

This paper presents a system for collaborative de-
ployment of resource-constrained MAV sensing swarms
to quickly and efficiently deploy at preassigned loca-
tions. The system uses collaboration between nodes of
the swarm to overcome the sensing and computational
limitations of MAV nodes, and challenging operating
environments. Simulations show that the proposed ap-
proach performs up to 3x better than existing deploy-
ment strategies.
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