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Abstract

We illustrate our experience in developing and implementing algorithms for map
merging, i.e., the problem of fusing two or more partial maps without common
reference frames into one large global map. The partial maps may for example be
acquired by multiple robots, or during several runs of a single robot from varying
starting positions. Our work deals with low quality maps based on probabilistic
grids, motivated by the goal to develop multiple mobile platforms to be used in
rescue environments. Several contributions to map merging are presented. First
of all, we address map merging using a motion planning algorithm. The merging
process can be done by rotating and translating the partial maps until similar regions
overlap. Second, a motion planning algorithm is presented which is particular suited
for this task. Third, a special metric is presented which guides the motion planning
algorithm towards the goal of optimally overlapping partial maps. Results with our
approach are presented based on data gathered from real robots developed for the
RoboCupRescue real robot league.

Key words: stochastic algorithms, rescue robotics, cooperative multi-robot
systems

1 Introduction

The ability to build a map of an unknown environment is one of the fun-
damental enabling capabilities for mobile robots. Having an accurate map
enables the robot to perform certain tasks like navigation, localization and
so forth much faster and more accurately. In fact, in the past years a signifi-
cant amount of research has been devoted to the subject (see for example [1]
for a survey on mapping algorithms). A generalized problem often addressed
in the same context is the so called SLAM (Simultaneous Localization And
Mapping), where the robot is required to build a map and localize itself at the
same time. Some common aspects of the former literature are the following.
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First, the map is produced and used by the robot for tasks like navigation,
motion and mission planning, etc. Second, the robot is equipped with sen-
sors and algorithms which if correctly used can produce highly precise maps.
Finally, the robot is supposed to move in a structured environment, like the
interior of a building, where certain features like doors, corridors intersections
and so on can be easily extracted and identified.

In this paper we address an important variant of the mapping problem. Our
goal is to combine, or merge, two or more planar maps. As pointed out in [2],
map merging is an interesting and difficult problem, which has not enjoyed the
same attention that localization and map building have. The problem of map
merging has been partially addressed in [3], where local maps are periodically
merged into a global one, to reduce the computational efforts of constantly
maintaining a global map. Online multi-robot mapping has been addressed
in various researches like [4],[5], but the underlying hypothesis and operating
scenarios are different. Our main assumption for map merging is that there
is no knowledge about the relative positions of the partial maps which are
to be combined. Take for example multiple robots that independently explore
an environment. If there is no global reference frame on which the starting
poses of the robots can be mapped, there is no known relation between the
individual maps the robots generate. Each of them has its own reference frame
based on the initial poses of the robots. The same holds if a single robot does
multiple runs from different starting positions in the same environment. If the
starting positions are not on known locations on a global reference frame, i.e.
if no global map already exists, the reference frames of the acquired maps
will be based on the unknown initial starting points. Individual maps, from
individual robots in the multi-robot case, or individual runs in the single robot
case, will typically cover only a part of the environment; we hence dub them
partial maps. So, the challenge for the merging process is to identify regions
that occur in at least two partial maps to join them at this region. Throughout
the paper it is assumed that maps to be merged exhibit at least some overlap.
The proposed approach is not applicable when the two maps do not share any
part. In such case, in fact, the whole map merging problem loses significance.

Our research efforts are motivated by the goal to develop rescue robots, to be
used in the Robocup Rescue League at the moment, and in real world appli-
cations in a following stage. We therefore want fast and complete exploration,
since the ultimate goal is to locate injured persons and to extract them. It is
then reasonable to use more than one robot, also to exploit other well known
advantages of multi-robot systems, like robustness, heterogeneity and so on
[6]. In the context of the Robocup Rescue League, we developed some robots
which enter and map the same environment at the same time. Because of the
time issue, it is foreseeable that they will end up exploring different parts of
the rescue scenario. Then, when their exploration is completed, the partially
overlapping maps should be combined to produce a useful tool for humans as
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described in [7], where an early form of this work is presented.

The problem of merging two or more maps into a single one can be seen as an
optimization problem, as usually more than a single matching is possible and
the system is required to determine the best one, according to some metric. In
this article, we present several contributions to map merging. First of all, we
observe that the map merging problem is conceptually similar to the ligand
docking problem studied in computational biology. Both require to determine
a transformation that minimizes a given cost (or energy) function. Building on
the fact that motion planning algorithms are being currently used to address
problems coming from computational biology [8],[9], we propose to use a mo-
tion planning algorithm for studying map merging. The merging process can
be done by rotating and translating the partial maps until identical regions
overlap, somewhat similar to protein docking. Second, a motion planning al-
gorithm is presented which is particular suited for this task. Third, a special
metric is presented which guides the motion planning algorithm toward the
goal of optimally overlapping partial maps.

In section 2 we elucidate how the map merging problem can be formulated
as an optimization problem and we describe a motion planning algorithm for
solving this problem. Section 3 describes a metric which guides the motion
planning algorithm. The robots we built for the Robocup Rescue competi-
tion are briefly depicted in section 4, where also the experimental results are
presented. Section 5 concludes the article.

2 Merging via random walks

The maps we aim to merge are based on the mapping software we developed
for the Robocup 2003 competition [10]. The mapping algorithm produces a
grid where beliefs are encoded, according to the sensor inputs. Each grid cell
is assigned a certain belief that it is free or occupied. While one could cor-
rectly argue that more refined mapping algorithms might be developed, all the
remaining parts of the paper still remain valid. Our goal is to merge maps,
independently from how they have been created. In particular, as we wish
to merge low quality maps, simple mapping strategies yield more challenging
problems and allow to better test and compare different techniques. More-
over, given the peculiar characteristics of the environment being mapped, the
use of probabilistic maps appears appropriate [11]. Before getting into the de-
scription of the algorithmic aspects, we begin with a formal definition of the
problem we are addressing. We start with the definition of a map.

Definition 1 Let N and M be two positive real numbers. An N ×M map is
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a function

m : [0, N ]× [0,M ]→ R.

We furthermore denote with IN×M the set of N ×M maps. Finally, for each
map, a point from R2 is declared to be its reference point 1 . The reference
point of map m will be indicated as R(m) = (rm

x , r
m
y ).

The function m is a model of the beliefs encoded in the map. For example,
one could assume that a positive value of m(x, y) is the belief that the point
(x, y) in the map is free, while a negative value indicates the opposite. The
absolute value indicates the degree of belief. The important point is that we
assume that if m(x, y) = 0 no information is available. In the current prob-
lem formulation we are for generality assuming that maps are functions from
subsets of R2 to R. It is nevertheless evident that some discretization will be
needed when implementing these algorithms. This aspect will be addressed
while discussing practical implementation details. We next define a planar
transformation which will be used to try different relative placements of two
maps to find a good matching. The formal definition is the following.

Definition 2 Let tx,ty and θ be three real numbers. The transformation as-
sociated with tx,ty and θ is the function

TRtx,ty ,θ(x, y) : R2 → R2

defined as follows:

TRtx,ty ,θ(x, y) =

 1 0 0

0 1 0




cos θ − sin θ tx

sin θ cos θ ty

0 0 1




x

y

1

 (1)

As known, the transformation given in equation 1 corresponds to a counter-
clockwise rotation of θ about the origin, followed by a translation of (tx, ty).
This transformation is an injective function and this fact will be useful in what
follows.

Definition 3 Let tx,ty and θ be three real numbers. The associated {tx, ty, θ}-
map transformation over IN×M is the functional

Ttx,ty ,θ : IN×M → IN×M

1 the reader should note that the reference point does not necessary belong to the
domain. This will make some notation easier later on.
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which transforms the map m1 ∈ IN×M into the map m2 ∈ IN×M defined as
follows:

m2(x, y) =


m1(x

′, y′) if ∃(x′, y′) ∈ [0, N ]× [0,M ]|

TRtx,ty ,θ(x
′ − rm1

x , y′ − rm1
y ) = (x, y)

0 elsewhere

(2)

Moreover, the reference point of m2 is defined as R(m2) = (tx, ty).

The first case of equation 2 is well defined in light of the injectivity of equation
1. The rationale behind the former definition is to define how a map is trans-
formed into another when it is rotated and translated. As in general arbitrary
translations can be applied, the formulation given in equation 2 assures that
the transformed map m2 is well defined and has the same domain of m1.

Definition 4 A dissimilarity function ψ over IN×M is a function

ψ : IN,M × IN,M → R+ ∪ {0} (3)

such that

• ∀m1 ∈ IN,M ⇒ ψ(m1,m1) = 0
• given two maps m1 and m2 and a map transformation Tx,y,θ, then
ψ(m1, Tx,y,θ(m2)) is continuous with respect to x, y and θ.

The dissimilarity function measures how much two maps differ. In an ideal
world, where robots would be able to build maps which correspond to the
ground truth and completely cover the operating environment, it would be
possible to find a transformation which yields a 0 value for the dissimilarity
function. In real applications this is obviously not the case, so the challenge
is to find a transformation giving a low dissimilarity value.

Having set the scene, the map merging problem can be defined as follows.
Given m1 ∈ IN,M , m2 ∈ IN,M , and a dissimilarity function ψ over IN×M ,
determine the {x, y, θ}-map transformation T(x,y,θ) which minimizes

ψ(m1, Tx,y,θ(m2)).

The devised problem is clearly an optimization problem, where it is required
to minimize a cost function, that in our case is the dissimilarity function ψ.
The optimization has to be performed over a three dimensional space involving
two translations and one rotation. In the following we will indicate with S the
set of the possible translations and rotations and with si a specific element
of S, i.e. si = {xi, yi, θi}. We will assume that when we are looking for the
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optimal matching between m1 ∈ IN×M and m2 ∈ IN×M the set of possible
transformations will be

S = [−N,N ]× [−M,M ]× [0, 2π]

For problems like this, a certain number of algorithms like multi-point hill
climbing and simulated annealing have been developed and are part of the
standard literature. They will be described in section 2.1 where they will be
related to the technique we present in this section. The algorithm was in-
spired by a motion planning algorithm one of the authors recently developed
[12],[13],[14], and by the recent successful application of motion planning al-
gorithms to bioinformatics problems like ligand binding and protein folding
[9],[15]. In a sense, the problems of ligand binding and map merging are not
so different. In both cases it is required to determine the relative placements
of two entities, chemical compounds or maps, so that a certain cost function is
minimized. In ligand binding it is required to minimize the total energy, while
in map merging we wish to minimize dissimilarity, i.e. maximize the overlap
of regions that appear in two or more partial maps. The algorithm explores
the space of possible transformations performing a random walk whose proba-
bility distribution is a time variant Gaussian. This means that it evolves from
transformation si to transformation si+1 generating random variations with
a Gaussian distribution. The important aspect is that distributions’ param-
eters are not a priori fixed, but rather updated from iteration to iteration.
Before describing the algorithm, we provide the theoretical foundations. We
start then by defining a probability space as the triplet (Ω,Γ, η) where Ω is
the sample space, whose generic element is denoted ω. Γ is a σ − algebra on
Ω and η a probability measure on Γ.

Definition 5 Let {f1, f2, . . .} be a sequence of mass distributions whose events
space is binary. The random selector induced by {f1, f2, . . .} over a domain D
is a function

RSfk
(a, b) : D ×D → D

which randomly selects one of its two arguments according to the mass distri-
bution fk.

The random selector is the stochastic process which is used to accept or reject
a new candidate random transformation. The dependency on fk evidences that
the probability of accepting or refusing is not constant but can rather updated
from iteration to iteration.

Definition 6 Let ψ be a dissimilarity function over IN×M , {f1, f2, . . .} be a
sequence of mass distributions as in definition 5, and RSfk

be the associated
random selector. The acceptance function associated with ψ and RSfk

is de-
fined as follows

Ak : S × S → S
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Ak(si, si+1) =

 si+1 if ψ(m1, Tsi+1
(m2)) < ψ(m1, Tsi

(m2))

RSk(si, si+1) if ψ(m1, Tsi+1
(m2)) > ψ(m1, Tsi

(m2))

The acceptance function associated with a given random selector and dis-
similarity function governs the process which accepts or rejects a candidate
transformation which does not bring any benefit, i.e. a transformation asso-
ciated with an increase in the dissimilarity. From now on the dependency of
Ak on ψ and RSf will be implicit, and we will not explicitly mention it. We
now have the mathematical tools to define a Gaussian random walk stochastic
process, which will be used to search for the optimal transformation in S.

Definition 7 Let sstart be a point in S, and let A be an acceptance function.
We call transformation random walk the following discrete time stochastic
process {Tk}k=0,1,2,3,...T0(ω) = sstart

Tk(ω) = A(Tk−1(ω), Tk−1(ω) + vk(ω)) k = 1, 2, 3, . . .
(4)

where vk(ω) is a Gaussian vector with mean µk and covariance matrix Σk.

From now on the dependence on ω will be implicit and then we will omit to
indicate it.
Assumption We assume that there exist three positive real numbers ε1, ε2

and ε3 such that for each k the following inequalities are satisfied

ε1I ≤ Σk ≤ ε2I (5)

||µk||2 ≤ ε3 (6)

where the matrix inequality A ≤ B means that B−A is positive semidefinite.
The following theorem proves that the stochastic process defined in equation
4 will eventually discover the optimal transformation in S.

Theorem 1 Let s∗ ∈ S be an element which minimizes ψ(m1, Ts(m2)), and
let {T0, T1, T2 . . .} be the sequence of transformations generated by the trans-
formation random walk defined in equation 4. Let T k

b be the best one generated
among the first k transformations, i.e. the one yielding the smallest value of
ψ. Then for each ε > 0

lim
k→+∞

Pr[|ψ(m1, T
k
b (m2))− ψ(m1, Ts∗)(m2))| > ε] = 0 (7)
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Proof. We first point out that the element s∗ indeed exists, as the function ψ
is continuous by definition, and we have assumed S to be a closed bounded
set. So there must be a transformation s∗ ∈ S which minimizes ψ. In addition
it has to be pointed out that such an element is not necessarily unique, as two
transformations may result to the same dissimilarity.
Let Bs(φ) be the ball centered in s and with radius φ. As consequence of
the continuity of the function ψ, for each ε > 0 it is possible to determine a
suitable ball Bs∗(δ) such that

∀ŝ ∈ Bs∗(δ) |ψ(m1, Tŝ(m2))− ψ(m1, Ts∗)(m2))| < ε

Let us consider the time step k, when the transformation Tk is generated from
Tk−1. Because of the assumptions stated in equations 5 and 6, the following
inequality holds

Pr[ψ(m1, Tk(m2)) ∈ Bs∗(δ)] =
∫

Bs∗ (δ)

NTk−1+µk,Σk
(x)dx ≥ L

where NTk−1+µk,Σk
is the probability density of a Gaussian distribution with

mean vector Tk−1 + µk and covariance matrix Σk. It is important to real-
ize that the same L holds for each k. Given the sequence of transformations
{T0, T1, . . . , Tk}, the probability that none of them is in Bs∗(δ) is the following

Pr[T0 /∈ Bs∗(δ) . . . Tk /∈ Bs∗(δ)] ≤ (1− L)k (8)

According to the definition of the stochastic process given in 4, it is easy to
verify that this probability is an upper bound for equation 7. Clearly, when
k diverges the right side of equation 8 goes to 0 and this proves the theorem.
QED

One can expect that a random walk evolving over S will eventually cover
it completely, thus determining the optimal value of ψ. The important part
however is that by using a random walk whose mean and covariance can be
updated at each iteration, it is possible to focus the search more effectively. In
addition, one is relieved from the daunting task of fine tuning the parameters,
i.e. determining good values for µk and Σk. This was indeed the lesson that
was learned while developing the motion planner described in [14].
Algorithm 1 illustrates how the stochastic machinery described before can
be turned into an algorithmic searching procedure. As the optimal value for
the dissimilarity function is unknown, the overall number of iterations should
be limited. This aspect will be later clarified when describing the practical
results. Another point of practical importance is the necessity to store the
best transformation generated so far, i.e. the one associated with the lowest
dissimilarity value. With regard to local minima, which are likely to occur,
the use of the random selector RS leaves a chance to escape from them.
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Algorithm 1 Random walk

Require: numSteps ≥ 0
1: k ← 0, tk ← sstart

2: Σ0 ← Σinit, µ0 ← µinit

3: c0 ← ψ(m1, Ttstart(m2))
4: while k < numSteps do
5: Generate a new sample s← tk + vk

6: cs ← ψ(m1, Ts(m2))
7: if cs < ck OR RS(tk, s) = s then
8: k ← k + 1, tk ← s, ck = cs
9: Σk ← Update(tk, tk−1, tk−2, . . . , tk−M)

10: µk ← Update(xk, tk−1, tk−2, . . . , tk−M)
11: else
12: discard the sample s

Lines 9 and 10 in algorithm 1 illustrate that the mean µk and the covariance
Σk can be updated at each step, according to the last accepted M samples.
For example, if the last accepted M samples did not decrease the dissimilarity
functional it means that the random walk is into a local minima region and
then the covariance matrix should be increased in order to escape it. On the
other hand, when the last accepted samples have resulted in a decrease of the
dissimilarity, it is worth reducing the covariance and to set the mean in the
direction of the gradient. In this way the random walk is biased to follow a
local gradient descent.

2.1 Relation to other search techniques

As mentioned before, there are other techniques that could be used for this
search problem. We here describe two of the most common ones, and we
discuss how they relate to the formerly described technique. An obvious first
approach to the problem is to perform a gradient descent search following
a multipoint paradigm (see for example [16]), as illustrated in algorithm 2.
The algorithm operates over a set of candidate transformations, and at each
iteration it expands the more promising one toward directions which result in
a decrease of the dissimilarity function. Using a set of transformations rather
than a single one, the algorithm decreases the chances of getting trapped into
local minima. Gradient descent is a particular case of algorithm 1, where the
vector the mean µk is fixed to be equal to the most promising direction ∆s and
the covariance Σk tends to the 0 matrix 2 . One could argue that this violates
the hypothesis of theorem 1. This is indeed true, but at the same time it is
necessary to consider that the gradient descent algorithm is not guaranteed

2 with this we mean that the added Gaussian component is not present.
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Algorithm 2 multi-point hill climbing

Require: numSteps ≥ 0
Require: numBestSamples > 0
Require: samples array contains different samples for position/rotation and

is sorted according to their dissimilarity
Ensure: samples[1] is the best sample found
1: step← 0
2: while step < numSteps do
3: clear newSamples
4: for all s in samples do
5: for all ∆s in possible position/rotation changes do
6: Generate a new sample ns← s+ ∆s
7: cns ← ψ(m1, Tns(m2))
8: if cns < cs then
9: Add ns to newSamples

10: else
11: Discard sample ns
12: step← step+ 1
13: samples← newSamples
14: sort samples according to their dissimilarity
15: samples← samples[1..numBestSamples]

to find the optimal solution, then the correctness of the framework is not
affected. The multi-point approach illustrated in algorithm 2 can still be seen
as a paricular case of algorithm 1. This can be accomodated by fixing µk = ∆s
for numSteps steps and then resetting it to a random value uniformly picked
over S. Repeating this process numBestSamples times will indeed replicate
the same search procedure.

An obvious alternative to hill climbing is simulated annealing [17],[18]. The
well known advantage is that in the early stage of its execution simulated
annealing allows to accept samples which do not give an adavantege in terms
of the cost function. Algorithm 3 shows our implementation of the simulated
annealing approach for map fusion. It is again straightforward to observe that
also simulated annealing can be seen as a special case of the Gaussian ran-
dom walk. In addition to what has been described for the gradient descent
algorithm, it is sufficient to embed the temperature profile into the random
selector.

3 The dissimilarity function

A fundamental aspect of the depicted framework is the choice of the dissimi-
larity function ψ. For this purpose we use a function borrowed from a metric
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Algorithm 3 simulated annealing

Require: numSteps ≥ 0
Require: numBestSamples > 0
Require: samples array contains different samples for position/rotation and

is sorted according to their fitness
Require: fitnessRatio ≥ 1
Ensure: samples[1] is the best sample found
1: step← 0
2: bestF itness← csamples[1]

3: lastF itness← +∞
4: while step < numSteps AND lastF itness/bestF itness > fitnessRatio

do
5: clear newSamples
6: for all s in samples do
7: for all ∆s in possible position/rotation changes do
8: Generate a new sample ns← s+ ∆s/step
9: cns ← ψ(m1, Tns(m2))

10: if cns < cs then
11: Add ns to newSamples
12: else
13: Discard sample ns
14: step← step+ 1
15: samples← newSamples
16: sort samples according to their fitness
17: samples← samples[1..numBestSamples]
18: lastF itness← bestF itness
19: bestF itness← csamples[1]

introduced before by one of the authors to measure the similarity of images
[19]. The metric is conceptually similar to the Grassfire transform used in
computer vision. Given two maps m1 and m2, the dissimilarity function is
defined as follows:

ψ(m1,m2) =
∑
c∈C

d(m1,m2, c) + d(m2,m1, c)

d(m1,m2, c) =

∑
m1[p1]=c min{md(p1, p2)|m2[p2] = c}

#c(m1)

where

• C denotes the set of values assumed by m1 or m2,
• m1[p] denotes the value c of map m1 at position p = (x, y),
• md(p1, p2) = |x1− x2|+ |y1− y2| is the Manhattan-distance between points
p1 and p2,
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• #c(m1) = #{p1|m1[p1] = c} is the number of cells in m1 with value c.

While computing md, the choice of the Manhattan-distance has the advantage
to be fast to compute and not to perform worse than other distances. Before
computing d, we preprocess the maps m1 and m2 setting all positive values
to 255 and all negative values to -255. The purpose of this operation is to
reduce the set of different values c contained in the map. This simplifies the
summation to the sum of two terms, thus speeding up it computation. In our
case then C = {−255, 255}, i.e., locations mapped as unknown are neglected.
As the dissimilarity function has to be evaluated each time a new candidate
sample is proposed, it is important to have an efficient algorithm for its com-
putation. Quite surprisingly, it is possible to compute the function ψ in linear
time. The algorithm is based on a so called distance-map d-mapc for a value c.
The distance-map is an array of the Manhattan-distances to the nearest point
with value c in map m2 for all positions p1 = (x1, y1):

d-mapc[x1][y1] = min{md(p1, p2)|m2[p2] = c}

The distance-map d-mapc for a value c is used as lookup-table for the compu-
tation of the sum over all cells in m1 with value c. Figure 1 shows an example
of a distance-map, while algorithm 4 gives the pseudocode for the three steps
carried out to built it. The underlying principle is illustrated in figure 2.

Algorithm 4 The algorithm for computing d-mapc

1: for y ← 0 to n− 1 do
2: for x← 0 to n− 1 do
3: if M(x, y) = c then
4: d-mapc[x][y]← 0
5: else
6: d-mapc[x][y]←∞
7: for y ← 0 to n− 1 do
8: for x← 0 to n− 1 do
9: h← min(d-mapc[x− 1][y] + 1, d-mapc[x][y − 1] + 1)

10: d-mapc[x][y] = min(d-mapc[x][y], h)
11: for y ← n− 1 downto 0 do
12: for x← n− 1 downto 0 do
13: h← min(d-mapc[x+ 1][y] + 1, d-mapc[x][y + 1] + 1)
14: d-mapc[x][y] = min(d-mapc[x][y], h)

It can be appreciated that to build the lookup map it is necessary just to scan
the target map for three times. In this case it is possible to avoid the quadratic
matching of each grid cell in m1 against each grid cell in m2.
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4 Results

4.1 The Rescue Robots

The experimental results are based on real-world data collected with the rescue
robots we developed. The robots fall into two classes, the so-called papa goose
and the mama goose design. Papa geese (figure 3.a) are 6-wheeled robots with
a footprint of 400mm × 450mm. Mother geese (figure 3.c) are smaller, with
a footprint of 300mm × 400mm and they are based on a tracked drive. In
addition to their mechanical differences, they differ in their sensor payload,
which is much higher for robots of the papa type. A detailed description of
the robots is found in [20] and [21].

(a) Papa goose in the red arena (b) Mama goose in the orange arena

Fig. 3. The IUB robots at the Robocup 2003 competition in Padua, Italy

For the purpose of this paper, the merging of noisy maps of an unstructured
environment, both robots can be assumed to behave in the same way. The
default localization method is odometry based on motor encoder data and the
robots’ kinematics. The precision of the odometry is significantly improved by
fusing compass data into the orientation estimation of the robot. Nevertheless,
the basic pose estimation suffers from the well known problems of accumulative
errors, leading to one of the noise sources in the map-building process. For
gathering obstacle data, each robot has a low-cost laser scanner. This PB9-11
laser-scanner from Hokuyo Automatic covers 162 degrees in 91 steps up to 3m
depth with a 1cm resolution (figure 4). The sensor provides rather accurate
data, but it suffers from occasional spurious readings adding hence to the
uncertainty in the map data.

Each individual map is created online on board of each robot and can be used
for various autonomous behaviors according to the mission of the robot. The
data is in addition transmitted in realtime to the operator station via the
Framework Architecture for Selfcontrolled and Teleoperated Robots (FAST-
Robots)[22], an object-oriented network control architecture framework for
robotics experiments that supports mixed teleoperation and autonomy. The

14



Fig. 4. A snapshot of the data provided by the PB911 sensor. It is possible to see
that the robot is facing a corner in the walls (on its right, two meters ahead), as
well as spurious readings (on the left)

map merging is then done on the operator station, so that a human rescue
worker gets an overview of the overall terrain including location marks for
victims and hazards.

4.2 Numerical Results

The algorithms described in the former sections have been implemented and
tested over data sets gathered by our robots while performing in the Res-
cue arena recently set up at the International University Bremen. The maps
produced by the mapping software are grids with 200×200 cells, each one con-
taining a belief value between -255 and +255. Positive values indicate a belief
that the associated cell is free, while negative values indicate the opposite. As
anticipated, the absolute value indicates the degree of the belief. According
to this protocol, cells with a 0 belief value do not encode any belief, i.e. no
information can be associated with them. In all the illustrated experiments
two maps are merged. If more maps are available, the method can be iterated.
This means that the map resulting from the merging of the first two is merged
with a third one, and so on.

The algorithms have been implemented in C++ and run on a Pentium IV 2.2
GHz running Linux. In addition we implemented also a deterministic brute
force algorithm which tries all the possible transformations, and a random
walk algorithm without adaptive components. In this way we can better eval-
uate the tradeoff between speed and accuracy of the different algorithms im-
plemented. Table 1 illustrates the results of the different approaches tried in
terms of dissimilarity function, while figure 5 shows the different maps merged.
The experimental setup is a square of about 100 m2, and in the different runs
the robots map about half of it. From a qualitative point of view, the merged
maps offer more information than the two partial maps, and this closely re-
sembles the area being mapped by the robots.
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Case Brute
force

Multi-
point

Simulated
annealing

Random
walk

Gaussian
Random
Walk

1 4.21 5.89 6.43 4.82 4.86

2 1.23 2.55 3.33 2.27 1.84

3 1.19 1.82 2.96 1.58 1.74

4 3.67 4.42 4.33 4.28 4.20
Table 1
Comparison of the different algorithms implemented. The table shows the dissimi-
larity value for the optimal merging found. Data of randomized search techniques
are averaged over 50 executions.

In all the tests we tuned the algorithms so that the number of generated and
analyzed transformations was the same, i.e. is 2000 3 . This means that each
algorithm terminates after the same number of rototranslations have been
processed. This number turns out to be more than enough as usually all the
algorithms converge to their final point in about half of these iterations. At the
same time this allows to get a fair comparison between them as the amount
of alloted resources is the same. For what concerns execution time all the
analyzed algorithms spend more or less the same, i.e. below three seconds. One
should not forget the initial goal of the current research, i.e. to determine the
optimal composition of the given maps in a quick time and without too much
parameters’ tuning. This point will be better addressed in the conclusions, but
for the moment it should be clear that the achieved speed is sufficient and it
does not make so much sense trying to improve the speed, although technically
possible. Figure 6 illustrates an example of maps created by the IUB robots as
well as their determined composition using the proposed adaptive random walk
algorithm. Subfigure 6.d illustrates how the algorithm behaves. It is possible to
observe a repeated pattern of steps where the dissimilarity function decreases
followed by spikes where the fitness function increases.

The results indicate that the proposed optimization algorithm behaves better
than traditional approaches like multi-point hill climbing or simulated an-
nealing. When compared with the traditional random walk algorithm without
adaptive components the advantages in terms of obtained result seem to dis-
appear. In two cases adaptivity seems to pay off and two cases it seems it
does not. This is because of an appropriate selection of the parameters for the
traditional random walk. In general, however, determining good values for the
parameters is not trivial. The great advantage of the proposed algorithm is
that one does not have to tune parameters, as they are modified during exe-

3 Of course this is not the case for the brute force search, where the number of
analyzed configurations is 14400000 and the time taken to process all of them is in
the order of three hours.
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(a)

(b)

(c)

(d)

Fig. 5. The four rows illustrate, in sequence, the four case studies whose results are
given in table 1. For each row, the first two pictures display the maps to be merged,
while the third one illustrates the merged map.

cution. For example, one could choose weak distributions’ parameters for the
classic random walk algorithm, say picking a too narrow variance which does
not allow the procedure to effectively explore the search space. Or one could
fix a too big variance, resulting in an algorithm which widely jumps between
far apart configuration, without exploring the possible minima it discovers.
Good values for these parameters are very much instance dependent and hard
to determine, if not by reiterated experience. The adaptive random walk al-
gorithm instead allows the user to fix the values without putting too much
efforts on fine tuning. Rather, it will be the algorithm itself to self-tune its
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Fig. 6. Subfigures a and b illustrate the maps created by two robots while exploring
two different parts of the same environment. To make the matching task more chal-
lenging the magnetic compass and the odometry system were differently calibrated.
Subfigure c shows the best matching found after 200 iterations of the search algo-
rithm and subfigure d plots the trend of the dissimilarity function during the first
100 iterations.

own distribution. This lesson, which was learned while working on the motion
planner previously discussed, turned out be effective also in the apparently
very different domain of map merging.

5 Conclusions

Map merging is an important robotics problem, which deals with the fusion
of several partial maps into a global one. Partial maps are common, for ex-
ample when multiple robots explore an environment or when a single robot
does multiple runs starting from different locations. It was demonstrated that
map merging can be addressed using a motion planning algorithm. The partial
maps have to be rotated and translated such that regions which appear in two
ore more partial maps overlap. For this purpose, a special motion planning al-
gorithm and a similarity metric were introduced. The special motion planning
algorithm is highly efficient, also when compared to alternative techniques,
and it does not suffer from the requirement to tune parameters. The similar-
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ity metric successfully guides the motion planning algorithm in the presented
experiments and it significantly contributes to the overall efficiency as it can
be computed in a very fast manner. The experimental results are based on
real world data from the IUB rescue robots. The results show that the sug-
gested approach even works with rather low quality maps that were generated
without high-end sensors and in a very unstructured environment.
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