
A toolbox for multi-objective planning
in non-deterministic environments with simulation validation

Seyedshams Feyzabadi Stefano Carpin

Abstract— Mobile robots are often subject to several costs
and tasked with multiple objectives with different priorities
when operating in realistic situations. We recently proposed and
theoretically analyzed a planner handling multiple costs and
multiple tasks expressed as syntactically co-safe linear temporal
logic formulas. In this paper, we present an easy-to-use toolbox
which is capable of solving multi-objective planning in non-
deterministic environments where multiple tasks have to be
accomplished. We experimentally evaluate this planner in a
simulation scenario, and we moreover analyze its robustness to
modeling errors in the underlying motion models. We show how
this theoretical framework can be instantiated in a practical
scenario and demonstrate its robustness.

I. INTRODUCTION

Autonomous ground vehicles are becoming a reality in our
every day lives and will play an increasingly more important
role in the future. While it may still take a few years before
autonomous cars will be available to the general public, fleets
of autonomous vehicles operating in industrial environments
are already a reality, with the Kiva system being perhaps the
most famous example [5], [6]. Notwithstanding, if robots
are required to operate in environments not specifically
engineered for them, or to co-work with humans, multiple
challenges still need to be addressed. In particular, in so-
called low volume manufacturing environments robots need
to be frequently reconfigured to perform different jobs, often
requiring to pursue multiple tasks at the same time. The
ability to easily formulate task specifications is therefore
instrumental to increase the usability of these systems. In
recent years, the theory of formal languages, and in particular
the theory of Linear Temporal Logic (LTL), has emerged
as a promising instrument to tackle these challenges. While
powerful, such theory can however be expanded in multiple
directions. In our recent work [13] we proposed a plan-
ner combining the theory of Constrained Markov Decision
Processes (CMDPs) [1] with a subset of LTL known as
syntactically co-safe linear temporal logic (sc-LTL). The
peculiar feature of this planner is that it produces a feedback
control policy capable of tackling multiple objectives and
tasks at once. In particular, it is applicable to scenarios where
multiple cost functions are defined, and multiple tasks are

S. Feyzabadi and S. Carpin are with the School of Engineering,
University of California, Merced, CA, USA.

This work is supported by the National Institute of Standards and
Technology under cooperative agreement 70NANB12H143. Any opinions,
findings, and conclusions or recommendations expressed in these materials
are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of the funding agencies of the
U.S. Government.

specified as sc-LTL formulas. Each task is associated with a
desired satisfaction probability, and the policy computed by
the planner will minimize one of the cost functions, while
obeying bounds on the other cost functions, and at the same
time guaranteeing that all additional tasks are completed
with probability exceeding the given desired satisfaction
probability. If the constraints and objectives are incompatible,
the planner recognizes this situation and reports failure.

In [13] we provided a thorough theoretical analysis of the
problem and performed limited validation in a fairly abstract
simulation setting. In this paper, we present a toolbox that
can be easily reconfigured to add new costs or change
existing cost functions to adapt to new environments. It also
provides a very simple mechanism to define tasks and their
assigned satisfaction rates. The toolbox can be downloaded
from the Internet1 and freely used.

In this paper, we also thoroughly evaluate the planner
and its robustness to modeling errors, in particular for what
concerns the transition probabilities characterizing the un-
derlying CMDP. Robustness to modeling errors for CMDPs
has been scarcely considered in the past. In our past work
[4] we have provided some theoretical bounds with regard
to bounded errors in the cost functions, but to the best of
our knowledge robustness with regard to errors in transition
probabilities in CMDPs is a scarcely investigated area. Our
validation is performed in a factory-like environment where a
UGV is tasked with various pick and place tasks. We rely on
ROS/Gazebo [16] to perform a large number of trials, and
we therefore also present a set of principles to turn high-
level policies into actionable robot controllers ready to be
executed on state of the art robotic platforms. The remainder
of this paper is organized as follows. In Section II we discuss
the state of the art. In Section III we shortly summarize the
results presented in [13] and formalize the planning problem
we consider. Section V describes the experimental setup
and discusses implementation notes. Experimental results
are presented in Section VI, and conclusions are offered in
Section VII.

II. STATE OF THE ART

Autonomous and semi-autonomous robots have been ex-
tensively used in industrial applications. The challenge has
been tackled from different aspects such as controller design
[15] and trajectory planning [3]. In this paper we focus on
motion planning with nondeterministic motions but observ-
able states.

1
http://robotics.ucmerced.edu/software



Lavalle’s book provides an ample introduction to robot
planning algorithms [14]. Amongst these, Markov Decision
Processes (MDPs) have been extensively used when state
transitions are uncertain but the state of the system is
observable [10]. In the MDP formulation a single objective
function is considered, but in many practical situations more
than one cost function has to be taken into account. For
instance, if the objective function is to minimize risk along
a path, some other factors such as path length or energy
consumption could be considered. Constrained Markov De-
cision Processes extend MDPs by considering multiple costs.
Their solution produces a feedback policy optimizing one
objective function while ensuring that the remaining ones are
bounded (in expectation) by some user specified constants.
A comprehensive description for CMDPs is presented in [1].
While MDPs have been extensively used for robot planning,
less emphasis has been given to CMDPs, although this
approach is not entirely unexplored [7], [11], [12].

LTL has emerged as a powerful tool to model reactive sys-
tems [2] and is enjoying growing popularity in the robotics
community. Syntacticly co-safe LTL (sc-LTL) properties [8]
have been introduced to model situations where systems
operate for a finite amount of time, and therefore their
objectives have to be fulfilled in finite time. Sc-LTL has been
used to define various robotics tasks [9], [8], [17]. However,
all of these methods focused on a single task and are not
immediately usable when more tasks are simultaneously
considered. In an effort to overcome these limitations, we
recently proposed a planner [13] that can handle an arbitrary
number of tasks where each of them has to be satisfied with
a given probability.

III. MULTI-OBJECTIVE PLANNING WITH MULTIPLE
TASKS

We introduce the problem solved by the planner we
presented in [13] and briefly summarize its basic properties.
The reader is referred to [13] for a thorough discussion about
its theoretical foundations and related algorithmic details.
Consider a scenario where an autonomous ground vehicle
operates in an environment where it can reliably localize
itself, e.g., an autonomous forklift operating on a factory
floor where suitable unique markers have been installed. The
vehicle is subject to various costs as it operates, and without
loss of generality we assume that we prefer executions where
these costs are low. Examples of such costs include the time
spent to complete a task, traveled distance, consumed energy,
and the amount of undertaken risk,2 just to name a few. When
multiple costs are considered, a possible approach to solve
the corresponding multi objective optimization problem is
to combine all cost functions into a single objective func-
tion, for example through a linear combination. However,
with this approach the resulting objective function does
not have a physical meaning because it combines together
heterogeneous quantities. An alternative approach consists
in minimizing one of the objective functions (called primary

2We will introduce a risk measure later on.

objective) while imposing bounds on the others. This is the
approach we follow. For example, in our scenario we may
aim at minimizing the time to complete the mission while
having bounds on the consumed energy and traveled distance.
The mission of the robot is to complete one or more tasks,
where each task is expressed as a formula in sc-LTL, whose
formalization is given later. In general it may be impossible
for the robot to complete all tasks while satisfying all the
constraints on the costs. Therefore we associate to each sc-
LTL formula a desired completion probability, so that each
task can be given a different weight. The objective is then
to compute a policy that in expectation completes every task
with its specific desired probability, while obeying to the
constraints and minimizing the primary objective.

In the following, we briefly recap sc-LTL as a formalism to
specify tasks. We then describe labeled constrained Markov
Decision Processes, formulate the problem we aim to solve,
and give a linear program that solves it.

A. Syntacticly Co-safe Properties

The formalism of LTL has emerged as one of the leading
approaches to specify desired behaviors for reactive systems.
A comprehensive introduction to the subject is provided in
[2]. In LTL, a set of atomic propositions Π is defined, and
a labeling function L is introduced to associate to each
state a truth value to every proposition in Π. As the system
evolves over time and its state changes, the values assumed
by the atomic propositions change as well, as defined by
the labeling function L. By concatenating the truth values
assumed by the propositions, words of infinite length are
obtained. LTL uses the usual logic operators (¬, ∨, ∧), and
in addition it introduces the temporal operators eventually
(♦), next (©), until (U ) and always (�). LTL can be used
to specify properties like safety, liveness, and others that
are satisfied by words of infinite length. However, most
robotic tasks have finite duration, and LTL is therefore not
necessarily the most appropriate choice because it reasons
about words of infinite length. To overcome this limitation,
syntactically co-safe LTL (sc-LTL) properties have been
introduced. A sc-LTL property is built using the operators
eventually, next, and until. Furthermore, the operator ¬ can
only be used in front of atomic propositions. Note that the
operator always is not used. sc-LTL properties are verified
by words of finite length and can therefore be used to specify
properties for a robot operating for a finite amount of time.

B. Labeled Constrained Markov Decision Processes

A labeled CMDP (LCMDP) extends the classic definition
of CMDP by adding atomic propositions and a labeling
function associating to every state a truth value to the atomic
propositions. An extensive introduction to CMDPs can be
found in [1]. A finite CMDP is defined as follows.

Definition 1: A finite CMDP is given by the tuple C =
(S, β,A, ci,Pr) where

• S is a finite set of states.



• β is a probability mass distribution over S providing the
initial distribution over S, i.e., β(sj) is the probability
that the initial state of the CMDP is sj .

• A = ∪s∈SA(s) is a finite set of actions, where A(s) is
the set of actions executable in state s. S and A induce
the definition of the set K as follows: K = {(s, a) ∈
S ×A | s ∈ S ∧ a ∈ A(s)}.

• ci: K → R≥0, i = 0, . . . , n are n + 1 cost functions.
When action a is executed in state s each of the costs
ci(s, a) is incurred.

• Pr: K×S → [0, 1] is the transition probability function
where Pr(s1, a, s2) is the probability of reaching state
s2 from s1 after applying action a.

Labeled CMDPs extend CMDPs by adding a set of atomic
propositions and a labeling function.

Definition 2: A LCMDP is given by the tuple LC =
(S, β,A, ci,Pr, AP, L) where S, β,A, ci,Pr are as in the
CMDP definition and:

• AP is a finite set of binary atomic propositions.
• L: S → 2AP is a labeling function that defines for each

state which atomic propositions are true.

A policy π is a function defining which action should
be taken in every state. Optimal policies for (L)CMDPs are
Markovian, i.e., they depend on the current state only (and
not on the past history), but they are in general randomized,
i.e., they are defined as π : S → P(A) where P(A) is the set
of probability mass distributions over A. For a given state s,
π(s) ∈ P(A(s)), i.e., the action is chosen from the set A(s)
according to the mass distribution P(A(s)).

Starting from a state s0 ∈ S and following a policy π,
a sequence of states and actions ω = s0, a0, s1, a1, ... is
generated, where ai ∈ A(si). In an LCMDP the sequence ω
induces a sequence of atomic propositions that are true, as
defined by the labeling function, i.e., L(ω) = L(s0)L(s1)...
The sequence ω satisfies an sc-LTL formula φ if and only
if L(ω) satisfies φ. The last element to be introduced to
formalize the problem definition is a set of cost criteria for
each of the ci functions in the LCMDP definition. The total
cost is the undiscounted cost accrued during a sequence ω.
For this cost to be finite, it is necessary to impose that the
LCMDP is absorbing.

Definition 3: An LCMDP is absorbing if its state set S
can be partitioned into two subsets S′ (transient states) and
M (absorbing states) so that for each policy π:

1) for each s ∈ S′,
∑+∞
t=0 Prπβ [St = s] < +∞ where Prπβ

is the probability distribution induced by β and π.
2) for each s ∈ S′, sm ∈ M and a ∈ A(sm) we have

Pr(sm, a, s) = 0.
3) ci(s, a) = 0 for each s ∈M and each 0 ≤ i ≤ n.

These conditions impose that under every policy the state
eventually reaches the set M and remains there, where no
more cost is accrued. In an absorbing LCMDP, the n + 1
costs induce n+1 corresponding total cost functions defined

as follows3

ci(π, β) = E

[
+∞∑
t=0

ci(st, at)

]
where the expectation is taken with respect to the probability
distribution over trajectories induced by π and β. Note that,
according to the theory of CMDPs, these costs depend both
on the policy π and the initial mass distribution β.

C. Problem Formulation

At this point we have all the elements to introduce the
multi-objective, multi task MDP problem defined in [13].

Multi-objective, multi-task MDP (MOMT-
MDP) problem : Given
• an LCMDP LC = (S, β,A, ci,Pr, AP, L)

with n+ 1 costs functions c0, c1, . . . , cn;
• m sc-LTL formulas φ1, . . . , φm over AP ;
• n cost bounds B1, . . . , Bn;
• m probability bounds Pφ1

, . . . , Pφm
;

determine a policy π for LC that:
• minimizes the cost c0(π, β);
• for each cost ci, (1 ≤ i ≤ n), ci(π, β) ≤ Bi;
• for every trajectory ω, each of the m formulas
φi is satisfied with at least probability Pφi .

Note that the definition allows to consider tasks that must
be completed for sure. This can be done by defining a
suitable formula φi and setting the corresponding probability
bound Pφi

to 1. The following theorem, proven in [13],
establishes that the solution to MOMT-MDP problem can
be found solving a suitably defined linear program.

Theorem 1: Let LC = (S, β,A, ci,Pr, AP, L) be an
LCMDP, and φ1, . . . , φm, B1, . . . , Bn and Pφ1

. . . Pφm
as

in the definition of the MOMT-MDP problem. The problem
has a solution if and only if the following linear program is
solvable:

min
ρ(x,a)∈K

∑
x∈S′

p

∑
a∈A(x)

c0(x, a)ρ(x, a) (1)

subject to∑
x∈S′

p

∑
a∈A(x)

ci(x, a)ρ(x, a) ≤ Bi, i = 1, ..., n

∑
a∈A(Si)

ρ(Si, a) ≤ 1− Pφi
, i = 1, ...,m

∑
x′∈S′

p

∑
a∈A(x′)

ρ(x, a)[δx(x′)− Pr(x′, a, x)] =

= β(x),∀x ∈ S′p

ρ(x, a) ≥ 0,∀x ∈ S′p.

3Note that we use the symbol ci both for the LCMDP costs and for
the total costs because they are strictly related, but these are two different
functions, as evident from their different domains.



where4 S′p is a new state spaces induced by S and the φis,
and Si are elements in this new state space (see [13] for the
detailed definition).
In [13] we also show that if the linear program (1) has a
solution, then the solution ρ∗(x, a) defines the optimal policy
π(x, a) for each (x, a) ∈ K.

IV. MOMT-MDP TOOLBOX

The MOMT-MDP toolbox implements the aforementioned
approach in Matlab. The input parameters of this toolbox are
as following:
• An LCMDP M where n + 1 cost functions are de-

fined for each state. The toolbox provides a class for
LCMDPs.

• m DFAs. The DFA class implemented in the toolbox is
used for this purpose.

• n upper bounds for the non-primary cost functions,
encoded as a vector A.

• m satisfaction probabilities for each DFA. These values
are appended to A.

Upon proper setup, the toolbox calculates the optimal policy
according to the linear program formerly presented. If a
solution satisfying the constraints is found, the toolbox gen-
erates a feedback policy π specifying which action should be
taken at any given state. Additionally, the planner simulates
multiple executions of the generated policy to experimentally
ensure that the policy satisfies the given constraints.

This toolbox comes with some auxiliary functions to con-
vert an image into an LCMDP (see section V for examples),
and also to verify that the user defined DFAs are correct and
total. The class diagram of the toolbox is given in Figure 1.

Fig. 1. Class Diagram for the MOMT-MDP Toolbox

4δx(x′) equals to one, if x = x′ and zero otherwise

V. EXPERIMENTAL SETUP

We describe various simulations aiming at assessing
strengths and limits of the planner we just described. In
particular, we aim at showing its ability to express suitable
missions in scenarios relevant to manufacturing and automa-
tion, and its robustness to modeling errors. We also provide a
detailed description on how the planner can be implemented
using the mainstream ROS software platform. For all our
simulations we rely Gazebo.

A. Environment Setup

We consider an autonomous forklift, i.e., an unmanned
ground vehicle equipped with a forward facing gripper used
to grab and release items. The Gazebo simulation environ-
ment does not provide a model for this vehicle, and therefore
we developed one building upon the existing model for the
Pioneer P3AT robot. Starting from the P3AT, we added four
extra links and joints to enable the robot to restrain an object,
and lift it. Figure 2 shows the model we developed. Note
that on top of the gripper we placed a laser range finder to
localize the robot inside the known map of the environment.

From a mobility perspective the P3AT is a differential
drive platform, and one could argue that forklifts instead
use Ackermann steering, where the rear wheels are used for
steering. While this is true, this distinction is immaterial
to the nature of the experiments we present, because, as
explained in the next subsection, navigation is fully handled
by the ROS navigation stack that can manage different
mobility configurations. The robot operates in the known
environment displayed in the rightmost panel of Figure 2.
In our implementation a map of the environment is acquired
upfront using one of ROS’ built in SLAM algorithms. The
map is then discretized into cells of 0.5×0.5 meters. With
reference to the LCMDP formulation, the state of the robot
is (x, y, c), where x, y identify the grid cell where the robot
is located, and c is a binary variable indicating whether the
robot is carrying something or not. The set of actions is
A = {left, right, up, down, load, unload}. The first four
actions describe motions in the grid5, whereas the last two
indicate the action on the gripper. Note that the orientation
of the robot is missing from the state because thanks to
the underlying motion controller the robot is capable of
executing any of the four motion actions irrespectively of
the direction it is facing. For what concerns the transition
probabilities, when one of the left, right, up, down actions is
executed, it succeeds with probability 0.63. This value was
derived experimentally by simulating the actions multiple
times and observing how often it succeeds. The action load
succeeds with probability 0.6, whereas the action unload
succeeds with probability 1.

B. Software architecture

From a software perspective we organized the system into
the two-layer architecture shown in Figure 3. The top layer

5Actions that cannot be executed in a state s are removed from A(s),
e.g., motions that would move the robot into a wall.



Fig. 2. On leftmost figure, the autonomous vehicle with its gripper fully opened at its lowest position. In the center figure, the vehicle carrying an object.
Note that the fork as been closed and lifted. On the right, the environment used for testing.

(Layer 2) is in charge of generating the policy by solving the
linear program in Eq. (1), and to determine the desired action
π(s) as a function of the current state. Hence, it receives from
the lower layer (Layer 1) the robot pose and the grasp status.
These values determine the current state s = (x, y, c), and
the next action π(s) ∈ A(s) can therefore be identified. If
the action is either left, right, up or down, it is sent to the
Move Base node in Layer 1, whereas if the action is load
or unload it is sent to the node Load Controller.

Layer 1 consists of a set of standard ROS nodes (AMCL,
Move Base, Map Server) and of a custom developed node
(Load Controller) in charge of the gripper device we intro-
duced. AMCL handles the localization task using a particle
filter. Given a map of the environment (provided by Map
Server), and the data from the range finder and odometry, it
provides an estimate of the robot pose. In our experiments,
since the map is static, the estimate provided by AMCL is
reliable and consistent with our hypothesis of state observ-
ability. Move Base implements the ROS mobility stack, i.e.,
drives the robot to a desired target location. Finally, Load
Controller implements a PID algorithm to open/close the
gripper and move it up or down.

C. Costs, Atomic Propositions, and Tasks

According to the formulation presented in Section III, we
introduce two costs, i.e., risk (c0) and traveled distance (c1).
The risk cost is defined by a risk map extracted from the
environment, where locations near to obstacles are deemed
more risky (see Figure 4). The overall risk along a path is
the sum of the risk values of the cells traversed along the
path. Next, we define two missions characterized by different
atomic propositions and tasks.
Mission 1. For the first mission the set of atomic proposi-
tions is Π = {P1, P2, D,G,L}, and the associated labeling
function L is as follows (refer to the right panel in Figure
2).

• L(P1) is true when the robot is in the state correspond-
ing to location Pickup 1 and false otherwise.

• L(P2) is true when the robot is in the state correspond-
ing to location Pickup 2 and false otherwise.

Fig. 3. Software architecture

• L(D) is true when the robot is in the state corresponding
to location Delivery and false otherwise.

• L(G) true when the robot is in the state corresponding
to location Goal and false otherwise.

• L(L) is true if the robot is carrying something (loaded)
and false otherwise.

The following two tasks are defined as sc-LTL formulas
over Π. In both cases, we assume that the robot starts without
carrying anything.

1) Task 1: φ1 = ¬LUP1 © LUD © ¬LUG. In plain
words this task requires to go to location Pickup 1,
retrieve the element, bring it to location Delivery,
release it, and then terminate in location Goal.

2) Task 2: φ2 = ¬LUP2 © LUD © ¬LUG. This
task requires to go to location Pickup 2, retrieve the
element, bring it to location Delivery, release it, and
then terminate in location Goal.

We associate to φ1 a probability Pφ1 = 0.4 and to φ2
a value Pφ2 = 0.3. When solving the linear program, we
minimize the risk cost, while setting a bound B1 = 70 on



Fig. 4. Risk Map. Warmer colors indicate higher risk areas.

the cost c1 (path length).
Mission 2. For the second mission the set of atomic proposi-
tions is Π = {S1, S2, P1, P2, D,G,L}. The labeling function
for P1, P2, D,G,L is as in Mission 1, whereas for S1 and
S2 it is as follows (refer to Figure 5).

Fig. 5. Relevant locations for the tasks in the second mission.

• L(S1) is true when the robot is in the state correspond-
ing to location Station 1 and false otherwise.

• L(S2) is true when the robot is in the state correspond-
ing to location Station 2 and false otherwise.

We define two tasks also for the second mission, and we
again assume that the robot starts without carrying anything.

1) Task 1: φ1 = ¬LUS1©¬LUP1©LUD©¬LUG.
Informally speaking, the robot is required to go to
Station 1 while unloaded, receive some orders, then
drive to Pick Up 1 to pick up an object. Then it unloads
the object at the Delivery location and terminates the
task by going to the Goal location.

2) Task 2: φ2 = ¬LUP2©LUS2©LUD©¬LUG. In
this task the robot goes to Pick Up 2 location, loads
the object. Then it drives towards Station 2 which can
be a check point in order to verify the status of the
object being carried. After the check point, it moves
towards the Delivery location to drop it off and then
drives to the Goal location.

We associate to φ1 a probability Pφ1 = 0.4 and to φ1 a
probability Pφ2

= 0.3. When solving the linear program, we

minimize the risk cost (c0), while setting a bound B1 = 100
on the path length (c1).

VI. RESULTS

Starting from the experimental setup we described in the
previous section, we solve the linear program corresponding
to the cases described in the first and second mission, and
we then repeatedly executed the policy in Gazebo, logging
the results in terms of traveled path, accrued risk, and
percentage of accomplishments of the specified tasks. In
every experiment the policy is executed 500 times. For both
missions we first solve the linear program with values for
the transition probability equal to the probabilities we exper-
imentally determined, as described in section V-A. Next, to
assess the robustness of the algorithm to modeling errors,
we repeat the same experiments after having solved the
linear program using transition probabilities that differ from
the value we observed, and evaluate how the performance
degrades.

A. Mission 1

In the first batch of experiments, we solve the linear pro-
gram using our best estimates for the transition probabilities.
Table I shows the results we obtained. It can be seen that over
500 runs the bound B1 = 70 on the path is on expectation
met with a rather small variance.

Quantity Mean Variance
Risk 362.9 64.2

Path Length 61.2 9.3

TABLE I
MISSION 1 RESULTS IN TERMS OF TOTAL ACCRUED COST AND PATH

LENGTH

Moreover, φ1 was satisfied with probability 0.43 and φ2
and with probability 0.25. The reason for the mismatch
between Pφ2

= 0.3 and the observed value of 0.25 is
twofold. First, the number of samples is relatively small and
then does not necessarily converge to the expected value.
Second, as we will show in the next experiment, it seems
like that the transition probability value we experimentally
estimated is not extremely accurate.

Next, to experimentally evaluate the robustness of the
algorithm to errors in the transition probabilities, we solved
again the linear program using transition probability values
different from the one we experimentally determined. Figure
6 shows the satisfaction rates for φ1, φ2 as the transition
probability varies, whereas figure 7 shows the Kullback-
Leibler divergence between the desired values for Pφ1

and
Pφ2 and the observed values. From this second figure we
can observe that 0.7 appears to be a better estimate for the
transition probability.

B. Mission 2

Similar experiments were performed for mission 2. Table
II confirms that the policy satisfies in expectation the bound
B1 = 100 for the expected path length.



Fig. 6. Satisfaction rates of two tasks in mission 1.

Fig. 7. KL Divergence for mission 1.

In this case φ1 was satisfied with probability of 0.49, and
φ2 with probability of 0.25. As compared to the values in
Section V-C the desired value for Pφ2 is slightly off from
the desired value. In our interpretation this is due to the
fact that the transition probability value we used to solve
the linear program is not necessarily the one best fitting the
underlying model, as confirmed by Figure 8 and Figure 9
in which we observe the performance of the planner as the
transition probability vary.

We conclude this section outlining that the presented
results, although not completely aligned with the desired
results, do not undermine the correctness of the planner. In
fact, in [13] we showed that if the linear program in Eq. 1 is
solved using transition probabilities accurately matching the
underlying model, then all target probabilities are achieved.

Quantity Mean Variance
Risk 556.4 89.4

Path Length 102.6 18.2

TABLE II
MISSION 2 RESULTS IN TERMS OF TOTAL ACCRUED COST AND PATH

LENGTH

Fig. 8. Satisfaction rates of two tasks in mission 2.

Fig. 9. KL Divergence for mission 2

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our toolbox to solve MOMT-
MDP problems. In our former contribution we assessed
the planner performance in an idealized abstract scenario
in which all the parameters of the model were accurately
provided. In this paper, instead, we implemented the planner
and tested it on a realistic, noisy simulation environment in
which not all parameters were precisely known. The first
observation is that the multi-objective side of the problem
seems to be less sensitive to inaccurate parameters, as
evidenced by the fact that the bounds on the additional
cost functions have always been met in expectation. On
the contrary, the probability of satisfying the tasks seems
to be less robust to modeling errors, as evidenced by small
deviations from the desired values. Besides the experimental
validation, we also illustrated a concrete architecture to
instantiate the proposed planner on ROS, and we tested
the system using a set of tasks inspired by manufacturing
and logistics scenarios. In the future, an interesting research
direction seems to be the development of formal bounds to
assess the robustness of this planner to errors in the transition
probabilities, similarly to what we did in [4] for errors in the
cost functions.



REFERENCES

[1] E. Altman. Constrained Markov Decision Processes. Stochastic
modeling. Chapman & Hall/CRC, 1999.

[2] C. Baier and J.P Katoen. Principles of model checking. MIT press
Cambridge, 2008.

[3] T. Chettibi, H. Lehtihet, M. Haddad, and S. Hanchi. Minimum
cost trajectory planning for industrial robots. European Journal of
Mechanics-A/Solids, 23(4):703–715, 2004.

[4] Y-L. Chow, M. Pavone, B.M. Sadler, and S. Carpin. Trading safety
versus performance: Rapid deployment of robotic swarms with robust
performance constraints. ASME Journal of Dynamical Systems,
Measurements and Control, 137(3):031005, 2015.

[5] R. D’Andrea. Guest editorial: A revolution in the warehouse: A
retrospective on kiva systems and the grand challenges ahead. IEEE
Transactions on Automation Science and Engineering, 9(4):638–639,
2012.

[6] R. D’Andrea and P. Wurman. Future challenges of coordinating
hundreds of autonomous vehicles in distribution facilities. In IEEE
International Conference on Technologies for Practical Robot Appli-
cations, pages 80–83, 2008.

[7] X. Ding, B. Englot, A. Pinto, A. Speranzon, and A. Surana. Hi-
erarchical multi-objective planning: From mission specifications to
contingency management. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 3735–3742, 2014.

[8] X. Ding, A. Pinto, and A. Surana. Strategic planning under uncer-
tainties via constrained markov decision processes. In Proceedings
of the IEEE International Conference on Robotics and Automation,
pages 4568–4575, 2013.

[9] K. Etessami, M. Kwiatkowska, M. Vardi, and M. Yannakakis. Multi-
objective model checking of markov decision processes. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 50–65.
Springer, 2007.

[10] E.A. Feinberg, editor. Handbook of Markov Decision Processes:
methods and applications. Springer, 2012.

[11] S. Feyzabadi and S. Carpin. Risk-aware path planning using hierarchi-
cal constrained markov decision processes. In Proceedings of the IEEE
International Conference on Automation Science and Engineering,
pages 297–303, 2014.

[12] S. Feyzabadi and S. Carpin. HCMDP: a hierarchical solution to
constrained markov decision processes. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 3971–
3978, 2015.

[13] S. Feyzabadi and S. Carpin. Multi-objective planning with multiple
high level task specifications. In Proceedings of the IEEE International
Conference on Robotics and Automation, 2016 (to appear).

[14] S. M. LaValle. Planning algorithms. Cambridge university press,
2006.

[15] J. Luh. Conventional controller design for industrial robots-a tutorial.
IEEE Transactions on Systems Man and Cybernetics, 13:298–316,
1983.

[16] M. Quinley, B. Gerkey, and W.D. Smart. Programming Robots with
ROS. O’Reilly, 2015.

[17] T. Wongpiromsarn, A. Ulusoy, C. Belta, E. Frazzoli, and D. Rus.
Incremental synthesis of control policies for heterogeneous multi-agent
systems with linear temporal logic specifications. In Proceedings of
the IEEE International Conference on Robotics and Automation, pages
5011–5018, 2013.


