
1

Incremental Convex Minimization for Computing
Collision Translations of Convex Polyhedra

Claudio Mirolo, Stefano Carpin, and Enrico Pagello

Abstract— The subject of this paper is an asymptotically fast
and incremental algorithm for computing collision translations
of convex polyhedra, where the problem at hand is reduced
to determining collision translations of pairs of planar sections
and minimizing a bivariate convex function. There are two main
reasons, in our view, why the algorithm is worth consideration.
On the one hand, the addressed proximity measure, namely
collision translation, is not as widely studied as distance. On
the other, its peculiar computation strategy may be interesting
in itself, being well suited to work without initialization and also
endowed with an inherently embedded mechanism to exploit
spatial coherence. After outlining the main ideas of this novel
approach and providing an estimation of the computational costs,
we summarize a broad set of numerical experiments meant to
explore extensively the behavior of the algorithm, both without
and with initialization. Finally, in order to assess the efficacy and
the potential of the approach under analysis, the attained per-
formances are contrasted with those of other popular algorithms
designed to compute distances between polyhedra. A thorough
comparison of the reported query times and, more significantly, of
the corresponding trends shows that the behavior of the collision
translation algorithm is quite interesting, especially when used
without initialization or under variable coherence, which should
encourage further work on this approach.

Index Terms— proximity problems, convex polyhedra, incre-
mental algorithms, convex minimization, collision detection.

I. I NTRODUCTION

In this paper we discuss the structure and the performances
of an asymptotically fast algorithm, with additional potential
for incremental computations, designed to solve the following
problem: Given two convex polyhedra P, Q and a direction
d, find the collision translation for P moving in directiond.
If P and Q do not collide, the algorithm returns suitable
items proving the separation for all positions ofP along
its trajectory. Roughly speaking, the key idea characterizing
our approach is that computing the collision translation of
two convex bodies can be reduced to computing collision
translations of pairs of planar sections and minimizing a
bivariate convex function. This idea can be developed to design
collision translation algorithms running inO(log2 n) average
time for a total numbern of vertices, which corresponds to
the best average-case complexity of the known techniques for
answering similar proximity queries.

Analogously to the distance algorithms, the proposed al-
gorithm could be appropriate as a basic operation to plan

Claudio Mirolo is with the Department of Mathematics and Computer
Science of the University of Udine, Italy. Stefano Carpin is with the School of
Engineering of the University of California, Merced, USA. Enrico Pagello is
with the Department of Information Engineering of the University of Padova,
Italy.

collision-free paths, both on-line and off-line, in the presence
of fine-grain polyhedral descriptions of the objects. A complex
representation of the workspace is indeed quite common for
the geometric modelers based on CAD systems, as pointed
out in [1], making it a critical goal to design fast techniques
for computing proximity measures of primitive bodies. The
algorithm may be especially useful to achieve more balanced
performances across variable degrees of coherence [2], as
it may be the case in real-time motion planning, but also
the task of characterizing the configuration space off-line
can be approached by systematically solving simple collision
detection problems in order to probe the structure of the free
space, for example via randomized sampling strategies.

One of the reasons of interest in this work, we believe,
is that collision translation, unlike distance, has not received
much attention in the literature, although it is straightforward
to reduce to it other relevant proximity problems, such as
intersection detection and collision depth in a given direction.
A conceivable disadvantage is that the closest features are
available only for the computed contact configurations. How-
ever, in some circumstances knowing the extent of a collision-
free translation in the motion direction can be helpful to reduce
the frequency at which the proximity measure must be sampled
more than it would be possible with the distance. There are
also specific tasks where a collision translation algorithm is
more suitable. One such example can be found in the CAD
programs that nowadays are applied to perfect parts design so
that certain products can be easily assembled or disassembled.
A typical case pertains to aircraft engines, because they need
periodic inspections: in order to determine the feasibility of a
quick maintenance plan, it is critical to know the clearance in
certain directions rather than in absolute terms.

A first step along the line of research investigating the power
of our novel approach was the algorithm analyzed in [3],
in regard to which the present work introduces a few major
technical improvements as well as provides a richer collection
of data as a basis for the assessment. More specifically, the
main original contributions of this paper are:

(i) the characterization of the faceted structure of the con-
vex function’s graph and its application to sharpen the
minimization process;

(ii) the introduction of a mechanism for exploiting coherence
in order to speed up the computation;

(iii) a broad experimental analysis, including a comparison
with other important proximity algorithms.

The deeper connection of the minimization process with the
shape of the convex function, the tools developed to solve the



2

related subproblems and the significant refinement (ii) make
the new algorithm different in several important respects from
that outlined in [3].

The O(log2 n) complexity bound refers to computations
from scratch, i.e., without initialization, meaning that no
previous proximity information is either available or exploited.
On the other hand, it is typical of the applications in the
fields of on-line motion planning, simulation, animation and
computer aided design, that a huge number of proximity tests
have to be carried out after subsequent short movements of the
objects in the workspace. In such situations the performances
of the procedures answering basic geometrical queries are
crucial, and exploiting thespatial and temporal coherence
may be beneficial in order to speed up the computations,
since the outcomes of the proximity tests on close workspace
states are likely to be represented by close features. Efficient
algorithms designed to process the knowledge of a previous
result (initialization) are referred to asincrementalalgorithms.

Besides addressing a less customary proximity measure
than distance, the core approach of the proposed algorithm
is quite peculiar, suitable both to work without initialization
(computationsfrom scratch) and to exploit spatial coherence
(incrementalcomputations) with the aid of a mechanism that
is inherently embedded in the computation strategy. The very
nature of the approach allows us to endow the algorithm with
a self-tuning capability, at negligible additional costs even
for unrelated collision tests, by simply refining the choice
of the splitting points during the minimization process. The
behavior of the algorithm is substantiated by a set of numerical
experiments, whose results can be summarized as follows:

• The performance trend is good when collision translations
are computed from scratch and the algorithm tends to be
even faster if the input polyhedra do not collide.

• The average number of minimization steps decreases
regularly, as expected, and gets very close to the smallest
possible value, while the coherence is growing higher.

• The behavior without initialization is quite interesting
also if compared with that of other popular proximity
algorithms, whereas the incremental performances could
probably be improved.

The performances have been compared with those of two
well known algorithms designed to compute distances be-
tween polyhedra: Cameron’s enhanced GJK [4] and Larsen,
Gottschalk, Lin and Manocha’s PQP [5]. Moreover, the capa-
bility to adapt to variable coherence has been investigated in
light of Guibas, Hsu and Zhang’s results onH-Walk [2], an
algorithm of specific interest for this feature, by testing our
algorithm under conditions corresponding to the experiments
discussed in [2]. Although these “yardsticks” solve a different
proximity problem and although [5] applies to more general
polyhedra, the comparative results contribute to a first assess-
ment of the effectiveness and potential of the approach under
analysis. All the algorithms, indeed, share the same kind of
application frameworks, and answering distance or collision
translation queries appears to require a similar computational
effort, as also suggested by the known asymptotic bounds.

Related work

Starting from the early work on the geometric models of
robot workspaces, there has been a steady interest in proximity
measures and properties [6], since the design of efficient
algorithms to answer these kinds of queries is generally
thought to be critical to the development of effective tools for
motion planning, as pointed out in [7], and for a variety of ap-
plications in other fields, such as simulation, animation, virtual
reality [8], where geometry plays an important role. Several
algorithms proposed in the literature apply to convex models,
a typical choice as basic objects components, e.g. [9], [10],
[11], [12], [13]. In the usual case of convex polytopes, the best
asymptotic bound for various proximity problems (intersection
detection, collision detection, distance, depth of collision) is
the O(log2 n) worst-case bound attained by exploiting the
hierarchical representations of polyhedra withO(n) vertices,
[14], [15]. Some efforts, however, have been addressed to
the case of more general bodies: to define different measures
of penetration [16]; to speed up the interference tests for
elementary polyhedral items (vertices, edge, triangular faces)
[17] or for other bounding surfaces [18]; to deal with certain
kinds of movement [19], [20].

Since the work by Lin and Canny in the early ’90s [21],
the complexity of the settings arising in the application fields
mentioned above has also fostered research on incremental
algorithms being able to exploit the coherence and run in
nearly constant time per query, e.g. [4], [22], [23], [24], [25],
[26], [27], or even to adapt to variable coherence [2]. A related
issue is the design of suitable representations to speed up the
broad phase aimed at selecting few pairs of primitive volumes
(e.g., convex polyhedra) for the proximity tests. Examples of
this approach are the application of kinetic data structures [28],
as well as of other hierarchies based on bounding volumes of
simple shape, which are considered in several papers, e.g. [8],
[29], [30], [31], [32], [24], [33], [34], [35], [36].

As already said, [4], [5] and [2] are of specific relevance for
the analysis presented in this paper. Besides having analogous
purposes, the reasons of our interest in the [4] are manifold:
its scope is somehow homogeneous with that of the collision
translation algorithm; it runs very fast in practice and can
exploit the space coherence; further comparisons with related
techniques are already available, e.g. [4], [26], [37]. Similarly,
[5] is also widely known and is another natural candidate as
a benchmark in the field of proximity algorithms, as can be
seen e.g. in [38]. Finally, [2] is a key yardstick for its flexibility
under different degrees of coherence.

Organization of the paper

The paper is organized as follows. In section II we present
the key ideas characterizing the approach to computing colli-
sion translations. Then, in section III we outline the structure
of the algorithm and show how the spatial coherence can
be exploited. The “yardstick” algorithms for the performance
comparison are the subject of section IV, where we also
mention the reasons of this choice. Finally, in section V the
main experimental results are summarized and analyzed.



3

II. GROUNDS OF THE APPROACH

Our approach builds upon the work done in [3], but with a
few important extensions. The principal refinements include:
the local characterization of the polyhedral graph of the convex
function; the adoption of a new polygonal cell-subdivision
with cell-shift operations, instead of an isothetic grid, as a
discrete minimization structure; the incremental techniques
aimed at controlling the focus of the minimization relative to
a previous solution. Moreover, the combinatorially complex
algorithms dealing with polygon-drum and drum-drum pairs,
while essential with an isothetic grid, can now be replaced
by simpler tools. Thus, after briefly summarizing, in the next
subsection, the key results from [3], we will then proceed by
analyzing some useful relationships between the configura-
tions of pairs of planar sections and the linearity properties of
the convex function. Indeed, a deeper understanding of such
relationships is at the root of the major improvements of the
minimization process.

A. Collision translations and convex minimization

To begin with, we recall the most basic result: collision
translations for two convex bodiesP and Q can be reduced
to minimization of a bivariate convex function that represents
collision translations of pairs of planar sections ofP andQ.
More formally, we can prove the following proposition [3]:

Let P and Q be two closed and bounded convex
regions,d a direction in the space,{ρ(x)|x ∈ R} and
{σ(x)|x ∈ R} two independent families of parallel
planes. Then

ϕ(x, y) = colld(P ∩ ρ(x), Q ∩ σ(y))

is a convex function with bounded domain inR2.

In the above statement,colld(X, Y ) denotes the extent of the
collision translation in directiond for X andY , i.e., the least
τ ∈ R such thatdist({p + τd | p ∈ X}, Y ) = 0; ρ(x) and
σ(y) identify the planes by their distancesx, y ∈ R from two
independent reference planes. Based on the definition ofcolld,
also negative values make sense, andcolld is undefined only
if there do not exist (positive or negative) displacements ofX
in direction d such thatX and Y intersect. Throughout the
paper we will often refer to collisions of bodies, sections, or
related items: unless otherwise specified, in connection with
the termscollisionandcollidewe always imply “by translation
in directiond,” in the sense ofcolld’s definition.

Clearly, if a collision translation forP and Q is defined,
then its extent is the minimum ofϕ:

colld(P,Q) = min{ϕ(x, y) | (x, y) ∈ Dom(ϕ)}

and the planar sections corresponding to the minimum contain
the contact points. The meaning of the proposition is illustrated
in figure 1. It tells us that if we are able to compute collision
translations for pairs of polygons in the space, then we can
determine the collision configuration of two convex polyhe-
dra by standard convex minimization techniques such as the
method of centers of gravity [39]. Basically, these techniques
work by repeatedly splitting and cutting off a slice of a convex

Fig. 1. Illustration of the relationship between collision translations and
convex minimization for a pair of cubes. The graph ofϕ is represented by
the white faceted surface on the right;Dom(ϕ) is gray-shaded.

region containing the point of minimum. At each step the cut
line is constrained to pass through the centroid of the region,
to assure a balanced bisection, and it is in fact a support line
for the corresponding level curve of the convex function.

This is not yet satisfactory, since it does not guarantee that
we can find an exact solution in a finite number of steps.
Thus the next question is how to transform a search problem
on a continuous domain into a search problem on a discrete
domain. Following [3], such a discrete domain can be defined
as the set of rectangles of an isothetic grid. Then, under
reasonable assumptions, the grid rectangle containing the point
of minimum can be found inO(log k) minimization steps in
the average, wherek is the size of the grid. After solving a
few related problems and putting all the pieces together, we
end up with an algorithm that computes collision translations
for pairs of polyhedra withO(n) vertices inO(log2 n) time
in the average andO(log3 n) in the worst case.

B. Discrete structure of the convex function

A deeper analysis of the properties of the convex function
ϕ allow us to take a further step forward. SinceP andQ are
polyhedra,ϕ’s graph is also faceted and its topology projects
into a corresponding polygonal partition ofDom(ϕ). Such
a partition is more appropriate than the isothetic grid [3] as
a discrete structure to search for the point of minimum. For
our purposes, however, it is necessary to extend the partition
outsideDom(ϕ), to cover the whole rectangular region

Π(P,Q) = {(x, y) | (P ∩ ρ(x) 6= ∅) ∧ (Q ∩ σ(y) 6= ∅)}

representing all possible pairs of planar sections ofP andQ.
It is possible to achieve this goal by introducing suitable

invariants characterizing the orientation of the cut lines built
in the minimization process. Such straight lines are either
perpendicular toϕ’s gradient, if drawn through points within
the domain, or do not intersectDom(ϕ), if the cut points fall
outside the domain, and in both cases we want their orientation



4

Fig. 2. Mark of the convex function of figure 1. The invariant orientation of
the cut lines is drawn at a sample point in each cell; the arrows represent the
gradient vectors withinDom(ϕ) (gray cells) or the normal directions towards
Dom(ϕ) in the outer cells.

Fig. 3. Illustration of anedge contactinstance for the cubesP and Q in
the configuration of figure 1. The cubes and their planar sections are drawn
as they appear by looking in directiond; the straight linet is the intersection
between the section planes in the contact configuration.

be the same for all points in acell, i.e. a region of the partition.
We will refer to the polygonal cell decomposition ofΠ(P,Q)
generated by these invariants as themark of ϕ. For instance,
figure 2 shows the mark of the convex function visualized in
figure 1 and the orientation of the cut lines within each cell.

The local properties of the convex functionϕ in a neighbor-
hood of the point(x, y) can be determined from the output of
the algorithm used to compute collision translations of pairs
of planar sections (see section III). Given the information on
either the contact or the separation ofP ∩ρ(x) andQ∩σ(y),
we can build a cut line through(x, y) and, in addition, we can
find a more favorable point in the corresponding cell of the
mark, i.e., a point such that a cut line with the same orientation
gets closer to the point of minimum. It is also important to
notice that if we are able to find themost favorable point
in a cell, then the whole cell can be discarded from further
consideration (see also figure 9).

Three types of cells characterize the mark, according to the
possible outcomes of the algorithm for computing collision
translations of pairs of planar sections:

a) Edge contact– the planar sectionsP ∩ ρ(x) andQ∩ σ(y)
collide by translation in directiond and their contact items
are both edges, as illustrated by the drawings in figure 3.
Since such edges are cords of two faces, sayg of P andh
of Q, by linearity all the pairs(u, v) such that the contact
items ofP ∩ρ(u) andQ∩σ(v) areg∩ρ(u) andh∩σ(v),
respectively, lie in the projection of the same facet ofϕ’s
graph. All the gray cells in figure 6 are related to contacts
of this kind, where the pair of faces (g and h) changes
from cell to cell.

Fig. 4. A vertex contactinstance for a configuration of the cubes whereP in
is translated with respect to the scene of figure 3. Again,d is the view direction
and t is the intersection of the section planes in the contact configuration.

Fig. 5. A separationinstance for the situation of figure 1, viewed in direction
d. In this case it is convenient to think of the straight linesr and s as the
intersections betweenσ(y) and the separating planes (parallel tod).

b) Vertex contact– a vertex of the planar sectionP ∩ ρ(x)
hits the planeσ(y) inside Q by translation in direction
d, as illustrated in figure 4, or symmetrically. Lete be the
edge ofP containing the contact vertex, by linearity all the
pairs(u, v) such thatP ∩ρ(u) collides with the interior of
Q∩σ(v) at the vertexe∩ρ(u) fall in the projection of the
same facet ofϕ’s graph.

c) Separation– the planar sectionsP ∩ρ(x) andQ∩σ(y) do
not collide by translation in directiond, as in the situation
depicted in figure 5, thence are separated by a pair of
planes through their vertices, which are parallel to each
other and also tod. In the following, we will refer to such
an arrangement of planes and polygons as aseparation
construction. In these cases a cell is defined in such a
way that it contains all pairs(u, v) corresponding to planar
sections whose separation is witnessed by couples of planes
with the same orientation and through vertices on the same
two edges ofP andQ. In particular, these invariants apply
to the white cells in figure 6.

A qualitative characterization of the mark cells is shown in
figure 6; the drawings should be self-explanatory based on the
comments to the figures 3 and 5.

III. O UTLINE OF THE ALGORITHM

Figure 7 outlines the general structure of the algorithm
designed to compute collision translations for two polyhedra
P , Q and a translation directiond. Its core is the minimization
loop based on the properties discussed so far, which is more
suitable to implement and behaves better than the solution
proposed in [3]. In this respect, without initialization, the
average number of minimization steps reduces by 15-20%,
whereas the number of invocations ofO(log n) algorithms,
a more precise performance measure, decreases by 9.6-10.2
calls almost independently of the polyhedron complexity. We
begin by considering computations without initialization and
postpone the incremental case until section III-D.



5

Fig. 6. Qualitative characterization of the mark. The sample sections of the
cubesP and Q are drawn as they appear by looking in directiond for the
setting of figure 1. The cells inDom(ϕ) are related toedge contactinstances;
those outside the domain refer toseparationinstances.

input :

two convex polyhedra P ,Q and a direction d ;

if available, the previous solution p and change δ ;

1 M := rectangle of all pairs of planar sections of P , Q ;

2 if p is provided then c := p

3 else c := centroid of M ;
loop

4 s := cut line through c ;

5 cell-shift s to point q ;

6 if q solves the problem then exit ;

7 update M w.r.t. s ;

8 c := centroid of M ;

9 if appropriate, update c w.r.t. Nδ(p)

end ;

output :

collision translation ϕ(q) = colld(P, Q)

Fig. 7. Structure of the algorithm for computing collision translations. When
working without initialization, the assignment in line (2) and the statement
in line (9) are never executed. For simplicity, the output refers only to the
situations where a collision translation is defined.

A. Computations from scratch

Refer to figure 7. At line (1) the regionM is created to
represent the rectangular set of all pairs of planar sections
and, when working without initialization, (3) the centroidc of
M is computed. Then, at each iteration of the minimization
loop: (4) the cut lines throughc is computed and (5) shifted
to a better pointq in the same cell of the mark; ifq is the
solution (6) the algorithm ends; otherwise (7) the regionM is
updated by cutting off a slice throughs and (8) the centroid is
recomputed. Eventually,q is recognized to be either the point
of minimum or a witness proving thatϕ’s domain is empty.
In both cases the solution is found.

To estimate the computational costs, we can reasonably
envisage that the average number of minimization steps grows

as the logarithm of the total number of cellsC, i.e., k =
O(log C), since the number of cells which overlap with the
region M tends to be proportional to the area ofM and
about half of the area ofM is discarded at each step. For
technical reasons, it is convenient to provide a slightlyfiner
characterization of the mark cells, in order to be able to
locate inO(log n) the best point where to shift the cut line
at each minimization step (line 5 of the pseudocode). More
specifically, we can think ofP and Q as sliced into drums,
i.e. polyhedra whose vertices lie on two parallel planes [40], by
the section planes through the vertices. Then we consider the
cell decomposition resulting from all the trapezoidal faces of
the drums, as well as the corresponding edges and vertices,
instead of the original ones. Polyhedra withO(n) vertices
can be sliced intoO(n) drums bounded byO(n2) trapezoidal
faces. Since a cell is related to one or two items among faces,
edges, or vertices, as seen in section II-B, their overall number
is C = O(n4) and we havek = O(log n4) = O(log n).

Now consider the generic iteration step in the schema
of figure 7. The cost of line (4) isO(log n) and comes
from the computation of collision/separation configurations of
planar sections that will be introduced in a moment. Also the
computation of pointq in line (5), to be outlined in section III-
C, may requireO(log n), namely for thevertex contactcase,
the other two cases being processed in constant time. After
j ≤ k minimization steps, the regionM is bounded by at
mostj sides, thus the cost of lines (7) and (8) isO(k) in the
worst case. Finally, the actions in line (6) and (9) can be done
in constant time, the latter being only relevant for incremental
computations. This allows us to conclude that the algorithm
runs inO(log2n) time in the average.

B. Collision translations of planar sections

Following the approach outlined above, a basic subproblem
to be solved concerns pairs of planar sections:

Given two convex polygonsR = P ∩ ρ(x) and
S = Q∩σ(y) and a directiond in the space, compute
either the collision configurationor a separation
constructionfor R moving in directiond.

What is most important here, is that this task can be accom-
plished inO(log n) in the worst case for two polygons with
O(n) vertices. For a detailed description of the algorithm we
refer to the technical report [41]. However, the reader may
gain some insights by figuring how the spatial problem can be
transformed into an equivalent planar problem.

To this aim, let us assume for convenience that the reference
planes ρ(0) and σ(0), and the directiond are in general
configuration, which means that no pair of these items are
parallel to each other. Under this assumption the planesρ(x)
and σ(y) intersect along a straight linet and R sweeps a
polygon R′ on σ(y) while moving in directiond, as shown
by the construction in figure 8. Said otherwise,R′ is the
projection ofR along d onto the planeσ(y). Clearly,R and
S collide if and only if R′ ∩ S 6= ∅. Moreover, whileR
moves in directiond, the straight linet shifts towardsS in
the planeσ(y) and the contact configuration corresponds to
the situation wheret reaches a first vertex ofR′ ∩ S. If, on



6

Fig. 8. Collision translations of pairs of planar sections can be reduced to
equivalent two-dimensional problems by considering the regionR′ swept by
R on S’s planeσ(y). The arrangement in this plane is drafted on the right.

the other hand,R′ ∩ S is empty and the polygons do not
collide, we know that(x, y) /∈ Dom(ϕ). In this case the
two-dimensional algorithm returns two parallel support lines
separatingR′ andS, like r and s in the figures 5-6, i.e. two
parallel straight lines through vertices ofR′ andS such that the
polygons lie in disjoint halfplanes. Thus, the planes parallel to
d containing the support lines define a separation construction
for the polygonsR and S, which is the suitable information
to be exploited to locateDom(ϕ) with respect to(x, y).

The planar problem can be solved by binary search: the
sides of the polygonsR′ and S are searched for the point
where t hits R′ ∩ S, which may be either the intersection
of two sides (edge contact) or a vertex of one polygon lying
inside the other (vertex contact), possibly ending with a couple
of separating support lines instead (separation). It should be
noticed that the logarithmic cost of solving the planar problem
(for R′ andS) also applies to the original spatial problem (for
R andS) provided the representation ofR′ is not completely
built in advance, but only those projected items that need to be
processed are actually computed, and in constant time, from
the corresponding items ofR.

C. Cut lines and cell-shift of a cut line

Starting from the information about either the contact or
the separation of two planar sectionsP ∩ ρ(x) andQ∩ σ(y),
it is possible to compute in constant time the orientation of
the cut line at point(x, y) for the next minimization step.
We refer again to [41] for the geometric constructions useful
to understand how the configurations of pairs of polyhedra
relate to cut lines, but we consider instead the problem
of determining a convenient cut point. More precisely, our
purpose is now to compute a pointq = (x′, y′) where to shift
the splitting line in order to discard the whole cell from the
updated search regionM , as shown in figure 9. As mentioned
before, in order to solve any instance of this problem in either
constant or logarithmic time, we define afiner cellby imposing
further constraints (trapezoidal subfaces). As a consequence,
each intrinsic cell may contain a few finer cells, but in the
essence we save all the intended benefits of the mark.

For a sketch of how(x′, y′) can be computed, we refer again
to the three situations considered in section II-B:
a) Edge contact. For all (u, v) in a cell, the contact points of

P ∩ρ(u) andQ∩σ(v) belong to two facesg andh, hence

Fig. 9. Two minimization steps for the configuration of figure 1. At each
step: first the cut lines is computed at the centroidc of the search region;
then a more favorable cut pointq is determined and the cut line is shifted
there; finally, the search region is split. In this example the solution is found
during the second step.

the leastϕ(u, v) is the collision translation ofg and h
themselves wheng moves in directiond. From the contact
points of g and h we can easily determine the section
planesρ(x′) andσ(y′) and the point(x′, y′), which must
lie on the cell boundary. Since the finer cells are defined
for trapezoidaldrum faces, the collision configuration of
two such faces can be computed in constant time.

b) Vertex contact. For all (u, v) in a cell, the contact points
are a vertex ofP ∩ ρ(u) on P ’s edgee and a point inside
Q ∩ σ(v), or a symmetric configuration. In this case the
finer cell is defined relative to a maximal drumD of Q,
and the least value ofϕ(u, v) corresponds to the collision
translation ofe andD, for e moving in directiond, which
can be computed in logarithmic time on the number of
drum faces via binary search. From the contact between the
edge and the drum we can determine two section planes
ρ(x′) andσ(y′) and the point(x′, y′) on the boundary of
the finer cell.

c) Separation. For all (u, v) in a cell, the separation is
witnessed by two vertices ofP ∩ ρ(u) and Q ∩ σ(v),
belonging toP ’s edge a and Q’s edge b, and by two
corresponding straight linesr(u) and s(v) with a given
fixed orientation on the planeσ(v). This guarantees that we
can build cut lines with a fixed orientation as well. This
time (u, v) reaches the boundary of the finer cell when
eitherr(u) ands(v) overlap or one of the contact points is
an endpoint ofa or b. All the information is then provided
by two edges and the orientation of the separating lines,
which allows us to compute(x′, y′) in constant time.

D. Exploiting spatial coherence

In a variety of applications, including on-line motion plan-
ning, a proximity measure needs to be recomputed after small
intervals of time. Therefore, also the movements of the objects
between two subsequent time steps should not be too large
and we can expect that their relative configurations do not
change much. This observation applies, in particular, to the
closest points realizing the minimum distance, as well as
to the contact points in the collision configurations, after
subsequent proximity tests. In similar situations we can gain



7

Fig. 10. Minimization steps with initializationp for the configuration of
figure 1: the focus neighborhood isNδ(p). After the first step, starting atp,
the search region isM ′ with centroidc′, the intersectionc∗′ betweenc′p and
the boundary ofNδ(p) falls insideM ′; so, the next cut point isc∗′. Then,
the updated search region isM ′′ with centroid c′′, c′′p intersectsNδ(p)
outsideM ′′, and the minimization proceeds atc′′.

considerable speed-up by exploiting the information on a
previous computation of the same proximity measure. As said
before, algorithms designed to this purpose are referred to as
incrementalalgorithms in the literature.

The very nature of the approach outlined above makes it
possible to endow the collision translation algorithm with a
flexible mechanism to exploit spatial coherence, which rests
on a simple idea: during the minimization process, we can try
to focus the search for the point of minimum in a suitable
neighborhood of a previous solution. In order to implement
this idea, we have to address two problems: (i) how to choose
a suitable neighborhood and (ii) how to recover if the solution
lies outside of it. As far as problem (i) is considered, ourfocus
neighborhoodis simply an isothetic squareN δ(p) of size2δ,
centered at the previous solutionp, whereδ is heuristically
related to the changes of the test configuration, i.e., positions
and orientations ofP , Q and d. A suitable choice forδ is
the extent of the component perpendicular tod of the shift of
P ’s contact point. (Notice that we are not assuming thatP is
actually moving in directiond.)

However, there is no guarantee that the next solution will
fall in the chosen neighborhood. So a mechanism for switching
to the standard search strategy must be provided, in which case
it would also be desirable to save the work already done. The
implemented technique addresses problem (ii) as follows. The
search starts at the pointp representing the previous solution,
but the minimization regionM is initialized as usual (line 1
in figure 7). At each step, if the centroidc of the minimization
region does not fall inside the neighborhoodN δ(p) centered at
p, we consider the intersection pointc∗ between the boundary
of N δ(p) and the straight line segmentcp. If c∗ lies in M
then it is chosen as the next cut point; otherwise the next cut
point is the centroidc and we forget the neighborhood. Figure
10 illustrates two subsequent minimization steps with focus
neighborhoodN δ(p); the latter step resumes the standard
process sincec′′p does not intersect the boundary ofN δ(p)
within the search regionM ′′.

The incremental behavior of the algorithm is achieved
simply by the operations in lines (2) and (9) of figure 7:
initially (2) the previous solution is chosen as first cut point

and at the end of each iteration (9) the cut point may bec∗

instead of the centroidc of M . It is worth observing that
the search focus can be tuned by means of the parameterδ:
the closer two consecutive configurations are, the faster the
proximity measure can be updated.

A rough estimate of the computational costs can be obtained
as follows. For simplicity, suppose thatM is initially a square
and callγ the ratio betweenδ, measuring the configuration
change, andM ’s side length. The expected number of cells
intersecting the neighborhoodN δ(p) over the total numberC
of cells is about

Area(N δ(p)) / Area(M) = 4γ2

and then the number of minimization steps for a search
bounded withinN δ(p) should be proportional to

log C − 2 log(1/γ)

So, if the updated solution lies insideN δ(p), the gain with
respect to the standard strategy is of aboutΘ(log(1/γ))
iterations in the average. Since this rough estimate appears
to be in good accordance with the experimental trends, this
means that the updated solution falls insideN δ(p) with high
probability and witnesses the important role that the space
coherence may play.

IV. “Y ARDSTICK” ALGORITHMS

We now introduce the algorithms that we have considered in
order to try a first appraisal of the performances attainable with
the approach described in the previous section: the extended
GJK, the distance computation procedure available in the
Proximity Query Package, and the Hierarchical Walk. As said
before, the comparisons are not completely fair since these
algorithms answer different proximity queries, i.e. distances
rather than collision translations. Moreover, the broader ap-
plicability of PQP, not restricted to convex bodies, should be
taken into account, but in this case we are also interested in
achieving a better understanding of the power of hierarchical
structures as opposed to convexity properties, when the latter
could be exploited as well. In short, since the bulk of the
experiments discussed in the literature are relative to distance
computation, the results of such experiments also provide the
natural benchmarks against which to compare new results.
Although the tools are not fully equivalent, we think that this
kind of comparisons make sense and can hopefully suggest
possible directions of future work.

A. Enhanced GJK: convex polyhedra and spatial coherence

The first yardstick is the enhancement proposed by Cameron
[4] of the classical Gilbert, Johnson and Keerthi’s (GJK) algo-
rithm [9]. The original GJK technique computes the distance
between two convex polyhedra by finding the distance from
the origin of their Minkowski difference. To this aim, a simplex
is maintained and iteratively checked for optimality, i.e. to
see whether it minimizes the distance from the origin, and
possibly updated. The strength of the original algorithm lies
in its efficiency to determine if a simplex is optimal, and, if
not, to find a better one.



8

As shown in [4], this approach can be improved by applying
a hill climbing technique while looking for a better simplex.
The key observation is that the hill climbing step can be sped
up by providing a suitable starting point, called aseed. More-
over, the data produced while checking for optimality can act
as good seeds. In practice, the enhanced GJK algorithm returns
the distance in nearly constant time when small changes in the
relative configuration arise. In [4] it is also argued that under
these hypotheses the behavior of the enhanced algorithm tends
to be similar to that of the incremental technique [21].

There are two main reasons of our interest in considering
the enhanced GJK algorithm. On the one hand, it runs very fast
in practice, and under similar conditions with respect to our
algorithm: the input polyhedra are required to be convex and it
is well suited to exploit coherence. On the other hand, plenty
of experimental data are available, which compare variants
of the GJK scheme, including the enhanced GJK, with other
approaches to distance computation, e.g. [4], [37], [26].

B. PQP: general polyhedra and hierarchical structures

The second yardstick belongs to the PQP software library
[5], including algorithms to answer three types of queries:
interpenetration detection, approximated separation distance
and exact separation distance. Like other prior techniques,
PQP exploits a bounding volume hierarchy to speed up the
computation. The idea underlying bounding volumes is quite
simple: each object is bounded by a certain shape for which
the query at hand can be easily answered. Such containers are
organized into hierarchical structures, usually trees, and the
volumes found at deeper levels are smaller and approximate
better the actual shape of (parts of) the object; eventually, the
leaves represent exactly the components of the objects, and
then allow to provide as accurate an answer as needed.

Different kinds of bounding volumes have been consid-
ered in the literature, among which we can mention axis
aligned bounding boxes, oriented bounding boxes and bound-
ing spheres. Some representations are also based on hybrid
bounding hierarchies, i.e., different shapes are used at different
levels of the tree. PQP exploits oriented bounding boxes for
interference detection and swept spheres for distance computa-
tion. The latter, in particular, come in three forms: point swept
spheres, line swept spheres, and rectangle swept spheres.

In order to understand correctly the results discussed in this
paper, it is important to recall that PQP’s input models are
described in the very general form referred to astriangle soup.
After all the input triangles of a model have been provided,
PQP builds the suitable hierarchies in a preprocessing phase,
and then becomes ready to answer multiple queries. It should
also be noticed that PQP does not exploit coherence. Nev-
ertheless, PQP is widely known and is a natural candidate
benchmark in the field of proximity algorithms. Also for PQP
experimental comparisons with related tools are available, e.g.
in [38] it is argued that in most situations PQP’s performances
match those of the fastest algorithms. One further reason for
considering PQP lies on its use of hierarchical structures and
bounding volumes, which makes a performance comparison
with this approach interesting in itself.

C. H-Walk: convex polyhedra and variable coherence

Guibas, Hsu and Zhang designedH-Walk [2], that combines
the advantages of the algorithms proposed by Dobkin and
Kirkpatrick [14] and by Lin and Canny [21]. Specifically, Lin
and Canny introduced the key idea of exploiting thespatial
coherence, by observing that, when the polyhedra are moving
and a query is asked frequently, the two closest features
(points, edges or faces) can easily be updated starting from the
former pair of closest features. Their algorithm starts from the
previous closest features andwalks (traverses) different pairs
of features until the new solution is found. Since the length
of the walk is also an accurate measure of the computational
costs, it follows that the time requirements are almost constant
for high levels of coherence, but deteriorate seriously (up to
quadratic complexity in the number of vertices) if there are
jumps between subsequent configurations.

On the other hand, Dobkin and Kirkpatrick introduced
a preprocessed representation of the convex polyhedra that
allows to answer a variety of proximity queries in poly-
logarithmic time. The preprocessing step can be carried out in
linear time and builds a layered hierarchy approximating the
solid body from the interior. The original algorithm, however,
does not capitalize on the information gathered from formerly
solved instances of the proximity problem, every computation
being performed from scratch. The main contribution of [2]
has been to combine the two approaches by extending Lin
and Canny’s walk, which is constrained on the surface of the
bodies, to ahierarchical walk, that can also attempt shortcuts
through the inner layers of the Dobkin-Kirkpatrick hierarchy
if the coherence is low.

H-Walk is a key yardstick for the ability to adapt to variable
coherence, in which respect we find a close correspondence
with the purposes of our algorithm. Also the experiments
discussed in [2] are interesting for suggesting a criterion
to control the coherence level, as well as for comparing
the behavior ofH-Walk and V-Clip [37], a more efficient
implementation of Lin and Cannys’s technique, and showing
how H-Walk outperformsV-Clip for low coherence.

V. EXPERIMENTAL RESULTS

In this section we analyze the results of tens of thousands
of proximity queries planned to test the behavior of the
collision translation algorithms both from scratch (without
initialization) and incrementally (with initialization). More
specifically, we will consider the following points:

• Trend of the computational costs without initialization.
• Costs of detecting that the polyhedra do not collide.
• Relation between incremental behavior and coherence.
• Comparison with the yardstick algorithms.
• Flexibility under variable coherence.

The input polyhedra are characterized by fairly regular
arrangements of vertices on the surface of ellipsoidal shapes,
in such a way that almost all the faces are trapezoids (triangles
in the case of comparison with PQP). We have also considered
two situations: one in which the edges are balanced in length,
the other where the faces are very thin and stretched out.
The number of vertices of each polyhedron varies from about



9

Fig. 11. Trends of the average number of minimization steps (above)
and query-time in milliseconds. The gray plots show the approximatedlog,
respectivelylog2 functions. Abscissae: thousands of vertices per polyhedron.

200 to about 200,000 and we will refer to such number of
vertices as the polyhedronsize. For any given size, the reported
measures are the average of several computations carried out
on random general-configuration settings. In particular, while
testing the incremental behavior, the choice of the translation
direction is unrelated to the motion trajectory.

For ease of reference, we will denote each algorithm by an
acronym, namely:CTA (Collision Translation Algorithm) for
our algorithm,EGJK (Extended GJK),PQP (Proximity Query
Package) andH-W (Hierarchical Walk) for those introduced in
section IV. The corresponding programs, implemented in the
languages Pascal, C and C++, have all been processed with the
family of GNU’s compilers and run on a Macintosh platform
PowerPC G5 (Dual 1.8 GHz, 768 MB RAM).

A. Computations of collision translations from scratch

A first set of experiments was aimed at testing the trend
of the computational costs while increasing the size of the
polyhedra. As we can see in figure 11, the average number of
minimization steps grows as the logarithm of the number of
vertices and remains small also in complex cases (less than
15 steps in the average for two polyhedra of about 200,000
faces each). Also the measured query times are in accordance
with the estimations and approximate alog2 trend. The average
values reported in figures 11 refer to independent computations
of collision translations, carried out without exploiting the
spatial coherence. Moreover, a finer analysis shows that the
algorithm performs a little worse for thin and stretched faces
(20 to 80% increase of the query times).

We have also investigated a little on howCTA’s computation
time is spent. The collected data are summarized in table I,
which should be self-explanatory. The table shows that almost
half the time is spent to solve two-dimensional problems for
geometric constructions on the section planes, whereas only
a negligible fraction of the computation time is required to
process and update the polygonal region containing the point
of minimum, which is in fact always bounded by few sides. It
may also be observed that all the geometric computations can
be carried out by using only standard floating-point arithmetic
and do not need square root or trigonometric functions.

Types of operations Time
2D geometry on section planes 48%
3D geometry 42%
Indexing to access the representation items 9%
Minimization geometry and control 1%

TABLE I

DISTRIBUTION OF THE COMPUTATION TIMES.

Fig. 12. Average query times (msec) for detecting that the polyhedra do not
collide; their minimal separation is represented as a fraction of a reference
diameterD. Plot labels: thousands of vertices.

B. Detection that the polyhedra do not collide

In figure 12 we summarize the behavior of the algorithm,
again without initialization, when the input polyhedra do
not collide. In this case, indeed, the computation times are
significantly reduced. The plots in the figure refer to different
sizes (see legend) and, for the sake of comparison, start on
the left with the query times reported in figure 11. All the
other data are for increasing separations (from left to right),
the extent of such separations being measured by the minimal
distance between the bodies during the motion in directiond.
In particular, we have considered separations of about0.005D
(the bodies get very close to each other),0.05D, 0.5D and
1.5D (the bodies move far away from each other), for a
medium diameterD of the polyhedra. The results show that
the algorithm runs faster to provide a separation configuration
witnessing that the polyhedra cannot collide: the computation
times are almost halved even for bodies getting very close to
each other and reduce to about1/3 when they move far apart.

C. Incremental computation of collision translations

The plots in figure 13 contrast the algorithm’s performances
with andwithout initialization for sequences of 100 configura-
tions that result from sampling at regular intervals a continuous
motion of a polyhedron and computing collision translations
in an independent direction. In these examples the polyhedra
have about 12,800 vertices, whereas the configuration-change
parameterδ is 1%D for the upper chart and0.25%D for
the lower one. However, analogous experiments for different
polyhedron sizes as well as for sequences resulting from
translational, rotational and screw motions show that the
situation illustrated in figure 13 is quite typical. In particular,
for given polyhedra, the performances do not depend on the
type of motion, but on the coherence degree.

The plots of figure 13, where the “floor” lines correspond
to computations accomplished in one minimization step, give
an intuitive idea of how the algorithm can gradually adapt to



10

Fig. 13. Typical results for sequences of incremental computations; the
average query times of incremental computations (lower plots, in milliseconds)
are contrasted with the corresponding times of computations from scratch. The
broken lines interpolate 100 samples.

Fig. 14. Summary of the experiments addressing the incremental behavior,
where the performances are measured in terms of minimization steps; the plots
are labeled with different polyedron sizes (thousands of vertices). Abscissae:
values ofδ represented as a fraction of a reference diameterD.

varying degrees of coherence between subsequent configura-
tions. Figure 14 shows a clear representation of this behavior,
by summarizing the average number of minimization steps for
different polyhedron sizes and for different values ofδ, where
the latter are reported in abscissa as a fraction of a reference
diameterD of the input polyhedra. As we can see, the trends
are in good accordance with our estimate of section III-D. The
plots interpolating the query times would be analogous.

D. Performance comparisons

In order to try a meaningful comparison withEGJK and
PQP, we have run the algorithms on exactly the same settings
(i.e., same pairs of polyhedra in the same configurations),
where of course the input directiond is only relevant for
computing collision translations. Notice that the comparison
also makes sense when the polyhedra do not collide by
translation in the directiond, since in that case our algorithm
reports suitable information on the separation of the bodies.

About 1,200 pseudo-random settings have been tested to
contrast the performance trends of computations from scratch
while increasing the size of the polyhedra. The resulting trends
for the case ofbalancededge lengths are drawn in figure
15, where thex- and y-axes report in logarithmic scale the
size of polyhedra and the average query times, respectively.

Fig. 15. Trend of the performances for “balanced” edge lengths. Abscissae:
thousands of vertices per polyhedron; ordinates: average query time in msec.

Fig. 16. Trend of the performances for “thin and stretched” faces. Abscissae:
thousands of vertices per polyhedron; ordinates: average query time in msec.

As expected, the cost of the computations ofEGJK grows
linearly with the size of the polyhedra, whereasCTA and
PQP seem to show a sublinear trend, again in accordance
with the theoretical estimates in the case ofCTA. In this kind
of situations, the query times ofCTA are the lowest when
the polyhedra have about 20,000 vertices or more. Within the
considered complexity range, the ratio of the average query
timesqt(EGJK)/qt(CTA) increases from about 1/5 to about
4. The ratioqt(PQP )/qt(CTA) oscillates in a band between
6.5 and 10 for trapezoidal faces and around 5.5 for triangular
faces (trapezoidal faces are indeed a little unfavorable toPQP
since they can only be represented by couples of triangles).

It may be worth observing that our results are qualitatively
and numerically different in the case ofthin-and-stretched
faces, as shown in figure 16. Independently of the approach,
the computations turn out to be more expensive and ap-
parently the performances ofPQP do no longer follow a
sublinear trend. With this type of polyhedra the query-time
ratio qt(EGJK)/qt(CTA) raises from about 1/5 to about
14, whereas the ratioqt(PQP )/qt(CTA) jumps to a factor
of over 100. Furthermore, and quite unexpectedly, the query
times of CTA are the lowest also in the situations where the
polyhedra do not collide but get very close to each other
(minimal distance less than1% of a medium diameter), as
illustrated by the chart in figure 17.

A final set of experiments was meant to contrast the
incremental performances ofCTA andEGJK. The algorithms
have been tested on more than 60 sequences of 100 configu-
rations, where every next configuration is obtained by a short
translation and/or a small rotation of a polyhedron. The results



11

Fig. 17. Trend of the performances when the polyhedra do not collide
by translation, but move very closed to each other. Abscissae: thousands of
vertices per polyhedron; ordinates: average query time in msec.

Fig. 18. Trends of incremental performance ratios: the four plots are
for different values ofδ (see legend). Abscissae: thousands of vertices per
polyhedron; ordinates: average query-time ratioqt(CTA)/qt(EGJK).

of these experiments did not reveal any significant difference
between the cases of balanced edge lengths and of thin-and-
stretched faces, but the only parameter which turns out to af-
fect the query-times rates isδ. The outcomes of the bulk of the
experiments on incremental computations are summarized in
figure 18, where thex- andy-axes report the size of polyhedra
and the average query-time ratioqt(CTA)/qt(EGJK). The
four plots, from top to bottom on the right side of the chart,
are relative to increasing coherence, i.e.δ is about1%, 0.5%,
0.25% and0.13%, respectively, of a medium diameter of the
polyhedra. As we can see, the query-time ratios vary from
about 10 to 2 and keep favorable toEGJK, but decrease for
shorter incremental changes and for more complex polyhedra.

E. Behavior under variable coherence

A set of experiments presented in [2] characterizeH-W’s
behavior for variable levels of coherence. Basically, the testing
scheme uses a pair of spherical polyhedra, one of which rotates
and orbits around the other, under two independent control
parameters: the angular rotation stepω between subsequent
runs of the algorithm, and the layerl in the Dobkin-Kirkpatrick
hierarchy [14] where the initialization features are picked.ω
controls the degree of coherence: higher values in the range
[0, 180] correspond to lower coherence;l allows a gradual
tuning from strong (outermost layer) to weak initialization
(innermost layer, as for the original algorithm [14] without
initialization). Interestingly, Guibas and colleagues chose to
measure the performances, independently of any particular
platform, in terms of steps walked per run.

Fig. 19. CTA’s behavior for different degrees of coherence and for different
choices ofδ; polyhedra of 800 vertices. Abscissae: coherence parameterω
(angular rotation step in degrees); ordinates: average number of iterations;
labels: initialization parameterδ (D is the diameter of the bodies).

We have arranged for a related set of experiments to test
CTA’s behavior under (as far as possible) similar conditions.
In fact, as a consequence of the structural differences between
H-W and CTA, there are three specific points to consider: (i)
as usual for the comparisons with distance algorithms, it is
necessary to introduce a direction vector, and we did so in
such a way that the polyhedra do always collide by translation;
(ii) the control parameterl has been replaced byCTA’s δ, a
reasonable choice since it realizes a fine tuning from strong
(small values) to weak initialization (δ of the order of the
diameterD of the bodies); (iii) in the case ofCTA, an accurate
performance measure is the total number of iterations relative
to any operation that may be repeated (i.e., outer minimization
steps + all inner binary search steps). We ran several thousands
of tests in this way, mostly for polyhedra with size 800 and
3,200 that are also used in [2]. The results are summarized
in figure 19 for polyhedra of about 800 vertices, the other
cases being analogous. Unlike the experiments discussed in
subsection V-C and plotted in figure 14, notice that hereδ is
unrelated to the coherence degree. Furthermore, as in [2], we
have analyzed the standard deviation.

Of course, it wouldn’t make sense to compare directly the
numbers ofH-W’s walk steps andCTA’s iterations. What
is interesting to see is how the performance measures vary,
relative to the changes of the control parameters. On the one
hand,H-W and CTA’s trends share some qualitative features:
the initialization parameters clearly affect the performances
when the coherence is very high or very low; forω >
30 degrees, strong initialization either does not significantly
improve or worsens the performances. On the other hand, two
main differences emerge from the analysis of the results: First,
CTA seems to adapt better thanH-W to low coherence, in the
sense that the relative worsening ofCTA’s performance while
changing the initialization parameter is more moderate: about
35% against65% taken from the plot in [2] for 800 vertices;
25% against80% for 3,200 vertices. This means, for instance,
that a suboptimal choice of the initialization parameter would
result into a slightly smoother behavior in the case ofCTA.
Moreover, it is easy to dynamically update the value ofδ on the
basis of the configuration change. Second, the ratio between
the standard deviation and the corresponding performance
measure is favorable toH-W: about14% against70% for high
coherence;4% against35% for low coherence. In other words,



12

there is more dispersion among the costs of individual runs of
CTA, which means higher levels of uncertainty to predict the
time required by a single computation; as pointed out in [2],
this may be a relevant issue for time-critical planning.

F. Discussion

Based on the above results, the most remarkable feature
of our algorithm is the low rate of growth of the response
time for increasing complexities of the polyhedra. This feature
is particularly manifest for computations from scratch, but
also emerges from the trends relative to the incremental tests,
although the query times ofEGJK have been systematically
shorter than those required byCTA. A possible explanation of
the latter phenomenon is thatCTA, in its present form, does not
exploit any initialization information to solve instances of the
collision translation subproblem for pairs of planar sections,
whose cost isΘ(log n), and that at least one such instance
must always be solved. Thus,CTA’s costs have a logarithmic
lower bound, whereas such algorithms asEGJKor V-Clip [37],
as well asH-W with strong initialization, are expected to run
in nearly constant time when the coherence is high.

As far as the incremental behavior is concerned, our inter-
pretation of the experimental results is that the algorithm is not
as fast as it could perhaps be, and some refinements in this
respect may be worth further study. However, in some sense
the non-optimality of the incremental response can also be
ascribed to a necessary tradeoff to guarantee reasonably good
performances independently of the coherence level, which may
be a desirable feature for applications with bounded tolerance
on the response times. Moreover, it should be observed that
the gap betweenCTA and EGJK’s incremental performances
reduces with the size of the polyhedra, and more distinctly
for higher coherence (small values ofδ). This observation is
probably of limited practical relevance, but it is interesting if
we consider the intrinsic properties of the algorithm, which
are characterized up to constant factors. Finally,CTA is less
sensitive to variations of the coherence degree. In particular, if
the coherence drops down its performances do not deteriorate
as dramatically asEGJK’s, and the adjustment to coherence
fluctuations seems to be slightly smoother also relative toH-W.

VI. CONCLUSIONS

We have presented an asymptotically fast algorithm for
computing collision translations of convex polyhedra, with
additional potential for incremental computations. After intro-
ducing the peculiar convex minimization approach, we have
analyzed the behavior of the algorithm and compared its
performances with those of other key algorithms. To this aim,
we have considered a variety of settings, including sequences
of slightly changing configurations to test the incremental
behavior. A major strength of the algorithm, substantiated by
the results presented in section V, is the low rate of growth of
the response time for increasing complexities of the polyhedra.

We conclude by mentioning some possible directions of
future work. Firstly, a refinement of the technique focusing the
search for the point of minimum in the vicinity of a previous
solution may be worth further attention. More specifically, in

the present implementation only a pair of planar sections is
passed forward to the next incremental computation, not the
actual features answering the proximity query. Thus, the proce-
dure for computing collision translations of two planar sections
is invoked at least once, whereas checking the previous closest
features or their close neighbors could be enough. Improving
this technique may be effective, since several incremental
computations are completed in just one minimization step.
Another crucial point in order to develop a robust algorithm,
which has to be investigated in more depth, is the choice
of the switch conditions between general and non-general
configurations for applying the technique outlined in section
III-B. Finally, as pointed out in [3], other proximity problems
can be approached in the same way. This is straightforward for
testing intersections and for computing the collision depth in a
given direction, but there still remain technical problems to be
solved in order to extend the approach to efficiently compute
distances between convex polyhedra.

ACKNOWLEDGMENTS

This paper builds upon and extends some previous results
presented in [42] and [43]. We are grateful to the anonymous
reviewers for their valuable comments and suggestions.

REFERENCES

[1] S. Cameron, “Dealing with geometric complexity in motion planning,”
in IEEE Workshop on Practical Motion Planning in Robotics: Current
Approaches and Future Directions, 1996.

[2] L. J. Guibas, D. Hsu, and L. Zhang, “A hierarchical method for real-time
distance computation among moving convex bodies,”Computational
geometry: theory and applications, vol. 15, no. 1-3, pp. 51–68, 2000.

[3] C. Mirolo, “Convex minimization on a grid and applications,”Journal
of Algorithms, vol. 26, no. 2, pp. 209–237, 1998.

[4] S. Cameron, “A comparison of two fast algorithms for computing the
distance between convex polyhedra,”IEEE Trans. on Robotics and
Automation, vol. 13, no. 6, pp. 915–920, 1997.

[5] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” Department of Computer Science,
University of North Carolina, Tech. Rep. TR99-018, 1999.

[6] M. C. Lin and S. Gottschalk, “Collision detection between geometric
models: a survey,” inProc. of the IMA Conf. on Math. of Surfaces, 1998.

[7] N. M. Amato, O. B. Bayazit, L. K. Daleand, C. Jones, and D. Vallejo,
“Choosing good distance metrics and local planners for probabilistic
roadmap methods,” inProc. of the IEEE Int. Conf. on Robotics and
Autom., 1998, pp. 630–637.

[8] J. Cohen, M. C. Lin, D. Manocha, and M. Ponamgi, “I-collide: An
interactive and exact collision detection system for large-scaled environ-
ments,” inProc. of the ACM Int. 3D Graphics Conf., 1995, pp. 189–196.

[9] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for
computing the distance between complex objects in three-dimensional
space,” IEEE J. of Robotics and Autom., vol. 4, no. 1, pp. 193–203,
1988.

[10] M.-Y. Ju, J.-S. Liu, S.-P. Shian, Y.-R. Chien, K.-S. Hwang, and W.-C.
Lee, “A novel collision detection method based on enclosed ellipsoid,”
in Proc. IEEE Int. Conf. on Robotics and Autom., 2001, pp. 2897–2902.

[11] N. K. Sancheti and S. S. Keerthi, “Computation of certain measures of
proximity between convex polytopes: A complexity viewpoint,” inProc.
of the IEEE Int. Conf. on Robotics and Autom., 1992, pp. 2508–2513.

[12] K. Sridharan and S. S. Keerthi, “Computation of a penetration measure
between 3D convex polyhedral objects for collision detection,”J. of
Robotic Systems, vol. 18, no. 11, pp. 623–631, 2001.

[13] C. Turnbull and S. Cameron, “Computing distances between NURBS-
defined convex objects,” inProc. of the IEEE Int. Conf. on Robotics and
Autom., 1998, pp. 3685–3690.

[14] D. P. Dobkin and D. G. Kirkpatrick, “Determining the separation of
preprocessed polyhedra: A unified approach,” inProc. of ICALP, ser.
LNCS 443, 1990, pp. 400–413.



13

[15] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri, “Computing
the intersection-depth of polyhedra,”Algorithmica, vol. 99, no. 6, pp.
518–533, 1993.

[16] C. J. Ong, “Properties of penetration between general objects,” inProc.
IEEE Int. Conf. on Robotics and Autom., 1995, pp. 2293–2298.

[17] P. Jiḿenez and C. Torras, “Benefits of applicability constraints in
decomposition-free interference detection between nonconvex polyhe-
dral models,” inProc. of the IEEE Int. Conf. on Robotics and Autom.,
1999, pp. 1856–1862.

[18] F. Thomas, C. Turnbull, L. Ros, and S. Cameron, “Computing signed
distances between free-form objects,” inProc. of the IEEE Int. Conf. on
Robotics and Autom., 2000, pp. 3713–3718.

[19] S. Redon, A. Kheddar, and S. Coquillart, “An algebraic solution to the
problem of collision detection for rigid polyhedral objects,” inProc. of
the IEEE Int. Conf. on Robotics and Autom., 2000, pp. 3733–3738.

[20] P. G. Xavier, “Implicit convex-hull distance of finite-screw-swept vol-
umes,” inProc. of the IEEE Int. Conf. on Robotics and Autom., 2002,
pp. 847–854.

[21] M. C. Lin and J. Canny, “A fast algorithm for incremental distance
calculation,” inProc. of the IEEE Intl. Conf. on Robotics and Autom.,
1991, pp. 1008–1014.

[22] D. E. Johnson and E. Cohen, “Bound coherence for minimum distance
computations,” inProc. of the IEEE Int. Conf. on Robotics and Autom.,
1999, pp. 1843–1848.

[23] Y. J. Kim, M. C. Lin, and D. Manocha, “Incremental penetration depth
estimation between convex politopes using dual-space expansion,”IEEE
Trans. on Visual. and Comp. Graphics, vol. 10, no. 2, pp. 152–163, 2004.

[24] B. Martinéz-Salvador, A. P. del Pobil, and M. Pérez-Francisco, “A
hierarchy of detail for fast collision detection,” inProc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Sys., 2000, pp. 745–750.

[25] C. J. Ong and E. Huang, “An incremental version of growth distance,”
in Proc. IEEE Int. Conf. on Robotics and Autom., 1998, pp. 3671–3677.

[26] C. J. Ong and E. G. Gilbert, “Fast versions of the Gilbert-Johnson-
Keerthi distance algorithm: Additional results and comparisons,”IEEE
Trans. on Robotics and Automation, vol. 17, no. 4, pp. 531–539, 2001.

[27] K. Sundaraj, D. d’Aulignac, and E. Mazer, “A new algorithm for
computing minimum distance,” inProc. of the IEEE-RSJ Int. Conf. on
Intelligent Robots and Sys., 2000, pp. 2115–2120.

[28] L. J. Guibas, F. Xie, and L. Zhang, “Kinetic collision detection:
Algorithms and experiments,” inProc. of the IEEE Int. Conf. on Robotics
and Autom., 2001, pp. 2903–2910.

[29] E. J. Bernabeu, J. Tornero, and M. Tomizuka, “Collision prediction and
avoidance amidst moving objects for trajectory planning applications,”
in Proc. IEEE Int. Conf. on Robotics and Autom., 2001, pp. 3801–3806.

[30] S. A. Ehmann and M. C. Lin, “Accelerated proximity queries between
convex polyhedra by multi-level Voronoi marching,” inProc. of the
IEEE-RSJ Int. Conf. on Intell. Robots and Sys., 2000, pp. 2101–2106.

[31] P. M. Hubbard, “Approximating polyhedra with spheres for time-critical
collision detection,”ACM Trans. on Graphics, vol. 15, no. 3, pp. 179–
210, 1996.

[32] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast distance
queries with rectangular swept volumes,” inProc. of the IEEE Int. Conf.
on Robotics and Autom., 2000, pp. 3719–3726.

[33] Y. Sato, M. Hirata, T. Maruyama, and Y. Arita, “Efficient collision
detection using fast distance-calculation algorithms for convex and
nonconvex objects,” inProc. IEEE Int. Conf. on Robotics and Autom.,
1996, pp. 771–778.

[34] T. Siméon, J. P. Laumond, C. V. Geem, and J. Cortes, “Computer aided
motion: Move3D with MOLOG,” inProc. of the IEEE Int. Conf. on
Robotics and Autom., 2001, pp. 1494–1499.

[35] P. G. Xavier, “Fast swept-volume distance for robust collision detection,”
in Proc. IEEE Int. Conf. on Robotics and Autom., 1997, pp. 1162–1169.

[36] G. Zachmann, “Minimal hierarchical collision detection,” inProc. of the
ACM Symp. on Virtual Reality Software and Techn., 2002, pp. 121–128.

[37] B. Mirtich, “V-clip: Fast and robust polyhedral collision detection,”ACM
Trans. on Graphics, vol. 17, no. 3, pp. 177–208, 1998.

[38] M. Reggiani, M. Mazzoli, and S. Caselli, “An experimental evaluation of
collision detection packages for robot motion planning,” inProc. of the
IEEE/RSJ Int. Conf. on Intell. Robots and Sys., 2002, pp. 2329–2334.

[39] A. S. Nemirovsky and D. B. Yudin,Problem Complexity and Method
Efficiency in Optimization. Wiley, 1983.

[40] B. Chazelle and D. P. Dobkin, “Intersection of convex objects in two
and three dimensions,”J. of the ACM, vol. 34, no. 1, pp. 1–27, 1987.

[41] C. Mirolo, “Polylogarithmic algorithms for collision detection based on
convex minimization,” Dip. di Matematica e Informatica dell’Univ. di
Udine, Tech. Rep. UDMI/01/94/RR, 1994.

[42] C. Mirolo and E. Pagello, “Flexible exploitation of space coherence to
detect collisions of convex polyhedra,” inProc. of the IEEE Int. Conf.
on Robotics and Autom., 2001, pp. 3783–3788.

[43] S. Carpin, C. Mirolo, and E. Pagello, “A performance comparison of
three algorithms for proximity queries relative to convex polyhedra,” in
Proc. IEEE Int. Conf. on Robotics and Autom., 2006, pp. 3023–3028.


