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Abstract. In this paper, we present a general description of the soft-
ware architecture and algorithms to be used by the UC Merced team
during the Virtual Robot Rescue Simulation Competition at RoboCup
2009. Building upon our good performance in the same competition last
year, our framework and team description paper will closely resemble
past work. Our goal is to concentrate on robotic cooperation and the
related software issues. The approach presented will focus on the inter-
action of multiple and heterogeneous robotic platforms working together
to achieve common goals: safely traversing terrain, localization, map-
ping, and victim identification. More specifically, we propose the use of
two distinct controllers, each controlling different robotic platforms and
exchanging information through a joint communication protocol. In ad-
dition to the discussion of specific algorithms and implementation meth-
ods, the paper will describe the overall approach used to maximize victim
detection and ground coverage, essential components of the competition.

1 Introduction

The Virtual Robot Rescue Simulation League [4] provides a competitive environ-
ment where teams control simulated robotic platforms inside the Urban Search
and Rescue Simulation (USARSim) [17]. During a twenty-minute run, teams
attempt to achieve an assortment of tasks, which can be divided into mobility,
wireless communication, victim detection, and mapping. The widely different as-
sortment of components requires participants to develop generalized controllers
capable of handling different robots and promotes reusable and portable cod-
ing. While some teams might focus on a specific research aspect of particular
interest to them, they still need the other mechanisms in order to be success-
ful in the competition. While the actual scoring scheme is unimportant for the
purpose of this paper, it is worthwhile noting that the teams’ performances will
be determined based on the difficulty of the terrain traversed (i.e. mobility), the
distance away from the base station (i.e. wireless communication), the informa-
tion gathered from the victims (i.e. victim detection), and the quality of the map
produced (i.e. mapping) [16].
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Our approach to the competition is the usage of strongly heterogeneous
robotic platforms operated by heterogeneous robotic controllers. More specif-
ically, we use a combination of three robots, the P2AT, the Matilda equipped
with its arm, and the AirRobot, as shown in Figure 1, each possessing their own
strengths and weaknesses. The P2AT, on which is mounted a SICK LMS200
and a Pan-Tilt camera, offers a relatively slow but stable platform capable of
operating in flat environments. The Matilda mounts a range scanner and an ar-
ticulated arm. In terms of mobility, it can operate at faster speeds than the P2AT
and traverse uneven terrain, to the detriment of ease of control. The AirRobot,
on which is mounted a camera and a GPS sensor, gives a fast aerial presence
capable of quickly spotting victims and relaying messages to the base station,
in exchange for limited mapping capabilities and inferior control. The key to
being successful in the competition relies on generating proper robot behaviors
and cooperation schemes, described in Section 2, that exploit each robot’s as-
sets while reducing dependencies on their weaknesses. In addition, the control
frameworks have to be extremely stable as competition is fierce and unrecover-
able system failures separate winners from losers. Historically, the robots for the
virtual robot competition have been operated through the use of a single control
interface [18] guiding all the robots in the environment and administering robot
cooperation. Since our research interest lies both in multi-robot cooperation and
the interaction between diverse controllers, we step away from the traditional
method of using a single controller. Instead, two controllers will be exploited,
each controlling the different platform types: Microsoft Robotics Studio (MSRS)
controls the aerial robot (i.e. the AirRobot) and the Mobility Open Architecture
Simulation and Tools (MOAST) controls the ground platforms (i.e. the P3AT
and the Matilda).

1.1 Microsoft Robotics Studio

Microsoft Robotics Studio provides a novel and promising control interface [12]
based on the Concurrency and Coordinate Runtime (CCR) [3, 14]. The CCR
framework, developed by Microsoft, offers a message-based communication pro-
tocol in which complicated and error-prone thread structures are replaced by
macro-like definitions. The interesting aspect of MSRS comes from the Decen-
tralized Software Services (DSS), built on top of the CCR, which allows develop-
ers to create services. These services, the implementation of which comes from
the Representational State Transfer [9] model and the standard service frame-
work, can be implemented as an abstraction of complete robotic platforms. In
other words, a single service can individually represent mobility behaviors, ma-
nipulator operation, robot localization, mapping, etc... Each service is entirely
and uniquely depicted by the service contract; an assortment of the service’s
characteristics, message protocol, state, and functions.

Even though each service is created independently of one another, they can
communicate based on event notifications and state management through HTTP.
The Distributed System Services Protocol [13] defines the message format and
dictates service conformity. Specifically, messages, sent and received using ports,
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Fig. 1. Simulated pictures of the three robotic platforms used by the UC Merced team.
The upper-left screenshot displays the AirRobot, the upper-right screenshot illustrates
the P2AT, and the lower screenshot shows the Matilda. As can clearly be seen, the
chosen robotic platforms are fervently diverse.

are stored inside a FIFO queue until a specific condition is met. Once the condi-
tion is satisfied, an operation checked by the Arbiter, the proper message handler
is initiated. Based on the service architecture, an MSRS controller can be created
by implementing a collection of services, each of which supplies the overall ap-
plication with a specific task-related solution. Since MSRS will be used to both
control the aerial robot and provide a user-friendly interface capable of gen-
erating valuable information for first-responders, the tasks incorporated in the
controller, described in greater detail in Section 3, will include communication,
grouping, victim placement, localization, etc... In addition, an orchestration ser-
vice that interfaces with USARSim will be used (from last year’s competition),
since no such service is part of the MSRS distribution.

Additionally, and one of the primary reason for using MSRS, the service
architecture allows for the seamless transfer of code between a simulated and a
real robotic platform; an appealing characteristic of the MSRS system.

1.2 Mobility Open Architecture Simulation and Tools

The Mobility Open Architecture Simulation and Tools (MOAST) package, an
open-source software originally developed by the National Institute of Standards
and Technology, is a universal controller capable of interfacing with simulated
USARSim robots as well as real robots governed by the Player interface [8]. The
approach taken by MOAST differs somewhat significantly from other popular
controllers since it employs a hierarchical design based on the 4-D/RCS Refer-
ence Model Architecture [1, 10]. MOAST is comprised of five echelons, each of
which performs the following similar functions: sensory processing, world mod-
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eling, value judgment, and behavior generation. The five echelons are the servo,
primitive, autonomous mobility, vehicle, and section echelons.

The 4-D/RCS hierarchy is built in such a way that as developers ”move” up
the levels, the extent of information and capabilities provided by the controller
increases. Such a hierarchy can be thought of as a collection of levels, each of
which is dependent on the one below it, with their own state space, resources,
and resolution. Taking a laser range scanner as an example, the Servo echelon
would provide the set of raw data points returned by the sensor whereas the
Autonomous Mobility echelon would yield an occupancy grid map. Similar ex-
trapolation can be applied to the other echelon levels. Since the echelons are
dependent on each other, the Neutral Message Language [15] is used as a means
of communication. Effectively, the MOAST controller delegates tasks to many
smaller modules that can focus on individual robotic problems.

MOAST enables the portability of code from a simulated to a real robot, as
is the case for MSRS, by creating low-level interchangeable wrappers that form
a communication between a robotic platform (either simulated in USARSim or
a real robot) and the echelon-based controller.

2 Methodology

The number of chosen robots from each categories (i.e. P2AT, Matilda, and
AirRobot), will depend on the a-priori data given before each round of the
competition. For outdoor environments, we expect to use a couple of P2ATs to
explore trouble-free terrain comprised of even surfaces, one or two Matildas to
explore uneven terrain and gain access to hard-to-reach locations, and one or
two AirRobots to quickly navigate through the environment and find potential
victims. Evidently, the robot composition for indoor scenarios will include a few
more P2ATs since we can expect flatter terrain. The use of the AirRobot inside
buildings will surely pose problems due to the lack of GPS readings, which are
critical to the effective deployment of the AirRobot. The aerial platforms will
be controlled by MSRS and the ground vehicles will be controlled by MOAST.
Each robot will be semi-autonomous, where they can manually be controlled
by an operator or explore an area autonomously. Evidently, a communication
interface needs to be created so that each robotic controller can communicate
with each other to successfully cooperate, as is described in further details in
the next sections.

2.1 Overall Robot Behaviors and Cooperation

The incorporation of the AirRobot as part of the team of robots exploring the
environment provides a significant advantage over ”ground-only” teams. Indeed,
with only a camera and GPS sensor, the AirRobot is the fastest, most efficient
method for quickly exploring the environment. Since the AirRobot cannot help
in the mapping process due to its restricted payload and cannot localize victims
on its own, we utilize the AirRobot as a tool to assess the environment and
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find out where possible victims might be located as well as a relay point to
the communication base station. More specifically, the AirRobot will be tele-
operated by the operator, through the use of a dual-axis joystick, while the
ground robots autonomously explore the world. The operator will then send
interesting waypoint locations (e.g. where a victim might be located) to a shared
priority queue accessible by the ground robots. The priority queue will need to
encompass information about the waypoints’ surroundings to assure that only
robots capable of reaching the objective are assigned such a waypoint. Based on
the priority, location, and surrounding environment of the waypoints, one of the
ground robots will incorporate the waypoint location into its current exploration
scheme to, eventually, reach it.

The high-level overview of the cooperative scheme approached by the team
requires a strong graphical user interface and communication protocol between
the two controllers that is omitted in this paper.

3 Competition Challenges

As was briefly mentioned in the introduction, the Virtual Robot Rescue com-
petition of RoboCup 2009 places several significant tests often observed in real
world disaster scenarios. The first obstacle that teams have to bypass is the
well-known localization and mapping problem. Indeed, a robot finding a victim
serves no purpose if that victim cannot be localized in a geo-referenced map
created by the robot. The second challenging task is to navigate through a wide
selection of environment types, ranging from the office-space flat-floored surface
to the uneven terrain full of debris and potentially-paralyzing crevices. The third
problem facing the teams involves wireless communication, where robots need to
strategically be placed in order to effectively create a communication link from
any robot to the base station. Last but not least, robot cooperation is required
to quickly reach a multitude of important locations.

3.1 Localization and Mapping

Thanks to the notoriety of the Simultaneously Localization And Mapping (SLAM)
problem within the robotics research community, a good collection of data and
algorithms recently became readily and publicly available. Consequently, the
localization and mapping requirements of the competition will be achieved us-
ing an open-source SLAM algorithm running on each of the ground robots.
More specifically, we will use the GMapping [11] software and integrate it in-
side the MOAST controller. The reason for choosing GMapping over additional
open-source algorithms stems from the resulting experiments of [2] as well as its
popularity. GMapping has already been integrated into USARSim controllers in
past competitions and its popularity creates a knowledgebase of users available
to help in the code integration.

In addition to the SLAM algorithms running on each ground robotic plat-
form, an offline map merging algorithm needs to be implemented to yield a single
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map from the collection of ground robot maps. Such a problem has also exten-
sively been researched and we will use the techniques and results described in
[5, 7] to accomplish this task. Evidently, a vast amount of modifications will be
made to the ideas presented in [5, 7] so that the maps can include the follow-
ing geo-referenced information: 1) victim location along with a picture of the
victim, 2) explored and cleared areas of the environment, and 3) locations and
shapes of particular landmarks (e.g. cars, sidewalks, debris, etc). Sample maps
that include such information are shown in Figure 2.

With our interest primarily focusing on heterogeneous platforms and con-
trollers rather than the well-understood SLAM problem, we delegate localiza-
tion and mapping tasks to open-source software, which we integrate within our
controllers.

Fig. 2. Two layers of a sample map produced by our algorithm. The left side shows the
occupancy grid map produced by GMapping as well as the robot’s path and the victims’
location. The right map shows grouping information along with victims’ picture.

3.2 Mobility

In the a-priori data given before each competition round, sectors of easy, medium,
and difficult mobility are given to the participants, who choose whether or not
they want to go into the more difficult areas. As explained in the introduction,
our team plans to explore easy mobility areas using two P2ATs, while the mod-
erate mobility areas are explored by two Matildas. In other words, the mobility
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challenge is mainly tactical and strongly depends on which robotic platforms are
used (i.e. a P2AT will probably not even be able to enter a zone of moderate
mobility). Evidently, better SLAM algorithms that consider the rotation of the
robot or the sparce number of features would be required to appropriately map
difficult-to-traverse terrain.

3.3 Wireless Communication

The communication challenge is similar to the mobility since the base station
position, along with approximate coverage areas, are given as part of the a-
priori data, and it is up to the individual teams to decide whether or not they
want to adventure into areas of limited communication. In order to allow for
robot exploration of areas with no communication coverage, we plan to rely on
the capabilities of the AirRobot, which is capable of flying very quickly to the
edge of the base station’s communication range to effectively create a relay link.
Additionally, ground robots will be exploited in similar fashion to [6].

3.4 Robot Cooperation

Our robot cooperation is two-fold. First, cooperation between the aerial robots
and the ground robots is required. This cooperation is one-dimensional in the
sense that the aerial robots dictate, to a certain extent, the locations and ex-
ploration areas that the ground robots need to achieve. Second, and more in-
terestingly, cooperation between the ground robots is of crucial importance. In-
deed, a cooperation scheme will be developed, where robot precedence is based
on robot location, distance from goal point, mobility capabilities, and current
goals, among others.

4 Real World Applicability and Future Work

The current bursting robotics research community produces a tremendous amount
of new software, algorithms, controllers, and theories every year. Even though
many research groups tend to develop and stick to their privately-constructed
framework for robot control, open-source software is becoming more and more
available. As the number of robot controllers grows along with multi-robot coop-
eration, a change will transpire where more attention will be given to the need
for different controllers to effectively interact between each other. Our future
interest is to incorporate the same methodology and architecture to real robotic
platforms working together to achieve a common goal, each of which is controlled
by a different controller. Since both MOAST and MSRS offer the capability of
connecting to real platforms, they would be, evidently, chosen for the real world
counterpart to the work presented in this paper.
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