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Abstract— The adoption of autonomous robots for patrolling
introduces efficiency and resilience into automated surveillance
systems. A fundamental challenge in this domain lies in opti-
mal planning of patrol routes, a problem typically addressed
through graph-based models of the environment. In this work,
we consider core-periphery graph settings, where locations
are divided into a high-priority core and a lower-priority
periphery, a structure that naturally aligns with many real-
world scenarios, such as urban surveillance and infrastructure
security. We extend the Overlapping Partition Problem (OPP),
a recently proposed formalization for core-periphery settings,
providing novel theoretical insights by deriving approximation
bounds under the assumption that the core is known, a realistic
assumption in many surveillance contexts. Our theoretical
contributions are complemented by empirical comparisons of
our method with two state-of-the-art baselines, demonstrating
our method’s superior performance in computing effective
patrolling strategies.

I. INTRODUCTION

Patrolling and asset surveillance are repetitive and haz-
ardous tasks where intelligent automation has gained promi-
nence in recent years. The deployment of autonomous robots,
including unmanned aerial and ground units, has increased
significantly [1], [2], [3]. Robots offer clear advantages in
terms of performance, resilience to failures, and the abil-
ity to improve efficiency through cooperation and shared
workloads. Among the foundational problems of automated
robotic surveillance systems, there is optimal planning of
robot routes. This problem often relies on graph-based rep-
resentations of the environment [4] where vertices represent
the locations to monitor, and edges are associated with paths,
enabling robots to move between locations while incurring
a travel cost. Sometimes, vertices are assigned values to
express the criticality of these locations in terms of the
required protection. Optimally solving the patrolling problem
involves finding a scheduling policy that minimizes a cost,
typically associated with the maximum idleness on the graph.
This means minimizing the maximum time that any vertex
remains unguarded between successive visits by any robot.

In [5], we introduced a novel variant for this problem
where instead of considering arbitrary graphs, we focused
on what we called core—periphery graph settings. In such
graphs, the vertices and thus their associated locations are
divided into two groups: the core and the periphery. The
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Fig. 1: Four robots patrolling a core-periphery setting. Tri-
angles are vertices of the core, while circles are vertices of
the periphery. Each robot alternates between a shared tour
in the core (red) and a non-shared tour in a portion of the
periphery (blue) connecting the two via a link edge (green).

core consists of vertices that are highly valuable and de-
mand intensive surveillance, whereas the periphery includes
vertices that are less critical and require milder surveillance
needs than the core. We consider this feature to be relevant
to many real-world surveillance applications where some
areas demand significantly more attention than others. For
example, in urban surveillance (see Figure 1) busy areas
and main roads require continuous monitoring due to the
increased risk of crime or congestion, whereas residential
streets and parking lots demand less frequent patrols. Other
examples include airports, where terminal areas, security
checkpoints, and boarding gates constitute the core, while
maintenance areas and parking lots are the periphery. Even
in agricultural field monitoring, certain regions, such as high-
yield crops and irrigation points, require frequent inspections
to ensure productivity, whereas peripheral field edges and
pathways do not. In these problem settings, the patrolling
routes of the robots overlap in the core area and are separate
in the periphery. In the core, robots coordinate to minimize
idleness, whereas the periphery is partitioned in areas where
each robot follows an independent route.

The original problem formulation is called Overlapping
Partition Problem (OPP) [5]. Solving this problem involves
tackling an exact formulation, which is generally intractable
because both the core and each robot’s peripheral region need
to be computed as part of the optimal solution. In this work,
we propose several novel results for this representative class
of patrolling problems. Specifically, we derive approximation
bounds showing how solutions with bounded suboptimality



can be efficiently computed, in the case in which the core is
given, an assumption realistic to many surveillance scenarios.
Our theoretical analysis is supported by an approximation al-
gorithm that, in addition to constructing bounded-suboptimal
solutions, performs well in core-periphery settings when
empirically compared to the two mainstream approaches
from the literature. The first being based on a “divide and
conquer’” strategy to partition the environment into disjoint
subregions, assigning each subregion to a robot [6], [7], [8],
while the second approach allows all robots to visit any
site of interest, avoiding partitioning and instead addressing
a Traveling Salesman Problem (TSP) over the entire envi-
ronment [9], [10]. Our findings offer key insights into the
theoretical properties of the multirobot patrolling problem,
and provide an effective method for scheduling surveillance
units in various scenarios highly pertinent to real-world
patrolling setups.

II. RELATED WORKS

A common objective in optimal patrolling is minimization
of the worst idleness in weighted graphs without node values.
A key question addressed in this scope is whether cyclic
strategies based on a TSP solution might be effective. The
first answer was given by the seminal work of [11], where
the author showed that the best single-agent cyclic strategy
is a TSP solution. The work also extends to the multi-agent
case, showing that placing m agents well spaced on the single
agent TSP solution S will decrease idleness by a factor of
%. The work also shows that the strategy of extending the
single-agent case to the multi-agent one leads to a constant
approximation factor for the worst idleness. To conclude, the
strategy of adopting the TSP for the multi-robot patrolling
problem is the best strategy if the maximum edge cost is
“not too big”. Otherwise, partition-based strategies should
be taken into account.

Such a work shows the difficulties in achieving a clear
distinction about which strategy is the best to adopt based on
the topology of the environment. Building on this statement,
it seems worthwhile to explore hybrid solutions that feature
both cooperative and partitioned components, like the one
we address in this work. The approximate solution of the
TSP cycle used in [11] is based on the well-known work of
Christofides [12], which constructed a %-approximation al-
gorithm (known as the Christofides Algorithm) to find a TSP
cycle on weighted metric graphs (the approximation has been
slightly improved in [13]). On the other hand, approximation
algorithms for partition strategies are widely studied in the
robotic community, where these strategies assume different
names. In [14] authors considered a range of different prob-
lems that involve the search of minimum and min-max m-
covers of a graph: for example, a 4-approximation algorithm
called Min-Max Path Cover is presented for the problem
of finding m disjointed paths with min-max weight (a path
here is intended as a sequence of vertices and edges where
the edges are crossed only once), and a 3-approximation
algorithm for the version with walks (intended as paths with
possibly repeated edges), called Min-Max Postmen Cover,

is derived. In [15] an approximation algorithm for Min-
Max Rootless k-Cycle Cover Problem is presented: it finds
k disjointed cycles that minimize the max-weighted cycle,
with an approximation ratio of 13—6 (the best known so far,
according to [16]). Furthermore, in [17], a study on min-
max latency of vertices is approached by the initial search
for an optimal m-partition of a given path cover of the graph
(created by doubling the edges of an MST). They provide
an algorithm called Optimal Left-induced m-partition that
outputs the optimal partition of a path into m subpaths, and
results in a ("TJS%)-approximation algorithm, where n is
the number of vertices and e,,,,, and €,,;, are the maximum
and minimum edge lengths, respectively. A more general
study involving the problem of finding a minimum latency
patrol schedule is explored in [18]. Here, the focus is on
cyclic solutions, which are partitions of the set of vertices
into I < m subsets, and to each of them are assigned m;
agents equally spaced in the TSP tour, with > m; = m.
The authors show that an optimal generic solution can be
transformed into a cyclic one with an approximation ratio of
2(1 - %) The generic problem is even more complicated,
since extending the single-agent strategy to the multi-agent
case will not give the result found in [11] of reducing the
latency of the vertices, even if we equally space the agents
on the tour; an example can be found in [19].

Another type of strategy that can be used to deal with the
multi-robot patrolling problem is finding a “good” partition
of the vertices and then applying some sort of approximation
algorithm on the subgraphs. For example, in [20] is explored
the case in which the graph is already partitioned into K
clusters, and the goal is to find m tours with a common
starting vertex, covering all vertices with min-max latency.
It requires an approximation algorithm for the Rural Postman
Problem (pg ratio) and an approximation algorithm for the
TSP Problem (pp ratio), for a total ratio of pr+2pp+1—1.

In essence, TSP and multi-T'SP solutions are central to our
problem because the worst idleness of the vertices covered
by the tour is at least the sum of the weights of the edges
composing the tour, but cannot be directly applied to output
hybrid solutions, as in our case. Also, our problem is more
complicated since we involve valued vertices, and hence the
function to minimize becomes dependent on the vertices’
importance, as well as the length of the tour.

For the general min-max weighted latency problem, in [21]
authors show cases where adopting a TSP cycle is far from
the best solution, even for the single-agent case, underlining
the fact that dealing with vertex values can really modify
the min-max weighted latency problem. In the end, they
also provide an O(log ¥« )-approximation algorithm and
an O(logn)-approximation algorithm for the problem in
single-agent settings. Another interesting work on patrolling
over a graph with valued vertices can be found in [22],
where they consider the multi-agent case of the patrol-
scheduling problem, and create an approximation algorithm
for the min-max weighted latency problem with &k robots
of factor O(k%log¥maz), exploiting the results of [15]. This
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was then improved in [23], where the authors provided




an approximation algorithm of factor O(klog?=e=) for the
same problem. However, these types of solution have a
prohibitive approximation ratio and require online procedures

for scheduling the next vertex to be patrolled.

III. PROBLEM FORMULATION

We assume to represent the environment as a weighted
complete graph G := (V, E, ¢, v), with a set of vertices V :=

{1,2,...,n}, an edge set E := V2, a traveling cost function
¢ : E — RT, and a node value function v : V — RT.
Given a team of robots R := {1,2,...,m} moving over

the graph, the traveling cost ¢(e), with e := (4, ), can be
interpreted as the time needed by any robot for traveling
from vertex ¢ to vertex j. The costs returned by c satisfy the
triangle inequality and, given the undirected nature of the
graph, Vi, j € V,c(i,7) = c(j, 7).

The problem we aim at solving is to compute a joint cyclic
patrolling route for the team of robots. Formally, we indicate
a solution as 7 = (my,m2,...,Tn), where each 7, is, in
general, a cyclic walk over a subset of V. The concurrent
execution of the paths in 7 by the team of robots induces
over each vertex i a maximum idleness I (i), defined as
the maximum temporal delay between two successive visits
(not necessarily by the same robot) to i. To be admissible, a
solution 7 must induce a finite ™ (7) on each vertex i, which
amounts to guarantee that each vertex is patrolled by at least
one robot. To be optimal, a solution 7* must achieve the
minimum maximum weighted idleness, that is

w(mr™) = mﬂinriréagw(i)lﬂ(i) (1)

Solving the above problem is generally NP-hard and a
typical approach to deal with it is to seek for heuristic or
approximated solutions by restricting the search space with
additional constraints. A popular approach, drawing from a
divide et impera rationale, is that of requiring the solution to
be structured as m non-intersecting cycles over a partition of
V. This simplification allows to avoid embedding the robots’
coordination dynamics into the problem’s model. Indeed,
coordination poses additional difficulties when patrolling
routes overlap in specific areas of the environment, since
the resulting maximum idleness on vertices shared by two
or more robots can exhibit complex patterns that are difficult
to express and optimize. However, sharing and coordination
of areas can lead to more effective patrolling strategies.

The model we proposed in [5], referred to as Overlapping
Partition Problem (OPP), adopts an approach that is more
general with respect to distributing robots over a partition of
the environment. Specifically, we try to maintain the divide
et impera rationale while allowing a level of constrained
coordinated patrolling building upon the idea of having two
types of vertices: the core vertices and the periphery vertices.
The guiding principle is that, while each robot r is still
assigned a subset of vertices V,. and the union of all the
assigned regions equals V/, their intersection Vj := N,¢ rV.
is non-empty. The set V| is called core, and represents
a region of the environment where all robots share and
coordinate their efforts. For each robot r the set V,. := ‘7,n\Vo

is called the periphery of r, corresponding to those vertices
that fall under robot r’s exclusive responsibility (notice that
{Vo, Vi,...,Vin} is still a partition of V, but without a one-
to-one correspondence with robots). This vertex clustering
scheme allows to increase efforts (lowering the idleness) via
cooperation in regions of the environment (the core) that, in
an optimized solution, would ideally tend to be the most
important. The proposed model obtains such a clustering
of vertices by imposing specific constraints for 7 to be
admissible.

Specifically, each 7, is required to be a cycle over V,.UVj,
defined as m, = (my, , Ty, ). We denote g, with @ C V/, the
part of the solution that covers only vertices in ). Thus, 7y,
is a path over V,, starting and ending at vertices s,,t, € V.,
respectively. Similarly, 7y, is a path over 1}, starting and
ending at sg,t9 € V. These points are also referred to as
the core’s entrance and exit, respectively. The cycle is then
implicitly completed by traveling on the edge (¢, s,-). Notice
that, according to the above requirements, V4 and 7y, should
be the same for each robot. See Figure 2 for a visual intuition
in a setting with two robots.
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Fig. 2: Abstract visualization of a 2-robot OPP solution.

Similarly to the canonical case, the optimal joint patrolling
route 7%, and the corresponding partition {V5, V}*,..., V*}
induced by it, must satisfy the above constraints and its
cost must achieve the minimum maximum weighted idleness.
However, under the scheme we described above, (1) is
rewritten to account for the synergies among the robots over
the shared area represented by Vj:

. c(m)
‘) = Ac(m,), ASS00 2
w(m*) min rTnea}%({ c(my) - (2)
where, A := max;ey\v, v(i), AY := max;ey, v(i), and, with
a slight overload of notation, c(m) == »_ .. c(e).

A. Model’s assumptions

Equation 2 computes the maximum idleness of a solution
7 that complies with the constraints adopted in the model,
which also account for the cooperation between the robots
in the core Vj. To do so, it makes two key assumptions.

The first is a simplification of the structure of the patrolling
route. In fact, to avoid complicated strategies, the work of [5]
excludes all solutions in which a robot follows a tour that



alternates visits to the core and periphery. The only admitted
solutions are those where each tour has the structure depicted
in Fig. 2, namely (i) visit all vertices in the core, (ii) visit
all the vertices in the periphery, repeat from (i).

The second assumption is about the execution of the
patrolling routes. Despite in 7* different robots can be
assigned cycles with different costs, the objective function
assumes that all robots will incur the same cost at execution
time, equivalent to the cost of the longest single-robot route.
In the first term of the max operator, which computes
the maximum weighted idleness outside the core, this is
expressed by defining A as the maximum value outside
Vb, regardless of the periphery V, in which it happens to
be. This implies that the maximum idleness on the graph
(induced by the highest-cost route) will be multiplied by the
highest value anywhere outside the core. The second term
computes the maximum weighted idleness inside the core
Vb. Similarly to the previous case, the maximum idleness
will now be multiplied by the highest value in V. A key
element is that, in such a term, the idleness is scaled by
a factor m, representing a benefit derived from overlapping
patrolling routes. According to the well-established results
in [11], the idleness scaling is attainable only when the
robots’ visits to the vertices in Vj are equally spaced in
time. The underlying assumption in (2) ensures that this
uniform temporal displacement can be achieved at execution
time, by coordinating the robots to enter the core via the
same Vertex every maX,cp {C(::;)} time. This assumption
of having a single entry/exit vertex might deteriorate the
solution’s quality by over-constraining it. However, it plays
a key role in allowing robots to properly coordinate.

IV. APPROXIMATION ANALYSIS AND ALGORITHMS

Consider an optimal solution to the problem, 7" =
{n},...,m5 } and call opt = max, c¢(n}). Given the con-
straints on the structure of each 7 we introduced, we can

express ¢(m) with a sum of different terms':

E3 _ * * T T
o(my) =my. + 7y + ey +eh

The terms e} and e}, are the costs of the edges that connect, in
the robot 7’s cycle, the optimal solution’s periphery V,* and
core V. Without loss of generality, we assume that e] < ef.
If the robots can coordinate themselves in order to maintain
the scaling factor in the core, we can rewrite the objective
function in the following way:

w(n*) = m#nrgleaé(w(ﬁ) = 5
. oc(mr )\ _ io
min max {Ac(m), A - } = max {A, - }opt,

where, in the right-hand term, A and A° are induced by the
optimal partition, that is A = max;cy vy v(7) and A =
max;ey, v(i). We will focus on approximating opt.

'We overload the notation to indicate with the same symbol an element
and its cost; depending on the context, p will be used to represent both a
path p and its cost ¢(p).

A. Given partition

We consider a setting where the partition
{Vo, Vi, ..., Vx } is given. We will relax this assumption
later. Let us define optg as the cost of the optimal
Hamiltonian cycle computed over a subset of vertices
@ C V (that is, the cost of a TSP solution over (),
for which exact and, more importantly, well-known
approximation methods are available).

Algorithm 1: ConnectCycles O(mn?)

Input : A set of m + 1 disjoint cycles {Cvy,...,Cv,, }

over a partition of GG, where Vj is the core.

Output: A set of paths 7 = {m1,...,Tm}.
for r € R do
| er « argminiev, jevy c(i, 5)
end
7+ argmax,er{Cv, + e };
(’L'F, U) < €F
for r € R do

vy ¢ argmin;ev,. c(i,u);

Sr 4 (vr,u);

7y < concat(Cv,, sr, Cv,., Sr)
end

return {7m1,...,7Tm};

Consider the solution obtained by applying Algorithm 1
to the m + 1 optimal cycles (TSPs) computed for partition
Vi, ..., V.5 ). Each robot r follows this strategy:
(i) follow the cycle of length opty -, starting and ending
at vertex v,;

(ii) travel to the core via edge s, = (v,, u);

(iif) follow the cycle of length opty,-, starting and ending
at vertex u;

(iv) return to V¥ via the same edge s, and repeat from (i).

We first show two approximation lemmas related to a
single robot’s tour.

Lemma 1: ¥r € R, optys + opty» + 2e, < 2c(7y)

Proof: optyy < 7T‘*/0* +ap and opty s < 7T‘*/: +a,. where
ao and a, are the costs of the edges that connect the first
and last vertices of 71"/* and 7rV* respectively. Recall that e,
is the minimum-—cost edge between Vi and V*. Then,

optyy + optyx + 2e, < oplys + optyx + 2]
<y +ao+ 7y tar+ef +ep
<c(n})+ag+ar

The Lemma follows from the triangular inequality that
guarantees that ag < 7TV* and a, < 7TV*. |
Lemma 2: Vr € R, aptv*+0ptv*+23r < 2¢(m))+opty,
Proof: From the trlangular inequality we have s, <
er+w, where w, is the shortest sub-path of optyy connecting
u, and uy. Notice that since s; = ey, w; = 0. From the fact

opty, *
that w, < 5 and Lemma 1 we have that
opty;
optys + opty= + 25, < optyy + opty- + 2(e, + 5 )
< 2¢(my) + opty,,
which prove the Lemma. [ ]



Lemma 1 states that, for every robot, adopting the TSP
independently on the core and the periphery implies an
optimality loss bounded by a constant factor (see Figure 3a).
Lemma 2 derives a bound for the construction where the
edges that link the core to the peripheries have in common
the same core—vertex u; (see Figure 3b). We can leverage
this result to derive an approximation bound for Algorithm 1.

Theorem 1: Given the Overlapping Partition Problem with
m robots on a complete metric graph G = (V, E,¢,v),
suppose that the robots can coordinate themselves by slowing
down their speed until they match the speed of the slowest
one, in order to be equally distanced in the core. Suppose that
the optimal partition {V, V}*,..., V% } of V is given. Then,
there exists a 4.5—approximation algorithm that computes a
solution in O(n?) time.

Proof: Suppose that 7* = (77,75, ..
optimal solution for OPP, with partition {Vj", V¥, ..

, 5 ) is the
VAL
By Equation 3, w(n*) = max{A%O opt, where
A = max;ey\vy v(i), A° = max;ey, v(i) and opt =
max, ¢(m}). From Lemma 2 we have optyy + optys + 2s;,
for all robots. Since opty, < my, +ao < 7wy, + Ty +
e\ + el = ¢(xr), it follows that optyy + opty: +

2s, < 3opt. Using Christofides algorithm, we create cycles
Cvy,Cvr,...,Cys, such that Cy- < Sopty-. Hence,

meal%({C’vO* + Cy+ + 25, } < 4.50pt. 4)

The time complexity of this approximation algorithm is
dominated by Christofides algorithm, that is, O(n3) [12]. m

opty,

\

(a) Connecting via the mini-
mum cost periphery—core edge
for all robots.

(b) Connecting via the mini-
mum cost periphery—core edge
incident to uq.

Fig. 3: Comparison of connection strategies

B. Given core

We extend now the results provided by Theorem 1 by
removing the key assumption of knowing the best partition
of V. Thus, we set our problem in the case where the only
known subset of vertices is the core Vi C V.

Theorem 2: Given the Overlapping Partition Problem with
m agents on a complete metric graph G = (V, E,c,v),
suppose that the robots can coordinate themselves by slowing
down their speed until they match the speed of the slowest
one, in order to be equally distanced in the core. Suppose
that the core subset V7 C V is given. Then, there exists

an approximation algorithm that creates a solution 7 =
(1,72, ..., Ty) for OPP for which

w(m) < 2p-w(n*),

where p is the approximation factor of an algorithm for

the min-max Rootless m-Cycle Cover Problem (RCCP).

Proof:  Suppose that 7* = (7f,75,...,7)
is the optimal solution for OPP, with vertices’ par-
tition {Vy,V{*,...V,:}. By Equation 3, w(n*) =
max q A, %0 opt, where A = max;ey\vy; (i), A =
max;ey, v(i) and opt = max; c(my).

Given that we do not know the best partition of the periph-
ery V\ V, we construct the m periphery—cycles by applying
a p—approximation algorithm for the m-rootless cycle cover
problem [15]. The algorithm outputs a set of m disjoint
cycles Cy,, ..., Cy,, over the periphery V\V; =11 U...U
Vin. The TSP cycle over V" is approximated by Christofides,
ie., CVO* < %optvo*. Now, consider the optimal solution
OPteover for the m—cycle cover problem of V' \ V and the
cycle cover composed by the set {optyy,...,opty:}. By
definition, opt oper < max,{opty-}, and hence

Irneal%( {CVT} < prgleaé( {optV: }

It follows that

C; + max {Cv,} +2s, < 5)
§optvo* + pmax opty; ; + 25, < (6)
2 reR
3
3 ptyy + (p—1) max {optVT*} + 20pt < @)
5
(p— 5) max {opty, } + sopt < ®)

(2p — 5)opt + Sopt = 2p - opt, (9)

where (6)-(7) follows from Lemma 2, (7)-(8) follows from
Lemma 1 and (8)-(9) again from Lemma 2.

The time complexity depends on the approximation algo-
rithm used to construct the cycle cover of V' \ V. ]

Algorithm 2: ComputeSolution
Input : Graph G = (V, E, c,v), where Vj' is the core.

Output: A set of paths 7 = {m1,...,mm}.
Cv; < TSP(V5); // Christofides [12]
it V'\ Vi is partitioned into {V1,...,Vy} then

for r € {1,...,m} do
| Cvy, < TSP(V;)
end
else
| {Cn-.

end

. Cv,, } + RCCP(V\ Vy',m); // Xu [15]

return ConnectCycles(Cyy,Cvy,...,Cv,,)

The last theorem is proved using the ratio p of an hypothet-
ical approximation algorithm. Thus, we can apply the results
in [15] to find an approximated m-cycle cover of the graph
with approximation factor 1—36 to achieve a %—approximation
and a time complexity of O((n?m? + m®°)logn), but the



choice of using this specific algorithm is not restrictive;
in other words, one can apply any algorithm that finds an
optimal cycle cover with an approximation ratio p and the
theorem still holds. Algorithm 2 reports the pseudocode of
the complete method.

V. EXPERIMENTAL EVALUATION

Algorithm 2 is significant as it helps us to determine an
approximation factor for the problem. In this section, we aim
to evaluate how tight its approximation bound is on average.
This means assessing whether the algorithm not only has
theoretical value but also practical applicability, providing
good solutions to real-world problem instances. Notice that
approximation algorithms have theoretical importance but
might lack practical utility, as they might be outperformed by
heuristics that, despite lacking worst-case guarantees, result
in a better performance on the average case.

To this end, we compare the solutions obtained using our
method (which we label OPP) with two baselines, obtained
by applying two widely used approaches. The first is based
on the TSP, where robots follow the same minimum-cost
Hamiltonian cycle (mprsp) while maintaining equal spac-
ing along it. The second approach employs a “divide-and-
conquer” strategy that partitions the environment, assigning
each robot its own patrol route (7,-) over a partition element.
This second baseline is computed by solving an RCCP
instance on the whole graph. As evaluation metric, we report
the worst (max) weighted idleness as defined in Equation 1.
As we discussed above, for our method, its definition reduces
to that of Equation 2. Clearly, for the TSP baseline, it reduces
to wrsp = %c(ng p) while for the partition-based one, it
becomes wp = max,cr{A, c(m,)}.

In the first batch of experiments we compared the three
methods on an extensive set of randomly generated instances.
We considered teams of m robots with m € {3,4,...,10}
and graphs with n = |V| € {20, 40, 60,80}. For each pair
(m,n) we average over 50 random graphs where vertices
are uniformly and independently sampled from the plane
[0,100]? C R2. Edge sets are complete, with cost equal to
the Euclidean distance between the corresponding vertices.

20 vertices | 40 vertices | 60 vertices | 80 vertices
T = 0.02 16.5 26.68 37.38 38.54
T=0.1 8.94 9.72 13.62 9.96
T=04 3.26 3.4 5.76 2.86
T=0.8 2.12 2.88 4.46 2.1

TABLE I: Average number of vertices in the core Vj for
each threshold T’

To obtain a core-periphery profile of the vertices, we
generate a set of values and then we apply a thresholding.
Specifically, the value function v : V C [0,100]*> — R that
we adopt is the inverse sphere distance (ISD), centered in
the mean point of the vertices. Formally

olayy) = {100 1

(z—zr)?+(y—ym)?

if (z,y) = (zm,ym)
otherwise

with (a7, yar) = |—‘1/‘ > (wyev (€, y). The values are nor-
malized to a range of [0, 1] by dividing them by the maximum
vertex value obtained. The sphere distance, known also as
the first De Jong’s function, is a well-known benchmark
for evaluating optimization algorithms and effectively allows
one to model scenarios where key patrol sites are near the
environment’s center. As a final step, the vertices with values
exceeding a certain threshold 7' are marked as part of the
core: (z,y) € Vp if and only if v(z,y) > T. In our
experiments, we considered 7' € {0.02,0.1,0.4, 0.8} to have
cores of different cardinalities. Table I reports the average
core sizes obtained in our runs while Figure 5 provides a
visual example of the OPP strategy on the same instance
when applying different threshold values. Our method and
the baselines are implemented in Python and exploit the VRP
solver provided by OR-tools [24] (notice that, especially in
the multi-robot case, the solver returns a suboptimal solu-
tion which, in principle, could be improved with additional
heuristic methods).

Figure 4 shows the results obtained. The first trend that
can be observed is that the differences between the strategies
fade out as the number of vertices becomes small and the
number of agents becomes large. This seems reasonable since
in instances with such a profile the abundance of patrolling
units compared with the number of locations to be patrolled
enables multiple and easy ways to obtain low idleness. The
RCCP method turned out to be worse on average than the
one based on the TSP. Ideally, both strategies aim to achieve
a scaling factor of m in the worst idleness. The TSP method
accomplishes this by definition, since robots are equally
spaced while covering the cycle. The RCCP method, on the
other hand, should ideally create m cycles of equal length,
approximately 1/m of the TSP cycle. However, this is rarely
the case because of the environment’s topology and value
distribution. Consequently, the TSP-based solution results in
lower idleness. This finding aligns with the intuition provided
in [11], suggesting that in graphs where the variance in edge
costs is not very large (as in our case), TSP-based strategies
tend to outperform partition-based ones. This result also
suggests that, in these settings, robot cooperation generally
outperforms “divide and conquer”. The observed perfor-
mance of the OPP method, which mostly achieves lower
idleness compared to the two baselines, supports this insight.
OPP might be seen as a “divide and cooperate” strategy that
is beneficial in core-periphery scenarios. However, when the
core size decreases, OPP is outperformed in instances with
few vertices and many robots, as these instances are less
challenging and only barely align with the core-periphery
profile.

We replicate the comparison described above on the same
instances but now considering a heuristic method to include
vertices in the core that is defined with the goal of seeking an
advantageous separation between core and periphery vertices
considering the vertex values and the number of available
robots. This method, proposed in [5] and called Balanced
Weights Heuristic (BWH) composes the core as Vp = {i €
Vl|v(i) > “me=z} As can be seen in Figure 6a, the results
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Fig. 7: Worst weighted idleness for different number of
robots on a real use case.

obtained mirror those with fixed thresholding (Figure 4)
confirming how OPP is robust with respect to the core selec-
tion method. Figure 6b shows the results obtained from the
random graphs using BWH core selection, where the values
have been drawn uniformly from [0, 1]. These instances are
expected not to align well with the core-periphery scheme,
as the core will likely not exhibit any centrality in the
graph layout. As expected, OPP does not achieve the best
performance here. Although its approximation guarantees
remain valid, the TSP-based strategy performs better on
average. However, the performance gap with OPP is not
significant, and our method still outperforms RCCP, making
it a viable option even in these challenging scenarios.

To conclude our evaluation, we tested our method on
a problem instance derived from a real-world use case.
We envision an urban surveillance scenario conducted with
UAVs in an area of the city of Milan that hosted the 2015
Expo and which today is the site of the Milan Innovation
District (MIND), an area that will feature a new campus
for the University of Milan. We manually composed the
core by placing vertices on the streets and open areas in
the central regions of the district, which are likely to be
the most crowded during events or peak hours. The outer
regions, including highways, closeby stations, and parking
lots, have been included in the periphery. The value dis-
tribution is still the ISD, centered at the mean point of
coordinates (2, ym) = (402.29,240.08). Figure 7 shows a
qualitative comparison of the three strategies with 10 robots
for which OPP confirms as the method that achieves the
lowest maximum idleness. The performance trend in this case
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Fig. 8: Patrolling strategies for a team of 10 robots on

with a different number of robots can be seen in Figure 7.
VI. CONCLUSIONS AND FUTURE DIRECTIONS

This work presents the first approximation algorithm for
the Overlapping Partition Problem, a novel formulation of
multi-robot patrolling on core-periphery graphs. We provide
theoretical analysis, experimental evaluation, and a bounded-
suboptimal algorithm with strong empirical performance.

The future directions identified during this study will focus
on reducing the prior assumptions taken. Future work should
be done on improving the approximation bounds and on
the research of a more general approximation that does not
require the core to be given, while trying at the same time
to keep a reasonable performance during the execution. The
second assumption that aims to be removed is about the
coordination of the robots. The current mechanism prescribes
that robots must, at times, wait while covering their path.
One interesting direction for future work is to devise online
algorithms that might exploit such temporal budget to further
improve the solution quality.
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