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Abstract— Neural combinatorial optimization (NCO) offers a
promising alternative to traditional heuristic-based methods for
solving complex graph optimization problems by proposing to
learn heuristics through data. This class of problems frequently
arises in automation, as it can be used to model a variety
of applications. While NCO has been extensively studied for
deterministic combinatorial optimization problems, there are
only a few works that aim to solve stochastic combinatorial op-
timization problems. In this work, we present N(CO)2: Neural
Combinatorial Optimization with Chance cOnstraints to solve
the Stochastic Orienteering Problem (SOP) without the use of
hand-crafted heuristics. By integrating a reinforcement learning
(RL) framework, the model optimizes path selection under
uncertainty, effectively balancing exploration and exploitation.
Empirical results demonstrate that our method generalizes well
across diverse SOP instances, achieving competitive perfor-
mance compared to the state-of-the-art mixed-integer linear
program (MILP) for the task. The proposed approach reduces
human effort in heuristic design while enabling adaptive and
efficient decision-making in uncertain environments.

I. INTRODUCTION

Combinatorial optimization problems (COPs) can often
naturally be reduced to graph representations. Many COPs
are NP-hard, leading to the development of various heuristics
to approximate optimal solutions within reasonable time
constraints. However, this results in a set of solutions that
are hand-crafted to solve only a single problem within COPs.
The question we ask ourselves is: what if we could create a
general architecture using reinforcement learning (RL) and
neural combinatorial optimization (NCO) fundamentals to
eliminate the need to recreate heuristics for solving instances
of COPs? To illustrate our motivations, we select one COP
of interest based on our ongoing research in precision agri-
culture and path planning [3], [28], [29]: orienteering. This
APX-hard problem [6] is related to the Traveling Salesman
Problem (TSP) and is formulated as a graph optimization
problem. In precision agriculture, models of this type arise
when considering problems where a robot has finite energy
and is used to perform a set of tasks in the field (e.g.,
collecting a set of soil moisture measurements). Since not all
locations are equally informative for sampling, and the robot
cannot exhaustively collect samples at all possible locations,
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Fig. 1: An example of a problem that can be modeled using
the orienteering COP. Figure taken from [3].

the orienteering abstraction can be used to solve this resource
allocation problem (see Figure 1). While most of the litera-
ture aims to address deterministic COPs, this paper focuses
on the stochastic variant of orienteering. This version, known
as the stochastic orienteering problem (SOP), has received far
less attention due to the difficulty of modeling stochasticity.
Stochasticity in SOPs is realized as uncertainty in the cost ci
incurred while traversing ei in an attempt to reach the goal
vertex vg , which is only realized at runtime. This variant
of orienteering is a theoretical formulation of problems that
arise not only in precision agriculture but also in real-world
navigational scenarios. Problems such as path planning [29],
logistics, and even ridesharing [14] can be reduced to this
graph optimization problem.

Our previous works implement versions of Monte Carlo
Tree Search (MCTS) aimed at solving the SOP with and
without neural networks. However, in both cases, they require
a manually developed heuristic to either solve the problem
[3] or train a network to help solve the problem [29]. In
crafting a heuristic to solve a problem, we are limited in the
strength and flexibility of the solution due to the heuristic
typically disallowing effective exploration. Moreover, writing
an effective heuristic for a problem with stochasticity is much
more difficult than writing one for a deterministic problem.
We now aim to capture a balance between the speed of solu-
tions generated in [29] and the power and generalizability of
[3], without manually formulating a heuristic well suited for
the problem. In this work, we investigate the use of a random
walk algorithm to generate effective training data for an
edge-augmented graph transformer (EGT) model, intending
to capture the likelihood of edge selection as part of an SOP



path solution. The main contributions of our paper are as
follows:

• We propose N(CO)2: Neural Combinatorial Optimiza-
tion with Chance cOnstraints, a neural network-based
heuristic learning algorithm for stochastic combinatorial
optimization problems using chance constraints.

• We introduce a scalable solution construction algorithm
for stochastic orienteering using our learned heuristic.

• We demonstrate that our proposed combination of
learned heuristics and solution construction produces
solutions for SOPCC on par with SOTA MILP solu-
tions, at faster speeds.

The rest of the paper is organized as follows. Related work
is presented in Section II. The SOP is formalized in Section
III. In that section, we also discuss the RL formulation and
our foundational model used to train our heuristic network.
Section IV describes the generated heuristic model, as well
as the data, feature sets, and RL framework. Extensive
simulations detailing our findings are given in Section V,
with conclusions and future work discussed in Section VI.

II. RELATED LITERATURE

A. Neural Combinatorial Optimization

Neural Combinatorial Optimization (NCO) [1] is an
emerging paradigm for solving a variety of NP-hard prob-
lems on graphs using neural networks. NCO algorithms are
able to learn heuristics for COPs using supervised training
examples [9], [20], from scratch with reinforcement learning
[1], [7], [10], [17], or using unsupervised learning [15].

Our method is based on non-autoregressive (NAR) tech-
niques for NCO [9], [15], [17], which formulate the problem
as an edge prediction task. NAR techniques generate the
solution in one shot by predicting an edge heatmap that
defines how likely a given edge will occur in the optimal
solution. Using the edge heatmap, solutions to the COP can
be decoded using construction-based algorithms.

Recent research has applied NCO to stochastic and con-
strained CO problems, such as portfolio optimization [5],
[24] and stochastic routing problems [19], [21], [26]. How-
ever, to our knowledge, N(CO)2 is the first algorithm to
apply a reinforcement learning-based approach to train neural
networks for the Stochastic Orienteering Problem.

B. Optimization Algorithms for Orienteering

Our recent works [3], [29] use MCTS as an online ap-
proach to solve the SOP, selecting vertices dynamically based
on the remaining budget. [3] uses classical computation, and
[29] implements a graph neural network (GNN) trained on
the heuristic developed in [3]. Both are competitive, but
[3] is not real-time due to large state space approximation,
and [29] struggles to generalize failure probability estimates.
An exact approach in [22] constructs a mixed-integer linear
program (MILP). However, this is an offline approach that
differs by orders of magnitude in solution generation timing.
Additionally, studies on deterministic TSP and orienteer-
ing have demonstrated the effectiveness of message-passing

frameworks and graph attention [4], [12], [27]. While GNN-
based methods have been explored for orienteering, no prior
work has used machine learning to effectively generalize
SOP solutions at near-optimal levels.

III. BACKGROUND

In this section, we formally introduce the stochastic orien-
teering problem with chance constraints (SOPCC). We then
outline other variants of MCTS that inspired this solution
and their applications to SOPCC.

A. Stochastic Orienteering Problem with Chance Con-
straints

The classical orienteering problem is formulated as fol-
lows. Consider a weighted graph G = (V,E) with n vertices,
where V denotes the set of vertices and E represents the set
of edges. Without loss of generality, we assume that G is a
complete graph, i.e., E = V ×V . We define r : V → R+ as
the reward function that assigns a positive reward to each
vertex, and let c : E → R+ be the cost function that
assigns a positive cost to each edge. Let vs, vg ∈ V be the
designated start and goal vertices, respectively, with a fixed
budget B > 0. We allow both the cases where vs = vg or
vs ̸= vg . For a given path P in G, R(P) is the total reward
accumulated from the vertices along P , and C(P) is the
total cost of the edges in P . The orienteering problem asks
to solve the following constrained optimization problem:

P∗ = argmax
P∈Π

R(P) s.t. C(P∗) ≤ B,

where Π represents the set of paths in G that start at vs
and end at vg and never revisit the same vertex (it is trivial
to show that allowing paths to visit the same vertex twice
or more does not yield better solutions). Given that G is
assumed to be complete, restricting Π in this way does
not impose additional limits. In the stochastic variant, the
cost associated with each edge follows a continuous random
variable with a known probability density function (PDF)
that has strictly positive support. Specifically, for each edge
ei ∈ E, the cost c(ei) is sampled from a distribution d(ei),
which represents the random variable modeling the traversal
cost of the edge. Consequently, the total path cost C(P)
is itself a random variable. This necessitates expressing the
budget constraint probabilistically using a chance constraint,
formally defined as follows.

Given the notation introduced above, let 0 <
Pf < 1 represent an assigned maximum failure
probability threshold. The SOPCC seeks to solve
the following optimization problem:

P∗ = argmax
P∈Π

R(P)

s.t. Pr[C(P∗) > B] ≤ Pf (1)

This problem formulation captures the goal of maximizing
the collected reward while ensuring that the probability of
exceeding the budget remains within an acceptable bound.
Due to the stochastic nature of C(P), the constraint can
only be satisfied probabilistically, leading to the introduction
of the chance constraint (1).



B. Sample Average Approximation

A method for computing the estimated failure chance F
is Sample Average Approximation (SAA) [16]. With this
approach, N independent, identically distributed samples are
taken of a random variable ξ. These samples can then be
used to approximate the probabilistic constraint included in
Eq. (1) and to satisfy the chance constraint in the SOPCC
problem formulation. To do so, we draw N samples from a
PDF to approximate the estimated probability of failure of
a given path P ∈ Π, shown in (2) as p̂N (F ). This helps
to identify feasible paths that do not satisfy our constraint.
Formally, we define this SAA approach with respect to the
SOP with chance constraints as follows:

p̂N (F ) =
1

N

N∑
i=1

I
(
C(P, ξi) > B

)
(2)

where I is the indicator function that is equal to 1 if its
argument is true and 0 otherwise. The assumption, as per
the law of large numbers, is that the larger N is, the closer
p̂N (F ) approaches the true value p(F ).

IV. METHODOLOGY

This section introduces the main contributions of our
paper.

A. Heuristic Based Solution to SOPCC

As pointed out in [3], one can build a solution to the
SOPCC problem by iteratively building a path P adding
one vertex at a time. This strategy is indeed used in [3] to
implement the rollout stage in the MCTS construction and
explore the space of possible solutions. This approach can be
seen as a greedy algorithm, inasmuch as it never reconsiders
past choices: once a vertex is added to the path, it will
remain there. A critical aspect of this approach is deciding
which vertex should be added next. This is typically done
using a heuristic, and as we pointed out in the introduction,
the choice of the heuristic may have a large impact on the
performance of algorithms like MCTS that repeatedly use
heuristics to build better solutions. In designing a heuristic
for the SOPCC problem (or, more generally, for problems
with chance constraints), one additional challenge is that
the heuristic should consider the constraints, i.e., greedy
choices violating the constraint should be rejected. We start
by providing a high-level algorithm that shows how, with a
given heuristic H that for the time being can be considered
a black box, a path P solving the SOPCC problem can be
iteratively computed. Algorithm 1 sketches this approach.
Besides the parameters defining the SOPCC instance, the
algorithm accepts as input the heuristic to be used H and
S, the number of samples to be used while applying SAA
to estimate the failure probability. Inside Algorithm 1 we
keep two variables to respect the constraint. Fmask is the set
of vertices that have been determined to violate the chance
constraint and should not be considered when expanding the
path. Importantly, this set depends on the last vertex added to
the path, so every time a new vertex is added (line 10), Fmask
is reset (line 12). The other variable is Bsamples, which is a

vector in RS that stores the residual budget. That is to say,
at each iteration Bsamples is a vector of S samples modeling
the remaining budget after having constructed the current
partial path P . Bsamples is initialized at line 1 with S copies
of B and is then updated every time a vertex is added to the
partial path P , either in line 11 or in line 17. The algorithm
uses two functions, namely selectAction and sCosts.
selectAction uses the heuristic H to select a vertex to
add to the path P under the assumption that vc was the last
vertex added. In doing so, it ensures that vertices in Fmask
are not considered because they would violate the constraint.
sCosts(vi, vj , S) (short for sample costs) is a function that
uses the PDF to generate S samples of the cost of moving
from vi to vj along the edge that connects them. In line 9, we
use the SAA method to accept or reject the proposed vertex
vn based on whether it violates the probabilistic constraint
or not.

Algorithm 1 Solution Construction with Heuristic

Require: heuristic H , graph G, starting node vs, goal node
vg , initial budget Bi, failure constraint Pf , samples S

Ensure: path P , residual sampled budget Bsamples

1: Bsamples ← S copies of B
2: Fmask ← {} {Adjacent nodes that violate the failure

constraint}
3: vc ← vs
4: P ← {vs}
5: while true do
6: vn ← selectAction(vc, H,P, Fmask)
7: if vn ̸= vg then
8: cost← sCosts(vc, vn, S) + sCosts(vn, vg, S)
9: if Pr[(cost > Bsamples))] ≤ Pf then

10: append vn to P
11: Bsamples ← Bsamples − sCosts(vc, vn, S)
12: Fmask ← {}
13: else
14: append vn to Fmask

15: else
16: append vg to P
17: Bsamples ← Bsamples − sCosts(vc, vg, S)
18: break
19: return P , Bsamples

Given the dependency of selectAction on the heuris-
tic H , we next discuss how H can be represented and learned
from data.

B. Solution Space with a Parameterized Heuristic

In this section, we lay the foundation for the probabilistic
heuristic H used in selectAction. The heuristic is
probabilistic, i.e., when queried it assigns to each vertex
a probability, and then it samples from such a probability
distribution. For an SOPCC instance where the graph G has
n nodes, our heuristic H is defined by a matrix1 H ∈ Rn×n,

1We intentionally use the same symbol for the heuristic and the matrix,
because the matrix defines the heuristic.



which, after a softmax operation, maps each edge eij to a
probability Hij = Pr[eij ∈ P]. The idea is that good edges
should receive higher probabilities. In this context, H is also
referred to as a heatmap [9], [17].

In essence, the (i, j) entry defines the probability that the
edge from vi to vj should be added to the path, and H is
parametrized by a vector of parameters θ that will be learned
from data. To make this dependency explicit, in some of the
following formulas, we will therefore write Hθ.

Following [17], for a given matrix H , we first apply the
following transformation:

H(i, j) =

{
H(i, j) if vj /∈ Fmask ∧ vj /∈ P
0 otherwise

i.e., we zero out the entries associated with vertices that
would violate the chance constraint. These are included in
Fmask, as per Algorithm 1, or are already in the partial
path P . From this matrix, we then assign probabilities to
the vertices using a softmax operation.

In the following, Pr[vj |vi,P] is the probability of adding
vertex vj to a partial path P whose last vertex is vi:

Pr[vj |vi,P] :=
exp(H(i, j))∑n
k=1 exp(H(i, k))

Finally, for the learning algorithm described later, it is
useful to introduce the following quantity, which is the
probability that a certain path P will be produced by the
heuristic H:

Pr[P|H] =

K−1∏
k=1

Pr[vk+1|vk,P]

where K is the number of vertices in the path (recall that
each path starts with vertex v1 = vs as per Algorithm 1).

C. Heuristic Improvement with Reinforcement Learning

Having defined the structure of the heuristic function
through a heatmap matrix parametrized by a vector θ, the
next question, then, is how θ can be learned. To this end,
we embrace a reinforcement learning approach, and more
precisely, we leverage the classic REINFORCE algorithm.
Reinforcement learning needs a reward signal, which in our
case scores a path P produced by Algorithm 1. The challenge
is that just seeking a path maximizing reward is not sufficient,
because we need to also consider the failure probability.
Therefore, we introduce the following function to assign a
reward to a path P:

fs(P, F̂P , Pf ) = R(P) ·
(
1−max(0, F̂P − Pf )

)
(3)

where F̂P is the estimated failure of path P computed
using the SAA algorithm on the Bsamples vector returned by
Algorithm 1. This reward function penalizes the reward of
solutions where F̂P exceeds Pf , but does not affect solutions
which satisfy Pf . It should be noted that in the case where
an infeasible path contains significantly more reward than
all feasible paths, fs will in principle favor that solution. In

practice, however, this is not an issue because in Algorithm
1 such paths are unlikely to be generated thanks to the use
of SAA inside the algorithm itself.

Our training objective is formulated as follows:

J(θ) = EP∼Hθ
[fs(P)] (4)

For this objective function we compute the policy gra-
dient with the REINFORCE [25] based gradient estimation
following [17]:

∇θJ(θ) = EP∼Hθ
[(fs(P)− b)×∇θ log Pr[P|H]] (5)

where b is the baseline function representing the expected
cost of the problem instance. In our experiments, we use the
baseline function introduced in [11], which approximates the
expected cost by averaging the score of K sampled solutions.

It should be noted that using (5) does not directly optimize
the sampled population towards the best path, but rather
optimizes the average performance of the population. To this
end, we compare against the population-based REINFORCE
objective introduced in the Poppy [7] paper:

∇θJpop(θ) = EP∼Hθ
[(fs(P∗

i )− fs(P∗∗
i )) (6)

× ∇θ log Pr[P∗
i |H]]

where in a population of K solutions sampled using Hθ,
P∗
i is the solution that has the highest fs and P∗∗

i is the
solution that has the second highest fs. While (5) allows the
model to use all K sampled paths to update the model, the
population-based objective only updates the model with the
best path P∗

i .
In Section V we will compare the results of both strategies.

Based on the two sampling-based approaches mentioned
above, we describe the general algorithm we use to train
N(CO)2 in Algorithm 2. For each graph instance, we sample
K solutions using our generated heuristic Hθ, and use those
solutions to optimize our objective function (4). We use
the AdamW [13] optimizer to update the model parameters.
To stabilize training, we clip the gradient values between
[−0.5, 0.5].

Algorithm 2 RL Pretraining Algorithm for SOPCC

Require: distribution over problem instances D, batch size
BS , number of training steps T , number of solutions per
step K, number of samples S

Ensure: learned network parameters θ
1: randomly initialize network parameters θ
2: for t = 1 to T do
3: ρi ← SampleProblem(D) for i ∈ {1, . . . , BS}
4: Build Hθi from current instance ρi
5: Sample K solutions for ρi using Algorithm 1 for i ∈

{1, . . . , BS} using Hθi

6: Compute ∇θJ(θ | ρi) using Eq. (5) (or Eq. (6)
7: θ ← AdamW(θ,−∇θJ)
8: return θ
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Fig. 2: Comparison of training performance of the model using Eq. (5) and (6) on four evaluation datasets. For each evaluation
dataset, the reward on the vertical axis is averaged across all graph instances.

D. Per-instance Finetuning with Active Search

We can further improve the performance of our model
during inference using active search [1], [17], which uses
the same RL-based objective in Eq. (4) to directly optimize
our model on the target instance. We describe the active
search algorithm for N(CO)2 in Algorithm 3. Since only the
generated heuristic Hθ is used for solution construction, we
can directly update Hθ while keeping the network parameters
θ unchanged. This makes the finetuning process much faster
compared to updating all model weights and allows an in-
crease in the performance of the model on multiple instances
without needing multiple copies of the model.

Algorithm 3 Heuristic Finetuning with Active Search

Require: SOPCC problem instance ρ, generated heuristic
Hθ number of iterations I , number of solutions per step
K, number of samples S

Ensure: Finetuned heuristic H ′
θ

1: H ′
θ ← copy Hθ and stop gradient flow to network

parameters θ.
2: for i = 1 to I do
3: Sample K solutions for ρ using Algorithm 1 for i ∈

{1, . . . , B}
4: Compute ∇θJ(H

′
θ | ρi) using Eq. (5) (or Eq. (6)

5: Hθ ← AdamW(H ′
θ,−∇θJ)

6: return Hθ

E. Neural Architecture for Heuristic Generation

The parameters θ compute a heuristic Hθ from the SOPCC
instance ρ, which includes the graph instance G = (V,E),
start node vs, goal node vg , initial budget B, failure con-
straint Pf , and the PDF used to sample edge weights. To
ensure that θ can work for graphs G of any size, we use an

encoding neural network, described in the following. As a
preprocessing step, we normalize the reward for every node
vi in G using Min-Max Normalization. To incorporate the
stochastic edge weights dij into the model, we sample S
independent edge weights using the given PDF, normalize
each sample by B, and compute the average over all S
normalized samples to get d̄ij . For every node vi in G, we
define its corresponding node input features

h
(0)
i =

(
normalized reward R(vi), 1vi=vs , 1vi=vg

)
,

where 1· denotes a one-hot indicator vector. For every edge
connecting node vi to vj , we define its corresponding edge
input features

e
(0)
ij =

(
d̄ij , Pf , 1vi=vs , 1vj=vg

)
.

We split the neural network parameters θ into two parts:
1) Encoder: Takes as input node features h(0) and edge

features e(0), and outputs learned embeddings for each
edge

eLij ∈ Rn×n×de ,

where n is the number of nodes in G and de is the
embedding dimension.

2) Decoder: Takes as input the learned edge embeddings
eL and outputs the generated heuristic Hθ.

To implement the encoder, we use the Edge-Augmented
Transformer (EGT) [8], which adapts the Transformer archi-
tecture introduced in [23] to jointly learn both node and edge
embeddings for a graph. At every layer l, the EGT layer
uses a custom, multi-head, self-attention mechanism that
incorporates the node embeddings hl and edge embeddings
el into a single computed attention matrix. It then uses this
attention matrix to update both the node embeddings and
edge embeddings into hl+1 and el+1, respectively. We refer



the reader to the original paper [8] for a more detailed
explanation of the model architecture. The decoder is a
single feedforward network that transforms the learned edge
embeddings into the matrix H ∈ Rn×n defining the heuristic
function H .

V. RESULTS

In this section, we evaluate the performance of our training
algorithm to learn heuristics for solving SOPCC instances
with varying constraints. We then assess the solution con-
struction using our learned heuristics and test the perfor-
mance of the active search algorithm on real-world graph
instances. In all experiments, we initialize our model with
a node embedding size dh = 64, edge embedding size
de = 16, 4 EGT attention heads, and 3 EGT layers. The
total parameter count of our model is 108,458 learnable
parameters. As a benchmark, we use the MILP formulation
for SOPCC from [22] to compare against our N(CO)2

algorithm. For all MILP runs, we use the GUROBI solver.
Each edge is assigned 100 samples. We set a maximum time
limit tmax based on the number of nodes n as follows: for
n ∈ [1, 99], tmax = 600s; for n ∈ [100, 199], tmax = 900s;
for n ∈ [200, 299], tmax = 1200s. Following the guidance
of the original authors, we lower the failure probability
constraint Pf from [0.1, 0.05] to [0.05, 0.01]. As a control,
we also run Algorithm 1 using a heuristic derived from
our previous work [3], which we refer to as the baseline
heuristic. The baseline heuristic for each edge from vi to vj
is computed as

R(vj)

mean(sCosts(vi, vj , S))
.

During solution construction, actions are selected greedily
based on the baseline heuristic for each valid edge. To stay
consistent with our previous work, we use the following ex-
ponential distribution as the PDF for sampling edge weights:

κdij + E
(

1

(1− κ)dij

)
,

where dij is the Euclidean distance from node vi to vj , and
E(λ) denotes a sample from the exponential distribution with
rate λ. We set κ = 0.5 for all experiments. We implement
the model and training pipeline using PyTorch. We provide a
batch-compatible implementation of Algorithm 1 written in
PyTorch with TensorDict [2] that maximizes CPU or GPU
usage.2 All experiments were run on a MacBook Pro M2
with 12 CPU cores and 32 GB of RAM. MILP runs were
performed with GUROBI utilizing all 12 CPU cores.

A. Training Setup

For all training experiments, we train the model for 100
epochs, with 50 steps per epoch and 32 graph instances per
step. Training is performed exclusively on graphs with 50
nodes. For each training graph G, the position (x, y) of each
node is sampled uniformly at random from the interval [0, 1].

2All the code needed to reproduce this paper is available at https:
//github.com/ucmercedrobotics/sop-heuristic-opt.

Node rewards are also sampled uniformly from [0, 1]. The
start node vs and goal node vg are chosen randomly, allowing
the possibility that vs = vg . Challenging budgets Bi are
sampled uniformly from [1.5, 3], and the failure constraint
Pf is randomly selected from [0.01, 0.15] in increments of
0.01. For each edge, we generate N = 100 samples of
edge weights to be used in heuristic generation and solution
construction within Algorithm 1. The model is optimized
using the AdamW optimizer with a learning rate of 0.001.
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Fig. 3: Evaluation of the compliance of paths sampled using
Algorithm 1 with respect to the failure constraint Pf with
increasing number of sampled edge costs.

B. Evaluation Datasets

We created four evaluation datasets to validate the perfor-
mance of our learned heuristic during the training process.
The datasets are as follows: 50 graphs with n = 50, Bi =
1.5, Pf = 0.1, 50 graphs with n = 50, Bi = 2, Pf = 0.05,
25 graphs with n = 100, Bi = 1.5, Pf = 0.1, and 25 graphs
with n = 100, Bi = 2, Pf = 0.05. The graphs are created
using the same setup defined in Section V-A. The two sets
of n = 50 graphs show the performance of our model on
the graph size found in training, while the n = 100 graphs
showcase the model’s performance on larger graphs that the
model has not seen. As a reference, we generate paths for all
datasets using both the baseline heuristic and the MILP. We
greedily construct baseline paths by running Algorithm 1
with the baseline heuristic K = 100 times per graph and
logging the path with the highest reward. We run the MILP
once on each graph and log the path found after the set max
time limit.

C. N(CO)2 Performance over Training Run

Figure 2 compares the training performance of N(CO)2

using both REINFORCE with baseline (5), and population-
based REINFORCE defined in (6), denoted as REINFORCEb

and REINFORCEpop respectively. At each epoch, both mod-
els sample 100 solutions for all four evaluation datasets and
log the path with the highest reward. The solutions generated
from REINFORCEpop consistently result in a higher reward
compared to those generated using REINFORCEb.



Baseline Heuristic N(CO)2+AS Heuristic MILP
Test Case Budget Pf R F t(s) R F tmodel + tas + tpath = t(s) R F t(s)
berlin52 3771 0.1 12.81 9% 0.04 16.42 8% (0.004) + (2.95) + (0.06) = 3.00 16.57 10% 56
berlin52 3771 0.05 12.24 5% 0.04 14.98 5% (0.004) + (3.08) + (0.06) = 3.14 15.91 6% 22

st70 337 0.1 13.30 7% 0.06 16.91 10% (0.005) + (4.12) + (0.08) = 4.20 16.54 14% 216
st70 337 0.05 12.52 5% 0.05 16.51 5% (0.005) + (4.03) + (0.08) = 4.11 15.93 7% 333

eil101 314 0.1 22.43 11% 0.08 32.23 10% (0.007) + (6.18) + (0.13) = 6.31 32.99 13% 736
eil101 314 0.05 21.53 6% 0.07 31.44 5% (0.008) + (6.73) + (0.13) = 6.87 32.51 8% 326
ch150 3264 0.1 35.39 6% 0.11 42.23 8% (0.014) + (11.33) + (0.21) = 11.55 43.11 16% 452
ch150 3264 0.05 34.91 3% 0.11 41.71 5% (0.014) + (11.41) + (0.22) = 11.64 43.85 11% 738
tsp225 1958 0.1 54.79 10% 0.18 69.79 11% (0.025) + (31.04) + (0.29) = 31.35 61.01 11% 704
tsp225 1958 0.05 53.86 6% 0.18 68.29 6% (0.028) + (31.44) + (0.29) = 31.44 61.46 10% 370
a280 1289 0.1 63.21 10% 0.23 79.43 9% (0.044) + (57.09) + (0.56) = 57.69 62.25 9% 836
a280 1289 0.05 62.41 5% 0.26 75.93 5% (0.055) + (61.26) + (0.58) = 61.90 58.22 5% 939

TABLE I: Comparison between the different algorithms on the benchmark graphs from http://comopt.ifi.
uni-heidelberg.de/software/TSPLIB95/. The elapsed time for N(CO)2+AS is divided into tmodel (model
inference time to predict initial heuristic), tas (time elapsed for 100 iterations of active search finetuning of heuristic
3), and tpath (time taken to sample path with algorithm 1 using finetuned heuristic).
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Fig. 4: a280 TSP benchmark graph visual of Baseline, N(CO)2 and MILP solution paths with associated rewards and failures.
The red node is the start while the green node is the goal. For each shown path, R represents the total reward of the path,
while F is the estimated failure probability of the traversing the path.

D. Failure Probability of Solution Construction with In-
creasing Sample Size

We show that given a sufficient number of sample costs
N in Algorithm 1, the failure probability of the constructed
path approaches the chance constraint Pf (Figure 3.) We use
the heuristic Hθpop generated from the fully trained model
using (6) for all runs. To estimate the failure probability of
each sampled path P , we sample 10,000 costs for each edge
in P and compare the average total cost of the path against
the initial budget Bi. Using S between 100 and 250 ensures
that the failure probability is close to the value of Pf .

E. Performance of Active Search-based Finetuning on
Larger Graphs

We evaluate the benefit of using Algorithm 3 to finetune
the generated heuristic Hθ on individual graph instances. In
Figure 5, we run the finetuning algorithm with a varying
number of iterations on the 100-node evaluation datasets to
show the benefit of active search on graph instances not
seen during training. For each graph instance, we use the
generated heuristic Hθpop from the fully trained model using

(6) as the initial heuristic. We finetune using K = 100
iterations, then sample 100 solutions with Algorithm 1 using
the updated heuristic, and log the path with the highest
reward. We can see in Figure 5 that increasing the number of
finetuning steps directly correlates with better performance
of the heuristic.

F. Performance on Real-World Graphs

Following our previous work [3], we borrow benchmark
graphs from TSPLIB [18] to evaluate the performance of
our model on real-world graphs. These graphs consist of
various sizes and topologies, so to compute a challenging
initial budget Bi for each instance, we divide the cost of
the optimal path given by TSPLIB by a factor of 2. We
compare the results averaged over 50 runs using the baseline
heuristic, 50 runs using our trained model with active search
using (6), and 5 runs of the MILP. For each run of the
baseline heuristic, we construct 100 solutions and log the
path with the highest reward. For each run using our model,
we generate the initial learned heuristic, and then finetune
the heuristic on each graph instance using Algorithm 3 with
K = 100. For graphs with less than 200 nodes, we use 50



iterations of active search, and for graphs with more than 200
nodes, we use 100 iterations of active search. For each run
using the MILP, we run the program for the max time and
log the best found solution and the initial time taken to find
that solution. Table I shows the results for each algorithm.

On smaller graph instances, the performance of the MILP
is better than our algorithm since the search space is smaller.
However, as the number of nodes increases past 200, the
performance of the MILP scales much worse than our
algorithm. For tsp225 and a280, our algorithm is able to
surpass the solution of the MILP algorithm given a max time
limit. The MILP will be able to find a better solution than
our model given enough time, but the time required to reach
that solution might not be worth the cost if we can construct
a similar quality solution in much less time. Figure 4 shows
the paths with the best reward found by all algorithms for
the a280 graph instance.
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Fig. 5: Evaluation of active search algorithm on 2 evaluation
datasets not seen during pretraining. The reward is averaged
across all graph instances.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel framework
for learning heuristics to solve problems with chance con-
straints. Algorithms based on heuristics, such as MCTS, are
commonly used for solving complex optimization problems
in automation, and their performance is highly influenced
by the quality of the heuristic. Traditionally, heuristics are
manually designed; however, our contribution demonstrates
that they can be learned from data, even when considering
constrained problems. Our experimental validation supports
our conclusion that this is a viable approach. In the future,
we aim to expand this framework to address other problems
with stochastic constraints that arise in automation.
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