
One For All: LLM-based Heterogeneous
Mission Planning in Precision Agriculture

Marcos Abel Zuzuárregui ∗ Mustafa Melih Toslak ∗∗

Stefano Carpin ∗

∗ Department of Computer Science and Engineering
University of California, Merced, CA, USA.

∗∗ Department of Informatics, Bioengineering, Robotics and Systems
Engineering, University of Genova, Italy

Abstract:
Artificial intelligence is transforming precision agriculture, offering farmers new tools to stream-
line their daily operations. While these technological advances promise increased efficiency, they
often introduce additional complexity and steep learning curves that are particularly challenging
for non-technical users who must balance tech adoption with existing workloads. In this paper,
we present a natural language (NL) robotic mission planner that enables non-specialists to
control heterogeneous robots through a common interface. By leveraging large language models
(LLMs) and predefined primitives, our architecture seamlessly translates human language into
intermediate descriptions that can be executed by different robotic platforms. With this system,
users can formulate complex agricultural missions without writing any code. In the work
presented in this paper, we extend our previous system tailored for wheeled robot mission
planning through a new class of experiments involving robotic manipulation and computer
vision tasks. Our results demonstrate that the architecture is both general enough to support
a diverse set of robots and powerful enough to execute complex mission requests. This work
represents a significant step toward making robotic automation in precision agriculture more
accessible to non-technical users.

Keywords: Machine learning – AI applications; Precision Agriculture; Automation and
Robotics in Specialty Crops and Field Crops

1. INTRODUCTION

Robotic mission planning (MP) represents an open chal-
lenge in robotics and autonomy, serving as a critical inter-
face between user intent and desired outcomes. In precision
agriculture, users are often non-technical specialists with
specific goals, such as collecting soil samples or visually
mapping an orchard. Perhaps unsurprisingly, creating fea-
sible robotic mission plans is far more complex than it
might initially appear. The process involves significant
challenges in decomposing mission goals into intermediate
tasks and developing an interface that balances compu-
tational power with user-friendly design. While recent re-
search has provided sophisticated solutions (see Section 2
for more details), our ongoing work in this domain empha-
sizes generalization and standardization of mission plan-
ning approaches. We recently introduced a large language
model (LLM)-powered robot mission planner (Zuzuárregui
and Carpin, 2025) specifically designed for farm orchards,
initially testing it with a wheeled robot equipped with

⋆ This matrial is based upon work supported by the National Science
Foundation (NSF) under Cooperative Agreement Number EEC-
1941529 (IoT4Ag) and award CMMI-2326310, and by USDA-NIFA
under award #2021-67022-33452. Any opinions, findings, conclu-
sions, or recommendations expressed in this publication are those
of the author(s) and do not necessarily reflect the views of the NSF
and USDA.

Fig. 1. Robot deployed in a pistachio orchard for water
stress monitoring.

proximal sensing capabilities to detect water stress (Figure
1). A key innovation is the ability to control the robot
through simple natural language prompts. This approach
addresses critical challenges in precision agriculture, par-
ticularly in scenarios with limited network connectivity.
These constraints require robots to execute missions au-
tonomously, without the ability to periodically reconnect
to cloud services, refine plans dynamically, or acquire addi-
tional information to deal with unexpected events. This is
in stark contrast to similar systems proposed for industrial



or domestic robotic applications, where connectivity is a
given. In this paper we expand our software architecture
to formulate MP for heterogeneous robotic platforms. We
are particularly interested in generating comprehensive or-
chard blueprints, also known as digital twins (Purcell and
Neubauer, 2023), with bidirectional data flow. Methods for
digital twin generation include remote geobiometric sens-
ing and computer vision reconstruction via point clouds.
However, significant technical challenges remain. Because
connectivity is constrained to specific points within our
testbed, we developed a one-shot planning approach with-
out the assumption of feedback flowing back to the end
user while the mission unfolds. This operational limita-
tion drives our continued exploration of robust, adaptable
robotic mission planning strategies for precision agricul-
ture.
Developing an effective digital twin for agricultural appli-
cations requires integrating diverse sources of input data.
Consequently, smart farms operators must often engage
with various robotic systems to formulate mission plans
and acquire essential data on farm health and operational
status. Despite advances in precision agriculture, many
emerging applications feature disparate interfaces tailored
to specific robotic systems, limiting cross-compatibility.
To address these challenges, we have implemented a mis-
sion planning pipeline using the same architectural frame-
work as (Zuzuárregui and Carpin, 2025), now adapted
for deployment with a Kinova KORTEX Gen3 manip-
ulator. Building upon our prior work focused on in-
orchard sensing with wheeled robotic platforms using a
Clearpath’s Husky robot (Sani et al., 2024), this study now
investigates the feasibility of NL-based mission planning
with a computer vision-enabled manipulation robot. The
overarching objective is to streamline robotic operations
beyond controlled laboratory environments by enabling
unified system control for both mobile and manipulator-
based robotic platforms. As we have previously worked
to understand questions about a LLM being capable in
an unstructured environment, we now ask whether or
not this architecture is general enough for use on robots
with different capabilities while being powerful enough for
complex mission queries. In this paper, we extend the use
of (Zuzuárregui and Carpin, 2025) to generate mission
plans, using NL, for manipulators. The contributions of
this paper are the following:

• we present an LLM to robotic task execution pipeline
for manipulator and computer-vision mission genera-
tion;

• we investigate whether this architecture is flexible
enough to support both wheeled robots and manipu-
lators;

• we validate our proposed system in the field and show
its limits and strengths.

The rest of the paper is as follows. Selected related work is
presented in Section 2. In Section 3 where we describe the
system we developed, experiments detailing our findings
are given in Section 4, and conclusions are given in Section
5.

2. RELATED LITERATURE

In recent years, there has been a major increase in the
number of applications leveraging LLMs to simplify the

interface between user and execution. In computer science,
the focus is often on NL mission plans to code generation
(Ahn et al., 2022; Huang et al., 2022; Mower et al., 2024;
Kannan et al., 2024). The theme of these papers is to rely
on semantic mapping of the LLM and use a mission query
to plan and execute tasks. While the approaches of (Mower
et al., 2024; Kannan et al., 2024; Liang et al., 2023; Huang
et al., 2022) leverage the generative capabilities of LLMs
to handle complex mission planning and execution, they
often encounter limitations due to inherent inaccuracies in
language model outputs. These papers have shown, along
with numerous papers on LLM drawbacks (Emsley, 2023;
Ray, 2023; Kambhampati et al., 2024), that planning and
executing using an LLM is extremely difficult. In contrast,
our approach employs LLMs solely to generating initial
task sequences within mission plans. To mitigate potential
inaccuracies and ensure robust task definitions, we impose
constraints on the LLM-generated outputs by validating
them against predefined Extensible Markup Language
(XML) schema definitions (XSD). Critically, none of the
works cited in LLM MP take into consideration planning
scenarios with limited network connectivity. The solutions
demonstrate the ability of task execution to reprompt
the LLM for an updated plan. Our work focuses on one-
shot planning: planning that occurs only upon the initial
mission plan generation.

The notion of accounting for LLM output uncertainty con-
tinues to be studied. (Jousselme et al., 2023; Pelucchi and
Valdenegro-Toro, 2023) attempt to mitigate uncertainty
through prompting frameworks, constraining the answers
that ChatGPT can give based on available information.
While this paper does not fully dive into uncertainty
computation, it does acknowledge LLMs often unstruc-
tured and incorrect outputs. Previously, robot planning
was done using languages such as linear temporal logic
(LTL) (Janßen et al., 2023) or Planning Domain Definition
Language (PDDL) (IEEE, 2024). Instead, our architec-
ture relies on XSDs to constrain the LLM output when
generating a mission plan based on NL. To the best of
our knowledge, this is the first architecture that uses
any software-based validation engine to ensure that the
response of the mission planner fits a known syntax.

In (Mower et al., 2024; Kannan et al., 2024), each provide
their own mechanism for task decomposition and system
connectivity. Instead, we follow (IEEE, 2024) as our sys-
tem framework paired with a simple implementation of
a behavior tree. This creates a generic and modular ar-
chitecture that supports the latest technology for mission
planning in robotics while remaining simple to use.

3. SYSTEM ARCHITECTURE AND DESIGN

3.1 Problem Definition

Robot mission planning has been defined in multiple ways
in the literature. We adopt the classic discrete feasible
planning formulation (see, e.g., (LaValle, 2006, chap. 2))
comprising a non-empty state space S, an action space A, a
transition function 1 T : S×A → S, an initial state s0 ∈ S,
and a set of goal states SG ⊂ S. In the feasible planning

1 For brevity, we consider the case where each action A can be
applied in each state in S, but the formulation can be easily extended



Fig. 2. Our MP architecture, adapted from (Zuzuárregui and Carpin, 2025). This shows how the system interface
remains the same with a modular capability during execution.

problem, the objective is to find a sequence of actions
that, when applied in order, would transition the system
from the initial state s0 to any state in SG. Traditionally,
one would provide an explicit or implicit representation
of S,A, T, s0, and SG, and then use a search algorithm
to explore the associated search graph and determine
solution existence. In our system, we formulate the action
set A as a set of capabilities coded as Robot Operating
System 2 (ROS2) actions, each targeting a specific robot
platform. The key innovation is that once this action
pool is adequately represented and provided to the LLM
as context, we rely on the LLM to infer the remaining
components: S, s0, T , and SG. As elaborated later, this
inference draws upon the full context and the user’s query.
Even more importantly, once the LLM has generated the
full context for the mission planning problem, we also rely
on the LLM to determine a plan that is then offloaded to
the robot for execution.

3.2 One For All Architecture

We refer the reader to (Zuzuárregui and Carpin, 2025) for
a full discussion of the system architecture of the mission
planner, and in this section we briefly summarize it. Our
system consists of a five-stage data pipeline broken up
into two task plan subsystems: Level 1 (L1) and Level
2 (L2). As the NL mission query progresses through the
pipeline, it follows the framework provided in the IEEE
standard 1872.1-2024 (IEEE, 2024): specification, user,
approval, execution, and evaluation. Each of these stages
represent a different software module(s) that assists in
mission plan decomposition to relevant robot tasks. Figure
2 sketches the detailed data flow. The specification stage
begins the L1 plan decomposition. Relevant context files
along with the mission plan are requested from the user.
The context files can be anything from world information
to robot specifications, but must always contain an XSD

to allow state-specific action sets. This extension would introduce the
classic concept of precondition.

file that defines the robot capabilities, i.e., the action
set A discussed in Section 3.1. Not only does the XSD
define action set, but also constrains the resultant XML
mission plan to take the shape of a behavior tree. This
constraint helps simplify the manner in which L2 plan
is decomposed. The XSD file defined for the Kinova
KORTEX was written to match the framework suggested
in (IEEE, 2024), thus enabling new robots to be included
up simply following a standardized methodology. Referred
to as atomic actions, these capabilities defined in the XSD
are the only code that require update when introducing
a new robot with a new set of capabilities, i.e., actions
available to the planner. These updates can include robot
action definitions in XSD and their associated parameter
definitions among other state information. For example, we
implemented a low-level primitive for detecting an object
that corresponds to a ROS2 node action for detecting
an object via the YOLOv11 off-the-shelf network. We
assigned generic parameters such as object name and color
as available parameters to be used, but not required. These
definitions can be expanded per use case and are the only
ones requiring manual coding since each XSD tag maps to
a ROS2 node action.

After mission prompt and context are sent by the user,
this information goes to the LLM. In our current im-
plementation OpenAI’s ChatGPT is used to generically
parse the NL L1 plan, though any LLM can be easily
substituted and we are currently expanding the system
to include additional LLMs such as Anthropic’s Claude.
This phase is referred to as the user phase. The output
is a L1 XML mission plan compliant with (IEEE, 2024).
It is at this stage that the LLM parses the context and
the query and infers the remaining components of the
planning problem, i.e., S, T, s0 and SG. Additionally, the
XML returned by the LLM encodes the plan to solve the
MP problem inferred from the context and the user query.

Next is a stage called approval. The approval phase is
critical in ensuring that whatever mission plan is generated



by the LLM will properly convert into a L2 mission
plan. This is done by using an XML validation engine
to compare the XSD to the XML, verifying its syntactic
correctness. Should the LLM return an incorrect plan, the
approval module will request a rewrite with the error log
from the validation engine. Finally, the L1 plan is passed
through a TCP socket out to the computer hosting the
control system, if not the same.

Last is task execution and evaluation. Execution begins
with XML conversion into a behavior tree creating our first
L2 plan sequence. Supporting conditional task execution,
the behavior tree encodes the relationship between tasks
for task results to be evaluated at run time. In tandem
with the evaluation stage, each task is assigned a software
module based on the available robot actions defined in
the XSD. When a task enters the queue, the behavior
tree identifies the necessary inputs and begins the task.
Upon completion, the result is evaluated by the behavior
tree and the next task is selected. These two stages are
critical in understanding the flexibility and power of the
system. (Kambhampati et al., 2024) critically reviews
that leaving only an LLM to plan can result in poor
performance. In (Zuzuárregui and Carpin, 2025) we also
cite a similar experience with LLM-only performance.
As such, this architecture allows for optimized software
modules to manage task execution and or evaluation.
Therefore, while we stand to gain on the generality of the
front-end interface, we do not lose on performance.

3.3 Key Design Updates

While the majority of the architecture remains the same as
the previous implementation in (Zuzuárregui and Carpin,
2025), there are several differences that support a dis-
tributed robot environment. First, instead of providing
context to our LLM planner for a single robot, we provide
all relevant files and allow the LLM agent to select which is
needed for a given mission. This includes passing XSD files
for all robots, which include their action pools, virtual farm
representations, robot arm constraint definitions, or any-
thing else required. In our experiments, however, we limit
these files to XSD and Geographical JavaScript Object No-
tation (GeoJSON) type files only. We will demonstrate, in
Section 4, the implications of this design. The use of XSD
for schema definition remains critical in this architecture
as it allows the LLM to extract the unspecified components
of the planning domain. We amended the previous XSD to
be more concise with minor syntax and structural updates.
The only functional updates made were in the new Kinova
KORTEX schema that added it’s action pool.

4. RESULTS

4.1 Experimental Setup

On the front end, the system uses OpenAI’s ChatGPT
GPT-4o-2024-11-20 with a temperature of 0.2 and max
response tokens of 4096. On the back end, we have two
robots that receive the decomposed task list and act upon
the missions. First is the Clearpath Husky: a 4-wheeled
robot equipped with sensors for temperature, thermal
vision, and CO2 flux sensor. Available actions are go
to GPS location, read temperature, take thermal image,

and measure CO2 flux. Using Clearpath’s control ROS2
framework, we have written ROS2 nodes for movement,
localization, and sensor use. Second is the Kinova KOR-
TEX Gen3 manipulator: a robot arm with 6 DOF and
a vision bracelet attached above the gripper. Available
actions are go to position – relative or absolute position –
detect object, and capture images. The KORTEX comes
packaged with ROS2 nodes for control and vision. Our
robot is mounted on an Amiga robot by Farm-ng. While
this paper does not explore applying the architecture to
an Amiga, the assumption is that if heterogeneous robotic
control is proven, this package can be applied to any
mobile or manipulator robot. For control of the arm, we
wrote a YOLOv11 ROS2 node for object detection and a
node for simplified inverse kinematic control in 3D space
using MoveIt2. MoveIt2 extends these nodes as a kinematic
control library for arm movement planning and execution
that simplifies KORTEX interactions. These nodes extend
the L2 plan derived from our LLMs L1 plan.

The only input to the system remains context and mission
prompt. For the context, we only supplied 3 files. For
the Husky, we provide an XSD with task relationships
defined along with robot action pool. We also provide
additional context in the form of a virtual farm GeoJSON.
For the Kinova KORTEX, we simply provide the XSD.
These mission prompts aim to explore the strength and
spatial awareness of the planner between two possible
robots without the need to reconfigure. Plans are executed
only with feedback from task outcomes, no LLM feedback.

4.2 MP Solutions

In Table 1, we show the full list of queries demonstrat-
ing the flexibility and capability of the architecture. The
number of tasks count includes total atomic tasks and con-
ditionals. The intended robot defines which robot should
ideally be selected for the mission. The success column is
defined as semantically representing the prompt as defined
by the user. Note that all missions were manually reviewed
for semantic success. With the missions emulating plan-
ning in an orchard, we show how the system is capable of
complex mission design. We demonstrate mission genera-
tion for both spatial and non-spatial queries. However, we
will showcase a need for supporting software to overcome
issues in spatial planning.

While Table 1 only shows a handful of previously examined
queries from (Zuzuárregui and Carpin, 2025), all experi-
ments were re-run to ensure no regressions occurred. The
system continues to show the ability to generate complex
behavior tree plans for both the Husky and the Kinova
with limited guidance. As an example, one of the more
complex queries requires multiple conditional actions and
does not explicitly describe the behavior tree. The query,
drawn as a behavior tree in Figure 3 is as follows, “Look
for a pistachio. If you find one, take NBV and pick it. If
not, make a random move to find another one. If you find
this one, NBV and pick. Next, move to another random
spot and look for a leaf. If found, grab the leaf and move
home.” Next Best View (NBV), is defined in the action
pool as a series of Point Cloud images around an object.
See Section 4.3 for more details.



Mission Queries Intended Robot Mission Type Number of Tasks Success?

”Find pistachio and take NBV ” KORTEX non-spatial 2 (1 conditionals) True
”Find pistachio and pick it” KORTEX non-spatial 2 (1 conditionals) True

”Pistachio NBV conditionals (Figure 3)” KORTEX non-spatial 11 (4 conditionals) True
”Picture, temperature, co2, drive, repeat if low readings” Husky non-spatial 14 (5 conditionals) False!

”Measure all sensors; if-else clause for every reading” Husky non-spatial 16 (5 conditionals) True
”Turn gripper left (relative movement)” KORTEX spatial 1 (0 conditionals) False

”Turn left (absolute movement)” KORTEX spatial 1 (0 conditionals) True
”Move in a square” KORTEX spatial 4 (0 conditionals) True

”Find object take NBV. If not present, find another.” KORTEX spatial 3 (2 conditionals) True∗

”Move in a square and take pictures” Husky spatial 8 (0 conditionals) False

Table 1. Shortened queries with intended robot, mission type, complexity, and results.
∗ see Section 4.3 for more details. ! originally passed, but now fails.

More experiments and prompts can be found at https://ucmercedrobotics.github.io/one4all.html

Fig. 3. Behavior tree visualized from sample query.

It is important to understand that when prompted with
a mission, context for all available robots is given to
the LLM, yet none of the missions explicitly state which
robot should be given the task. With this information, the
system appropriately selects the right robot and designs
the mission in accordance with the schema in almost all
cases. For example, if asked, “Could you turn around and
look for the red cup? If you don’t find it, turn back around,”
the system demonstrates understanding. In this case, the
agent selects Kinova even though the query is ambiguous.
However, there are limits to these types of queries. Our
results show that should a statement be overly ambiguous,
the system responds with no mission plan and tells the
user it does not understand. This problem is remedied by
keying the robot explicitly as a part of the query or by
being more descriptive.

4.3 Atomic Tasking and Modularity

As defined by (IEEE, 2024), a robot task execution system
must define atomic tasks. Though the primitiveness of
these tasks is not explicit. Instead of allowing the LLM
to have access to the most primitive actions in robotics,
we abstract away lower-level actions in favor of higher-level
ones. This is demonstrated easiest by the ”detect object”
action. While there have been papers (Chen et al., 2024;
Xu et al., 2024; Elhafsi et al., 2023) that do semantic
reasoning on images, there are proven solutions, such as
YOLO, that are very simple to use. In the case of asking
the LLM to spatially plan using the Kinova at mission
initialization, we need to understand the concept of a
NBV. In literature, NBV (Burusa et al., 2024; Gao et al.,
2024) is proven to be a non-trivial task. We experiment
asking the LLM to generate a sequence of camera poses

that would best cover an object, for which it was not
able to. The LLM could generate poses, but struggled to
understand the quaternion algebra required to generate
3D Point Cloud reconstructions. The missions that came
out were unusable as, in the most trivial requests, the
LLM could not grasp the fact that different joints on a
manipulator have different axes orientations – even when
explicitly described.

Instead of trying to explain NBV to the LLM, we ex-
periment with defining an atomic task to represent NBV.
This abstracts away positional and rotational orientation
from the LLM and passes it to a module more equipped
to handle such complexity. In doing so, the architecture
remains general enough for a nontechnical user to create
missions. The modularity in both the L1, XSD action
pool, and L2, ROS2 node, phases is the key contribution
of this architecture. In Figure 4, we see the result of an
experiment that uses a plug-and-play module for NBV
combined with a higher level action in the pool for the
LLM to select NBV. Figure 4 shows the reconstruction of
a potted plant in an indoor environment. By decoupling
L1 and L2 tasking, this enables end users to only be
required to know about general capabilities of their robot
and supporting software. Then, those responsible for driver
and functional support can update modules without fear
of breaking the control pipeline.

(a) 3D Point Cloud of a plant (b) Color image of a plant

Fig. 4. On the left is a NBV 3D Point Cloud reconstruction
of the image on the right

4.4 Limitations

For queries with vague language, generating the expected
mission was difficult for the LLM. For example, a query
specified the identification of an orange tree, which was



not included in the virtual farm context file, even though
the prompt used available actions. It seems when plans are
requested that relate somewhat to the context – dealing
with fruit with a virtual farm filled with pistachios – the
LLM has difficulty realizing that the robots are often capa-
ble of actions even without context. As in an exploratory
task where information is unknown but plausible: finding
an orange tree in a pistachio farm. However, when asked to
interact with completely adjacent objects, the system does
not seem to struggle. This is demonstrated by successful
missions generated asking for inanimate objects such as
cups or plants that are not included in the virtual farm file.
The confusion was overcome simply by expressing more
explicit requirements into the mission query, such as to
generate a mission regardless of context.

Asking the system to understand kinematics proved to be
the only problem that could not be overcome simply. As
in the route optimization problem in (Zuzuárregui and
Carpin, 2025), LLMs seemingly do not understand what
types of motion planning exist in robotics. Even for a
prompt as simple as asking the planner to turn the gripper
left proved difficult. We have clearly shown that spatial
reasoning, even in the simplest forms, is quite difficult for
our LLM-backed agent. We overcame this in (Zuzuárregui
and Carpin, 2025) by adding a graph neural network
(GNN) to the evaluation stage of the pipeline for solving
graph based problems on the Husky. We again lean on the
modularity and flexibility of this architecture to allow for
varying levels of task support. See Section 4.3 for details
on kinematic support.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented a MP design that is flexible
enough to support different robots, but powerful enough
to handle real life applications. The solution we proposed
not only enables non-specialists to plan robot missions but
doing so for multiple types of robots from a single interface.
Our experimentation has shown that this architecture
handles complex missions but has its limitations when
dealing with spatial awareness. We overcame many of the
problems with more explicit mission prompting and more
capable supporting software, but gaps still remain to make
the system seamless. Additionally, vagueness in queries
lead to the system generating a valid mission but one that
is slightly different from what the user had intended. As
we have combined a set of robots into a single mission
planning system, this begs the question of being able to
run a single query to generate missions for multiple robots.
Often times, robot fleets are intended to cooperate, but
these experiments have only shown individual behavior.
Future research will focus on the vagueness of missions and
how to close the loop on uncertain plans. Also, we plan to
experiment with decoupling single mission prompts into
one or more mission plans for a fleet of robots.

REFERENCES

Ahn, M. et al. (2022). Do As I Can, Not As I Say: Ground-
ing Language in Robotic Affordances. ArXiv:2204.01691
[cs].

Burusa, A.K. et al. (2024). Attention-driven next-best-
view planning for efficient reconstruction of plants and

targeted plant parts. Biosystems Engineering, 246, 248–
262.

Chen, L. et al. (2024). Driving with LLMs: Fusing Object-
Level Vector Modality for Explainable Autonomous
Driving. In Proceedings of the IEEE International
Conference on Robotics and Automation, 14093–14100.

Elhafsi, A. et al. (2023). Semantic Anomaly Detection
with Large Language Models. ArXiv:2305.11307 [cs].

Emsley, R. (2023). ChatGPT: these are not hallucinations
– they’re fabrications and falsifications. Schizophrenia,
9(1), 1–2. Publisher: Nature Publishing Group.

Gao, S. et al. (2024). Take Your Best Shot: Sampling-
Based Next-Best-View Planning for Autonomous Pho-
tography & Inspection. ArXiv:2403.05477 version: 1.

Huang, W. et al. (2022). Language Models as Zero-
Shot Planners: Extracting Actionable Knowledge for
Embodied Agents. ArXiv:2201.07207 [cs].

IEEE (2024). IEEE Standard for Robot Task Representa-
tion. IEEE Std 1872.1-2024, 1–32.

Janßen, C. et al. (2023). Can ChatGPT support software
verification? ArXiv:2311.02433 [cs].

Jousselme, A.L. et al. (2023). Uncertain about ChatGPT:
enabling the uncertainty evaluation of large language
models. In 2023 26th International Conference on
Information Fusion (FUSION), 1–8.

Kambhampati, S. et al. (2024). LLMs Can’t Plan,
But Can Help Planning in LLM-Modulo Frameworks.
ArXiv:2402.01817 [cs] version: 2.

Kannan, S. et al. (2024). SMART-LLM: Smart Multi-
Agent Robot Task Planning using Large Language Mod-
els. ArXiv:2309.10062 [cs].

LaValle, S. (2006). Planning algorithms. Cambridge
academic press.

Liang, J. et al. (2023). Code as Policies: Language Model
Programs for Embodied Control. In Proceedings of
the IEEE International Conference on Robotics and
Automation, 9493–9500.

Mower, C. et al. (2024). ROS-LLM: A ROS framework
for embodied AI with task feedback and structured
reasoning. ArXiv:2406.19741 [cs].

Pelucchi, M. and Valdenegro-Toro, M. (2023). ChatGPT
Prompting Cannot Estimate Predictive Uncertainty in
High-Resource Languages. ArXiv:2311.06427.

Purcell, W. and Neubauer, T. (2023). Digital twins in
agriculture: A state-of-the-art review. Smart Agricul-
tural Technology, 3, 100094.

Ray, P. (2023). ChatGPT: A comprehensive review on
background, applications, key challenges, bias, ethics,
limitations and future scope. Internet of Things and
Cyber-Physical Systems, 3, 121–154.

Sani, E. et al. (2024). Improving the ros 2 navigation stack
with real-time local costmap updates for agricultural
applications. In Proceedeings of the IEEE International
Conference on Robotics and Automation, 17701–17707.

Xu, Z. et al. (2024). DriveGPT4: Interpretable End-to-
end Autonomous Driving via Large Language Model.
ArXiv:2310.01412 [cs] version: 4.

Zuzuárregui, M.A. and Carpin, S. (2025). Leveraging
LLMs for mission planning in precision agriculture. In
Proceedings of the IEEE International Conference on
Robotics and Automation, 7146–7152.


