
Mobile Robotics
Theory and Practice

Stefano Carpin

University of California, Merced

Version 1.0.1 – January 2, 2026
© 2026 Stefano Carpin – All rights reserved

This content is protected and may not be shared, uploaded, or distributed.

2

Contents

1 Introduction 13
1.1 Mobile Robots . 13

1.1.1 Terminology . 15
1.2 Robot Modeling . 16
1.3 Robots and Dynamical Systems . 19
1.4 Robot Software Architectures . 22

2 Introduction to ROS 25
2.1 ROS . 25
2.2 Nodes . 26
2.3 Topics and Messages . 28
2.4 Packages and Workspaces . 29
2.5 The command line tool ros2 . 31

2.5.1 Running distributed ROS applications 38
2.6 The ROS Graph . 39
2.7 Inspecting topics and messages . 40

2.7.1 Understanding the recursive structure of a message 44
2.8 Inspecting nodes . 46
2.9 Services . 48
2.10 Interacting with services . 49
2.11 Actions . 53
2.12 Interacting with actions . 53
2.13 ROS Launch Files . 55
2.14 Interacting with ROS using rqt . 57
2.15 Plotting data with plotjuggler . 58

3 Introduction to programming in ROS 61
3.1 Building a ROS 2 application . 61

3.1.1 Creating and building a workspace 61
3.2 Adding a package . 63

3.2.1 package.xml: the manifest file . 65
3.2.2 CMakeLists.txt . 66

3.3 Creating ROS Nodes . 67
3.4 The first ROS nodes . 68
3.5 More ROS examples . 74

3

4 CONTENTS

3.6 Exchanging Elementary Data Types . 81
3.7 Transmitting and Receiving Arrays of Data 82

3.7.1 Sending and Receiving a Matrix . 85
3.8 Publishing and subscribing from the same node 88

4 Geometric Representations and Kinematics 93
4.1 Introduction . 93
4.2 Background and Notation . 96
4.3 Representing a frame . 97
4.4 Change of coordinates . 100
4.5 Rotation matrices . 103

4.5.1 Elementary Rotation Matrices . 105
4.5.2 Composite rotations . 106
4.5.3 Rotations parametrization . 110
4.5.4 Representing rotations with quaternions 114

4.6 Homogeneous coordinates . 116
4.7 Transformation matrices . 117

4.7.1 Transformation matrices represent frames 118
4.7.2 Transformation matrices are operators to transform points and directions118
4.7.3 Transformation matrices are operators to change coordinates 120
4.7.4 Transformation matrices are operators to transform transformation

matrices . 120
4.7.5 Inverse of a transformation matrix 120

4.8 Transformation trees . 121
4.9 Kinematic motion models . 124

4.9.1 Differential Drive . 125
4.9.2 Skid steer drive . 128
4.9.3 Ackerman Steer . 129

4.10 Velocity . 131
4.11 Kinematics in ROS . 131

4.11.1 The geometry msgs Package . 131
4.11.2 Pose2D . 133

4.12 Controlling a differential/skid steer robot in ROS 134
4.13 The transform library . 141

4.13.1 tf2 classes, messages and functions 141
4.13.2 Quaternions and rotations . 142
4.13.3 Conversions between different representations 144
4.13.4 Transform tree . 146
4.13.5 Standard Frames . 151

5 Additional ROS concepts 155
5.1 Remapping . 155
5.2 Namespaces . 156
5.3 ROS names . 157
5.4 Parameters . 159

CONTENTS 5

5.4.1 YAML configuration files for ROS . 163
5.4.2 Runtime parameters changes . 163
5.4.3 The parameter use sim time . 167

5.5 Calling Services . 167
5.6 OOP in ROS . 170
5.7 rviz2 . 173
5.8 ros2 bag . 174
5.9 Launch files in Python . 175

6 Planning 179
6.1 Introduction . 179
6.2 Discrete Models . 181

6.2.1 On Abstractions . 182
6.3 Open Loop Planning . 183

6.3.1 Common Traits in Graph Search Algorithms 186
6.3.2 Breadth First Search . 186
6.3.3 Depth First Search . 190
6.3.4 Dijkstra’s Algorithm . 192
6.3.5 A∗ algorithm . 196
6.3.6 Examples . 203

6.4 Navigation Functions . 203
6.5 ROS Actions . 206

6.5.1 Futures . 208
6.5.2 Goals, Goal Options, Goal Handles and Wrapped Results 209

6.6 The navigation stack Nav2 . 212
6.6.1 Localization, Maps, and Costmaps 215

6.7 The Planner Server . 218
6.8 The Controller Server . 219
6.9 The BT Navigator Server . 221
6.10 Interacting with Nav2 . 223

7 Perception 231
7.1 Introduction . 231

7.1.1 Dead Reckoning . 232
7.2 Sensors . 233

7.2.1 Proprioceptive sensors . 233
7.2.2 Exteroceptive sensors . 234

7.3 Sensors in ROS . 235
7.4 Sensor messages of common use . 236

7.4.1 Laser Scan . 236
7.4.2 Single Range . 239
7.4.3 Inertial Measurement Unit . 241
7.4.4 GPS . 242
7.4.5 Point Clouds . 244
7.4.6 Odometry . 246

6 CONTENTS

7.4.7 Images . 247

8 Estimation and Filtering 249
8.1 Introduction . 249
8.2 Math Preliminaries . 251
8.3 Discrete Estimation Algorithms . 254
8.4 Recursive Discrete Bayes Filter . 262
8.5 Particle Filters . 264
8.6 Probabilistic Motion Models . 270
8.7 Kalman Filter . 272

8.7.1 Linear Case . 273
8.7.2 Nonlinear Case . 277
8.7.3 Numerical Example . 278

8.8 Mapping as an Estimation Problem . 281

9 Localization and Mapping 287
9.1 Introduction . 287
9.2 Localization . 289

9.2.1 Pose tracking in a feature map with EKF 290
9.3 Extended Kalman Filter in ROS . 293
9.4 Particle Filters in ROS . 296

9.4.1 Subscribed topics . 296
9.4.2 Published topics . 297
9.4.3 Implemented services . 297
9.4.4 Parameters . 298

9.5 SLAM in ROS . 299

A Probability 301
A.1 Sets and Algebras . 302
A.2 Probability Space . 303
A.3 Basic Probability Facts . 304
A.4 Random Variables . 307
A.5 Expectation of a Random Variable . 312
A.6 Variance of a Random Variable . 313
A.7 Multiple Random Variables . 314
A.8 Random Vectors . 317

A.8.1 Expectation and Covariance of Random Vectors 317
A.9 Properties of Gaussian Distributions . 319
A.10 Stochastic Processes . 322

Foreword

Do we need another textbook on mobile robotics? Given that you are reading this foreword,
the question may seem rhetorical. At least from the author’s perspective, the answer is
clearly “yes.” A more appropriate question might be: Why do we need another textbook on
mobile robotics? In the following, I will explain why I undertook this project and the gap it
aims to fill.

There are many excellent books that present the foundations of mobile robotics, covering
mathematical models, algorithms, and technologies. Several of these are cited in this book
and provide a solid grounding for those entering this fascinating field. However, one cannot
truly claim to master the subject without putting theory into practice, and this is where
many of these books fall short.

Over the past several years, ROS has become the de facto standard for developing robot
software. Numerous high-quality books and websites explain how to develop robot control
systems using ROS. Unfortunately, most of these resources assume that the reader already
possesses a solid understanding of robotics theory and technologies. These books are there-
fore not adequate for the beginner.

This book aims to bridge the gap between these two categories. In addition to providing a
concise introduction to key theoretical foundations (kinematics, planning, estimation, etc.),
each topic is paired with its practical implementation in ROS. Because neither the student
nor the aspiring practitioner may necessarily have easy access to a mobile platform, examples
are coupled with suitable Gazebo simulations, thus lowering the entry barrier.

Like any textbook, the selection of topics reflects personal choices shaped by the author’s
perspective on the field and informed by years of teaching at both the undergraduate and
graduate levels. Naturally, due to space constraints and the goal of keeping the content
manageable within a single semester, some important topics had to be left out. It should also
be reiterated that this is an introductory book, so it purposefully focuses on the foundations
and does not aim to cover more advanced topics. However, the expectation is that, starting
with the basics provided in this book, readers can progress to more advanced material that
did not make it into this volume.

It is also worth noting that this book was developed primarily for undergraduate stu-
dents majoring in Computer Science and Engineering. As such, it does not assume prior
knowledge of subjects typically covered in courses like “Signals and Systems” or “Feedback
Control,” and the selection of topics covered (or omitted) reflects this assumption. In terms
of mathematical background, the standard material offered in a lower-division engineering
curriculum should be sufficient to follow the contents of this book. A dedicated appendix
provides a brief recap of probability theory, as this is instrumental for the development of

7

8 CONTENTS

estimation algorithms.
An important question is which programming language should be used for teaching how

to program robots, given that ROS supports both C++ and Python. This book adopts C++,
primarily because it better serves the students for whom this book was written, but most
concepts transcend the specific language. In fact, a future project may entail developing a
parallel version using Python.

In an age where generative AI can be used to quickly produce instructional materials
(often inaccurate or plainly wrong...) it is worth noting that no content in this book was
generated by AI, although AI tools were used for spell-checking.

I am grateful to the graduate students at the University of California, Merced who served
as teaching assistants for my robotics class and provided valuable corrections and sugges-
tions (in no particular order): Jose Luis Susa Rincon, Carlos Diaz Alvarenga, Lorenzo Booth,
Marcos Zuzuárregui, and Andre Torres Garcia.

Finally, like many other academic writings, a significant portion of this book was written
in the evenings, on weekends, during holidays, and at other times that would have been
better spent with family. I am indebted to them for the many hours I spent secluded in my
home office.

There are certainly numerous typos, mistakes, and other issues commonly found in first
editions. Comments, critiques, and suggestions (including any errors you find!) should be
sent to scarpin@ucmerced.edu. I thank everyone in advance for providing feedback.

All code presented in this book has been developed and tested on a computer running
Ubuntu 24.04.1 (Noble) and ROS Jazzy. Code, installation instructions, and additional
materials can be downloaded from https://github.com/stefanocarpin/MRTP (referred to
as the MRTP GitHub in the following).

https://github.com/stefanocarpin/MRTP

Notation

X random variable (upper case last letters of the alphabet)
X̄ random vector (upper case last letters of the alphabet with bar)
X stochastic process (upper case bold italic letter)
A set (upper case first letters of the alphabet)
A event (upper case first letters of the alphabet)
pX probability mass function of discrete random variable X
fX probability density function of continuous random variable X
pX̄ probability mass function of discrete random vector X̄
fX̄ probability density function of continuous random vector X̄
µX expectation of random variable X
σX standard deviation of random variable X
σ2
X variance of random variable X
σXY covariance of random variables X and Y
rXY correlation of random variables X and Y
ρXY correlation coefficient between random variables X and Y
µX̄ expectation of random vector X̄
ΣX̄ covariance matrix of random vector X̄
x vector (boldface lowercase letter)
A matrix (non italic boldface uppercase letter)
N set of natural numbers
R set of real numbers
Ap coordinates of point p expressed in frame A
A
BR rotation matrix describing the orientation of frame B relative to frame A
A
BT transformation matrix describing frame B relative to frame A

9

10 CONTENTS

Release History

Version Release Date Notes
1.0 August 22, 2025 First public release
1.0.1 January 2, 2026 Minor typos fixing

11

12 CONTENTS

Chapter 1

Introduction

1.1 Mobile Robots

There exist many definitions for the term robot and numerous taxonomies to classify them.
Most definitions concur in defining a robot as a system equipped with sensors and actuators
and capable of being reprogrammed to perform different tasks. This definition, albeit vague,
describes the systems considered in these notes. Robots are also often classified based on
characteristics such as the kind of tasks they used for (industrial, service, field, space, medical,
military, etc.), their mobility (legged, tracked, wheeled, aerial, etc.), and so on. In these notes
we focus on mobile robots. There is no universally accepted definition of mobile robot, and
in a sense if one intends the term mobile as the ability to move in space, one could speculate
that all robots by definition perform some sort of motion in space and are then mobile. We
informally define a mobile robot as a system capable of moving in the environment without
being restricted to a preassigned location. This definition excludes industrial manipulators
that are anchored to a fixed work station because said systems cannot move from there, i.e.,
they are restricted to a preassigned location. However, if one considers a mobile manipulator,
i.e., a manipulator mounted on a mobile base, then this would be a mobile robot according to
our definition. In general the term mobile robot is used to indicate robots whose locomotion
is based on wheels, but the above definition would be equally appropriate for a legged robot
(e.g., a humanoid). Hence, the term has to be interpreted with some flexibility and with the
understanding that the boundary defining this category may be fuzzy at times. On the other
hand, most of the material presented in the following is rather general and can be applied
to many different types of robots, so this ambiguity is not detrimental to the remainder of
the discussion. Figure 1.1 shows a mobile robot that is representative of the systems we will
consider. It consists of a mobile base with four wheels equipped with a variety of sensors
and an onboard computer taking care of all computations necessary to perform its assigned
task. The depicted robot is tasked with scouting orchards and take thermal images of leaves
to determine water stress in plants. It is capable of autonomously operating for extended
periods of time and to navigate through a set of preassigned way points scattered over a
large area. The robot is equipped with two motors actuating the left and right wheels, and
a linear actuator to raise and lower the thermal camera located in the white case. On the
sensing side, the platform features numerous sensors, including an RTK GNSS receiver, two
inertial motion units (IMU), a laser range finder, a RGBD camera, and wheel encoders. Once

13

14 CHAPTER 1. INTRODUCTION

Figure 1.1: A mobile robot collecting thermal images in a pistachio orchard.

these components are properly interfaced together and a suitable control software system
is in place, the system can perform useful tasks that would be too time consuming for a
human. For example, many farmers would like to completely scout their orchards frequently
to promptly identify critical conditions, but due to labor shortages this is never done, thus
generating preventable crop losses. This is a typical task where a mobile robot could be used
to complement human expertise. Figure 1.2 shows the user interface displaying the results
for given robot scouting mission.

Figure 1.2: User interface for the orchard scouting robot.

Green lines overlayed over an aerial view of an orchard show the path the robot was
assigned to follow. Yellow circles indicate the locations where the robot detected some
anomalous conditions requiring human intervention. When the user clicks over these dots, a
pop-up window appears displaying the data collected at that location and a short description
of the problem detected. To autonomously complete a mission like this the robot must solve
a variety of problems. The following list specifies some of the different functionalities needed

1.1. MOBILE ROBOTS 15

to complete a mission like the one described above.

Planning : the end user specifies only a few way points, e.g., the turning points at the
end of the tree rows, or the boundaries of a rectangular region to scout. The planning
module determines a set of intermediate way points to navigate through to either reach
each of the the coarsely spaced way points specified by the end user or completely cover
the assigned region.

Localization : the robot needs to continuously estimate its position to make sure it is
making progress towards the way point it is going to. Knowledge of the pose is also
needed to geolocalize the different conditions identified in the orchard so that the end
user knows where they occurred. The localization module is in charge of estimating the
pose of the robot as it moves through the orchard. Simply querying the GPS receivers
is not enough because the returned location is jittery and the loss of line of sight with
satellites due to the trees makes them very inaccurate at times. Hence the module
integrates various sensors with different accuracy into a single position estimate.

Navigation and Obstacle avoidance : while the planning module determines the inter-
mediate points to navigate through, the navigation and obstacles avoidance module
ensures that the robot moves towards the given way point while avoiding obstacles
that may be found on the way. This is particularly important given that the operating
environment has not been previously preconditioned for robot operation.

The previous list does not provide a complete description of all the software modules running
on the laptop mounted on the robot, but it outlines some of the basic capabilities needed
to enable autonomous operation. In the following chapters we will study various algorithms
to takle these and other associated challenges. Indeed, the focus of these notes is on
mathematical models, algorithms, and implementations. In other words, we will
exclusively focus on the software components and will not discuss any hardware
issue. The reader will note that the above list of modules misses some important features,
like a software module processing the data to determine if relevant conditions are spotted,
e.g., an image processing algorithm aiming at detecting the presence of weeds (and possibly
the type). While these are important aspects from a practical standpoint to deliver a fully
functioning system, they will not be considered in the following because image processing
and related disciplines are stand alone areas deserving separate treatment. In our algorithms
and models, the output provided by sensor processing algorithms will be considered, but the
algorithmic details will be abstracted away.

1.1.1 Terminology

The term robot comes from the Czech word robota that translates to forced labor. This
expression traces its root to the play “Russum’s Universal Robots” by Karel C̆apek (1920).
Another term often used to describe robots is autonomous. This word comes from the Greek
words auto (self) and nomos (law) and shall be therefore intended as self-governed. The
expression autonomous robot is pervasively used today. There is no universally accepted

16 CHAPTER 1. INTRODUCTION

definition of the term robot, and the meaning itself somehow evolves over time, as tech-
nology advances. In 1979 the Robotics Institute of America (RIA) defined a robot as “a
reprogrammable, multifunctional manipulator designed to move material, parts, tools, or
specialized devices through various programmed motions for the performance of a variety of
tasks.” The Merriam-Webster dictionary defines a robot1 as “a machine that resembles a
living creature in being capable of moving independently (as by walking or rolling on wheels)
and performing complex actions (such as grasping and moving objects)”. Wikipedia offers a
similar definition2, i.e., “a machine – especially one programmable by a computer – capable
of carrying out a complex series of actions automatically.” Key to these definitions of robot
is the ability of being (re)programmed, i.e., being reconfigured to perform different tasks.
This requirement, albeit important, shall be interpreted with some flexibility. For example,
various floor cleaning robots have been developed and became a commercial success. One
could however object that the only task they perform is cleaning the floor, and that by
reprogramming it is possible to change how they complete their task but not the task they
carry out. Therefore, they would not pass a strict definition of robot as being able to perform
a variety of tasks. The same could be said for autonomous vehicles. Ultimately, however, we
are more interested in the computational techniques used to perform complex tasks, and so
floor cleaning robots (and autonomous vehicles) will be considered robots in the following.

1.2 Robot Modeling

Mathematical models are pervasively used in science and engineering to analyze and predict
the behavior of a variety of systems. Accordingly, a mobile robot can be modeled in many
different ways. Figure 1.3 shows one such possible model. It resembles the agent perspective
presented in [47]. It outlines the mutual interaction between the robot (also called robotic
agent) and the environment in which it operates, and it shows their coupling through a
loop implemented with sensor and actuators. This is mostly an artificial intelligence (AI)
standpoint.

Environment

Control
Software

Actuators Sensors

Robot

Figure 1.3: An agent view of a mobile robot.

As stated before, in these notes we are mostly interested in the middle block of the
robot component, namely the control software (also called controller, artificial intelligence,

1https://www.merriam-webster.com/dictionary/robot
2https://en.wikipedia.org/wiki/Robot

1.2. ROBOT MODELING 17

etc.) This is the module in charge of deciding what to do next (input to provide to the
actuators) based on the current values it receives from the sensor and its internal memory.
The internal memory typically stores a mission specification defining what the robot is
supposed to eventually do (the task it is assigned), as well as some information gathered
while executing the task, e.g., a map of the environment incrementally built by the robot
while working towards its assigned goals. While the technology defining sensors and actuators
may be continuously improving, the algorithms we will present abstract from the low level
details characterizing these hardware components and have therefore broader applicability
even if the underlying sensing technology evolves over time.

The feedback loop between the robot and the environment suggests that a robot can also
be seen as a dynamical system, i.e., a system whose state (pose, velocity, etc.) changes over
time. Figure 1.4 shows this alternative model, and is pervasively found in control literature.

Environment

Control
Software

Actuators SensorsSensors

Σ Σ

x

Disturbances

Disturbances Disturbances

u z

Figure 1.4: A dynamical system view of a mobile robot.

The figure introduces also some interesting concepts and symbols we will use extensively
in the future. First, it outlines the presence of disturbances interfering with sensors and
actuators and influencing the evolution of the environment as well. The sum character (Σ)
symbolizes that disturbances are added on top of the signals produced and received by the
robot. The unavoidable presence of disturbances significantly complicates the task of the
controller. However, the reader should not be misled to think that algorithmic challenges
would be trivial if noise was to disappear. For example, the motion planning problem is
NP-hard even under the unrealistic hypothesis that the system is noise free. Disturbances
affect both actuators and sensors. On the actuators side, disturbances manifest themselves
through inaccuracies in the execution of the desired command. For example, if the controller
commands the actuators to move the robot forward by 1m, the robot will invariably move
forward of a distance different from 1m. Some times the difference may be small and even
negligible (or even not detectable without highly accurate instruments), while other times
the difference may be dramatic. Since these error sources appear every time the controller
sends a signal to the actuators and they add up over time, the consequence is that trying to
draw conclusions by just computing predictions of the effect of the commands issued by the
controller is an approach doomed to failure. This is the reason why this strategy (open loop

18 CHAPTER 1. INTRODUCTION

control) is almost never used. Sensors are then introduced to make information about the en-
vironment available to the control software. Unfortunately, sensors are prone to disturbances
too, and provide only noisy measurements. As in the case of actuators, errors affecting sen-
sor readings can at times be small, but may also be very large, depending on the type of
sensor used or on the conditions in which it is used (e.g., a GPS receiver used in an urban
canyon where it cannot receive signals from a sufficient number of satellites.) Irrespective
of the characteristics of the actuators and sensors considered, two general statements can
be made and will define the behavior of many algorithms and techniques we will see in the
following. Actions increase uncertainty whereas sensor readings decrease it3. The interplay
and relative magnitude of these changes in an extremely important aspect characterizing the
success or failure of many robotic systems (see Figure 1.5).

Actuation

Perception

UncertaintyUncertainty

Figure 1.5: The uncertainty cycle between actuation and perception. Actuation generally
increases uncertainty, whereas perception usually decreases it.

Figure 1.4 also introduces three symbols we will extensively use in the following, each
of them to be interpreted as a vector. The symbol u is a vector in Rp and is the set of
values that the controller sends to the actuators. In a sense, u is the output of the control
software. The symbol z is a vector in Rq and is the set of values that the control software
receives from the sensors. Hence, it can be seen as the input to the controller, though the
controller typically receives also other inputs through the mission specification and so on.
Note that in general p ̸= q, i.e., the size of the two vectors is different. Finally, x ∈ Rn is the
so-called state vector. As pointed out in [4], “the state of a system is a collection of variables
that summarize the past of a system with the purpose of predicting the future.” Hence the
state may include variables not only characterizing the robot, but also components external
to the robots itself. For example, if a robot is tasked with approaching and grasping an
object, the state will most likely going to include some variables defining where the object
is (or ia believed to be). In general there is no method to automatically determining what
should be included in the state, although in many cases this decision is rather simple to
make. Note also that the same quantities could be differently represented in the state. In the
grasping example, the pose of the object could be included in the state in terms of an external
reference system, or it could be relative to the robot. Note moreover that some authors place
the sum symbol in other places (e.g., between the actor and the environment) or between
the environment and the sensor). These alternative scenarios do not substantially alter the
nature of the problems we will deal with in the following and could be accommodated as

3In some instance this may not be true, but to simplify the discussion we assume this is the case.

1.3. ROBOTS AND DYNAMICAL SYSTEMS 19

well. The disturbances affecting the environment, actuators, and sensors can be modeled as
random signals (a concept that will be formalized in Chapter A.) Consequently, the state x
will not be known for sure, but will rather be a random variable itself that evolves over time.
In Appendix A we develop appropriate mathematical tools (called stochastic processes) to
model this temporal evolution.

1.3 Robots and Dynamical Systems

As formerly stated, “a dynamic system is a system whose behavior changes over time”
[4]. A robot can therefore be viewed as a dynamic system, since it typically moves in its
environment. Consequently, many ideas and concepts developed in control theory and in the
theory of feedback systems are useful when studying robots. Feedback refers to a coupling
between two systems so that they influence each other. This is illustrated in both Figures
1.3 and 1.4, where it is shown that the output of one subsystem (robot) is an input for the
other subsystem (environment) and viceversa (the output of the environment is an input for
the robot). In this case we have a closed loop system. One of the strengths of closed loop
feedback systems is that they are robust to disturbances, and this is a desirable objective
for a robot, i.e., we want to make sure it correctly works despite unexpected events. Due
to the interactions between different subsystems (e.g., robot and environment), the study of
closed loop systems is also more complex. For this reason, some times (e.g., in planning),
we consider open loop systems, i.e., abstractions where there is no loop closure (see Figure
1.6). Systems operating in open-loop are less robust and therefore generally not deployed in
practice, but their study can be nevertheless useful in some situations. For example, an open
loop planner may produce a high-level path that is then followed using a low-level controller
using a feedback loop.

EnvironmentActuators
Control
Software

Robot

Figure 1.6: A robot operating in open loop.

According to the dynamical system view of a mobile robot (see Figure 1.4), the following
relationships can then be written to model the temporal evolution of a mobile robot system

ẋ = f(x,u, t) (1.1)

z = h(x,u, t) (1.2)

where ẋ as usual indicates the derivative with respect to time. Eq. (1.1) is called the state
evolution equation or state transition equation, and Eq. (1.2) is called the state observation
equation. The use of a differential equation in Eq. (1.1) is natural, since a robot operates
in the physical world and is subject to the continuous time laws of physics. However, since

20 CHAPTER 1. INTRODUCTION

our focus is on writing algorithms executed on digital devices, a discrete time version of the
above relations will be often more useful4, i.e.,

xt = f(xt−1,ut, t) (1.3)

zt = h(xt,ut, t). (1.4)

Eq. (1.3) indicates that the current state xt is a function of the previous state xt−1 and
the current input ut. This model will be pervasively used in the discrete planning algorithms
presented in chapter 6.

In most instances we will consider so-called time invariant systems, in which the above
equations do not depend explicitly on time, e.g.,

ẋ = f(x,u) (1.5)

z = h(x,u) (1.6)

and

xt = f(xt−1,ut) (1.7)

zt = h(xt,ut) (1.8)

for the discrete version. Moreover that in many practical situations the reading returned by
the sensor is a function of the state only, and therefore the state observation equation can
be written as

zt = h(xt) (1.9)

where the dependency on u has been dropped.
For analysis purposes it will be often convenient to consider the special instance where

functions f and h are linear. In this case Eq. (1.3),(1.4) can be rewritten as

xt = Atxt−1 +Btut (1.10)

zt = Ctxt +Dtut (1.11)

where At,Bt,Ct,Dt are matrices of appropriate sizes. Similar equations can be rewritten for
Eq. (1.1),(1.2). Note that in Eq. (1.10),(1.11) the matrices depend on time, as indicated by
the subscript t. In the time invariant case these matrices are instead constant. Linear systems
are rarely found in robotic applications, but non linear models can often be satisfactorily
approximated through linearization. Therefore the study of linear systems is useful not only
to gain insights into nonlinear problems but also from a practical perspective.

The following diagram depicts how the state evolves in the discrete time version:

x0 x1 = f(x0,u1) x2 = f(x1,u2) x3 = f(x2,u3) . . . xn = f(xn−1,un)
u1 u2 u3

4Note that although we use the same symbols f and h in these two sets of equations, the functions will
in general be different in the continuous and discrete case.

1.3. ROBOTS AND DYNAMICAL SYSTEMS 21

If x0 is known and no disturbances affect the system, then the sequence is deterministic,
i.e., knowledge of x0 and of the sequence of inputs u1,u2, . . . ,un, . . . allows to determine
all states x1,x2, . . . ,xn, . . . This simplified version is based on an open loop view will be
useful in some planning scenarios, but is unrealistic in robotic applications. In practice, x0

is most often not known without uncertainty, but rather modeled as a random variable and
therefore even if the sequence of inputs u1,u2, . . . ,un, . . . is known, the sequence of states
will be a sequence of random variables because of the initial uncertainty. On the other hand,
even if x0 is known, the unavoidable disturbances affecting the system will still make the
sequence of states a sequence of random variables. In the most general (and realistic) case,
uncertainty stems from both disturbances and imprecise knowledge of the initial state x0.
Despite the uncertainties in the state x, it is important to observe that the sequence of
inputs ui is instead in general fully known because it is determined by the algorithms we will
develop to control the robot. When considering sensor readings as well, the following charts
can be considered. In the first one, we display the special case where the sensor reading is a
function of the state only, i..e, zt = h(xt) as per Eq. (1.9)

x0 x1 = f(x0,u1) x2 = f(x1,u2) x3 = f(x2,u3) . . .

h(x1) h(x2) h(x3)

u1 u2 u3

This configuration will be particularly relevant when studying Bayesian estimation al-
gorithms (Chapter 8). The next configuration instead displays the general case where the
output is a function of both the state and the input, as per Eq. (1.4):

x0 x1 = f(x0,u1) x2 = f(x1,u2) x3 = f(x2,u3) . . .

z1 = h(x1,u1) z2 = h(x2,u2) z3 = h(x3,u3)

u1 u2 u3

From a high level perspective one could say that the objective of the robot control sys-
tem is to generate a sequence of inputs u1,u2, . . . so that eventually a desired state xD is
achieved, irrespectively of the disturbances encountered. For example, we want to deter-
mine a sequence of inputs so that the robot eventually moves to a preassigned goal position
expressed as a desired final sate xD. Because of the unavoidable disturbances, it follows
that u1,u2, . . . cannot be precomputed upfront, but must rather be computed on the fly
integrating information collected at run time through the sensors. Hence, a robot control
software could be seen as a function π that given the current state xi (or an estimate of it)
computes the next input, i.e., ui+1 = π(xi). ui+1 and xi then determine the next state xi+1

as per Eq. (1.7). The “problem” with this approach is that π assumes that xi is known, but
this is generally not the case because of disturbances. Sensors are then used to determine or
estimate xi.

Two concepts from control theory that are very important in robotics are controllability
and observability. Informally speaking, a robot (system) is controllable if for every desired
goal state xD it is possible to determine a sequence of inputs so that the robot reaches the
desired state. The state of the robot is observable if through repeated sensor observations

22 CHAPTER 1. INTRODUCTION

h(xi) it is possible to determine the state.

Example 1.1. Consider a robot operating on the plane, and assume there exists a stationary
beacon placed at a known location, say xB, yB (see figure 1.7).

Figure 1.7: Abstraction of a robot equipped with a sensor to measure the distance to a
beacon (displayed as a flag) placed at a known location.

The robot is equipped with a sensor returning the distance between the robot and the
beacon. To simplify the problem, let us furthermore assume that the robot is stationary
and can be abstracted as point robot, i.e., it can be modeled as a point in the plane whose
coordinates are xR, yR. Let the state of the robot be x = [xR yR]

T . In this case the sensor
reading is a scalar that can be modeled using Eq. (1.9)

z =
√

(xB − xR)2 + (yB − yR)2

where we dropped the subscript t as we assumed everything is static. In this case with this only
sensor the state of the robot is not observable, i.e., if the robot stands still it is not possible
to determine xR, yR just by repeatedly querying the sensor (no matter what intermediate
computation takes place.)

We conclude with one important observation. All equations presented in this section are
deterministic, i.e., for the time invariant case the next state is a function of the current state
and of the input, and the sensor reading is a deterministic function of the current state (and
possibly last input). This approach is useful for modeling purposes, but is almost invariably
never happening in reality. The realistic view to keep in mind is the one presented in Figure
1.4, where we outlined that disturbances affect both actuation and sensing. This means
that in practice, neither f nor h are deterministic functions of their inputs, but are rather
influenced also by stochastic disturbances. Much of the challenges in designing robot control
software is in dealing with these uncertainties, and we will extensively discuss this problem
in later chapters.

1.4 Robot Software Architectures

Robots are complex systems composed by the interconnection of multiple simpler subsystems.
For example, numerous sensors (laser, camera, sonar, etc.) produce data streams that are
consumed (processed) by one or more computational units. Each computational unit, in
turn, may produce data that can be sent to various actuators (wheels, servos, etc.), or even

1.4. ROBOT SOFTWARE ARCHITECTURES 23

back to sensors (e.g., to change a configuration parameter.) Informally speaking, the term
architecture describes how a complex system is broken into simpler (sub)systems and how
these subsystems interact among them. The definition is recursive, i.e., once a complex
system is divided into a set of simpler subsystem, each of them can be further decomposed
into simpler subsystems, and so on, according to a hierarchical structure. This approach
based on hierarchical decomposition is pervasive in engineering and it applies both to the
robot hardware and software.

On the software side, particular emphasis is put on how data is exchanged between the
various components and numerous ideas can be borrowed from software engineering. It
should also be pointed out that robots can (and often should) be seen as distributed sys-
tems because they are indeed composed by multiple interacting components exchanging data
through some network infrastructure. Consequently, if one focuses on how data is exchanged
between components, various architectures developed in software engineering have been used
to develop software controlling robots, like client/server and publisher/subscriber. Another
aspect inherently related to this view focused on exchanged data is the definition and stan-
dardization of the messages exchanged between the various components. Through the years,
the robotics community has developed and embraced different methods and frameworks. Re-
cently, however, the Robot Operating System (ROS from now onwards) has emerged as the
most commonly used approach. ROS will be introduced in chapter 2 and used throughout
this book.

While data exchange is an important aspect when designing or selecting a software archi-
tecture, establishing which building blocks should be selected, and how they should interact
with each other is equally important, and also part of what goes under the “architecture”
definition. From this standpoint, countless choices are possible. One common choice is the
layered architecture, whereby multiple components implementing different levels of compe-
tence are arranged in layers (see Figure 1.8 for an example). From the bottom to the top,
each layer provides more complex functionalities building upon those below.

Actuators

Reactive
Navigation

World
Modeling

Deliberative
Planning

Figure 1.8: A possible example of a (simplified) robot architecture.

24 CHAPTER 1. INTRODUCTION

In this simplified model, each layer shall be thought as an independent thread of com-
putation exchanging data with one or two other layers, as indicated by the arrows. As we
will see, one of the advantages of ROS is that it encourages to decompose the software archi-
tecture as a set of software modules independently executing and exchanging messages with
other modules.

Further Reading

There exist numerous textbooks devoted to the topic of mobile robotics. Almost all of them
start offering a broad perspective to the field and some historic remarks. The reader is re-
ferred to the initial chapters in [2, 6, 12,14,17,27,41,49,50] for more details.

With regard to software architectures for robot programming, a chapter in the Springer
handbook of robotics provides a good introduction to this topic and includes many useful
references [28]. With the emergence of ROS and other frameworks for robot programming,
software engineering for robotics has emerged as an independent area. Relevant references
in this domain include [10,24].

While feedback control theory is not strictly needed to follow the contents of this book,
the interested reader aiming at a deeper knowledge of the subject is referred to [4, 54] for a
comprehensive introduction.

Chapter 2

Introduction to ROS

2.1 ROS

ROS stands for Robot Operating System [33]. A thorough introduction to ROS would require
a thick book on its own and is beyond the scope of these lecture notes. This chapter covers
only some basic concepts useful for getting started. The reader is referred to the references at
the end of this chapter for more comprehensive discussions, and to the ROS official website.1

Despite its name, ROS is not an operating system, but rather a platform for developing
software applications to control robots. It includes a communication infrastructure and a
collection of tools and libraries. This set of resources is often described as a framework, or
middleware, or SDK (software development kit).

Different ROS versions are released as distributions, similar to the Ubuntu distributions
for Linux. A distribution is a versioned set of tools, packages, and libraries providing a
stable codebase for developers of robot software. Accordingly, code developed for ROS
typically targets a specific distribution, although it is possible for the same software to work
without changes across multiple distributions. At the time of writing, the ROS community
has transitioned from ROS 1 to ROS 2, and both coexist. The latest and final ROS 1
distribution is called Noetic Ninjemys and was released in May 2020. In the following, we
will exclusively focus on ROS 2. Accordingly, whenever we refer to ROS for brevity, we
implicitly mean ROS 2.

While in the past ROS 1 officially supported only Linux, starting with ROS 2, support
for other operating systems has also been included, although the level of support varies
between versions. All examples presented in the following have been developed and tested
on a system running Ubuntu (see the foreword for details about the specific versions). The
reader is referred to the ROS official website and to the MRTP GitHub for detailed, up-to-
date instructions on how to install and configure ROS to follow and replicate the examples
presented below. Table 2.1 shows a subset of the different ROS 2 distributions released so
far and the associated supported platforms (older distributions have not been included in
the table).

ROS 2 is a vast, powerful, and also complex system, featuring a large and growing number
of components. To simplify, we can say that ROS 2 provides the following:

1https://docs.ros.org/

25

https://docs.ros.org/

26 CHAPTER 2. INTRODUCTION TO ROS

Distribution Supported Platforms
Humble Ubuntu 22.04, Windows 10
Iron Ubuntu 22.04, Windows 10
Jazzy Ubuntu 24.04, Windows 10
Kilted Ubuntu 24.04, Windows 10

Table 2.1: Recent ROS 2 distributions.

• A software middleware enabling secure communications between components using
different data exchange patterns (e.g., asynchronous, synchronous, and more);

• A collection of tools to simplify the development and debugging of complex robotic
applications;

• Implementations of numerous algorithms solving basic robotic problems that can be
composed together to develop more complex functionalities (e.g., localization, naviga-
tion, planning, teleoperation, etc.);

• Definitions of various data types (messages) to process and exchange data commonly
needed to implement robotic applications (e.g., quaternions, transformation matrices,
sensor data, etc.).

In the following, we present some of the most important concepts in ROS. The goal is
not to provide a comprehensive introduction to ROS but rather to introduce a subset of
concepts to show how algorithms and ideas developed in later chapters can be implemented
in practice. Accordingly, some concepts and subsystems will either be simplified or skipped
altogether, and the reader is referred to the official documentation for more details.

2.2 Nodes

A ROS application consists of various software entities called nodes, which work concurrently
to complete an assigned task. This approach aligns with the fact that a mobile robot is a
composition of various connected subsystems (sensors, actuators, computational units) that
often process data in parallel and asynchronously. According to this approach, a robotic ap-
plication can be decomposed into subsystems, with each subsystem independently executed
by one or more nodes.

Figure 2.1 shows a small mobile robot2 with some of its sensors and actuators highlighted.
The robot includes a GPS receiver, a camera, and sonars. Additionally, it has two motors
to actuate the left and right wheels (controlled by a single motor controller), as well as a
motor to open and close the gripper in front of it. On the back of the robot, we can see the
embedded computer (black box) that runs ROS to control the robot. A ROS application
for this robot would not consist of a single node directly interacting with all these hardware
subsystems but would instead feature multiple nodes, each performing a specific function.
For example, we could assign a node to interact with each of the sensors and actuators and

2https://www.nasa.gov/content/meet-the-swarmies-robotics-answer-to-bugs

https://www.nasa.gov/content/meet-the-swarmies-robotics-answer-to-bugs

2.2. NODES 27

run an additional node to integrate all the sensor data, reason about it, and decide which
actions should be taken, e.g., where to move or whether to open or close the gripper.

Figure 2.1: A swarmie mobile robot with some of its sensors and actuators highlighted.

This approach would lead to an architecture similar to the one depicted in Figure 2.2,
where we further split the computation block into two nodes: one for image processing and
one for decision-making. The oriented arrows between nodes illustrate how information flows
between the different nodes. For example, the GPS node will be in charge of interacting with
the GPS hardware receiver, i.e., exchanging data using its specific protocol, packaging the
received data into a structure including latitude and longitude, and passing it along to other
nodes that might need it. Likewise, the motors node will be in charge of interacting with
the hardware running the motor controller and will translate high-level commands received
from other nodes into low-level signals suitable for the specific hardware it interacts with.
Importantly, each of these nodes is executed concurrently.

The modular decomposition into nodes facilitates code reuse, simplifies debugging, and
increases robustness. To accomplish a shared objective, nodes exchange information and/or
offer functionalities to other nodes. Although this greatly simplifies the idea, we could say
that nodes perform some computation locally and then broadcast the results to other nodes.
Accordingly, the input data for the computation carried out by a node is often the output
produced by another node. ROS supports three forms of communication between nodes:
topics, services, and actions. Each of these will be introduced in this chapter.

Nodes can be standalone processes, but they may also be separate threads inside the same
process or even run on separate machines connected by a network. The decision on which
approach to follow is left to the developer. Nodes can be written using various ROS client

28 CHAPTER 2. INTRODUCTION TO ROS

Camera

GPS

Sonar

Object
Detection

Gripper

Motors

Planner

Figure 2.2: A hypothetical simplified ROS software architecture for the robot in Figure 2.1.
Each oval represents a node while arrows between nodes show how information flows between
them. Note that this architecture resembles a directed graph – see also Section 2.6.

libraries (RCL) available in different languages. The ROS team supports two languages, i.e.,
C++ and Python, but additional ones (Java, Matlab, and more) are also supported, thanks
to RCL developed by the ROS 2 community. Importantly, a ROS application may include
nodes written in different languages. In this book, we exclusively deal with the C++ client
library, but all examples can be easily converted into other languages.

When a ROS node is run, it relies on various parameters that can have default values
or be reconfigured. This topic will be further expanded in Chapter 5. For example, a
robot equipped with two cameras may run two instances of the same node performing image
processing to concurrently analyze the two streams of images coming from the two cameras.
To distinguish the two input streams, each node should be assigned a unique name, and
we will see how this can be done through remapping. Note that although, at the operating
system level, nodes can be standalone programs, they are usually not directly invoked but are
instead launched using a command-line tool called ros2. ros2 will be extensively discussed
in the remainder of this chapter.

2.3 Topics and Messages

A topic is an asynchronous, unidirectional stream of messages of a defined type. Topics
implement one form of communication between nodes, where nodes can send or receive
messages through the topic. A topic is asynchronous, meaning that senders and receivers
do not rely on a shared timeline. A topic is unidirectional, i.e., messages always flow in
one direction only, from senders to receivers. A topic is a stream, i.e., messages are sent
sequentially, and the relative order is not changed. Finally, all messages sent through a
topic are typed, and all messages exchanged through the same topic must have the same
type. Therefore, what is exchanged are instances of messages, whereas a topic is the channel
through which messages are exchanged. Because all messages exchanged through a topic
must have the same type, with slight abuse of language, we can say that the topic has a type
(e.g., if topic A is used to send messages of type typeB, we can say that topic A has type
typeB.) A message is a data structure encapsulating either basic data types (integers, floats,

2.4. PACKAGES AND WORKSPACES 29

etc.) or complex structures with multiple fields. A complex message can also be obtained
by composing other messages. The structure of a message will be discussed later, but for
practical purposes, one can think of a message as a C++ struct built by combining primitive
data types or other previously defined types. As with nodes, each topic and message must
have a unique name, i.e., a string.

Data exchange through a topic follows a registration mechanism, i.e., before a node can
start to send or receive messages to/from a certain topic, it must first explicitly associate
with the topic. Each topic has a unique name (i.e., a string), and to send or receive a
message to/from a topic, a node must identify the topic by name. The process of sending a
message to a topic is called publishing. Similarly, if a node wants to receive messages from
a certain topic, it needs to register, i.e., it needs to subscribe to the topic. Following this
terminology, a node can be described as a subscriber or a publisher to a topic. A node
can send/receive messages to/from a topic only after it has registered as a publisher or a
subscriber for the topic. A node is not restricted to publishing or subscribing to a single
topic, but can simultaneously subscribe to and publish on multiple topics. The handshake
between publishers and subscribers connected to the same topic relies on the unique topic
name. Care must be taken, as misspelling the topic name is a frequent source of bugs that
result in messages not reaching their intended destination.

Topics are implemented through finite-length queues whose length is determined when
the topic is created. Since it is a queue, if it fills up because the subscriber consumes messages
slower than the publisher produces them, then older ones are dropped to make space for the
new ones according to a first-in-first-out policy. It is also important to note that messages
exchanged through a topic can be one-to-one (one publisher, one subscriber), one-to-many
(one publisher, multiple subscribers), many-to-one (multiple publishers, one subscriber),
or many-to-many (multiple publishers, multiple subscribers). Figure 2.3 illustrates these
possibilities.

What happens when multiple nodes publish to the same topic? As can be imagined, their
respective messages are queued to the same topic and passed to the receiver(s). If multiple
receivers subscribe to the same topic, each receives a copy of all the messages sent through
the topic (provided they can retrieve them fast enough). In Section 2.5, we will run a small
example showing how multiple nodes can exchange messages through shared topics.

Finally, it is important to remember that while ROS comes with a large collection of
predefined messages (i.e., data types), if needed, one can also define new message types that
can be exchanged through topics. While this is possible, for most of the material covered
in this book, it will not be necessary to define new messages, and we will rely on existing
ones. Readers interested in exploring this possibility are referred to the ROS website or the
references at the end of this chapter.

2.4 Packages and Workspaces

Packages and workspaces are two terms often used in ROS. A package is a container of ROS
resources, such as source code, configuration files, compiled code, launch files, datasets, and
more. A workspace, on the other hand, is a directory (sometimes referred to as a location)
containing packages. Packages are a pervasive concept in ROS, and almost everything in

30 CHAPTER 2. INTRODUCTION TO ROS

topic Apublisher1 subscriber1

topic B...

publisherM

publisher1

subscriber1

topic C ...publisher1

subscriberN

subscriber1

topic D... ...

publisherM

publisher1

subscriberN

subscriber1

Figure 2.3: Topics in ROS can have all possible combinations of single/multiple publishers
and subscribers.

ROS lives within a package. Conceptually, a package is similar to a folder in the file system.
In a file system, it is up to the user to decide the name of a folder and its contents, but to
keep things organized, it makes sense to place files with some logical association into the
same folder. Similarly, in ROS, it is up to the developer to decide which packages should
be created and what should go inside. The general rule of thumb is to include in the same
package entities that are somehow related. Nevertheless, this is a subjective decision. A key
difference between packages and folders, however, is that while it is possible to create folders
inside other folders, it is not possible to create packages inside other packages. In addition
to keeping things organized, packages also solve another problem: name clashes. By placing
entities (nodes, messages, etc.) inside packages, we reduce the possibility of creating new
entities that have the same names as existing ones, thereby avoiding ambiguities (think of
namespaces in C++ or modules in Python). The fully qualified name of an entity is given
by the name of the package where it is found, and its name (recall that almost everything
must be inside a package). For example, the fully qualified name of a node is determined by

2.5. THE COMMAND LINE TOOL ROS2 31

the name of the package containing the node and the node’s name itself. Evidently, to avoid
name clashes, it is necessary to ensure that each package has a unique name. At the operating
system level, the contents of packages are stored inside directories. However, their internal
structure in terms of files and subdirectories is not arbitrary but must follow a prescribed
structure. To ensure that the required structure is followed, ROS provides utilities to create
them. When executed, the command will create a directory with the name of the package
and properly initialize it with subdirectories and required files. Details and examples will be
given in section 3.2.

As mentioned above, a workspace is a directory containing packages. Packages inside a
workspace can only be used after they are made visible by executing a script that adjusts the
paths accordingly — a process we will describe shortly. When using ROS, you typically use
at least two types of workspaces. The first is the underlay, i.e., the workspace that includes
all the standard packages shipped with the ROS 2 distribution. Before you can start using
ROS 2, you must make these standard packages available. Assuming you are using the bash
shell, this is done by executing the following command:3:

source /opt/ros/jazzy/setup.bash

This operation is also referred to as sourcing the setup. After executing this command, the
standard packages shipped with ROS become usable, but only in the shell where you executed
this command. If you open another shell, you will need to execute the command again in
that shell. For this reason, it is convenient to add the source command to the shell startup
scripts to ensure it is executed automatically every time you open a shell, without having
to manually run it. If you use the bash shell, this can be done by adding the command
to the file .bashrc. From now on, we will assume that the underlay has always been
sourced in every shell. In addition to the underlay, you will typically use other workspaces
containing packages with the code you are developing, or code provided by other parties.
These additional workspaces are called overlays. Overlays can be added to the underlay as
layers, i.e., you can add multiple overlays, with each newly added overlay being on top of
those added previously. To add a workspace as an overlay, we follow a process similar to the
one used to make the underlay visible, i.e., we source a file called local setup.bash, which
is automatically created when building a package. More details about creating workspaces
and making them visible will be provided in Section 3.1. It is important to note that if the
underlay or overlays are not sourced, the associated packages are not accessible and cannot
be used by ROS. Especially for beginners, this is a frequent cause of problems.

2.5 The command line tool ros2

Before creating nodes from scratch, it is useful to gain preliminary experience by executing
some of the simple applications included with ROS as part of the underlay.

To this end, in this section, we introduce the command-line tool ros2, which is used to
perform many fundamental operations with nodes, topics, packages, and more. The ros2

3If you installed ROS 2 in a location other than /opt/ros, or if you are using a version other than jazzy,
or if you use a different shell, you will need to adjust the command accordingly.

32 CHAPTER 2. INTRODUCTION TO ROS

command line tool is generally executed as follows:

ros2 <command> <positional arguments>

Here, command represents one of a predefined set of commands. The possible positional
arguments depend on the specific command used with ros2. For example, to list all available
packages, we use ros2 with the command pkg and the argument list:

ros2 pkg list

To obtain a list of all the possible commands accepted by ros2 we can type

ros2 -h

and to get additional help about a specific command we type the name of the command
followed by -h. For example, to obtain help about the run command (used to start ROS
executables), type

ros2 run -h

and this will print

usage: ros2 run [-h] [--prefix PREFIX] package_name executable_name ...

Run a package specific executable

positional arguments:

package_name Name of the ROS package

executable_name Name of the executable

argv Pass arbitrary arguments to the executable

optional arguments:

-h, --help show this help message and exit

--prefix PREFIX Prefix command, which should go before the executable.

Command must be wrapped in quotes if it contains spaces

(e.g. --prefix ’gdb -ex run --args’).

So, from the help screen we see that the basic syntax is as follows:

ros2 run pakage_name executable_name

where pakage name is the name of a package and executable name is the name of a node
in that package. All other components are optional, but the package and node name must
always be given. To illustrate how to use ros2, we can run a set of nodes creating all the
different scenarios displayed in figure 2.3. To do that, we use the package demo nodes cpp

that provides the nodes talker and listener. demo nodes cpp is part of the underlay, so

2.5. THE COMMAND LINE TOOL ROS2 33

no further action must be taken to make it visible to ros2. The node talker continuously
publishes a string to a topic called chatter. The string is also echoed to the screen and
includes a progressive integer to distinguish the successive messages being sent. The node
listener instead subscribes to the topic and prints to the screen the messages it receives.
To start the nodes, run the following commands in two separate terminal windows:

ros2 run demo_nodes_cpp talker

ros2 run demo_nodes_cpp listener

Note that the package name is the same, because both nodes are part of the same package.
The output displayed in the terminal window running the talker node will be similar to
the following

[INFO] [1671867496.759166671] [talker]: Publishing: ’Hello World: 1’

[INFO] [1671867497.759217757] [talker]: Publishing: ’Hello World: 2’

[INFO] [1671867498.759388264] [talker]: Publishing: ’Hello World: 3’

[INFO] [1671867499.758347144] [talker]: Publishing: ’Hello World: 4’

[INFO] [1671867500.758752912] [talker]: Publishing: ’Hello World: 5’

[INFO] [1671867501.758529495] [talker]: Publishing: ’Hello World: 6’

[INFO] [1671867502.759054233] [talker]: Publishing: ’Hello World: 7’

[INFO] [1671867503.758694266] [talker]: Publishing: ’Hello World: 8’

and the output for the listener will be something like

[INFO] [1671867581.507052479] [listener]: I heard: [Hello World: 20]

[INFO] [1671867582.506023418] [listener]: I heard: [Hello World: 21]

[INFO] [1671867583.500559769] [listener]: I heard: [Hello World: 22]

[INFO] [1671867584.499014372] [listener]: I heard: [Hello World: 23]

[INFO] [1671867585.496213494] [listener]: I heard: [Hello World: 24]

[INFO] [1671867586.494576127] [listener]: I heard: [Hello World: 25]

Each of the lines printed to the screen can be broken into four segments. The first ([INFO])
identifies the type of stream used to output the information (streams will be discussed in
a later section.) In this case [INFO] indicates that what follows is standard information
(i.e., it is not an error or a warning). The next numeric segment is the timestamp4 for the
message, followed by the node name and then followed by the message itself. This pattern for
messages printed to the screen is pervasive in ROS and will appear repeatedly in subsequent
examples.

It is instructive running the nodes multiple times, altering the order in which they are
started, or stopping one while the other is still running and then restarting. The output
printed shows the handshake between the two nodes. Then, it is also interesting start-
ing multiple instances of talker in separate shells with a single listener running. The

4The timestamp is shown using the Unix Epoch, i.e., seconds and nanoseconds since Jan 1st, 1970.

34 CHAPTER 2. INTRODUCTION TO ROS

listener output will be something like

[INFO] [1671867736.406355131] [listener]: I heard: [Hello World: 11]

[INFO] [1671867736.707731363] [listener]: I heard: [Hello World: 8]

[INFO] [1671867737.400471741] [listener]: I heard: [Hello World: 12]

[INFO] [1671867737.706266374] [listener]: I heard: [Hello World: 9]

[INFO] [1671867738.394589810] [listener]: I heard: [Hello World: 13]

[INFO] [1671867738.700404464] [listener]: I heard: [Hello World: 10]

[INFO] [1671867739.389693209] [listener]: I heard: [Hello World: 14]

[INFO] [1671867739.695336020] [listener]: I heard: [Hello World: 11]

[INFO] [1671867740.385000533] [listener]: I heard: [Hello World: 15]

confirming that the messages sent by the two instances of talker are queued together
through the same topic and retrieved by the single subscribed node. Finally, running multiple
instances of listener in separate windows will show that each node subsribed to a topic
receives its own copy of the messages (the reader is strongly encouraged to run these simple
examples.) These simple tests should be compared to Figure 2.3.

To further explore the functionalities of ros2, we will run turtlesim, a very simple
application with a GUI that is shipped with ROS. While turtlesim is a toy application
used to illustrate simple concepts, from a kinematic point of view the turtle is equivalent to
many floor cleaning robots that are commercially available, so some ideas developed while
interacting with the turtle have broader applicability. Like everything else, turtlesim is part
of a package. The name of the package containing the turtlesim application is turtlesim.
To see which executables are available inside the turtlesim package, we can use the following
command:

ros2 pkg executables turtlesim

The output will be as follows:

turtlesim draw_square

turtlesim mimic

turtlesim turtle_teleop_key

turtlesim turtlesim_node

Note the format of the output. The name of each executable is preceded by the name of
the package it belongs to. This is important, because, as we formerly stated, to run an
executable we have to specify both its name and the name of the package it belongs to.
At this point we can use the run command to start one of the executables included in the
package turtlesim.

For example, to run the executable turtlesim node we run the following command

ros2 run turtlesim turtlesim_node

When the command is executed, the following output is printed to the screen (each line
starts with INFO; the output has been split in the following for display convenience):

2.5. THE COMMAND LINE TOOL ROS2 35

[INFO] [1652849821.564382521] [turtlesim]: Starting turtlesim with node name

/turtlesim

[INFO] [1652849821.615942206] [turtlesim]: Spawning turtle [turtle1] at

x=[5.544445], y=[5.544445], theta=[0.000000]

and a window similar to the one shown in figure 2.4 appears. The first message indicates the
name assigned to the node (/turtlesim), and the second communicates that a turtle with
name turtle1 was created (spawned) with a given location (x = 5.544445, y = 5.544445)
and orientation (θ = 0). The name of the turtle is important because we could instantiate
multiple turtles in the same environment, and then control each of the separately by using
the name of the turtle when issuing motion commands.

Figure 2.4: The turtlesim simulator. Different ROS distributions may display different colors
for the background, or use a different icon for the turtle.

The turtle in the window can be moved around sending commands as we would do with
a real robot. To this end, open a new shell and run the executable turtle teleop key. This
can be started using the run command (note that we again must specify the name of the
package):

ros2 run turtlesim turtle_teleop_key

Following the instructions printed on the screen, the turtle can be moved using the arrows
on the keyboard, and also be rotated towards absolute orientations. At this point we have
two running nodes, and it is evident that information must be flowing from one node to
the other, because the keys stroke in the shell running turtle teleop key move the turtle
in the GUI that is run by a separate node that was started in a different terminal. This
information is indeed being passed through a topic. The commands node and topic can be
used to get information about nodes and topics. First, we can use the command node with
the option list to display all running nodes:

36 CHAPTER 2. INTRODUCTION TO ROS

ros2 node list

In this case it will print

/teleop_turtle

/turtlesim

confirming that the two nodes we started executing ros2 run are still running. More details
about this command will be given in Section 2.8. Next, we can use the topic command
with the option list to show all topics currently created in the system:

ros2 topic list

In this case the output will be

/parameter_events

/rosout

/turtle1/cmd_vel

/turtle1/color_sensor

/turtle1/pose

The list printed to the screen shows the names of the currently available topics. The topic
command accepts various positional parameters in addition to list, and is extensively used
when developing and debugging applications in ROS 2. For example, to determine the type
of messages exchanged through a topic we can use the type option for the topic command,
together with the name of the topic, e.g.,

ros2 topic type /turtle1/cmd_vel

prints the type of messages exchanged through the topic /turtle1/cmd vel and will print
the following output

geometry_msgs/msg/Twist

If we want to get additional information about a topic, we can use the info option, e.g.,

ros2 topic info /turtle1/cmd_vel

will print

Type: geometry_msgs/msg/Twist

Publisher count: 1

Subscription count: 1

In addition to the type information, this command shows that there is one publisher and one

2.5. THE COMMAND LINE TOOL ROS2 37

subscriber to the topic. One may correctly guess that the publisher node is /teleop turtle

and the subscriber node is /turtlesim. Indeed, when a key is pressed in the shell running
the /teleop turtle node, a message of type geometry msgs/msg/Twist is assembled and
published to the topic /turtle1/cmd vel. Another useful option for the topic command is
echo. This command subscribes to a topic and prints to the screen all messages received.
For example, if we type

ros2 topic echo /turtle1/cmd_vel

and then press some keys in the terminal running the turtle teleop key node, we will
see an output similar to the following (the specific values vary depending on which key is
pressed):

linear:

x: 2.0

y: 0.0

z: 0.0

angular:

x: 0.0

y: 0.0

z: 0.0

As we will learn later on, the output shows that the teloperation node is sending a command
velocity with a linear velocity of 2 along the x axis and no angular velocity, i.e., a pure
translation. Yet another option for topic is hz which determines and prints to the screen
the average publishing rate of a topic. For example, to get the publishing rate of the topic
/turtle1/pose we can run

ros2 topic hz /turtle1/pose

and the output will be like the following

average rate: 62.510

min: 0.015s max: 0.017s std dev: 0.00030s window: 64

average rate: 62.490

min: 0.015s max: 0.017s std dev: 0.00027s window: 127

average rate: 62.492

min: 0.015s max: 0.017s std dev: 0.00027s window: 19

showing that the average frequency is 62 Hz. This is useful because as we said earlier
topics are implemented with finite size queues, and when the queue is full older messages are
dropped to make space for the new ones. Knowing the average publishing rate of a topic may
help to make design decisions about the processing requested to a publisher or a subscriber.

ros2 features numerous commands, and each of them can accept various parameters and
options. Table 2.2 lists the commands accepted by ros2 together with a brief description.

38 CHAPTER 2. INTRODUCTION TO ROS

Options and parameters accepted by the commands can be obtained typing the name of
the command followed by the option --help. Not all these commands will be used in the
following.

Command Scope
action Command related to actions
bag Command related to recording and replaying data
component Command related to components
daemon Interaction with daemons
doctor Diagnostic functions
interface Information about interfaces (aka messages)
launch Runs a launch file
lifecycle Information about nodes lifecycle
multicast UDP packets management
node Retrieves information about running nodes
param Set/get parameters
pkg Information about packages and package creation
run Runs an executable from a package
security Secure communication management
service Command related to services
topic Information and interaction with topics

Table 2.2: Commands accepted by ros2

.

Remark 2.1. ros2 can locate executables inside packages and run them. Therefore, at the
operating system level paths have to be accordingly set. For nodes and packages part of the
standard distribution (like turtlesim) this is achieved by sourcing the setup, as discussed
while earlier on when we introduced the underlay. For packages and nodes developed by
the user, however, this is not the case, and manual operations are necessary. This is the
overlapping process we formerly mentioned.

Remark 2.2. For novices and seasoned users alike, it may be not easy to always remember
the names of nodes or topics, or to recall which executables are provided by a certain package.
To ease this task, ros2 features tab-completion, i.e., after part of a command or parameter is
typed, by pressing the TAB key it is possible to see all possible ways to complete a parameter
needed by a command. For example, if in the above example one types ros2 run turtlesim

and then hits TAB, the list of all executables in the turtlesim package is printed to the
screen. The reader is encouraged to experiment with this feature while exploring the ros2

command.

2.5.1 Running distributed ROS applications

In the previous example, it was implicitly assumed that both nodes, turtlesim node and
turtle teleop key, were run on the same host. In most robotics applications, this is the

2.6. THE ROS GRAPH 39

case, i.e., all ROS nodes are run on the same computer, which, in the case of mobile robots,
is typically found on the robot itself. However, this does not have to be the case, and it is
indeed possible to allocate the execution of different nodes on different hosts, as long as they
are connected to the same network. This is implemented through the concept of domain
IDs, which are associated with each host running ROS nodes. The domain ID is an integer,
and if not explicitly set, it defaults to 0. When a node starts, it announces its presence to
other nodes on the network and declares its domain ID. This announcement is automatically
handled by the underlying communication middleware (DDS), and the user does not need to
do anything about it. All nodes on the same network and sharing the same domain ID can
interact with each other5 as if they were on the same host. However, it is also possible to
separate them by changing the domain ID to different values. This can be done by setting
an environment variable called ROS DOMAIN ID.

2.6 The ROS Graph

As discussed earlier, a robot control system written in ROS 2 typically consists of multiple
nodes interacting with each other. Information among nodes is exchanged through topics,
actions, and services in a many-to-many fashion. Keeping track of these interactions is im-
portant for both design and debugging purposes. A natural way to model these interactions
is by considering that nodes and topics are organized in a graph data structure, with nodes
associated with vertices and topics, actions, and services associated with edges. This graph
is called the ROS graph. ROS comes with a tool called rqt graph that produces a graphical
representation of this graph. To run it, simply type:

rqt_graph

When you execute rqt graph, a GUI is launched, and by adjusting the controls, different
details are included or omitted, resulting in different graphs. Figure 2.5 shows the graph
obtained when only the turtlesim node node is running.

Figure 2.5: The ROS-oriented graph generated by rqt graph when only the executable
turtlesim node is running.

Figure 2.5 is obtained by selecting the option Nodes/Topics (active) and hiding dead
sinks, debug, and parameter topics. The figure shows one node (represented as an oval) and
one topic (displayed as a rectangle). The strings shown inside the shapes are the names of
the corresponding nodes and topics. The reader will note that the oval node displays a name
(/turtlesim) different from the one used to start it with ros2 run (turtlesim node). This
happens because the name assigned to a node when it starts does not need to be the same

5To be precise, they must also share the same quality of service, but this is an advanced topic that will
not be discussed here.

40 CHAPTER 2. INTRODUCTION TO ROS

as the executable that is run to start the node. In fact, the latter is typically fixed, whereas
the former can be arbitrarily changed in a variety of ways. The string inside the rectangle
representing the topic is the name of the topic itself, as one can easily verify by running the
command ros2 topic list. The oriented edge in the graph provides information about
which topics a node subscribes to and which topics it publishes to. In the figure, the arrow
from /turtle1/cmd vel to /turtlesim indicates that the node /turtlesim subscribes to
the topic /turtle1/cmd vel. Consistent with the fact that topics are unidirectional streams,
the ROS graph is oriented, i.e., its edges have a direction, as shown by the arrows between
topics and nodes. If we now, in a separate shell, run the command ros2 run turtlesim

turtle teleop key, the figure changes as shown in Figure 2.6 (note that the GUI will need
to be refreshed after a new node is started).

Figure 2.6: The oriented ROS graph generated by rqt graph while both turtlesim node

and turtle teleop key are running.

We now see that there are two nodes running (/turtlesim and /teleop turtle), as
well as two new topics associated with an action (as indicated by their names—these will be
ignored for now). The arrows connecting topics and nodes indicate the flow of messages. As
we anticipated when we first ran the turtlesim demo, the arrows in the figure show that
/teleop turtle publishes to the topic /turtle1/cmd vel, and /turtlesim subscribes to
it.

rqt graph can be configured to display a wide array of information, and the reader is
encouraged to explore its features to experiment with its possibilities. If a problem arises
when developing or running a ROS application, executing rqt graph is usually one of the
first steps to ensure that all necessary nodes are running and that the information flow is
correctly set up between the various nodes, topics, actions, and services.

2.7 Inspecting topics and messages

Topics and messages are two core components of any ROS 2 application, and it is of-
ten useful to use ros2 to obtain information about them. To this end, we run ros2

in a separate shell after the relevant executables have already been started. As we dis-
cussed in a previous section, ros2 topic list prints to the screen the list of active top-
ics. If the turtlesim example is running, ros2 topic list prints only the names of the
topics. To gather additional information, two additional options can be added: -t (or,
equivalently, --show-types) and --include-hidden-topics. For example, if after starting
turtlesim node and turtle teleop key, we run

ros2 topic list -t

we get the following output, where now, after each topic, we see its type.

2.7. INSPECTING TOPICS AND MESSAGES 41

/parameter_events [rcl_interfaces/msg/ParameterEvent]

/rosout [rcl_interfaces/msg/Log]

/turtle1/cmd_vel [geometry_msgs/msg/Twist]

/turtle1/color_sensor [turtlesim/msg/Color]

/turtle1/pose [turtlesim/msg/Pose]

If we instead run ros2 topic list --include-hidden-topics the output will be

/parameter_events

/rosout

/turtle1/cmd_vel

/turtle1/color_sensor

/turtle1/pose

/turtle1/rotate_absolute/_action/feedback

/turtle1/rotate_absolute/_action/status

The two new hidden topics listed at the end are associated with the action rotate absolute,
which we have not yet discussed (see also Figure 2.6). Actions are another method for ex-
changing information between nodes that, under the hood, rely on topics; hence the presence
of the hidden topics. Alternatively, as we have previously seen in Section 2.5, if we want to
determine the type of a single topic, we can use the command ros2 topic info followed
by the name of the topic, e.g., ros2 topic info /turtle1/cmd vel. This command will
print the type of the topic, as well as the number of nodes publishing to and subscribed to
the topic, but it does not indicate which nodes are connected to the topic. This information
can be obtained by adding the -v (verbose) option. If we type

ros2 topic info /turtle1/cmd_vel -v

the output will be (the numbers following GID, Topic type hash, and QoS will be different
and can be ignored for the time being):

Type: geometry_msgs/msg/Twist

Publisher count: 1

Node name: teleop_turtle

Node namespace: /

Topic type: geometry_msgs/msg/Twist

Topic type hash: RIHS01_9c45bf16fe0983d80e3cfe750d6835843d265a9a6c46<truncated>

Endpoint type: PUBLISHER

GID: 01.0f.ff.89.c9.14.c0.0f.00.00.00.00.00.00.14.03

QoS profile:

Reliability: RELIABLE

History (Depth): UNKNOWN

Durability: VOLATILE

42 CHAPTER 2. INTRODUCTION TO ROS

Lifespan: Infinite

Deadline: Infinite

Liveliness: AUTOMATIC

Liveliness lease duration: Infinite

Subscription count: 1

Node name: turtlesim

Node namespace: /

Topic type: geometry_msgs/msg/Twist

Topic type hash: RIHS01_9c45bf16fe0983d80e3cfe750d6835843d265a9a6c46<truncated>

Endpoint type: SUBSCRIPTION

GID: 01.0f.ff.89.97.14.2a.68.00.00.00.00.00.00.1d.04

QoS profile:

Reliability: RELIABLE

History (Depth): UNKNOWN

Durability: VOLATILE

Lifespan: Infinite

Deadline: Infinite

Liveliness: AUTOMATIC

Liveliness lease duration: Infinite

In this case, we see additional details about the nodes publishing to and subscribing to the
topic, such as their node name as well as their namespace. The command ros2 topic list

also accepts other options that can be explored by typing ros2 topic list -h.

To get more details about the structure of messages exchanged through a topic, the
command ros2 interface can be used. In a previous example, we saw that the type of the
topic /turtle1/cmd vel is geometry msgs/msg/Twist. To see the structure of this message,
i.e., which information it carries, we can run the command

ros2 interface show geometry_msgs/msg/Twist

The output will be

This expresses velocity in free space broken into its linear and angular parts

Vector3 linear

float64 x

float64 y

float64 z

Vector3 angular

float64 x

float64 y

float64 z

The first line starting with # is obviously a comment, while the rest shows that a Twist

message includes a linear and an angular component, and that each of them is an instance of

2.7. INSPECTING TOPICS AND MESSAGES 43

the message geometry msgs/msg/Vector3. (We know that Vector3 comes from the same
package as Twist because the name of the package is not provided before Vector3.) The
output shows the components of a message of type Vector3, but this can be further inspected
with the command

ros2 interface show geometry_msgs/msg/Vector3

and we get

This represents a vector in free space.

This is semantically different than a point.

A vector is always anchored at the origin.

When a transform is applied to a vector, only the rotational component is

applied.

float64 x

float64 y

float64 z

where we see that Vector3 has three components, each of which is a floating point number
represented on 64 bits (float64). Like structures in C++, messages are ultimately com-
positions of elementary data types, and such compositions can be recursively combined to
obtain more complex messages. In the example we just saw, Twist includes two components,
i.e., linear and angular. Both are messages of type Vector3 and each Vector3 is made of
three float64.

Observe that when we indicate a message, we must specify its fully qualified name (e.g.,
geometry msgs/msg/Vector3) and not just Vector3. This is to avoid name clashes, as there
could be multiple messages called Vector3 defined in different packages. This approach,
based on namespaces, will be further discussed later on. As previously suggested, since it may
not always be easy to remember which package a message belongs to or which messages are
provided by a package, pressing the TAB key while typing the command provides suggestions
for possible completions.

Having discovered the structure of messages of type geometry msgs/msg/Vector3, we
can now use ros2 topic pub to manually publish a message to this topic. This command
is useful during debugging to send specific messages through a topic from the command line.

For example, if we type (on a single line)

ros2 topic pub /turtle1/cmd_vel geometry_msgs/msg/Twist

’{linear: {x: 0.1,y: 0.0,z: 0.0}, angular: {x: 0.0,y: 0.0,z: 0.0}}’

we will send messages of type geometry msgs/msg/Twist to the topic /turtle1/cmd vel.
Each message will have the linear and angular values specified in the YAML string, i.e.,
a linear velocity of 0.1 along the x direction6 and no angular velocities. The reader should

6The x axis in this case referes to the direction pointed by the turtle head. This will be clarified in chapter

44 CHAPTER 2. INTRODUCTION TO ROS

observe the correspondence between the parameters passed to ros2 topic pub and the
structure of the message, including its components linear and angular. The message will
be repeatedly sent every second until the command is stopped. The command pub accepts
many options, and the reader is referred to the documentation for more details. Among
these, we mention -1 (or equivalently --once) to publish just a single message and then
exit, and -t (or --times) followed by an integer N to send the message N times.

2.7.1 Understanding the recursive structure of a message

It was previously stated that ROS messages can be thought of as a C++ struct. This is
not just an analogy, because, as we will see later, messages are indeed stored in C++ ROS
programs as instances of structures. Consequently, a message may include both elementary
data types (integers, floats, etc.) and other messages. This is similar to what happens with
user-defined structures in C++, where each field has a type that is either an elementary
data type or a user-defined data type, such as another structure. These definitions can be
recursive, allowing one to nest a structure inside another structure, and so on. When ros2

interface show is used to inspect the structure of a message, the type and name of each
field are printed. If the type is not an elementary data type (i.e., it is a message), then
we can call the command multiple times until we reach only elementary data types. In the
previous subsection, we used ros2 interface show to explore and understand the structure
of a message whose subcomponents were from the same package (geometry msgs). In this
section, we take a deeper dive and show how to recursively investigate the structure of a
message in a more complex scenario. For example, if we run

ros2 interface show geometry_msgs/msg/PoseWithCovarianceStamped

we get the following output:

This expresses an estimated pose with a reference coordinate frame and

timestamp

std_msgs/Header header

builtin_interfaces/Time stamp

int32 sec

uint32 nanosec

string frame_id

PoseWithCovariance pose

Pose pose

Point position

float64 x

float64 y

float64 z

Quaternion orientation

float64 x 0

4 when we will introduce robot kinematics.

2.7. INSPECTING TOPICS AND MESSAGES 45

float64 y 0

float64 z 0

float64 w 1

float64[36] covariance

We observe that the message contains two other messages called header and pose. header is
a message of type std msgs/Header, while pose is a message of type PoseWithCovariance.
Note that Header is preceded by std msgs, whereas PoseWithCovariance is not preceded by
anything. This means that Header is from the package std msgs, while PoseWithCovariance
belongs to the same package as PoseWithCovarianceStamped, i.e., geometry msgs. This is
a general rule: if the name of the message is not preceded by the name of the package,
it means that it belongs to the same package as the message containing it. Note that the
output already shows the recursive structure of header and pose. However, we can use

ros2 interface show std_msgs/msg/Header

to inspect just the structure of a message of type std msgs/Header, which is

Standard metadata for higher-level stamped data types.

This is generally used to communicate timestamped data

in a particular coordinate frame.

Two-integer timestamp that is expressed as seconds and nanoseconds.

builtin_interfaces/Time stamp

int32 sec

uint32 nanosec

Transform frame with which this data is associated.

string frame_id

We see that a message of type std msgs/Header has two fields called stamp and frame id.
stamp is a message of type builtin interfaces/Time while frame id is of type string.
The type of frame id is elementary, so no further recursive inspection is needed. Instead,
we could use

ros2 interface show builtin_interfaces/msg/Time

for determining the structure of stamp and get

Time indicates a specific point in time, relative to a clock’s 0 point.

The seconds component, valid over all int32 values.

int32 sec

The nanoseconds component, valid in the range [0, 10e9).

uint32 nanosec

46 CHAPTER 2. INTRODUCTION TO ROS

sec and nanosec are of types int32 and uint32, so no further calls to ros2 interface are
needed to determine the full structure of header. A similar process could be followed to un-
veil the structure of PoseWithCovariance. Observe that even though ros2 interface show

already breaks down the recursive structure of a message (e.g., PoseWithCovarianceStamped),
it is nevertheless useful to call ros2 interface show on each message type to print out the
comments describing the meaning of each field.

If one wants to send or receive a message of type PoseWithCovarianceStamped, an
instance of the struct geometry msgs::msg::PoseWithCovarianceStamped should be used.
The following code snippet shows how to hypothetically initialize part of it.

Listing 2.1: Accessing Message Subfields

1 geometry msgs : : msg : : PoseWithCovarianceStamped pwcs ;
2
3 pwcs . header . stamp . s ec = 2 ;
4 pwcs . pose . pose . p o s i t i o n . x = 3 . 4 ;
5 pwcs . pose . pose . o r i e n t a t i o n .w = 1 ;
6 pwcs . pose . covar iance [3] = 0 ;

The important aspect is that the output of ros2 interface show is sufficient to properly
instantiate and initialize the message, without having to read the header file where the
corresponding C++ structure is defined. In fact, such header file is autogenerated by an
intermediate program and not meant to be read by the programmer.

Remark 2.3. The previous examples have shown a peculiar aspect of how message names
are specified. For example, both PoseWithCovarianceStamped and PoseWithCovariance

are from the geometry msgs package. Therefore, when referring to PoseWithCovariance

from within the definition of PoseWithCovarianceStamped, we do not have to specify the
package name. Instead, since header is of type std msgs/Header, i.e., it is a message from
the package std msgs, we need to specify both the name of the message and the name of
the package. However, when we use ros2 interface to inspect the structure of a message,
observe how messages are located in a msg folder within the package. That is, we must
use the command ros2 interface show std msgs/msg/Header and not ros2 interface

show std msgs/Header (the latter will result in an error).

2.8 Inspecting nodes

Another command useful for debugging ROS applications is ros2 node. For example, if we
run

ros2 node list

we obtain the list of all currently running nodes. Assuming the turtlesim example is still
up and running, the output would be:

2.8. INSPECTING NODES 47

/teleop_turtle

/turtlesim

The command ros2 node info instead prints detailed information about a running
node. For example the command

ros2 node info /turtlesim

produces the following output:

/turtlesim

Subscribers:

/parameter_events: rcl_interfaces/msg/ParameterEvent

/turtle1/cmd_vel: geometry_msgs/msg/Twist

Publishers:

/parameter_events: rcl_interfaces/msg/ParameterEvent

/rosout: rcl_interfaces/msg/Log

/turtle1/color_sensor: turtlesim/msg/Color

/turtle1/pose: turtlesim/msg/Pose

Service Servers:

/clear: std_srvs/srv/Empty

/kill: turtlesim/srv/Kill

/reset: std_srvs/srv/Empty

/spawn: turtlesim/srv/Spawn

/turtle1/set_pen: turtlesim/srv/SetPen

/turtle1/teleport_absolute: turtlesim/srv/TeleportAbsolute

/turtle1/teleport_relative: turtlesim/srv/TeleportRelative

/turtlesim/describe_parameters: rcl_interfaces/srv/DescribeParameters

/turtlesim/get_parameter_types: rcl_interfaces/srv/GetParameterTypes

/turtlesim/get_parameters: rcl_interfaces/srv/GetParameters

/turtlesim/list_parameters: rcl_interfaces/srv/ListParameters

/turtlesim/set_parameters: rcl_interfaces/srv/SetParameters

/turtlesim/set_parameters_atomically:

rcl_interfaces/srv/SetParametersAtomically

Service Clients:

Action Servers:

/turtle1/rotate_absolute: turtlesim/action/RotateAbsolute

Action Clients:

The output is divided into three sections: one for topics, one for services, and one for
actions. Each section contains two subsections. Subscribers and Publishers list the
topics to which the node subscribes or publishes. For each topic, both the name (e.g.,
/turtle1/pose) and the type (e.g., turtlesim/msg/Pose) are displayed. Similarly, the
subsections Service Servers and Service Clients list the services that the node provides
or uses. Finally, Action Servers and Action Clients list the actions provided by the node
and those it uses. As with topics, for each service and action, the command also lists the

48 CHAPTER 2. INTRODUCTION TO ROS

associated type.

2.9 Services

Besides message passing through topics, ROS provides two other ways for nodes to interact
with each other: services and actions. As suggested by the name, services implement a
client/server computation paradigm through a call/response communication model to per-
form remote procedure calls. A server node provides a service that can be requested by
multiple client nodes, but each service can be provided by only one server node. When a
client node initiates the service call, a function implementing the service is executed by a
different server node. The server node typically receives some parameters associated with
the request message and may return results to the client via a response message. In general,
both the request and the response may also be empty if there are no parameters passed or
values returned. Figure 2.7 illustrates the interaction between a client and a server. The
request and response are separate messages exchanged between the client and the server. As
with topics, the type of this structure is said to be the type of the service.

Service Client Service Server

Request

Response

Figure 2.7: Information exchange between client and server in a ROS service. Note that
request and response are two separate messages exchanged between client and server, and
that either of them could be empty.

The response is provided to the client only after the server completes the requested com-
putation, but the exchange is not blocking, i.e., after sending a request through a call, the
client can wait for the response or perform other tasks before waiting for the response.7

Information between clients and servers is exchanged only during this request/response pro-
cess. Once this interaction is completed, i.e., when the server provides its response, the
communication stops. Note that, as with topics, interactions between clients and servers
are, in general, many-to-many. This means that a client may call a service multiple times
and may request services provided by different servers. Likewise, a server may respond to
requests from multiple clients. Services are generally well suited for operations that take
a limited amount of time to complete, e.g., reconfiguring a sensor or processing an image.
Similarly to what we have seen for topics, ROS comes with a set of predefined services, but
programmers can also define new ones.

Simple examples of services and actions will be presented in this chapter, while more
detailed examples will be discussed in greater depth in Chapter 5.

7This is a notable difference from ROS 1.

2.10. INTERACTING WITH SERVICES 49

2.10 Interacting with services

The command-line tool ros2 provides dedicated commands to retrieve information and in-
teract with services provided by nodes. As in the previous examples, in the following we
assume that the node turtlesim node is running. The command

ros2 service list

prints to the screen the list of available service. Its output is

/clear

/kill

/reset

/spawn

/turtle1/set_pen

/turtle1/teleport_absolute

/turtle1/teleport_relative

/turtlesim/describe_parameters

/turtlesim/get_parameter_types

/turtlesim/get_parameters

/turtlesim/list_parameters

/turtlesim/set_parameters

/turtlesim/set_parameters_atomically

As for the command ros2 topic, if we add the option -t the output will include also the
type of message associated with the service, i.e.,

ros2 service list -t

will produce

/clear [std_srvs/srv/Empty]

/kill [turtlesim/srv/Kill]

/reset [std_srvs/srv/Empty]

/spawn [turtlesim/srv/Spawn]

/turtle1/set_pen [turtlesim/srv/SetPen]

/turtle1/teleport_absolute [turtlesim/srv/TeleportAbsolute]

/turtle1/teleport_relative [turtlesim/srv/TeleportRelative]

/turtlesim/describe_parameters [rcl_interfaces/srv/DescribeParameters]

/turtlesim/get_parameter_types [rcl_interfaces/srv/GetParameterTypes]

/turtlesim/get_parameters [rcl_interfaces/srv/GetParameters]

/turtlesim/list_parameters [rcl_interfaces/srv/ListParameters]

/turtlesim/set_parameters [rcl_interfaces/srv/SetParameters]

/turtlesim/set_parameters_atomically

[rcl_interfaces/srv/SetParametersAtomically]

To get information about the type of a single service, one can run the command ros2

50 CHAPTER 2. INTRODUCTION TO ROS

service type <servicename>, where <servicename> is the name of an available service.
Similarly to what we have seen for topics, the command ros2 interface can be used to
inspect the structure of the input and output of a service. The syntax is exactly the same.
For example, if we type

ros2 interface show turtlesim/srv/Spawn

we get the output8

float32 x

float32 y

float32 theta

string name #Optional. A unique name will be created and returned if this is

empty

string name

This service, when called, will spawn a new turtle in the GUI. The three dashes in the
output --- separate the request from the response (see Figure 2.7). Each of the two parts
is interpreted similarly to what we saw in Section 2.7.1, where we analyzed the structure of
messages. In this example, we see that the request message includes four fields. The first two
are the coordinates where the turtle will be spawned, whereas the third is the orientation
(heading). All of these are input parameters of type float32. The fourth optional parameter
is the name to be given to the turtle being spawned, represented by a string. The structure
of the response, starting after ---, shows that the service returns a message consisting of a
single string called name. This is the name assigned to the turtle being created. If the input
parameter name is provided, then the output parameter name will be the same. However,
if the input name is not given, the server will generate one and return it as part of the
response. It is possible to call a service from the command line using the command ros2

service call. This command takes three additional positional parameters. The first is the
name of the service to call, the second is the type of the service, and the last is the request
encoded as a YAML string. Note that if a service accepts no input parameters, then the
request is empty, and this last parameter is omitted. If we want to call the Spawn service,
we can then give the following command (typed all in one line):

ros2 service call /spawn turtlesim/srv/Spawn "{x: 1, y: 1, theta: 0, name:

’T1’}"

and the output on the shell will be

requester: making request: turtlesim.srv.Spawn_Request(x=1.0, y=1.0, theta=0.0,

name=’T1’)

8Note that the naming follows the same structure used for messages, i.e., the definition of services is
found inside the srv folder in the package.

2.10. INTERACTING WITH SERVICES 51

response:

turtlesim.srv.Spawn_Response(name=’T1’)

In this case since we provided the input parameter name as part of the request, the server
included in the response the same name, i.e., T1. If we instead spawn another turtle without
providing a name:

ros2 service call /spawn turtlesim/srv/Spawn "{x: 2, y: 5, theta: 0.6}"

the output will be

requester: making request: turtlesim.srv.Spawn_Request(x=2.0, y=5.0, theta=0.6,

name=’’)

response:

turtlesim.srv.Spawn_Response(name=’turtle2’)

where now we see that the server created a new unique name for the new turtle being spawned
and returned it as part of the response. Figure 2.8 shows the turtlesim window after the two
additional turtles have been spawned.

Figure 2.8: The turtlesim simulator after two more turtles have been spawned using the
/spawn service.

If we now run the command ros2 topic list the output will be

/T1/cmd_vel

/T1/color_sensor

/T1/pose

/parameter_events

52 CHAPTER 2. INTRODUCTION TO ROS

/rosout

/turtle1/cmd_vel

/turtle1/color_sensor

/turtle1/pose

/turtle2/cmd_vel

/turtle2/color_sensor

/turtle2/pose

The meaning of this output is straightforward to interpret. Each turtle is associated with
three topics, each prefixed with the name of the turtle. More specifically, the name assigned
to the turtle defines its namespace to keep each turtle’s set of entities separate from the
others. As expected, each instance of the turtle subscribes to its own cmd vel topic and
publishes to its own color sensor and pose topics. Even though we now have three turtles
in the simulator, we still have just one node running, as can be verified by running ros2

node list. The node /turtlesim manages the three instances we have created. To move
the turtle T1, we must publish to /T1/cmd vel, whereas publishing to /turtle2/cmd vel

will move the turtle called turtle2. As a final exercise with services, we can use the service
called /kill to remove one of the turtles. We have previously seen that the type of this
service is turtlesim/srv/Kill, so to learn more about it, we use the command

ros2 interface show turtlesim/srv/Kill

we get the output

string name

This means that the request to the service accepts one string parameter called name and the
response is empty. As it may be guessed, name is the name of the turtle we want to remove.
To remove the turtle called T1 we can then call the service as follows

ros2 service call /kill turtlesim/srv/Kill "{name: ’T1’}"

and the output will be

requester: making request: turtlesim.srv.Kill_Request(name=’T1’)

response:

turtlesim.srv.Kill_Response()

showing that the response is empty because the server did not return any value. However,
you can verify that in response to the service call one of the turtles has been removed from
the GUI.

2.11. ACTIONS 53

2.11 Actions

Actions are the third and final interaction method offered by ROS and are built on top of
topics and services. Informally speaking, actions can be seen as services that may take a long
time to complete and therefore require a continuous flow of information to be passed back to
the client to inform it about progress toward the goal. A classic example of a task that could
be implemented as an action is navigation to a desired goal location. As it may take quite
some time to complete the assignment, navigation could be implemented as an action, and
the node in charge of moving the robot to the goal location would provide regular feedback
to the node that initiated the action to inform it about its progress toward its objective—or
lack thereof. Informed by the feedback, the node that initiated the action could let the
action continue until it is completed or cancel it, i.e., request to stop it halfway through
its execution. Similar to services, actions use a client/server approach whereby a server
node may offer one or more actions that can be used by one or more client nodes. However,
unlike services, actions can be preempted, i.e., the client that initiates an action can decide to
interrupt its execution before it is completed. Figure 2.9 illustrates the information exchange
involved in an action.

Action Client Action Server

Goal

Feedback

Result

Figure 2.9: Information exchange between client and server in a ROS action. Goal, and
results are service calls, while feedback is sent through a topic.

The three components involved in an action are a goal service call (from the client to
the server), feedback messages from the server to the client through a topic, and a result
service call (also from client to server) through which results are obtained. The interaction
is as follows: The client submits a goal service call to the server, which responds with
an acknowledgment that the request has been received. The server then initiates some
computation to fulfill the goal request and generates a stream of intermediate feedback
messages through a topic. The client can also submit a result service call, but its response
may be delayed, as it will be communicated only when the action terminates. Based on
the received feedback, the client may decide to continue to wait for the action to terminate
and provide the response to the result service call, or it may decide to end the action, for
example, if progress toward completion is too slow.

2.12 Interacting with actions

We now show how ros2 can be used to get information about actions and initiate them. As
for services, we rely on the turtlesim package for some very simple cases. To this end, in

54 CHAPTER 2. INTRODUCTION TO ROS

the following we assume that the nodes turtlesim and turtlesim teleop are running. To
get a list of available actions we use the command

ros2 action list

which will produce the output

/turtle1/rotate_absolute

showing that there is just one action available. This action, when executed, will rotate the
turtle towards a desired absolute orientation. As for services, if we add the option -t we can
get more detailed information about the action:

ros2 action list -t

produces the output

/turtle1/rotate_absolute [turtlesim/action/RotateAbsolute]

Next, we can display the structure of the action using

ros2 interface show turtlesim/action/RotateAbsolute

which will produce the output

The desired heading in radians

float32 theta

The angular displacement in radians to the starting position

float32 delta

The remaining rotation in radians

float32 remaining

As for actions, the output is divided into segments, but this time, as shown in Figure 2.9,
there are three segments. The first is the goal (the desired final heading), the second is
the result (the actual displacement obtained from the starting heading), and the last is
the feedback (the remaining rotation, which should decrease to 0 if the action is making
progress). To initiate an action request using ros2, we can use the following command (all
in one line):

ros2 action send_goal /turtle1/rotate_absolute

turtlesim/action/RotateAbsolute ’{theta: 0.5}’

whereby we use send goal command followed by the action name, the action type, and a
YAML string specifying the desired goal. This is essentially the same format used for initiate

2.13. ROS LAUNCH FILES 55

a service request. The output will be similar to the following

Waiting for an action server to become available...

Sending goal:

theta: 0.5

Goal accepted with ID: d3f27d18f60f45b18e880f6c4d37a36e

Result:

delta: -0.46400007605552673

Goal finished with status: SUCCEEDED

and shows that the action server first acknowledges the goal request, and then provides both
the result (delta) as well as a final status. In this case, the feedback, although provided by
the action server, is not displayed. This can be changed by adding the option -f.

More examples will be introduced in Chapter 6. As with topics and services, one can
rely on predefined actions or define new ones.

2.13 ROS Launch Files

As previously stated, a ROS application consists of multiple interacting nodes. So far, when
we needed to run multiple nodes simultaneously, we manually started each one from a sepa-
rate shell. However, this approach does not scale well as the application grows in complexity
and requires multiple nodes to run, each potentially with its own set of parameters. In fact,
a typical ROS application runs multiple executables and can easily initiate more than a
dozen nodes. To address this issue, ROS uses launch files. A launch file is a script that,
when executed by ROS, starts multiple nodes (hence the name). As soon as an application
includes more than a couple of nodes, creating a launch file to manage them becomes almost
essential. To start a complex application, we create a launch file containing the details of all
the nodes to be executed, and then we simply use ros2 to run the launch file and start all
the nodes at once.

In ROS 2, launch files can be written in Python, XML, or YAML9. While Python-based
launch files offer the highest flexibility and are often preferred for complex applications, they
are also more complex to write. For now, we will use the simpler, albeit less flexible, XML
format. Python launch files will be introduced in Section 5.9.

Typically, launch files are placed inside packages, but ros2 can also execute a launch file
directly by providing its full path. (This is one of the few cases where a ROS resource can
be located outside a package.) To run a launch file inside a package, we use the following
syntax, which is similar to running a node:

ros2 launch <packagename> <launchfilename>

9This is in contrast to ROS 1, where launch files were only written in XML.

56 CHAPTER 2. INTRODUCTION TO ROS

If a launch file is located inside a package, it must be placed in a folder called launch – more
details will be provided in chapter 3. To instead run a launch file using the the full path, we
use the following form

ros2 launch <launchfilename>

where launchfilename is the path to the file. We start by creating a simple launch file
that runs two talker nodes and one listener node, similarly to what we did in section 2.5.
The XML code for the launch file is displayed in listing 2.2.

Listing 2.2: Simple launch file

1 <launch>
2 <node pkg=” demo nodes cpp ” exec=” t a l k e r ” name=” talkerA ” />
3 <node pkg=” demo nodes cpp ” exec=” t a l k e r ” name=” ta lkerB ” />
4 <node pkg=” demo nodes cpp ” exec=” l i s t e n e r ” />
5 </ launch>

As expected, the contents of the launch file must be enclosed within the <launch> section.
Each node tag specifies a node to be executed. For each node, we provide the package name
(pkg), the name of the executable (exec), and the name to assign to the node (name). Notice
that each instance of talker is assigned a unique name. On the other hand, the listener

node is not explicitly given a name, so ROS will automatically assign a default one. To
execute the launch file we simply type

ros2 launch topics.launch.xml

where we assumed that the file is called topics.launch.xml and that the file is located10

in the same folder where we executed ros2. Once run, the output streams produced by the
three nodes all go to the same shell where ros2 was run. The output will look similar to the
following:

[talker-1] [INFO] [1694098997.952] [talkerA]: Publishing: ’Hello World: 1’

[talker-2] [INFO] [1694098997.952] [talkerB]: Publishing: ’Hello World: 1’

[listener-3] [INFO] [1694098997.953] [listener]: I heard: [Hello World: 1]

[listener-3] [INFO] [1694098997.953] [listener]: I heard: [Hello World: 1]

[talker-1] [INFO] [1694098998.952] [talkerA]: Publishing: ’Hello World: 2’

[talker-2] [INFO] [1694098998.952] [talkerB]: Publishing: ’Hello World: 2’

[listener-3] [INFO] [1694098998.952] [listener]: I heard: [Hello World: 2]

where we can see the different names assigned to the instances of talker.

The structure of a launch file can be quite complex, as it may include not only details
about the nodes to be launched but also configurations for topic remapping, parameter
settings, and other advanced features we have not yet introduced. For a comprehensive

10The file topics.launch.xml is found in the unsorted folder in the MRTP GitHub.

2.14. INTERACTING WITH ROS USING RQT 57

overview, the reader is encouraged to consult the official documentation. Here, we focus on
providing the essential information needed to develop simple launch files.

As a further example, the example in listing 2.3 shows how to run both turtlesim node

and turtle teleop key. Recall that turtle teleop key controls the turtle in the GUI
by reading the keys pressed on the keyboard. Therefore, it is convenient to start the two
nodes in two separate shells; otherwise, the output of turtlesim ends up in the same
shell where the input is provided. To separate the two, we start them in two separate
terminal windows. This is accomplished11 using the launch-prefix option in the node tag
when launching turtle teleop key. This way, turtlesim is executed in the same terminal
window where ros2 launch is run, while a new terminal window is started explicitly to run
turtle teleop key.

Listing 2.3: Turtlesim launch file

1 <launch>
2 <node pkg=” t u r t l e s i m ” exec=” tur t l e s im node ” name=” t u r t l e s i m ” />
3 <node pkg=” t u r t l e s i m ” exec=” t u r t l e t e l e o p k e y ” name=” t e l e o p k e y ”
4 launch−p r e f i x=”gnome−t e rmina l −−” />
5 </ launch>

2.14 Interacting with ROS using rqt

In this chapter, we have seen how the ros2 command-line tool can be used to interact with
different components of the ROS ecosystem. ros2, with its numerous commands, can be
used to run nodes, inspect data structures, interact with nodes, and much more. While the
command-line interface is very flexible and allows for extensive customization of command
execution, it may not always be easy to remember all commands and parameters. To mitigate
these difficulties, ROS is distributed with an application called rqt, which allows many of
these tasks to be performed using a graphical user interface. To start it, simply type

rqt

Figure 2.10 shows how the application appears if it is run together with the node
turtlesim node.

rqt is a graphical user interface that provides a collection of tools for visualization,
debugging, and introspection of code written in ROS. rqt allows the user to monitor and
interact with nodes, topics, services, and parameters similarly to what can be done with ros2,
but in a much more intuitive way (albeit less flexible). rqt supports various functionalities
such as plotting data, visualizing node graphs, inspecting logs, and managing configurations.
rqt is built using a plugin architecture that also allows users to define new modules that
can be connected to it.

11This example assumes you are using the GNOME desktop manager and the associated terminal emulator
gnome-terminal. If you use a different desktop manager, you will need to change that.

58 CHAPTER 2. INTRODUCTION TO ROS

Figure 2.10: rqt window showing the topics found when turtlesim node is run.

2.15 Plotting data with plotjuggler

When developing and debugging ROS code, it is often necessary to analyze the data coming
from sensors or other subsystems. This data can often be thought as a time series and it
is often useful to visualize multiple data series at the same time. To ease this task, ROS is
includes a tool called plotjuggler. plotjuggler is a powerful and versatile data visual-
ization tool that allows the user to efficiently plot and analyze time-series data in real-time
or from recorded logs. plotjuggler uses a drag-and-drop interface, customizable layouts,
and advanced filtering and transformation capabilities, allowing the user to manipulate and
inspect data with precision. It supports multiple data formats, including ROS topics and
bag files. To start it, simply type

ros2 run plotjuggler plotjuggler

Figure 2.11 shows an example of how plotjuggler can be used to visualize how the
content of messages sent over a topic changes over time. More precisely, assuming that the
turtlesim node node is running and that it is being moved using turtle teleop key, the
plots show how the x and y components of the turtle’s position vary over time. This infor-
mation is obtained from the topic /turtle1/pose, which is of type turtlesim/msg/Pose.

The reader is referred to the online documentation and to the numerous video tutorials
that can be found on the web to learn how to use it.

Further Reading

A general overview of ROS 2 can be found in [33]. The ROS official website docs.ros.org

also features numerous tutorials about the concepts presented in this chapter. As mentioned

docs.ros.org

2.15. PLOTTING DATA WITH PLOTJUGGLER 59

Figure 2.11: plotjuggler window showing how the x and y coordinates from the topic
/turtle1/pose vary over time when the turtle is controlled from the keyboard.

in the foreword, there are numerous books about ROS2, but they often assume preliminary
knowledge of robotics fundamentals and do not provide in depth coverage of theoretical
concepts. Among these we find [45] and [26].

60 CHAPTER 2. INTRODUCTION TO ROS

Chapter 3

Introduction to programming in ROS

3.1 Building a ROS 2 application

A ROS 2 application typically consists of multiple interacting nodes from different packages.
Some of these may be part of the standard distribution (underlay), some may be provided
by third parties, and others may be written by the developer. Each package, in turn, may
include multiple source files. As with other complex software applications, there are often
dependencies between packages that must be satisfied before a package can be built or used.
When multiple packages and workspaces are iteratively modified during development, it is
convenient to use tools to streamline some of these operations without having to manually
check all the dependencies.

To this end, ROS 2 relies on a build tool and a build system. The build system builds a
single package and processes all source files inside a package. While ROS 2 supports multiple
build systems, in the following, we focus only on ament cmake, an extension of the widely
used CMake build system that has been explicitly customized for ROS 2. ament cmake is, de
facto, the most commonly used build system when developing ROS code in C++. In the
following we will only discuss how to create packages using C++. The build tool, on the
other hand, operates on packages. It determines the dependencies between packages, and
when modifications are made, it calls the build system on the packages that must be rebuilt.
This reduces the compilation time and relieves the programmer from having to manually
determine which packages to rebuild. The build tool for ROS 2 is called colcon. colcon

stands for collective construction and is a sophisticated tool with many advanced features
that will not be discussed in this book. The reader is referred to its official website1 for the
complete documentation.

3.1.1 Creating and building a workspace

As stated in Chapter 2, a workspace is a container for packages. The name of the workspace
is arbitrary, but its structure must follow a fixed pattern. For example, packages inside a
workspace typically go into a subfolder called src. The following command creates the basic
structure for a workspace called CSE180:

1https://colcon.readthedocs.io/en/released/

61

https://colcon.readthedocs.io/en/released/

62 CHAPTER 3. INTRODUCTION TO PROGRAMMING IN ROS

mkdir -p CSE180/src

It consists of a folder called CSE180 together with its src folder, where packages will be
located. So far, this is just a plain pair of nested folders. However, we can use colcon to
turn it into a workspace by adding the necessary additional folders and files. To this end,
we simply execute the following command:

colcon build

from the root of the workspace, i.e., from CSE180. The command will print that it built
0 packages, but most importantly, it will create some new folders in the workspace, namely
build, install, and log. In the install folder, we now find the scripts to add this new
workspace as an overlay. This can be done running the command2

. install/local_setup.bash

from the CSE180 folder. Now, the contents of the workspace are visible and can be used by
ros2.

Remark 3.1. According to the ROS 2 official documentation, it is important to source the
overlay from a shell different from the one where it was built. Failure to do so may result
in errors. Therefore, before executing . install/local setup.bash, open a new shell,
move into the workspace, and run it from there. Accordingly, from now onward, it will be
tacitly assumed that this operation is always performed from a new shell.

Remark 3.2. Forgetting to make the overlay visible to ROS is a very common error. Just
building your packages is not sufficient to use them. If ROS complains that it cannot find
the packages you built, in all probability, you have not run the above command from the shell
where ROS is executed. Importantly, the overlay must be made visible from each shell from
which you want to use its resources.

In the following, for simplicity, we will always suggest running colcon build. This
command will determine all packages inside the workspace and possibly rebuild all of them,
though it will avoid recompiling code that has not changed since the last build. However, if
one wants to build a single package or a subset of packages, the option --packages-select

can be used. For example, to build just a hypothetical package called first in the current
workspace, one would run

colcon build --packages-select first

This command would build only the package first while ignoring all other packages in
the workspace. If you want to build multiple packages, you can list all their names separated
by spaces.

2Note that there is a space between the dot . and install. The reason to use this syntax rather than
source is that it is more portable.

3.2. ADDING A PACKAGE 63

3.2 Adding a package

A package is a collection of ROS 2 resources, such as source code, launch files, data files,
and more. To automate the process of locating these files, compiling, etc., the structure
of a package follows a prescribed format and must include some specific files. Packages can
either be obtained from third parties or created using the command ros2 pkg. The following
command, executed from the src folder in the workspace, will create a package called first:

ros2 pkg create first

The output will be similar to the following:

going to create a new package

package name: first

destination directory: /home/shamano/CSE180/src

package format: 3

version: 0.0.0

description: TODO: Package description

maintainer: [’username <username@maildomain.com>’]

licenses: [’TODO: License declaration’]

build type: ament_cmake

dependencies: []

creating folder ./first

creating ./first/package.xml

creating source and include folder

creating folder ./first/src

creating folder ./first/include/first

creating ./first/CMakeLists.txt

[WARNING]: Unknown license ’TODO: License declaration’.

This has been set in the package.xml, but no LICENSE file has been created.

It is recommended to use one of the ament license identifiers:

Apache-2.0

BSL-1.0

BSD-2.0

BSD-2-Clause

BSD-3-Clause

GPL-3.0-only

LGPL-3.0-only

MIT

MIT-0

Inspecting the output and the filesystem, we can see that the command created some folders
and files. More specifically, the folder first was created, and inside it, the empty source
and include folders were also created (first/src and first/include/first, respectively).
As you may anticipate, the source code for the package will go in first/src, while include
files will be placed in first/include/first. The files package.xml and CMakeLists.txt

64 CHAPTER 3. INTRODUCTION TO PROGRAMMING IN ROS

were created as well and will be discussed shortly. The command also produced a warning
because no license was specified. This can be done later by editing the file package.xml,
but it is also possible to specify the license when the package is created. This can be done
as follows by specifying one of the license identifiers given in the warning message:

ros2 pkg create first --license MIT

In this case, the warning message disappears, and an additional file called LICENSE is created
with the associated license terms.

If we now run colcon build again from the workspace folder CSE180, we will see that
one package was built (albeit empty). To delete a package, it is sufficient to remove its folder
from the src folder. ros2 pkg can also be executed with additional parameters to not only
create an empty package but also generate template sources for a node. This is done by
running the following command3:

ros2 pkg create --build-type ament_cmake --node-name firstnode first

This will create not only a package called first but also the source for a template exe-
cutable called firstnode. The additional parameter --build-type ament cmake specifies
that ament cmake is the desired build system. The output of this command is similar to the
previous one, but the last few lines are as follows (we omit the warning for brevity):

build type: ament_cmake

dependencies: []

node_name: firstnode

creating folder ./first

creating ./first/package.xml

creating source and include folder

creating folder ./first/src

creating folder ./first/include/first

creating ./first/CMakeLists.txt

creating ./first/src/firstnode.cpp

and show that now a source file firstnode.cpp has been created as well. At this point, the
workspace can be rebuilt again with colcon build. After sourcing install/setup.bash,
ros2 run can be used to run the node firstnode from the package first. To do so, we
must specify the package name and the node name, as we did in Chapter 2

ros2 run first firstnode

Besides being created from scratch, packages can also be downloaded from the web, ei-
ther as archives or via version control systems such as git. Either way, packages must be
placed inside the src folder in the workspace. For example, one can download the con-

3Before running it, it is necessary to remove the previously created package because every new package
must have a unique name in the workspace.

3.2. ADDING A PACKAGE 65

tents of the code associated with the book from the MRTP GitHub and place the folder
MRTP/src/talklisten in the CSE180/src folder. That folder includes the source code for a
package that can now be built by running colcon build from CSE180.

Figure 3.1 summarizes the structure obtained after the commands in the previous section
have been executed. Note that additional files and folders are located inside build, install,
and log, but they are not shown in the figure. For each package inside src, a similar structure
is repeated.

build

install

log

src

include

src

CSE180 (workspace)

first (package)

package.xml

CMakeLists.txt

Figure 3.1: Internal structure for workspace and package first, with rectangles indicating
folders.

3.2.1 package.xml: the manifest file

package.xml is an XML file providing the so-called package manifest. All packages have
a manifest file, including information about licensing and dependencies on other packages.
When a package is added with ros2 pkg create, a basic package.xml file is added to the
package folder so that the programmer can customize it for the package being created. Each
package has its own manifest file, so if you create multiple packages, you must correspondingly
edit each manifest file for each package. The initial skeleton for the manifest file includes
some meta-information about the package (author, license, version, etc.), and in addition,
it can specify package dependencies, i.e., modules needed to build the package, execute the
package, and more. The following listing shows the manifest file that was generated when
creating the package first.

Listing 3.1: Default package file

1 <?xml version=” 1 .0 ”?>

66 CHAPTER 3. INTRODUCTION TO PROGRAMMING IN ROS

2 <?xml−model h r e f=” ht t p : //download . ro s . org /schema/ package format3 . xsd”
3 schematypens=” h t t p : //www. w3 . org /2001/XMLSchema”?>
4 <package format=”3”>
5 <name> f i r s t</name>
6 <version>0 . 0 . 0</version>
7 <d e s c r i p t i o n>TODO: Package d e s c r i p t i o n</ d e s c r i p t i o n>
8 <mainta iner emai l=”username@todo . todo ”>username</ mainta iner>
9 < l i c e n s e>TODO: License d e c l a r a t i o n</ l i c e n s e>

10
11 <bu i ld too l depend>ament cmake</ bu i ld too l depend>
12
13 <t e s t depend>ament l in t auto</ te s t depend>
14 <t e s t depend>ament lint common</ te s t depend>
15
16 <export>
17 <bu i l d type>ament cmake</ bu i l d type>
18 </ export>
19 </ package>

The meaning of version, description, maintainer, and license is evident and can
be filled with strings or left to their default values. The second part of the file is used to
add dependency tags that must be included to specify the packages that first depends on.
Examples of how to add dependencies to package.xml will be given later. Alternatively,
dependencies can also be specified when running ros2 pkg create, though this approach
will not be explained here. More details can be found on the official website or by running
the command with the option -h.

Remark 3.3. If you forget to add a dependency to the manifest file, but correctly edit the
CMakeLists.txt file described next, your package can still be correctly built locally. How-
ever, your package will not be properly handled when using package management tools (e.g.,
rosdep) that rely on the information included in the manifest file.

3.2.2 CMakeLists.txt

Another file created by ros2 pkg create is CMakeLists.txt. ament make is a frontend to
the CMake development tool, and therefore CMakeLists.txt follows the syntax specified by
CMake. However, it also includes some additional macros specific to ROS. The structure of
this file can be quite complex, and since every time we add a node to the package we have
to add additional lines to indicate how to build it, its size can quickly grow.

A complete description of this file is beyond the scope of these notes, and the reader is
referred to the ROS website for a comprehensive discussion. As with the manifest file, ros2
pkg create generates a template that can then be customized and is sufficient for most
users. In a subsequent section, where we create the first nodes in C++, we will discuss a
set of minimal changes that can be made to customize the file so that colcon can correctly
determine how to build the package.

3.3. CREATING ROS NODES 67

3.3 Creating ROS Nodes

So far, we have just executed nodes shipped with the ROS distribution, but we now have
all the elements to create the first ROS nodes from scratch. Before embarking on writing
code, some high-level software considerations are in order. To tap into its overall software
infrastructure, ROS provides the “ROS Client Library,” called rcl. rcl is a low-level library
written in C that supports the implementation of ROS client libraries in other languages by
providing access to ROS concepts like nodes, topics, services, etc. Client libraries for C++
and Python are officially supported by the ROS project, but others have been developed by
third parties as well. rclcpp is the ROS Client Library for C++ and is found in a package
called rclcpp. Similarly, rclpy is the ROS Client Library for Python and is found in a
package called rclpy. Being built on top of the same foundation, the two libraries offer
similar functionalities and mostly differ in how the API is exposed in the specific language.
In the following, we will exclusively write code using C++ and rclcpp.

As previously stated, a ROS program consists of a collection of interacting nodes exchang-
ing information through topics, service calls, and action calls. Central to this programming
approach is the presence of topics through which messages are asynchronously exchanged.
Accordingly, a ROS node typically subscribes to one or more topics to receive data and
publishes to one or more topics. A ROS program implementing a node usually includes the
following steps:

• initializing the ROS system;

• instantiating a node and setting up communication with topics (plus services and
actions, if needed);

• carrying out the necessary computation, often by exchanging messages via topics;

• shutting down the ROS system.

The above pattern is sufficient to characterize most of the code presented in the following,
but, of course, more complex applications may deviate from this breakdown and/or imple-
ment it in sophisticated ways. An approach common to many ROS programs is to organize
the node computation through callbacks. This means that functions are associated with
certain events, and when the event occurs, the specific function is called (hence the name
callback). For example:

• when a node subscribes to a topic, a callback function is registered with the topic, and
every time a message is received through the topic, the associated callback function is
called and the message is passed as a parameter for further processing;

• a program that must execute certain operations at a regular frequency (e.g., querying a
sensor) may create a timer with the desired rate and associate a callback function with
the timer. Every time the timer ticks, the associated callback function is executed.

One final concept central to ROS programs is spinning. Spinning a node means letting
the communication subsystem take care of all pending events that trigger a callback function.
Consequently, ROS programs subscribing to topics typically include calls to one of the various

68 CHAPTER 3. INTRODUCTION TO PROGRAMMING IN ROS

spin functions provided by rclcpp. An additional aspect worth mentioning is that when
writing ROS code, it is necessary to keep track of the node dependencies, i.e., the packages
that the node depends on, because these need to be explicitly listed in package.xml and
CMakeLists.txt. Failure to do so will result in build errors, even if the code is syntactically
correct.

3.4 The first ROS nodes

In this section, we provide the full implementation of the first two ROS nodes that exchange
string messages through a topic. These nodes essentially replicate the functionality of the
chatter and talker nodes we ran in Section 2.5. This is a classic example, also provided
in the tutorials section on the ROS website,4 though the version we present here is even
simpler.

The code examples we develop will be placed in various packages inside a new workspace
called MRTP. In particular, these first two nodes will be part of a package called talklisten.
The following commands create the workspace and the package.5

cd ~

mkdir -p MRTP/src

cd MRTP/src

ros2 pkg create --build-type ament_cmake talklisten

Listing 3.2 shows the code for the talker node. The file, called talker.cpp, should be
placed in the src folder inside the package folder talklisten.

Listing 3.2: Talker Node

1 #include <r c l cpp / rc l cpp . hpp> // needed f o r ba s i c f unc t i on s
2 #include <e x a m p l e i n t e r f a c e s /msg/ s t r i n g . hpp> // needed to pu b l i s h s t r i n g s
3
4 int main (int argc , char ∗∗ argv) {
5
6 rc l cpp : : i n i t (argc , argv) ; // i n i t i a l i z e the ROS subsystem
7
8 rc l cpp : : Node : : SharedPtr nodeh ;
9 r c l cpp : : Publ i sher<e x a m p l e i n t e r f a c e s : : msg : : Str ing > : : SharedPtr pub ;

10 r c l cpp : : Rate ra t e (1) ; // c rea t e ra t e o b j e c t
11
12 nodeh = rc l cpp : : Node : : make shared (” t a l k e r ”) ; // crea t e node ins tance
13 // c rea t e p u b l i s h e r to t o p i c ”message” o f s t r i n g s
14 pub = nodeh−>c r e a t e p u b l i s h e r <e x a m p l e i n t e r f a c e s : : msg : : Str ing >(”message” , 1) ;
15
16 int counter = 0 ;
17 while ((counter++ < 100) && (rc l cpp : : ok ())) {

4https://docs.ros.org/en/jazzy/Tutorials/Beginner-Client-Libraries/

Writing-A-Simple-Cpp-Publisher-And-Subscriber.html
5All code examples presented from now onward can be downloaded from https://github.com/

stefanocarpin/MRTP.

https://docs.ros.org/en/jazzy/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Publisher-And-Subscriber.html
https://docs.ros.org/en/jazzy/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Publisher-And-Subscriber.html
https://github.com/stefanocarpin/MRTP
https://github.com/stefanocarpin/MRTP

3.4. THE FIRST ROS NODES 69

18 RCLCPP INFO(nodeh−>g e t l o g g e r () , ” Sending message #%d” , counter) ;
19 e x a m p l e i n t e r f a c e s : : msg : : S t r ing s t r i n g t o s e n d ;
20 // prepare message to send
21 s t r i n g t o s e n d . data = ”Message # ” + std : : t o s t r i n g (counter) ;
22 pub−>pub l i sh (s t r i n g t o s e n d) ; // pu b l i s h message
23 ra t e . s l e e p () ; // wai t
24 }
25 rc l cpp : : shutdown () ; // shutdown ROS
26 return 0 ;
27 }

As discussed in the previous section, the main function initializes the ROS system
by calling the function rclcpp::init() at the beginning and shuts down ROS by call-
ing the function rclcpp::shutdown() at the end. Next, we set up a node and a pub-
lisher to send strings. Nodes are created by instantiating rclcpp::Node via the function
rclcpp::Node::make shared. The function takes as a parameter the name to assign to
the node (talker in this case) and returns a pointer to the instance. The node is accessed
via a handler stored in the variable nodeh (node handler). The method create publisher

is a member of the class rclcpp::Node and returns a pointer to a publisher object, pub,
which allows the node to send messages of type example interfaces::msg::String. This
message type serves as a wrapper for transmitting the classic elementary C++ string data
type over a topic. The first parameter specifies the name of the topic (message), while the
second parameter is an integer that specifies the depth of the message queue associated with
the topic (1 in this case). If a topic with the specified name (message) already exists, the
node will associate with it. This is consistent with the fact that multiple nodes may publish
to the same topic. Otherwise, if no topic called message exists, a new one will be created.
Note that the type of messages exchanged through the topic must be specified using one of
the ROS message types (either one of the default ones or one created by the programmer).
In this case, to send a string, we use example interfaces::msg::String, which is specified
as the type in the call to the template method create publisher. More details about basic
message types will be given in a later section. The specific structure of this message can be
discovered using

ros2 interface show example_interfaces/msg/String

which produces the following output (comments omitted for brevity):

string data

Observe how the output produced by ros2 interface show matches the syntax we use in
the main loop to store the string in the instance of the message we want to publish through
the topic. The object rate is an instance of rclcpp::Rate, enabling the node to wait
(sleep) for a certain amount of time. More precisely, the passed parameter specifies the
desired frequency (1 Hz in this case), and when the method sleep is called, the program
suspends its operation for an amount of time sufficient to match the desired frequency, as
opposed to waiting for a fixed amount of time. After the initialization phase is completed,
the rest of the code is rather straightforward. The while loop iterates 100 times or until the

70 CHAPTER 3. INTRODUCTION TO PROGRAMMING IN ROS

ROS system receives a signal to terminate (e.g., if the user presses CTRL-C, rclcpp::ok()
will return false and terminate the loop). Inside the loop, an instance of the message is
declared and initialized. Note how the message to send is stored in the data field. To
send the message, the method publish of the publisher object is used. At the end of the
loop, the node sleeps for an amount of time sufficient to match the 1 Hz frequency, and
the loop restarts. When the loop ends, ROS is shut down, and the program terminates.
Inside the main loop, the function RCLCPP INFO is used to print some diagnostic information
to the screen. These functions will be discussed in detail later, but for the time being, it
is sufficient to note that they take as parameters a logger object and the message to print
(note the syntax similar to the printf function to format the message). The logger object
is retrieved from the node handler using the function get logger, as different nodes may
have different loggers.

Finally, note that at the beginning, we included two header files located in two folders
called rclcpp and example interfaces. These indicate two packages this node depends on,
namely rclcpp and example interfaces. This is an important detail to consider because
we will later need to indicate these dependencies in package.xml and CMakeLists.txt.

Remark 3.4. Even though this node does little, its syntax may seem a bit intimidating.
However, most nodes we will encounter in the following sections will be based on this or
similar templates. The main differences will lie in the actual work performed in the main
loop, while the initialization steps will always be very similar and can be easily copied and
adapted. After a while, this process will become quite automatic.

At this point, we can consider the listener node that will subscribe to the message topic
and print to the screen whatever it receives. The source code is provided in Listing 3.3.

Listing 3.3: Listener Node

1 #include <r c l cpp / rc l cpp . hpp> // needed f o r ba s i c f unc t i on s
2 #include <e x a m p l e i n t e r f a c e s /msg/ s t r i n g . hpp> // needed to r e c e i v e s t r i n g s
3
4 rc l cpp : : Node : : SharedPtr nodeh ;
5
6 // c a l l b a c k func t i on c a l l e d every time a message i s r e c e i v ed from the
7 // t op i c ”message”
8 void c a l l b a c k (const e x a m p l e i n t e r f a c e s : : msg : : S t r ing : : SharedPtr msg) {
9 // process the message : j u s t p r i n t i t to the screen

10 RCLCPP INFO(nodeh−>g e t l o g g e r () , ” Received : %s ” ,msg−>data . c s t r ()) ;
11 }
12
13 int main (int argc , char ∗∗ argv) {
14
15 rc l cpp : : i n i t (argc , argv) ; // i n i t i a l i z e ROS subsystem
16 rc l cpp : : Subscr ipt ion<e x a m p l e i n t e r f a c e s : : msg : : Str ing > : : SharedPtr sub ;
17 nodeh = rc l cpp : : Node : : make shared (” l i s t e n e r ”) ; // c rea t e node ins tance
18 // su b s c r i b e to t o p i c ”message” and r e g i s t e r the c a l l b a c k func t i on
19 sub = nodeh−>c r e a t e s u b s c r i p t i o n <e x a m p l e i n t e r f a c e s : : msg : : Str ing>
20 (”message” ,10 ,& c a l l b a c k) ;
21 r c l cpp : : sp in (nodeh) ; // wai t f o r messages and process them
22 rc l cpp : : shutdown () ;
23 return 0 ;

3.4. THE FIRST ROS NODES 71

24
25 }

Most of the setup steps provided in the main function of the listener node mirror what
we saw in the talker node, with the exception that in this case we create an instance of a
Subscription object instead. The method create subscription takes three parameters:
the name of the topic (message), the length of the incoming queue (10), and a pointer to
the callback function. As previously stated, the callback function is the function that will be
called every time a message is received through this topic. After the node and the subscriber
are created, the function rclcpp::spin is called to spin the node nodeh. When spin is
called, the program enters an infinite loop during which it continuously checks for events
that trigger callback functions. If such an event occurs, the corresponding callback function
is executed. Since this loop never terminates, spin is a non-returning function. In this
specific example, the only event that triggers a callback function is an incoming message
on the subscribed topic. The callback function callback accepts as input an instance of
the received message msg and prints its data to the screen using RCLCPP INFO. Note that
the callback function always receives as input just an instance of the message and no other
parameters. This is why we store the nodeh pointer as a global variable— so that the logger
can be retrieved from the function (since it cannot be passed as a parameter). Generally
speaking, storing the handle as a global variable is not good programming practice, but this
is done here for simplicity. Later on, we will show how this can be avoided.6

Remark 3.5. When writing ROS programs, it is customary to use the fully qualified name
when using ROS objects (e.g., rclcpp::Node::SharedPtr) and messages. While it is le-
gitimate to use the C++ directive using namespace at the beginning to avoid having to
specify the namespace explicitly, this is usually not done when referring to ROS-provided
components. However, this is a convention rather than a strict requirement.

At this point, before compiling the source code of the two nodes, it is necessary to update
package.xml and CMakeLists.txt to indicate the dependencies and specify the files we want
to compile. Listing 3.4 shows the file manifest obtained by slightly modifying the template
generated when the package was created.

Listing 3.4: Package file for the talklisten package

1 <?xml version=” 1 .0 ”?>
2 <?xml−model h r e f=” ht t p : //download . ro s . org /schema/ package format3 . xsd”
3 schematypens=” h t t p : //www. w3 . org /2001/XMLSchema”?>
4 <package format=”3”>
5 <name> t a l k l i s t e n</name>
6 <version>0 . 0 . 2</version>
7 <d e s c r i p t i o n>Talker / L i s t e n e r nodes</ d e s c r i p t i o n>
8 <mainta iner emai l=” scarpin@ucmerced . edu”>Ste fano Carpin</ mainta iner>
9 < l i c e n s e>Apache L icense 2 .0</ l i c e n s e>

10
11 <bu i ld too l depend>ament cmake</ bu i ld too l depend>
12 <depend>r c l cpp</depend>

6One could also use the function rclcpp::get logger to create a standalone instance of the class
rclcpp::Logger, but in such a case, the logger would not be associated with the node.

72 CHAPTER 3. INTRODUCTION TO PROGRAMMING IN ROS

13 <depend>e x a m p l e i n t e r f a c e s</depend>
14
15 <t e s t depend>ament l in t auto</ te s t depend>
16 <t e s t depend>ament lint common</ te s t depend>
17
18 <export>
19 <bu i l d type>ament cmake</ bu i l d type>
20 </ export>
21 </ package>

Besides authorship and other information (which could also be left at their default values),
the key change is adding the depend tags for the rclcpp and example interfaces packages.
These two tags should be placed immediately after the buildtool depend tag and indicate
that our package depends on them.

Similarly, we need to update the default CMakeLists.txt file generated when the package
was created. The file is shown in listing 3.5, where for brevity we have removed the sections
that are irrelevant to the project (although they could be left in as well).

Listing 3.5: CMake file for the talklisten package

1 cmake minimum required (VERSION 3 . 5)
2 p r o j e c t (t a l k l i s t e n)
3
4 # Defau l t to C++14
5 i f (NOT CMAKE CXX STANDARD)
6 s e t (CMAKE CXX STANDARD 14)
7 e n d i f ()
8
9 i f (CMAKE COMPILER IS GNUCXX OR CMAKE CXX COMPILER ID MATCHES ”Clang”)

10 add compi l e opt ions (−Wall −Wextra −Wpedantic)
11 e n d i f ()
12
13 f ind package (ament cmake REQUIRED)
14 f ind package (r c l cpp REQUIRED)
15 f ind package (e x a m p l e i n t e r f a c e s REQUIRED)
16
17 add executab le (t a l k e r s r c / t a l k e r . cpp)
18 add executab le (l i s t e n e r s r c / l i s t e n e r . cpp)
19 ament target dependenc i e s (t a l k e r r c l cpp e x a m p l e i n t e r f a c e s)
20 ament target dependenc i e s (l i s t e n e r r c l cpp e x a m p l e i n t e r f a c e s)
21
22 i n s t a l l (TARGETS t a l k e r DESTINATION l i b /${PROJECT NAME})
23 i n s t a l l (TARGETS l i s t e n e r DESTINATION l i b /${PROJECT NAME})
24
25 ament package ()

The key additions are the following:

• Specify the required packages using the find package macro. These should be added
immediately after the standard line find package(ament cmake REQUIRED).

• Use the macro add executable to specify the names of the executables to create and
the source files needed to generate those executables. Note that since the package
includes two executables, we add two of these macros.

3.4. THE FIRST ROS NODES 73

• Use the macro ament target dependencies to specify the package dependencies for
the executables.

• Use the macro install to specify where the executables should be installed.

As for package.xml, the listing we provided can be used as a template to start with.
More complex features can be added, and these are documented on the official website. At
this point, it is possible to build the executables in the package. To do so, we can move to
the workspace folder MRTP and issue the command colcon build. If no errors are found,
the output will look like the following

Starting >>> talklisten

Finished <<< talklisten [5.63s]

Summary: 1 package finished [6.04s]

confirming that the package has been built. Now, we can open two new shells, source the
overlay, and run the new nodes using ros2 run. After sourcing the overlay, the nodes we
just created are found and executed using the same syntax we used for the standard nodes
shipped with ROS and part of the underlay. Specifically, we can run

ros2 run talklisten talker

to run the talker node and

ros2 run talklisten listener

to run the listener node. The output will look like the following for talker

[INFO] [1672482702.756594287] [talker]: Sending message #1

[INFO] [1672482703.744354838] [talker]: Sending message #2

[INFO] [1672482704.744626257] [talker]: Sending message #3

[INFO] [1672482705.743791683] [talker]: Sending message #4

[INFO] [1672482706.743500771] [talker]: Sending message #5

[INFO] [1672482707.745124286] [talker]: Sending message #6

[INFO] [1672482708.744923859] [talker]: Sending message #7

[INFO] [1672482709.743992184] [talker]: Sending message #8

[INFO] [1672482710.743906316] [talker]: Sending message #9

[INFO] [1672482711.744225130] [talker]: Sending message #10

[INFO] [1672482712.744533815] [talker]: Sending message #11

and

[INFO] [1672482706.745114892] [listener]: Received: Message # 5

[INFO] [1672482707.746839561] [listener]: Received: Message # 6

[INFO] [1672482708.746548545] [listener]: Received: Message # 7

[INFO] [1672482709.745019691] [listener]: Received: Message # 8

74 CHAPTER 3. INTRODUCTION TO PROGRAMMING IN ROS

[INFO] [1672482710.744835135] [listener]: Received: Message # 9

[INFO] [1672482711.744877524] [listener]: Received: Message # 10

[INFO] [1672482712.745475959] [listener]: Received: Message # 11

for listener. At this point, it would be a good idea to add a launch file to run both nodes
at once. This could be either a standalone file to be executed as we saw in Section 2.13,
or a launch file integrated into the package. A standalone file would be similar to the one
we provided in Section 2.13 and could be run with ros2 launch filename.launch.xml.
To integrate the launch file into the package and run it with the command ros2 launch

packagename filename.launch.xml, further changes to package.xml and CMakeLists.txt
are necessary. This process will be illustrated in the next section.

3.5 More ROS examples

In this section, we develop a new package called multipletopics, where we include two
nodes similar to talker and listener that publish and subscribe to two separate topics
of different types (strings and integers). Moreover, we will develop a launch file and show
how it can be integrated into the package to be launched with ros2 launch. We start by
creating the package inside the MRTP workspace.

cd ~MRTP/src

ros2 pkg create --build-type ament_cmake multipletopics

Listing 3.6 shows the code for the node multipublish that publishes both strings and
integers.

Listing 3.6: Node publishing to multiple topics

1 #include <r c l cpp / rc l cpp . hpp> // needed f o r ba s i c f unc t i on s
2 #include <e x a m p l e i n t e r f a c e s /msg/ int32 . hpp> // to pu b l i s h i n t e g e r s
3 #include <e x a m p l e i n t e r f a c e s /msg/ s t r i n g . hpp> // to pu b l i s h s t r i n g s
4
5 int main (int argc , char ∗∗ argv) {
6
7 rc l cpp : : i n i t (argc , argv) ; // i n i t i a l i z e the ROS subsystem
8
9 rc l cpp : : Node : : SharedPtr nodeh ;

10 r c l cpp : : Publ i sher<e x a m p l e i n t e r f a c e s : : msg : : Str ing > : : SharedPtr pubs ;
11 r c l cpp : : Publ i sher<e x a m p l e i n t e r f a c e s : : msg : : Int32 > : : SharedPtr pubi ;
12 r c l cpp : : Rate ra t e (2) ;
13
14 nodeh = rc l cpp : : Node : : make shared (” mul t ipub l i sh ”) ; // c rea t e node
15 // c rea t e p u b l i s h e r to t o p i c ” s t r igm” o f s t r i n g s
16 pubs = nodeh−>c r e a t e p u b l i s h e r <e x a m p l e i n t e r f a c e s : : msg : : Str ing >(” str ingm ” , 1) ;
17 // c rea t e p u b l i s h e r to t o p i c ” intm” o f i n t e g e r s
18 pubi = nodeh−>c r e a t e p u b l i s h e r <e x a m p l e i n t e r f a c e s : : msg : : Int32 >(” intm” , 1) ;
19
20 int value =0;
21 e x a m p l e i n t e r f a c e s : : msg : : Int32 intToSend ; // i n t e g e r message to send
22 e x a m p l e i n t e r f a c e s : : msg : : S t r ing str ingToSend ; // s t r i n g message to send

3.5. MORE ROS EXAMPLES 75

23 str ingToSend . data = ”CSE180−Robot ics ” ; // cons tant s t r i n g to send
24
25 while (r c l cpp : : ok ()) {
26 intToSend . data = value++; // update message to send
27 pubi−>pub l i sh (intToSend) ; // pu b l i s h the i n t e g e r message
28 pubs−>pub l i sh (str ingToSend) ; // pu b l i s h the s t r i n g message
29 RCLCPP INFO(nodeh−>g e t l o g g e r () , ”Completed i t e r a t i o n #%d” , va lue) ;
30 ra t e . s l e e p () ; // wai t
31 }
32 rc l cpp : : shutdown () ; // unreachab le in the curren t form
33 return 0 ;
34
35 }

The logic is similar to the one in listing 3.2, with just a few minor changes. First,
since we want to publish messages of two different types, the node creates two separate
publisher objects for integers and strings, called pubi and pubs, respectively. The topics
are given the names stringm and intm. Note that to publish integers, we now include the
file example interfaces/msg/int32.hpp that defines the message to transmit an integer
represented on 32 bits. Its structure can be shown with

ros2 interface show example_interfaces/msg/Int32

which produces the following output

int32 data

As in the previous example, observe how the output of ros2 interface show directly trans-
lates to how, in each cycle, we update the integer to send. The other minor change is that
the rate object now targets a frequency of 2 Hz. The rest is pretty much the same, although
the main loop in this case will run indefinitely and not just for a fixed number of iterations
(the iteration can be interrupted with CTRL-C).

Listing 3.7 shows instead the code for the node multisub that subscribes to the two
topics created by the multipublish.

Listing 3.7: Node subscribing to multiple topics

1 #include <r c l cpp / rc l cpp . hpp> // needed f o r ba s i c f unc t i on s
2 #include <e x a m p l e i n t e r f a c e s /msg/ int32 . hpp> // to r e c e i v e i n t e g e r s
3 #include <e x a m p l e i n t e r f a c e s /msg/ s t r i n g . hpp> // to r e c e i v e s t r i n g s
4
5 rc l cpp : : Node : : SharedPtr nodeh ;
6
7 // c a l l b a c k func t i on c a l l e d every time a message i s r e c e i v ed from the
8 // t op i c ” str ingm”
9 void s t r i n g C a l l b a c k (const e x a m p l e i n t e r f a c e s : : msg : : S t r ing : : SharedPtr msg) {

10 // p r i n t r e c e i v ed s t r i n g to the screen
11 RCLCPP INFO(nodeh−>g e t l o g g e r () , ” Received s t r i n g : %s ” ,msg−>data . c s t r ()) ;
12 }
13
14 // c a l l b a c k func t i on c a l l e d every time a message i s r e c e i v ed from the

76 CHAPTER 3. INTRODUCTION TO PROGRAMMING IN ROS

15 // t op i c ” intm”
16 void i n tCa l lback (const e x a m p l e i n t e r f a c e s : : msg : : Int32 : : SharedPtr msg) {
17 // p r i n t r e c e i v ed i n t e g e r to the screen
18 RCLCPP INFO(nodeh−>g e t l o g g e r () , ” Received i n t e g e r : %d” ,msg−>data) ;
19 }
20
21
22 int main (int argc , char ∗∗ argv) {
23
24 rc l cpp : : i n i t (argc , argv) ; // i n i t i a l i z e ROS subsystem
25 rc l cpp : : Subscr ipt ion<e x a m p l e i n t e r f a c e s : : msg : : Str ing > : : SharedPtr subs ;
26 r c l cpp : : Subscr ipt ion<e x a m p l e i n t e r f a c e s : : msg : : Int32 > : : SharedPtr sub i ;
27 nodeh = rc l cpp : : Node : : make shared (” mult isub ”) ; // c rea t e node ins tance
28 // su b s c r i b e to t o p i c ” str ingm” an r e g i s t e r the c a l l b a c k func t i on
29 subs = nodeh−>c r e a t e s u b s c r i p t i o n <e x a m p l e i n t e r f a c e s : : msg : : Str ing>
30 (” str ingm ” ,10 ,& s t r i n g C a l l b a c k) ;
31 // su b s c r i b e to t o p i c ” intm” an r e g i s t e r the c a l l b a c k func t i on
32 sub i = nodeh−>c r e a t e s u b s c r i p t i o n <e x a m p l e i n t e r f a c e s : : msg : : Int32>
33 (” intm” ,10 ,& intCa l lback) ;
34 r c l cpp : : sp in (nodeh) ; // wai t f o r messages and process them
35
36 rc l cpp : : shutdown () ;
37 return 0 ;
38
39 }

For this program, too, the logic is similar to the corresponding program presented in
listing 3.3. In this node, we subscribe to the two topics stringm and intm, and we corre-
spondingly register two separate callbacks handling the two streams of messages. As in the
previous example, the program calls rclcpp::spin and remains inside there, delegating to
rclcpp the handling of incoming messages and the callbacks. rclcpp::spin will call the
callback functions, and when running the example, we may observe that even though the
publisher alternates sending messages to intm and stringm, on the subscriber side the call-
backs are not necessarily called with the same alternating pattern. This is consistent with the
overall communication ROS infrastructure, whereby the handling of communication across
different topics is asynchronous, and one should not make assumptions about the relative
timing of messages exchanged across different topics. However, the order of messages sent
on the same topic is preserved, as we have seen in the previous example.

For this example, we now create a launch file multipletl.launch.xml to be integrated
into the package. To this end, we create a folder called launch inside the package folder
multipletopics, and we place the following launch file there, similar to the one we saw
earlier in listing 2.3. The contents of the file are exactly the same, except for the package
and executable names and some formatting to keep it more compact.

Listing 3.8: Launch file multipletl.launch.xml

1 <launch>
2 <node pkg=” m u l t i p l e t o p i c s ” exec=” mul t ipub l i sh ” name=” mul t ipub l i sh ”
3 launch−p r e f i x=”gnome−t e rmina l −−” />
4 <node pkg=” m u l t i p l e t o p i c s ” exec=” mult isub ” name=” mult isub ”/>
5 </ launch>

3.5. MORE ROS EXAMPLES 77

Next, we need to update package.xml and CMakeLists.txt. For the nodes, the changes
are similar to those presented in the previous section, but for the launch file, we need to
inform colcon that we are now including a launch file as well. Listing 3.9 shows the manifest
file. The only new element is the tag exec depend, which specifies that this package depends
on ros2launch because we are integrating a launch file into the package.

Listing 3.9: Manifest file for the multipletopics package

1 <?xml version=” 1 .0 ”?>
2 <?xml−model h r e f=” ht t p : //download . ro s . org /schema/ package format3 . xsd”
3 schematypens=” h t t p : //www. w3 . org /2001/XMLSchema”?>
4 <package format=”3”>
5 <name>m u l t i p l e t o p i c s</name>
6 <version>0 . 0 . 1</version>
7 <d e s c r i p t i o n>multisub / mul t ipub l i sh nodes</ d e s c r i p t i o n>
8 <mainta iner emai l=” scarpin@ucmerced . edu”>Ste fano Carpin</ mainta iner>
9 < l i c e n s e>Apache L icense 2 .0</ l i c e n s e>

10 <bu i ld too l depend>ament cmake</ bu i ld too l depend>
11 <depend>r c l cpp</depend>
12 <depend>e x a m p l e i n t e r f a c e s</depend>
13
14 <exec depend>ros2 launch</ exec depend>
15
16 <t e s t depend>ament l in t auto</ te s t depend>
17 <t e s t depend>ament lint common</ te s t depend>
18 <export>
19 <bu i l d type>ament cmake</ bu i l d type>
20 </ export>
21 </ package>

Finally, in listing 3.10, we show the CMakeLists.txt file for the multipletopics package.
The only new element is the last macro, install, which indicates that the package includes
a folder called launch that should be installed when the package is built.

Listing 3.10: CMake file for the multipletopics package

1 cmake minimum required (VERSION 3 . 5)
2 p r o j e c t (m u l t i p l e t o p i c s)
3 # Defau l t to C++14
4 i f (NOT CMAKE CXX STANDARD)
5 s e t (CMAKE CXX STANDARD 14)
6 e n d i f ()
7
8 i f (CMAKE COMPILER IS GNUCXX OR CMAKE CXX COMPILER ID MATCHES ”Clang”)
9 add compi l e opt ions (−Wall −Wextra −Wpedantic)

10 e n d i f ()
11
12 f ind package (ament cmake REQUIRED)
13 f ind package (r c l cpp REQUIRED)
14 f ind package (e x a m p l e i n t e r f a c e s REQUIRED)
15 add executab le (mu l t ipub l i sh s r c / mul t ipub l i sh . cpp)
16 add executab le (mult isub s r c / mult isub . cpp)
17 ament target dependenc i e s (mu l t ipub l i sh r c l cpp e x a m p l e i n t e r f a c e s)
18 ament target dependenc i e s (mult isub rc l cpp e x a m p l e i n t e r f a c e s)

78 CHAPTER 3. INTRODUCTION TO PROGRAMMING IN ROS

19
20 i n s t a l l (TARGETS mul t ipub l i sh DESTINATION l i b /${PROJECT NAME})
21 i n s t a l l (TARGETS mult isub DESTINATION l i b /${PROJECT NAME})
22 i n s t a l l (DIRECTORY launch DESTINATION share /${PROJECT NAME})
23
24 ament package ()

It is now possible to build the package using colcon build, and after having sourced
the overlay the launch file can be run as follows

ros2 launch multipletopics multipletl.launch.xml

where we now specify the name of the package and the name of the launch file, and not
just the path to the launch file.

Troubleshooting

What if the code compiles correctly, but when the executables are run, nothing is printed to
the screen? A very common error is using different names for the topics when advertising
and subscribing. Since the matching is based on the topic name, a typo in either node will
prevent the communication channel from being established. Evidently, this error cannot be
caught at compile time. A quick way to verify whether a topic has been correctly connected
between the publisher and subscriber is by executing rqt graph. In this case, the output
would be similar to Figure 3.2, showing the expected connection between the publisher and
subscriber.

Figure 3.2: ROS graph obtained with rqt graph when the previous example is run. The
graph confirms that publisher and subscriber are connected to the correct topics.

A different way, and perhaps less immediate, to get the same information is by running
ros2 node info to inspect either node. For example, running

ros2 node info /multisub

will produce the following output (long lines wrapped for clarity):

/multisub

Subscribers:

/intm: example_interfaces/msg/Int32

/parameter_events: rcl_interfaces/msg/ParameterEvent

/stringm: example_interfaces/msg/String

Publishers:

/parameter_events: rcl_interfaces/msg/ParameterEvent

3.5. MORE ROS EXAMPLES 79

/rosout: rcl_interfaces/msg/Log

Service Servers:

/multisub/describe_parameters: rcl_interfaces/srv/DescribeParameters

/multisub/get_parameter_types: rcl_interfaces/srv/GetParameterTypes

/multisub/get_parameters: rcl_interfaces/srv/GetParameters

/multisub/get_type_description: type_description_interfaces/srv/

GetTypeDescription

/multisub/list_parameters: rcl_interfaces/srv/ListParameters

/multisub/set_parameters: rcl_interfaces/srv/SetParameters

/multisub/set_parameters_atomically: rcl_interfaces/srv/

SetParametersAtomically

Service Clients:

Action Servers:

Action Clients:

confirming that the node is correctly subscribed to the two topic intm and stringm. Note
that the topic is also subscribed to another topic we did not create (parameter events). Its
nature will be discussed in a later section.

Finally, another useful tool for debugging is running ros2 topic with the option echo.
This allows verifying whether information is being published to a topic or not. In the previous
example, if multipublish is running and we type

ros2 topic echo /intm

we will get an output like the following:

data: 22

data: 23

data: 24

data: 25

data: 26

data: 27

data: 28

data: 29

This way it is easy to verify whether a publisher is correctly working even before writing the
corresponding subscriber.

80 CHAPTER 3. INTRODUCTION TO PROGRAMMING IN ROS

ROS Streams

ROS defines its own streams to output textual information from a node. When using rclcpp,
these are exposed through a set of macros similar to the macro RCLCPP INFO we have used
in the previous examples. rclcpp provides five different macros that differ in verbosity level
(amount of information printed and color) and in where the information is sent by default
(although this is configurable). The five basic macros and their intended use are as follows:

RCLCPP INFO : Used for printing information to the user.

RCLCPP DEBUG : Used for debugging purposes.

RCLCPP WARN : Diagnostic about unusual conditions (warnings).

RCLCPP ERROR : Diagnostic about recoverable errors.

RCLCPP FATAL : Diagnostic about unrecoverable errors.

Each of the macros receives as input an instance of rclcpp::Logger, which is obtained
from an instance of rclcpp::Node, as we have seen in previous examples. After the logger,
the macros accept a format string followed by a variable number of parameters, using the
same formatting as the printf function. The above classification regarding the intended
use of the macros is meant to ease interpretation, but it is up to the programmer to decide
which stream to use. For example, whether something should be sent to the WARN or the
DEBUG log is often subjective, and both options are accepted— i.e., ROS does not strictly
enforce the above guidelines. The package rclcpp also provides more sophisticated versions
with conditional printing, throttled output, and many other features. The reader is referred
to the online documentation for these advanced features. Finally, note that it is generally
not a good idea to use both these macros and the standard C++ iostream library, and in
fact most ROS developers just stick to the ROS streams just described.

Publishing to a Topic

In listings 3.2 and 3.6, we have seen that a node declares (advertises) that it will publish
to a certain topic by using the create publisher method of the rclcpp::Node class. The
simplest form, used in the examples, requires specifying just the name of the topic and the
length of the queue (in addition to the type of the message through the template). However,
topics can be configured to exhibit more sophisticated behaviors by using a quality of service
(QoS) profile. With such a profile, it is, for example, possible to create a latched topic, i.e., a
topic where the last message sent is saved and passed to all subscribers that subscribe to the
topic even after the message has been published (recall that normally, subscribers receive
only messages sent after they connect to a topic). Latched topics are particularly useful when
sending large messages, such as maps. The reader is referred to the official documentation
for a complete discussion of the many options available when setting up a topic.

3.6. EXCHANGING ELEMENTARY DATA TYPES 81

3.6 Exchanging Elementary Data Types

In the nodes we just discussed, we saw that to transmit an elementary data type (e.g., an
integer) between two nodes, it is necessary to pass through a topic that has been created using
the appropriate message type. This is done by creating instances of rclcpp::Publisher

and rclcpp::Subscription on the publisher and subscriber sides, respectively. To facilitate
this task, ROS comes with a set number of predefined messages that are part of the package
example interfaces. These are wrappers for primitive data types, such as integers, strings,
booleans, and so on. As can be shown using the ros2 interface show, each of these
messages has just one field called data, used to store the corresponding information. From
a C++ standpoint, these messages are C++ structures with a public field called, indeed,
data. This is evident when analyzing the listings studied thus far, where the messages are
sent and printed to the screen. Table 3.1 shows the correspondences between some of C++’s
basic data types and messages in the example interfaces package.

C++ data type ROS message
bool example interfaces::msg::Bool

char example interfaces::msg::Char

unsigned char example interfaces::msg::UInt8

int example interfaces::msg::Int32

unsigned int example interfaces::msg::UInt32

long int example interfaces::msg::Int64

unsigned long int example interfaces::msg::UInt64

float example interfaces::msg::Float32

double example interfaces::msg::Float64

Table 3.1: Correspondences between C++ elementary data types and ROS standard mes-
sages.

In addition, C++ strings of type std::string can be sent using messages of type
example interfaces::msg::String. The package example interfaces also allows to send
multidimensional arrays of data, like vectors, matrices and even higher dimensional data
structures, as well as other useful types, like time, duration, and others. These will be
analyzed next.

Remark 3.6. ROS also provides the package std msgs, which offers messages and function-
alities similar to the package example interfaces. However, since the ROS Foxy distribu-
tion, this package has been deprecated, so in the following, we will not use it. Nevertheless,
it is very common to find code on the web that still relies on it. For most purposes, the two
packages are interchangeable.

Remark 3.7. When using ros2 interface show to inspect the structure of any of the above
types, a text message is shown suggesting not to use these primitive data types, but rather to
define semantically meaningful messages. That is to say, for example, if we are transmitting
a temperature encoded as a floating point number on 32 bits, rather than creating a topic that
transmits messages of type example interfaces::msg::Float32, we should create a new

82 CHAPTER 3. INTRODUCTION TO PROGRAMMING IN ROS

message type (perhaps called Temperature), put it into a package, and use this one instead.
This is a valid suggestion that is certainly appropriate for production systems. However, for
the sake of simplicity, in the following, we do not follow this route.

3.7 Transmitting and Receiving Arrays of Data

As a further example, let us write two nodes that transmit and receive an array of integers.
The overall structure of the code is similar to the listings we have seen so far, but in this case,
we have to use a different message type, namely example interfaces/msg/Int32MultiArray.
As the name suggests, this message carries a multidimensional array, i.e., an array with an
arbitrary number of dimensions. Because multidimensional arrays must ultimately be stored
in a linear structure (i.e., a one-dimensional array), the message also includes information
necessary to determine how the multidimensional array can be serialized into or deserialized
from a one-dimensional structure. To gain insights on the internal structure of this message,
we can run

ros2 interface show example_interfaces/msg/Int32MultiArray

This will generate the following output (comments removed for brevity):

MultiArrayLayout layout # specification of data layout

MultiArrayDimension[] dim #

string label #

uint32 size #

uint32 stride #

uint32 data_offset #

int32[] data # array of data

Here, data is the one-dimensional array that holds the serialized multidimensional array,
while layout stores information about how to reconstruct a multidimensional array from its
serialized representation. layout includes an array called dim of type MultyArrayDimension
with information about each dimension, as well as an offset. Following the same process
discussed in Section 2.7.1, we can analyze the structure of MultiArrayDimension with the
command

ros2 interface show example_interfaces/msg/MultiArrayDimension

which produces the output

string label # label of given dimension

uint32 size # size of given dimension (in type units)

uint32 stride # stride of given dimension

In summary, a message of type example interfaces/msg/Int32MultiArray includes a
message of type example interfaces/msg/MultiArrayLayout called layout to interpret

3.7. TRANSMITTING AND RECEIVING ARRAYS OF DATA 83

the serialization, an the field data. example interfaces/msg/MultiArrayLayout has two
fields: a vector of messages of type example interfaces/msg/MultiArrayDimension and
an integer called data offset. example interfaces/msg/MultiArrayDimension describes
a single dimension. It includes a string label and two integers, size and stride. If we
are transmitting an array with n dimensions, then dim will have n elements, each defining
the properties of one dimension. When arrays are included in a message definition, they are
instances of the vector class from the C++ Standard Template Library (STL). This means
that data and dim offer the usual methods found in the STL vector class, such as size,
push back, and so on.

The code showing how a message of type example interfaces/msg/Int32MultiArray

can be used to send a vector of integers is shown in Listing 3.11. The important point to
remember is that since we are sending a unidimensional array, the vector layout.dim has
just one element to describe the single dimension of the structure we are sending.7

Listing 3.11: Node publishing an array of integers

1 #include <r c l cpp / rc l cpp . hpp> // needed f o r ba s i c f unc t i on s
2 #include <e x a m p l e i n t e r f a c e s /msg/ i n t 3 2 m u l t i a r r a y . hpp> // f o r arrays o f i n t s
3 #include <e x a m p l e i n t e r f a c e s /msg/ mul t i a r ray d imens ion . hpp> // f o r dimensions
4
5 #define SIZE 10 // s i z e o f the array we are sending
6
7 int main (int argc , char ∗∗ argv) {
8
9 rc l cpp : : i n i t (argc , argv) ;

10 r c l cpp : : Node : : SharedPtr nodeh ;
11 r c l cpp : : Rate ra t e (1) ;
12
13 nodeh = rc l cpp : : Node : : make shared (” sendarray ”) ; // crea t e node
14 // c rea t e p u b l i s h e r
15 auto pubA = nodeh−>c r e a t e p u b l i s h e r <e x a m p l e i n t e r f a c e s : : msg : : Int32MultiArray>
16 (” a r r a y i n t ” , 1 0) ;
17
18 int value = 0 ;
19 e x a m p l e i n t e r f a c e s : : msg : : Int32Mult iArray toSend ; // message to send
20
21 // se tup data s t r u c t u r e to send one dimension
22 toSend . layout . dim . push back (e x a m p l e i n t e r f a c e s : : msg : : MultiArrayDimension ()) ;
23 toSend . layout . dim [0] . s i z e = SIZE ; // f i r s t dimension s i z e
24 toSend . layout . dim [0] . s t r i d e = 1 ; // 1 because unid imens iona l
25 toSend . layout . dim [0] . l a b e l = ”row” ; // a r b i t r a r y l a b e l
26 // make space f o r the s e r i a l i z e d array
27 toSend . data . r e s i z e (toSend . layout . dim [0] . s i z e) ;
28
29 while (r c l cpp : : ok ()) {
30 // s t o r e some va l u e s
31 for (int i = 0 ; i < SIZE ; i++)
32 toSend . data [i] = i+value ;
33 // pu b l i s h
34 pubA−>pub l i sh (toSend) ;

7The code for these and subsequent examples can be found on the MRTP GitHub in the package examples.

84 CHAPTER 3. INTRODUCTION TO PROGRAMMING IN ROS

35 value++;
36 ra t e . s l e e p () ;
37 }
38 }

Observe that we initialize the layout of the array by defining a single dimension. Next,
we resize the data field using the resize method provided by the STL vector class. In
this example, the field stride is equal to 1 because we have only one dimension and is
irrelevant. Later, we will discuss how to set it when dealing with multiple dimensions. Note
that, in general, stride is not equal to the number of dimensions. Then, in the main
loop, we fill the data structure and publish to the appropriate topic, exactly as we did
for the previous nodes. In this example, we also demonstrate that complex syntax in the
definition of the subscriber can be avoided by using the keyword auto to detect the type.
At this point, the structure of a node that subscribes to a topic containing messages of type
example interfaces/msg/Int32MultiArray should be straightforward to deduce. Listing
3.12 shows the code.

Listing 3.12: Node subscribing to a topic with an array of integers

1 #include <r c l cpp / rc l cpp . hpp> // needed f o r ba s i c f unc t i on s
2 #include <e x a m p l e i n t e r f a c e s /msg/ i n t 3 2 m u l t i a r r a y . hpp> // f o r arrays o f i n t s
3
4 rc l cpp : : Node : : SharedPtr nodeh ;
5
6 // c a l l b a c k func t i on to proces s incoming messages
7 void arrayCal lback (const e x a m p l e i n t e r f a c e s : : msg : : Int32Mult iArray : : SharedPtr
8 msg) {
9 RCLCPP INFO(nodeh−>g e t l o g g e r () , ” Received new message”) ;

10 // j u s t p r i n t e v e r y t h in g to the screen
11 for (unsigned int i = 0 ; i <msg−>data . s i z e () ; i++)
12 RCLCPP INFO(nodeh−>g e t l o g g e r () , ”%d” ,msg−>data [i]) ;
13 }
14
15 int main (int argc , char ∗∗ argv) {
16
17 rc l cpp : : i n i t (argc , argv) ;
18 nodeh = rc l cpp : : Node : : make shared (” a r r a y s u b s c r i b e r ”) ; // c rea t e node
19
20 // c rea t e s u b s c r i b e r and r e g i s t e r c a l l b a c k func t i on
21 auto sub = nodeh−>c r e a t e s u b s c r i p t i o n
22 <e x a m p l e i n t e r f a c e s : : msg : : Int32MultiArray>
23 (” a r r a y i n t ” ,10 ,& arrayCal lback) ;
24
25 // r e c e i v e a l l messages
26 rc l cpp : : sp in (nodeh) ;
27 }

The handler function in this case retrieves the size of the array directly using the size

method in data because we are receiving a unidimensional array, making the rest of the
layout information unnecessary. This will instead be explained and expanded upon in the
next subsection.

3.7. TRANSMITTING AND RECEIVING ARRAYS OF DATA 85

3.7.1 Sending and Receiving a Matrix

The next two examples demonstrate how example interfaces/msg/Int32MultiArray can
be used to send and receive a multidimensional array—in this case, a two-dimensional matrix.
As previously stated, regardless of the number of dimensions, all elements in the multidi-
mensional array are ultimately stored in the unidimensional structure data. The key lies in
initializing the layout with the appropriate information on how to map between multidi-
mensional indices and the linear structure data. Listing 3.13 illustrates this process. Since
we are sending a matrix (i.e., a 2-dimensional structure), dim must be initialized to store
two elements. For each dimension, we must specify the size and the stride, i.e., the linear
separation between two successive elements. Additionally, we set the data offset field to
0, as the data starts from the beginning. However, in general, this value could be set differ-
ently8. If the multidimensional structure has n dimensions, say A1 ×A2 ×A3 × . . . An, then
the stride Si of the i-th dimension is defined as:

Si = Ai × Ai+1 × · · · × An.

In this case, an element is identified by n indices, say (i1, i2, . . . , in). Its position in the
linear data structure (assuming an offset of 0) is given by:

i1 · S2 + i2 · S3 + · · ·+ in−1 · Sn + in.

For the specific case where n = 2, this formula is used inside the two nested for loops to
populate the data field. It is also applied in the callback function in Listing 3.14. Another
important aspect to consider is the order in which dimensions are declared, i.e., from the
outermost to the innermost.

Listing 3.13: Node publishing a matrix of integers

1 #include <r c l cpp / rc l cpp . hpp>
2 #include <e x a m p l e i n t e r f a c e s /msg/ i n t 3 2 m u l t i a r r a y . hpp>
3 #include <e x a m p l e i n t e r f a c e s /msg/ mul t i a r ray d imens ion . hpp>
4
5 #define ROWS 4 // matrix dimensions
6 #define COLS 5
7
8 int main (int argc , char ∗∗ argv) {
9 rc l cpp : : i n i t (argc , argv) ;

10 r c l cpp : : Node : : SharedPtr nodeh ;
11 r c l cpp : : Rate ra t e (1) ;
12
13 nodeh = rc l cpp : : Node : : make shared (” sendmatrix ”) ; // crea t e node
14 // c rea t e p u b l i s h e r
15 auto pubA = nodeh−>c r e a t e p u b l i s h e r <e x a m p l e i n t e r f a c e s : : msg : : Int32MultiArray>
16 (” matr ix int ” , 1 0) ;
17
18 // ins tance o f message to send
19 e x a m p l e i n t e r f a c e s : : msg : : Int32Mult iArray toSend ;
20 int value =0;

8By setting data offset to a value other than 0, it is possible to allocate a buffer at the beginning of
data to store auxiliary information.

86 CHAPTER 3. INTRODUCTION TO PROGRAMMING IN ROS

21
22 // se tup l ayou t f o r a matrix o f s i z e ROWS ∗ COLS
23 toSend . layout . dim . r e s i z e (2) ; // dimensions
24 toSend . layout . dim [0] . s i z e = ROWS; // s i z e o f the f i r s t dimension
25 toSend . layout . dim [0] . s t r i d e = ROWS ∗ COLS; // not n e c e s s a r i l y needed
26 toSend . layout . dim [0] . l a b e l = ”row” ; // l a b e l f o r f i r s t dimension
27 toSend . layout . dim [1] . s i z e = COLS; // s i z e o f second dimension
28 toSend . layout . dim [1] . s t r i d e = COLS; // separa t i on between columns
29 toSend . layout . dim [1] . l a b e l = ” c o l ” ; // l a b e l f o r second dimension
30 toSend . layout . d a t a o f f s e t = 0 ; // no o f f s e t
31 toSend . data . r e s i z e (toSend . layout . dim [0] . s t r i d e) ; // number o f e lements
32 while (r c l cpp : : ok ()) {
33 // f i l l s en try (i , j) wi th i ∗ j+va lue
34 for (int i = 0 ; i < ROWS ; i++) {
35 for (int j = 0 ; j < COLS ; j++) {
36 // note how acces s (i , j) in data
37 toSend . data [i ∗ toSend . layout . dim [1] . s t r i d e + j] = i+j+value ;
38 }
39 }
40 value++;
41 pubA−>pub l i sh (toSend) ; // pu b l i s h
42 ra t e . s l e e p () ;
43 }
44 }

Listing 3.14 illustrates how a node subscribing to the topic can extract the sizes of the
different dimensions directly from the message and use this information to reconstruct the
data in matrix form. In this case, the callback function retrieves the data from the message
and assembles the matrix as a vector of vectors using the STL vector class. However, it
does not print the matrix to the screen.

Listing 3.14: Node subscribing to a matrix of integers

1 #include <r c l cpp / rc l cpp . hpp>
2 #include <e x a m p l e i n t e r f a c e s /msg/ i n t 3 2 m u l t i a r r a y . hpp>
3 #include <vector>
4
5 rc l cpp : : Node : : SharedPtr nodeh ;
6
7 // c a l l b a c k func t i on c a l l e d when a matrix i s r e c e i v ed
8 void matr ixCal lback (const e x a m p l e i n t e r f a c e s : : msg : : Int32Mult iArray : : SharedPtr
9 msg) {

10 // f i r s t e x t r a c t s dimensions from message
11 int nrows = msg−>l ayout . dim [0] . s i z e ;
12 int nco l s = msg−>l ayout . dim [1] . s i z e ;
13 RCLCPP INFO(nodeh−>g e t l o g g e r () , ” Received %dx%d matrix ” , nrows , n co l s) ;
14 // a l l o c a t e l o c a l matrix to copy r e c e i v ed data
15 std : : vector<std : : vector<int> > matrix (nrows , std : : vector<int>(nco l s)) ;
16 for (int i = 0 ; i < nrows ; i++)
17 for (int j = 0 ; j < nco l s ; j++)
18 // note how element (i , j) i s e x t r a c t e d and copied in matrix [i] [j]
19 matrix [i] [j] = msg−>data [i ∗msg−>l ayout . dim [1] . s t r i d e + j] ;
20 }
21

3.7. TRANSMITTING AND RECEIVING ARRAYS OF DATA 87

22
23 int main (int argc , char ∗∗ argv) {
24
25 rc l cpp : : i n i t (argc , argv) ;
26 nodeh = rc l cpp : : Node : : make shared (” mat r i x subsc r ibe r ”) ; // c rea t e node
27 // c rea t e s u b s c r i b e r and r e g i s t e r c a l l b a c k func t i on
28 auto sub =
29 nodeh−>c r e a t e s u b s c r i p t i o n <e x a m p l e i n t e r f a c e s : : msg : : Int32MultiArray>
30 (” matr ix int ” ,10 ,& matr ixCal lback) ;
31
32 r c l cpp : : sp in (nodeh) ;
33
34 }

The output will look like the following

[INFO] [1672674595.288773746] [matrixsubscriber]: Received 4x5 matrix

[INFO] [1672674596.288823136] [matrixsubscriber]: Received 4x5 matrix

[INFO] [1672674597.288452699] [matrixsubscriber]: Received 4x5 matrix

[INFO] [1672674598.289269984] [matrixsubscriber]: Received 4x5 matrix

[INFO] [1672674599.288628307] [matrixsubscriber]: Received 4x5 matrix

[INFO] [1672674600.290741247] [matrixsubscriber]: Received 4x5 matrix

[INFO] [1672674601.292297280] [matrixsubscriber]: Received 4x5 matrix

However, if we run

ros2 topic echo matrixint

we can visualize the matrices being sent over the topic directly on the screen. The output will
resemble the following, confirming that the matrix is transmitted according to the format
we discussed.

layout:

dim:

- label: row

size: 4

stride: 20

- label: col

size: 5

stride: 5

data_offset: 0

data:

- 9

- 10

- 11

- 12

- 13

- 10

88 CHAPTER 3. INTRODUCTION TO PROGRAMMING IN ROS

- 11

- 12

- 13

- 14

- 11

- 12

- 13

- 14

- 15

- 12

- 13

- 14

- 15

- 16

3.8 Publishing and subscribing from the same node

In many cases, a node is both a publisher and a subscriber. Typically, a node receives
some information (e.g., an image from a camera), performs some processing (e.g., runs a
computer vision algorithm to determine if there is an object of interest), and then passes
the result to another node (e.g., if the object of interest is found, it estimates its position
and passes this information to a navigation node that will move the robot towards the
object). In other instances, the operation performed on the data can be much simpler, such
as finding the smallest number in a series of distance readings from a proximity range finder.
If the computation done in response to the received message is limited, it is possible to
include the code for publishing to a topic inside the callback function handling incoming
messages. However, it is not advisable to include time-consuming code in the callback
function because, in such cases, the callback function may not be able to keep up with the
incoming messages. Therefore, depending on the computation to be performed in response
to an incoming message, different solutions may be implemented.

An important consideration is that the publisher object should not be declared and
initialized inside the handler function for a variety of reasons (e.g., it can be relatively slow).
As an example, we write a node that receives messages of type sensor msg/msg/LaserScan

and publishes to a topic of floats. The sensor msg/msg/LaserScan message is used to
transmit data produced by a laser scanner, a sensor commonly used in robotics, which will
be introduced later on (Chapter 7.) Among other things, the sensor produces an array of
distances (called ranges) to nearby obstacles. The node we write analyzes each message,
determines the smallest value, and publishes it to a topic called closest. This behavior
could, for example, be used to implement a safety feature, whereby another node could
subscribe to closest and decide whether the robot should continue moving, depending on
the distance to the closest obstacle. As usual, we use ros2 interface to determine the
structure of the message of type sensor msg/msg/LaserScan.

3.8. PUBLISHING AND SUBSCRIBING FROM THE SAME NODE 89

Single scan from a planar laser range-finder

#

If you have another ranging device with different behavior (e.g. a sonar

array), please find or create a different message, since applications

will make fairly laser-specific assumptions about this data

std_msgs/Header header # timestamp in the header is the acquisition time of

builtin_interfaces/Time stamp

int32 sec

uint32 nanosec

string frame_id

the first ray in the scan.

#

in frame frame_id, angles are measured around

the positive Z axis (counterclockwise, if Z is up)

with zero angle being forward along the x axis

float32 angle_min # start angle of the scan [rad]

float32 angle_max # end angle of the scan [rad]

float32 angle_increment # angular distance between measurements [rad]

float32 time_increment # time between measurements [seconds] - if your

scanner is moving, this will be used in interpolating position

of 3d points

float32 scan_time # time between scans [seconds]

float32 range_min # minimum range value [m]

float32 range_max # maximum range value [m]

float32[] ranges # range data [m]

(Note: values < range_min or > range_max should be discarded)

float32[] intensities # intensity data [device-specific units]. If your

device does not provide intensities, please leave

the array empty.

The details of all the various fields will be discussed in Chapter 7, where we will introduce
various sensors. For the time being, we will just use ranges, which is an array of non-negative
floats indicating a set of measured distances. Listing 3.15 shows a node implementing the
functionality we just described.

Listing 3.15: Publisher/subscriber node

1 #include <r c l cpp / rc l cpp . hpp>
2 #include <sensor msgs /msg/ l a s e r s c a n . hpp> // to r e c e i v e l a s e r scans
3 #include <e x a m p l e i n t e r f a c e s /msg/ f l o a t 3 2 . hpp> // to send f l o a t i n g po in t numbers
4
5 // pu b l i s h e r o b j e c t to send the r e s u l t
6 rc l cpp : : Publ i sher<e x a m p l e i n t e r f a c e s : : msg : : Float32 > : : SharedPtr pubf ;
7

90 CHAPTER 3. INTRODUCTION TO PROGRAMMING IN ROS

8 // c a l l b a c k func t i on c a l l e d when a l a s e r scan i s r e c e i v ed
9 void processScan (const sensor msgs : : msg : : LaserScan : : SharedPtr msg) {

10 e x a m p l e i n t e r f a c e s : : msg : : Float32 out ; // message wi th c l o s e s t d i s t ance
11 out . data = msg−>ranges [0] ; // i n i t i a l i z e r e s u l t
12 // i t e r a t e over a l l r ead ings and update r e s u l t i f necessary
13 for (unsigned int i = 1 ; i < msg−>ranges . s i z e () ; i++) {
14 i f (msg−>ranges [i] < out . data)
15 out . data = msg−>ranges [i] ;
16 }
17 pubf−>pub l i sh (out) ; // pu b l i s h r e s u l t
18 }
19
20
21 int main (int argc , char ∗∗ argv) {
22
23 rc l cpp : : i n i t (argc , argv) ;
24 r c l cpp : : Node : : SharedPtr nodeh ;
25
26 nodeh = rc l cpp : : Node : : make shared (”pubsub”) ; // crea t e node
27
28 // c rea t e p u b l i s h e r (g l o b a l v a r i a b l e)
29 pubf = nodeh−>c r e a t e p u b l i s h e r <e x a m p l e i n t e r f a c e s : : msg : : Float32>
30 (” c l o s e s t ” , 1 0 0 0) ;
31 // c rea t e s u b s c r i b e r and r e g i s t e r c a l l b a c k func t i on
32 auto sub = nodeh−>c r e a t e s u b s c r i p t i o n <sensor msgs : : msg : : LaserScan>
33 (” scan ” ,10 ,& processScan) ;
34
35 r c l cpp : : sp in (nodeh) ;
36 }

In this case, the node subscribes to a topic scan from which it will receive messages of type
sensor msgs/msg/LaserScan. The node analyzes the entire ranges array and publishes the
smallest distance it finds. The logic is straightforward, and the only part that requires some
thought is where to place and initialize the instance of rclcpp::Publisher used to publish
to the topic. Since we want to publish from the handler function processScan, we cannot
declare and initialize the publisher in the main function because it would not be visible from
the callback function. In this case, therefore, the publisher is declared globally and initialized
in the main function. Of course, global variables are generally to be avoided, but this is the
most straightforward way to initialize the publisher outside the handler function. The official
ROS documentation describes more principled (and complex) approaches to avoid using a
global variable. Once we will introduce object oriented programming in ROS (Chapter 5)
there will no longer be the need to declare global variables. Another aspect to note is that
this node depends on a new package, sensor msgs, as can be seen from the initial include.
Therefore, CMakeLists.txt and package.xml must be correspondingly updated (see files in
the MRTP GitHub for details).

For completeness, we also provide the listing of the node that publishes to the scan topic
so that we can test the whole application. Its code is provided in listing 3.16, where we see
how the ranges array is resized to hold 181 values (a typical value for this type of sensor)
and then filled with random numbers between 0 and 2.

3.8. PUBLISHING AND SUBSCRIBING FROM THE SAME NODE 91

Listing 3.16: Node publishing laser scans

1 #include <r c l cpp / rc l cpp . hpp>
2 #include <sensor msgs /msg/ l a s e r s c a n . hpp>
3 #include <c s t d l i b >
4
5 #define NDATA 181 // number o f read ings
6
7 int main (int argc , char ∗∗ argv) {
8
9 rc l cpp : : i n i t (argc , argv) ;

10 r c l cpp : : Node : : SharedPtr nodeh ;
11 r c l cpp : : Rate ra t e (1) ;
12
13 nodeh = rc l cpp : : Node : : make shared (”pubscan”) ; // crea t e node
14 // c rea t e p u b l i s h e r
15 auto pubs = nodeh−>c r e a t e p u b l i s h e r <sensor msgs : : msg : : LaserScan>
16 (” scan ” , 1 0) ;
17 int i t e r a t i o n = 1 ; // j u s t f o r output purposes
18 // ins tance o f message to be sen t
19 sensor msgs : : msg : : LaserScan toSend ;
20 // se tup data s t r u c t u r e to send
21 toSend . ranges . r e s i z e (NDATA) ;
22 // o ther f i e l d s in toSend shou ld be i n i t i a l i z e d , too . . .
23
24 while (r c l cpp : : ok ()) {
25 // genera te random d i s t anc e s in range 0−2
26 for (int i = 0 ; i < NDATA ; i++)
27 toSend . ranges [i] = (2∗ f loat (rand ())) /RAND MAX;
28 RCLCPP INFO(nodeh−>g e t l o g g e r () , ” Pub l i sh ing scan #%d” , i t e r a t i o n ++);
29 pubs−>pub l i sh (toSend) ; // pu b l i s h
30 ra t e . s l e e p () ;
31 }
32
33 }

If we now build the package, run both nodes and then run

ros2 topic echo /closest

from a separate shell, we will get an output similar to the following

data: 0.002367734909057617

data: 0.0030525801703333855

data: 0.000956712756305933

data: 0.007958965376019478

data: 0.00041060103103518486

92 CHAPTER 3. INTRODUCTION TO PROGRAMMING IN ROS

data: 0.003463807050138712

data: 0.0008788560517132282

thus confirming that pubsub is indeed working as expected.

Further reading

While there are numerous textbooks devoted to ROS 1 programming, due to the fact that
ROS 2 is still relatively new, there are fewer printed resources available for it. Two recent
books focusing on ROS 2 programming are [45,46]. The ROS 2 official website also includes
various tutorials about programming nodes in C++.

Previously published books about ROS 1 programming, such as [20,21,25,42,43], may also
be useful for exploring different approaches to robot programming, but their code examples
will not work “as is” in ROS 2 and will need to be adjusted. To this end, https://docs.
ros.org/en/jazzy/The-ROS2-Project/Contributing/Migration-Guide.html provides a
guide on how to migrate code from ROS 1 to ROS 2.

https://docs.ros.org/en/jazzy/The-ROS2-Project/Contributing/Migration-Guide.html
https://docs.ros.org/en/jazzy/The-ROS2-Project/Contributing/Migration-Guide.html

Chapter 4

Geometric Representations and
Kinematics

4.1 Introduction

Kinematics is the study of motion without considering its causes. It is a fundamental topic
in physics, and the reader should already be familiar with its principles. The study of
kinematics relies on the ability to describe the position and orientation of objects in space.
In particular, velocity is defined as the time derivative of pose. Mathematically, if P(t)
represents the position and orientation of an object in space as a function of time t, then
velocity V(t) is given by:

V(t) =
dP(t)

dt
(4.1)

Thus, to study kinematics, we must first establish how to represent the position and
orientation of objects in space—that is, their geometric representations. In this chapter,
we will explore a subset of geometric representations and kinematics from two perspectives.
First, we will introduce the mathematical notation used to describe problems relevant to
robotics. Then, we will examine how these concepts are implemented in ROS.

Before getting into the mathematical details of geometric representations and kinematics,
we start with some examples showing why these topics are important when studying robotics.
Robots operate in the physical three-dimensional world, and it is therefore necessary to
develop an appropriate set of tools to reason and make decisions about the space in which
they move. For example, a robot scouting an orchard and capable of detecting anomalies
(e.g., detecting a pest) should determine its location in the world and use this information
to dispatch a human operator who can assess the situation. Without loss of generality,
we assume the existence of a so-called world frame1, i.e., a coordinate system with respect
to which positions and angles are expressed. The location of the robot will, in general,
be expressed with respect to the world frame. Abstracting the robot as a rigid object,
its location in the world is defined by its position and orientation. In most instances, a
robot is not a rigid body but is rather composed of various interconnected parts that can

1The formal definition of frame will be given in the next section. For now a frame can just be assumed
to be a coordinate system.

93

94 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

move with respect to each other. Nevertheless, the rigid body assumption is a reasonable
approximation to get started. Position and orientation combined will be collectively called
pose in the following. This corresponds to P in Eq.(4.1). The position is given by a vector in
R3, and the orientation is defined by three angles (details will be provided in the following).
This approach can be conveniently modeled by assuming that a rigid frame is attached to the
robot. Rigidly attachedmeans that whenever the robot moves or rotates, the frame makes the
same move or rotation (and vice versa), and there is no mutual motion or rotation between
the attached frame and the robot. Hence, one can simply reason about the pose of the
frame as a proxy for the pose of the robot. Figure 4.1 illustrates this idea. The red frame
represents the world frame, whereas the orange frame, rigidly attached to the quadrotor,
defines its pose. To describe the location of the quadrotor or its motion with respect to the
world frame, one can then just describe the location of the orange frame or its motion with
respect to the world frame.

x

world

x

y

z

z

x

y

Figure 4.1: The orange frame rigidly attached to the quadrotor defines its pose with respect
to the red world frame.

Another scenario worth considering is when there is more than one robot operating in
the same environment. In this case, each of them will be associated with its rigidly attached
frame. Therefore, it will be necessary to develop appropriate notation to consider multiple
frames at once. Moreover, it will often be necessary to compute coordinate transformations
between these multiple frames. This is most often the case because many sensors provide
local or relative measurements. For example, a stereo camera estimating the pose of an object
will most likely return a measurement expressed relative to the camera itself and not in the
world frame. So if robot A determines the pose of an object through its onboard sensors
and this pose is expressed with respect to a frame rigidly attached to A, it may be useful
to determine the pose of the object with respect to a frame rigidly attached to a different

4.1. INTRODUCTION 95

robot, say B, or in the world frame. This case is depicted in Figure 4.2. The robot on the
left (say A) observes the purple diamond, and its position is expressed relative to robot A.
Assuming that the pose of both robots A and B is known with respect to the world frame
(blue frame at the top), how do we determine the pose of the purple diamond relative to the
robot B on the right?

Figure 4.2: Two robots observing the same object in their local coordinate frames.

Questions like these are extremely important when multiple robots cooperate to solve
the same task and therefore need to exchange information extracted by their sensors, which
is expressed in local coordinates. Finally, changes of coordinates are necessary even when
only a single robot is involved. Consider, for example, the case shown in Figure 4.3.

z'

x' y'

x y

z

Figure 4.3: Multiple frames can be assigned to the same robot, e.g., attaching frames to
sensors.

The robot uses a stereocamera for depth estimation. Algorithms processing data from
the camera will most likely return information referred to the orange frame attached to the
camera2, e.g., the estimated distance of an object will be referred to the orange frame. If
the robot needs to move to approach this object, this information must be referred to the
green frame attached to the robot, assuming that the planning system computes motion

2In practice, the frame is likely to be oriented differently, i.e., with the z′ axis pointing forward. However,
this technical detail is immaterial for the rest of the discussion.

96 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

commands relative to the green frame. In many practical scenarios, a single robot does not
feature just a couple of frames but a very large number. Figure 4.4, for example, shows the
frames associated with the PR2 robot, a research platform consisting of two arms mounted
on a mobile base (https://robots.ieee.org/robots/pr2/).

Figure 4.4: Frames attached to the PR2 robot.

From these examples, it should be clear that geometric representations, coordinate trans-
formations and kinematics are concepts pervasive in robotics, and we need to develop the
tools to reason about them and perform relevant operations in a principled and efficient way.
In this chapter, we first present the mathematical formalism to solve these problems, and
we then illustrate how these concepts are implemented in ROS.

4.2 Background and Notation

We start by providing some definitions and recalling basic concepts that should already be
familiar to the reader. In the following, we will often refer to rigid bodies, or collections of
(possibly interconnected) rigid bodies.

Definition 4.1. A body B is said to be a rigid body if the Euclidean distance between any
two points in B is constant.

According to this definition, a body is rigid if it cannot be compressed, stretched, twisted,
etc., i.e., if its shape does not change.

Definition 4.2. A frame of reference (or simply frame) is given by an origin point O and
three orthonormal vectors x, y, and z called axes satisfying the so-called right-hand rule,
i.e.,

x× y = z y × z = x z× x = y (4.2)

where × is the vector (cross) product.

https://robots.ieee.org/robots/pr2/

4.3. REPRESENTING A FRAME 97

Recall that the orthonormal requirement stipulates that each of the three vectors x, y,
and z has Euclidean norm 1, and that they are mutually orthogonal, i.e.,

x · x = 1 y · y = 1 z · z = 1 x · y = 0 y · z = 0 z · x = 0 (4.3)

where · is the dot product.
It shall be noted that one could also consider left-handed reference frames, but these are

rarely used in robotics and will therefore not be considered. In the following, we will often
indicate a frame as O − xyz, and we will give symbolic names to frames, like A, B, etc.
Figure 4.5 shows the typical representation for a frame.

x

z

y

O

Figure 4.5: Representation of a frame

A point p in Rn is represented by n values3 called coordinates, i.e., p = [p1 p2 . . . pn]
T

where the superscript T indicates the transpose, and we have, as usually assumed, that
elements in Rn are column vectors. The values of the coordinates are always expressed with
reference to a frame. In many cases, there is just one frame, so no confusion will arise.
This is likely the case already seen by most readers. But in most robotics applications,
there will be many frames, so it is important to be precise and specify to which frame the
coordinates are referred. To this end, it is customary to introduce a leading superscript, like
Ap and Bp. With this notation, Ap is the vector with the coordinates of point p referred
to reference frame A, whereas Bp indicates the coordinates of the same point but referred
to reference frame B. Figure 4.6 illustrates this concept. In this case, Ap = [0.6 2 2]T and
Bp = [0 −1.4 0]T

4.3 Representing a frame

We now turn to the problem of representing a frame with respect to another frame. Recall
that a frame is defined by its origin (a point) and its three orthonormal axes. Since we have
just learned how to represent the coordinates of a point with respect to different frames, the
problem of representing the origin of a frame is therefore solved, and we can focus on how
to represent its axes with respect to a frame.

To be specific, let A = O − xyz be the first frame and B = O′ − x′y′z′ be the second
frame. Our objective is to represent frame B with respect to frame A (see Figure 4.7).

3Depending on the situation, in robotics problems we may have n = 2 or n = 3. These are the only two
cases we will have to consider.

98 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

x′

z′

y′

y′′

z′′

x′′

Ap

Bpp

O′

O′′

Figure 4.6: Given two frames A = O′ − x′y′z′ and B = O′′ − x′′y′′z′′, the coordinates of
point p can be expressed with respect to either frame. In the first case, the coordinates are
indicated as Ap, whereas in the latter they are Bp. The vectors Ap and Bp have different
coordinate values.

The origin O′ is a point and is therefore described in frame A as a three-dimensional
vector. In particular, let p be a point coincident with O′. Its coordinates with respect to
frame A are then given by the vector Ap (alternatively, we could write AO′). Next, we want
to describe the three vectors x′,y′, z′ with respect to frame A. This is done by considering
the projections of each of these three axes along the axes x,y, z. Conceptually, one can think
of translating (without rotating) frame B so that its origin coincides with the origin of frame
A, and then taking the coordinates of the endpoints of the three unitary axes x′,y′, z′ with
respect to frame A (see Figure 4.8).

The coordinates of the endpoints are, by definition, the projections along the axes. This
leads to the following expressions for the three coordinates of the axis x′ expressed with
respect to frame A:

Ax′ =

 x′ · x
x′ · y
x′ · z


where x′ ·x is the dot product between x′ and x, x′ ·y is the dot product between x′ and

y, and so on. Similarly, we can obtain analogous expressions for y′ and z′, i.e.,

Ay′ =

 y′ · x
y′ · y
y′ · z

 Az′ =

 z′ · x
z′ · y
z′ · z

 .

4.3. REPRESENTING A FRAME 99

x

z

y

y′

z′

x′

O

O′

Figure 4.7: Given two frames A = O−xyz and B = O′−x′y′z′, we want to represent frame
B with respect to frame A.

x

z

y

y′

z′

x′

O,O′

Figure 4.8: Frames A and B with coincident origins. Note that B has not been rotated
(compare with Figure 4.7.)

These three vectors are compactly represented as the three columns of a 3 × 3 matrix
called the rotation matrix.

A
BR =

 x′ · x y′ · x z′ · x
x′ · y y′ · y z′ · y
x′ · z y′ · z z′ · z

 (4.4)

It is important to stress the notation used. The subscript B and superscript A indicate
that this matrix describes the rotation of frame B with respect to frame A. The order is
important because in general A

BR ̸= B
AR. Summarizing, frame B can be described with

respect to frame A through a three-dimensional vector for its origin and a 3 × 3 rotation
matrix for its orientation. Moreover, consistently with the notation we used for points, the
leading superscript A indicates that the rotation matrix is referred to frame A.

Example 4.1. Let A = O−xyz and B = O′−x′y′z′ be two aligned frames, i.e., two frames
with parallel axes (see figure 4.9). Then A

BR is the 3 × 3 identity matrix I. This result is
easy to derive considering Eq. (4.4). The first column is the projection of x′ along the axes
xyz, i.e., the vector [1 0 0]T since x′ coincides with x and is orthogonal to both y and z (and

100 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

therefore the length of its projections along these axes is 0). Following a similar reasoning,
the second column is the projection of y′ along the axes xyz, i.e., the vector [0 1 0]T , and
the third column is [0 0 1]T . Putting the three columns together, we then obtain A

BR = I.
Following an identical reasoning, we also verify that B

AR = I.

x

z

y

x′

z′

y′

O

O′

Figure 4.9: Two frames with parallel axis and different origins.

We next determine B
AR, i.e., the rotation matrix describing frame A with respect to frame

B. Note how in this case the subscript and superscript have been flipped. Similarly to what
we did before, we consider the projections of the axes xyz along the axes x′y′z′. Following
the same reasoning that led to Eq. (4.4), we can write

B
AR =

 x · x′ y · x′ z · x′

x · y′ y · y′ z · y′

x · z′ y · z′ z · z′

 .
Recalling that the dot product is commutative, and the previous matrix is therefore nothing
but the transpose of (4.4), i.e.,

B
AR = A

BR
T . (4.5)

4.4 Change of coordinates

A change of coordinates problem emerges in situations like the one depicted in Figure 4.2.
A robot4 B determines the position of an object in its local frame and wants to pass this
information to another robot A. This requires expressing the pose of the same object in
two different frames, each attached to a robot. This problem is formulated as follows. Let
A = O−xyz and B = O′−x′y′z′ be two frames, and let Bp = [px py pz]

T be the coordinates
of point p expressed with respect to frame B. We want to determine Ap, i.e., the coordinates
of p with respect to frame A. We assume the availability of the description of frame B with
respect to A, i.e., AO′ and A

BR.

4We use the same symbols for robots and frames because, as we previously stated, frames and robots are
interchangeable in this discussion.

4.4. CHANGE OF COORDINATES 101

To solve the general problem, we first start with two simpler special cases. First, assume
that the two frames are aligned (see Figure 4.10). This means that x is parallel to x′, y is
parallel to y′, and z is parallel to z′, and therefore A

BR = I.

x

z

y

O

x′

z′

y′

AO′ Ap

Bp
p

O′

Figure 4.10: Change of coordinates for the case where frames A and B are aligned.

Let AO′ = [∆x ∆y ∆z]T . Then it trivially follows that the vector of coordinates of p in
frame A, i.e., Ap is the sum of the two vectors AO′ and Bp:

Ap = Bp+ AO′ =

 px +∆x
py +∆y
pz +∆z

 .
We next consider the other special case where AO′ = [0 0 0]T but A

BR ̸= I. In this case, the
two frames share the same origin but are not aligned (see Figure 4.8). Since Bp = [px py pz]

T

is the vector of coordinates with respect to frame B = O′ − x′y′z′ this means that

Bp = pxx
′ + pyy

′ + pzz
′ (4.6)

This expression holds because Bp by definition has the coordinates with respect to to
frame B, and frame B is defined by the axes x′, y′, z′.

Next, recalling how we defined the rotation matrix A
BR in Eq. (4.4), each of the vectors x′,

y′, and z′ appearing in Eq. (4.6) can be expressed with respect to the frame A = O − xyz.
Recall that the first column of A

BR gives the projections of x′ along the three axes xyz,
the second gives the projections of y′ along the three axes xyz, and the third gives the
projections of z′ along the three axes xyz. Writing out the elements of the rotation matrix
as follows:

A
BR =

 r11 r12 r13
r21 r22 r23
r31 r32 r33



102 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

we can then write

Ax′ = r11x+ r21y + r31z
Ay′ = r12x+ r22y + r32z
Az′ = r13x+ r23y + r33z

Substituting these relationships into Eq. (4.6) we can then determine Ap:

Ap = px(r11x+ r21y + r31z) + py(r12x+ r22y + r32z) + pz(r13x+ r23y + r33z)

= (pxr11 + pyr12 + pzr13)x+ (pxr21 + pyr22 + pzr23)y + (pxr31 + pyr32 + pzr33)z.

Recalling the definition of matrix-vector multiplication, this last expression can be compactly
written as the following matrix-vector product

Ap = A
BR

Bp. (4.7)

This expression can be easily recalled by noting that the B superscript and subscript cancel
out diagonally, thus giving a vector with the superscript A.

Example 4.2. Let Bp = [0 2 1]T the coordinates of point p expressed in frame B and let

A
BR =

 0.70710678 0 0.70710678
0.61237244 0.5 −0.61237244
−0.35355339 0.8660254 0.35355339


be the rotation matrix of B with respect to A. The coordinates of p with respect to A can
therefore be obtained using Eq. (4.7) and the result is Ap = [0.70710678 0.38762756 2.0856042]T .
The reader should verify this result by doing the matrix vector multiplication.

The last case we need to consider is the general one, i.e., the case when B = O′ − x′y′z′

is both translated and rotated with respect to A = O − xyz (see Figure 4.11).
In this case, B’s pose with respect to A is described by both AO

′
and a matrix B

AR ̸= I.
Combining the previous two results, we can then write

Ap = A
BR

Bp+ AO
′
. (4.8)

This last expression shows that for a generic change of coordinates, it is necessary to consider
both a matrix and a vector. This motivates the use of a compact representation combining
both of them into just one object. This is achieved with homogeneous coordinates and
transformation matrices, as described in Sections 4.6 and 4.7.

Example 4.3. With reference to Figure 4.11, let us consider the case where we have the
coordinates of point p with respect to frame B, Bp = [1 4 2]T . Let us furthermore assume
that we have the description of frame B with respect to frame A, i.e., AO′ = [7 − 2 1]T and

A
BR =

 0.70710678 0 0.70710678
0.61237244 0.5 −0.61237244
−0.35355339 0.8660254 0.35355339


To determine the coordinates of point p with respect to frame A we just need to apply
Eq. (4.8), obtaining Ap = [9.12132034 − 0.61237244 4.81765501]T .

4.5. ROTATION MATRICES 103

x

z

y

O

x′

z′

y′

AO′ Ap

Bp p

O′

Figure 4.11: General case in which frame B is both rotated and translated with respect to
A.

4.5 Rotation matrices

Rotation matrices play a very important role in many robot modeling problems, and we
therefore investigate their structure in more detail. Although A

BR features nine elements,
these are subject to the six constraints given in Eq. (4.3). Consequently, the matrix is fully
determined by only three independent parameters. To be a valid rotation matrix representing
the orientation of a frame (or rigid body), a 3 × 3 matrix must satisfy the following three
conditions:

1. Each of its columns has length 1.

2. Its columns are mutually orthogonal.

3. Its determinant is 1.

The first two conditions are those expressed by Eq. (4.3), whereas the last one imposes
that the frame is a right-hand frame, i.e., the condition given by Eq. (4.2). A matrix satisfying
the first and second properties is said to be orthogonal, whereas a matrix satisfying all three
properties is said to be special orthogonal. Hence, all rotation matrices are special orthogonal.

Example 4.4. The matrix A
BR given in Example 4.2 is a valid rotation matrix, i.e., it is

a special orthogonal matrix. Verifying the three properties given above is a simple exercise
(albeit boring if done by hand). Note that when considering the dot product between the
columns, the result is not exactly 0 because A

BR has been given in approximate form.

The following theorem states an important property of rotation matrices.

Theorem 4.1. The transpose of a rotation matrix is equal to its inverse, i.e., if R is a
rotation matrix, then RT = R−1.

104 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

Proof. SinceR is a rotation matrix, its determinant is equal to 1, and therefore it is invertible.
By definition, the inverse of R is a matrix R−1 such that

R−1R = RR−1 = I

where I is the identity matrix. Exploiting the first and second properties listed above, it is
immediate to verify that

RTR = I.

This can be verified as follows. The generic (i, i) element of RTR is the dot product between
the i-th row of RT and the i-th column of R. By definition of the transpose, the i-th row of
RT is the i-th column of R, and therefore their dot product is 1 because of Property 1. Thus,
all elements on the main diagonal are equal to 1. Similarly, the generic off-diagonal element
at position (i, j) is the dot product between the i-th column of R and the j-th column, which
is equal to 0 because of Property 2. Hence, RTR is the identity matrix. Similarly, one can
show that

RRT = I

and so RT is the inverse of R.

Combining Theorem 4.1 with Eq. (4.5), we therefore obtain

B
AR = A

BR
T = [ABR]−1

which means that B
AR is the inverse of the matrix A

BR.

Example 4.5. Consider the following rotation matrix expressing the rotation of frame B
with respect to A:

A
BR =

 0.9211 −0.3894 0
0.3894 0.9211 0

0 0 1


The matrix expressing the rotation of A with respect to B is its inverse, i.e., B

AR = [ABR]−1.
According to Theorem 4.1, this can be obtained by considering the transpose of A

BR, i.e.,

B
AR =

 0.9211 0.3894 0
−0.3894 0.9211 0

0 0 1


Remark 4.1. With reference to Example 4.3, one may think that if we are given Ap, AO′,
and A

BR, we can recover Bp by applying formula (4.8), using the result we just saw to set
B
AR = A

BR
T
. This is correct, but to apply the formula, we also need BO. A common mistake

is assuming BO = −AO′. This is generally incorrect, as the reader can easily verify with
a simple two-dimensional example. The formula to derive BO from AO′ and A

BR will be
discussed in Section 4.7.5.

4.5. ROTATION MATRICES 105

4.5.1 Elementary Rotation Matrices

We begin by outlining the structure of so-called elementary rotation matrices, i.e., matrices
representing a frame rotated about a single axis. These simple matrices can be combined to
represent more complex orientations and provide insight into their structure. Consider two
frames, A = O − xyz and B = O′ − x′y′z′, and assume they are initially coincident, i.e.,
they share the same origin and have aligned axes. Next, assume we rotate frame B about
its x′ axis by an angle α (note that this is equivalent to rotating about the x axis because
they are initially aligned). Figure 4.12 illustrates this situation, and by inspection, we can
determine A

BR, i.e., the rotation matrix describing frame B after a rotation of angle α about
x.

x,x′

z

yy′z′

O,O′

α

Figure 4.12: The red frame is initially coincident with the black frame and then rotates by
an angle α about the x axis. Note that x coincides with x′ throughout the motion.

Following the reasoning presented in Section 4.3, it is straightforward to determine that
the coordinates of the endpoint of axis x′ in frame A are [1 0 0]T since axes x and x′ remain
aligned after frame B rotates about x′. Similarly, we can determine the coordinates of the
endpoint of axis y′ in frame A. Its projection along axis x is 0, whereas, from elementary
trigonometry, its projection along axis y is cosα and its projection along axis z is sinα.
Hence, its coordinates in frame A are [0 cosα sinα]T . Applying the same reasoning to
axis z′ shows that its coordinates in frame A after the rotation are [0 − sinα cosα]T .
Combining these three columns, as in Eq. (4.4), we obtain the matrix Rx(α), where the
notation indicates that it is the matrix obtained by rotating about the x axis by an angle α:

Rx(α) =

 1 0 0
0 cosα − sinα
0 sinα cosα

 . (4.9)

Following the same reasoning, we can derive expressions for the elementary rotation
matrices about the y and z axes. Figure 4.13 illustrates these rotations, while Eqs. (4.10)-
(4.11) provide the expressions for the associated matrices:

Ry(α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 (4.10)

Rz(α) =

 cosα − sinα 0
sinα cosα 0
0 0 1

 . (4.11)

106 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

x

z

y,y′

x′

z′

O,O′

α

x

z, z′

y

x′

y′

O,O′
α

Figure 4.13: Left: Rotation about the y axis. Right: Rotation about the z axis.

The reader can verify that these are indeed rotation matrices, i.e., they satisfy the three
properties outlined at the beginning of this section.

4.5.2 Composite rotations

We have just derived expressions for elementary rotation matrices obtained through a single
rotation about one of the three axes. A rigid body is, however, not restricted to rotate about
the main axes only, and it is therefore of interest to derive rotation matrices to describe
generic rotations. To do so, we start by considering the rotation matrix describing a frame
that undergoes two successive rotations. The first fundamental aspect to observe is that
rotations do not commute. This means the following: consider a rigid body and assume its
attached frame B is initially aligned with a frame A = O−xyz. Next, consider the following
two scenarios. First, rotate B by an angle α about x and then by an angle β about z. Call
A
BR the rotation matrix obtained after these two rotations. Next, assume B and A are again
aligned, but now rotate B first by an angle β about z and then by an angle α about x,
i.e., invert the order of the rotations. Call A

BR
′ the rotation matrix obtained after these two

rotations. In general, A
BR ̸= A

BR
′. This is what is meant by the expression rotations do not

commute, i.e., the order matters and cannot be inverted (recall the commutative property
of the operations sum or product.) Figure 4.14 illustrates this fact.

The top row shows a frame that undergoes two rotations. The leftmost figure shows
the frame in its initial pose. The second frame (middle) shows the frame obtained after a
90-degree rotation about the z axis. The last frame is obtained from the second one after a
90-degree rotation about the y axis. Note that in this last rotation, we consider the y axis
of the original frame on the left. In this case, we say that rotations are performed about the
fixed initial frame. The second row shows what happens if we swap the order of rotations,
i.e., we first rotate 90 degrees about the (fixed) y axis and then 90 degrees about the fixed
z axis. The two frames at the end are different. When considering composite rotations, one
could also use rotations about the moving axis. In this case, too, the order matters. This is
illustrated in Figure 4.15. This is in contrast to translations, which instead commute (e.g.,
translating first along x and then along y is the same as translating first along y and then
along x.)

We next consider the problem of explicitly computing the rotation matrix representing
two successive rotations. We start with the case where all rotations are performed about
the fixed frame. As in the previous example, assume we have two initially aligned frames A

4.5. ROTATION MATRICES 107

y

z

x

O

y′

z′

x′
O′

y′′

z′′

x′′
O′′

y

z

x

O
y′

z′

x′

O′ z′′

y′′

x′′

O′′

Figure 4.14: Two initially overlapping frames undergoing two sequences of rotations about
the fixed axis. The top frame rotates first 90 degrees about z and then 90 degrees about y.
The bottom frame rotates first 90 degrees about y and then 90 degrees about z.

and B, with A being the fixed frame and B being the moving frame. Next, assume that B
rotates by an angle α about x and then by an angle β about z, where x and z are the axes of
the fixed frame A. What is the expression for A

BR? Let us consider the two steps separately.
Since initially A and B are aligned, after the first rotation we obtain an intermediate rotation
matrix A

BR
′, which is by definition Rx(α) as per Eq. (4.9). To determine the expression of

the final result, it is useful to recall that the columns of a rotation matrix expressed with
respect to a given frame give the coordinates of the axes of the frame associated with the
matrix expressed in the reference frame (see Eq. (4.4)). Applying a rotation to the frame is
equivalent to rotating each of its axes. Therefore, to compute how a generic rotation matrix
R′ changes when a rotation R is applied, it is sufficient to apply R to the axes of R′. But
this is something we have determined already, and it is given by Eq. (4.7). Therefore, the
expression for the final matrix is given by

A
BR = Rz(β)Rx(α).

108 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

y

z

x

O

y′

z′

x′
O′

z′′

y′′

x′′

O

y

z

x

O
y′

z′

x′

O′ x′′

z′′

y′′

O′′

Figure 4.15: Two initially overlapping frames undergoing two sequences of rotations about
the moving axis. The top frame rotates first 90 degrees about z = z′ and then 90 degrees
about the moving axis y′. The bottom frame rotates first 90 degrees about y = y′ and then
90 degrees about z′.

This expression can be generalized as follows. Let A and B be two initially coincident
frames, and let B undergo a sequence of n rotations R1,R2 . . .Rn, all expressed about the
fixed frame A. Note that the order is important, i.e., the first rotation is represented by R1,
the second by R2, and so on. Then the final expression for B expressed in reference A is

A
BR = Rn . . .R2R1. (4.12)

Observe the swapped order in the product, i.e., the rightmost rotation in the multipli-
cation is the first one, whereas the leftmost rotation is the last one. Consistent with our
previous observations, the order matters both when considering composite rotations and
when considering the associated matrix multiplication (which is not commutative.) Follow-
ing a slightly more complicated reasoning, it is similarly possible to determine the expression
of A

BR when performing n successive rotations R1, R2, . . .Rn about the moving axis. In this

4.5. ROTATION MATRICES 109

case, the final result is

A
BR = R1R2 . . .Rn. (4.13)

Comparing Eq. (4.12) with Eq. (4.13), note that the order is swapped, i.e., when rotations
are about the moving axes, the matrices are post-multiplied.

Example 4.6. Let A and B be two initially coincident frames. Frame B rotates first by an
angle α about the fixed axis x, then by an angle β about the moving axis z, and finally by an
angle γ about the fixed axis y. We want to determine the final rotation matrix describing B
with respect to frame A.

This case is only slightly more complicated because the rotations alternate between fixed
and moving axes. Initially, A and B are coincident, so the initial transformation matrix is
the identity. Let A

BB
′, A

BB
′′, and A

BB
′′′ be the three orientation matrices obtained after the

successive rotations. Trivially, the first intermediate transformation matrix is:

A
BB

′ = Rx(α).

This matrix is then rotated about the moving axis z, and therefore we post-multiply by
the rotation matrix Rz(β):

A
BB

′′ = A
BB

′Rz(β) = Rx(α)Rz(β).

Finally, we perform one more rotation about the fixed axis y, and thus we pre-multiply
by the rotation matrix Ry(γ):

A
BB

′′′ = Ry(γ) · ABB′′ = Ry(γ)Rx(α)Rz(β).

The example discussed above shows how to compose an arbitrary number of rotations
about either fixed or moving axes. Each time a new rotation is introduced, it either pre-
multiplies or post-multiplies the previously accumulated result, depending on whether the
rotation is about a fixed or moving axis.

This example also illustrates an important point: the order of rotations and the axes
about which they are performed (fixed vs. moving) significantly affect the outcome. Since
matrix multiplication is not commutative, the order of rotation matrices in the product
matters and ultimately determines the final orientation.

We now conclude this section with an important theorem about the multiplication of
rotation matrices:

Theorem 4.2. Let A
BR and B

CR be rotation matrices describing the orientation of frame B
with respect to frame A, and frame C with respect to frame B, respectively. Then,

A
CR = A

BR · BCR, (4.14)

i.e., their product gives the orientation of frame C with respect to frame A.

Proof. Each column of B
CR gives the coordinates of the unit vectors of frame C expressed in

frame B, assuming that the origins of the two frames coincide. This is precisely how rotation

110 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

matrices were defined in Eq. (4.4). Now, observe that each column of A
CR is obtained

by multiplying A
BR by the corresponding column of B

CR. This operation, by Eq. (4.7),
corresponds to changing coordinates from frame B to frame A, thus correctly producing the
rotation of frame C with respect to frame A.

This theorem is easy to remember by noting that the common frame (in this case B)
cancels diagonally when chaining multiple rotations. This is the same principle introduced
in Eq. (4.7).

4.5.3 Rotations parametrization

We previously observed that although a rotation is defined by nine numbers, due to the six
constraints expressed in Eq. (4.2) and Eq. (4.3), these numbers cannot be arbitrarily chosen.
In fact, only three of them can be independently selected. It therefore makes sense to try to
parameterize a generic rotation matrix using three parameters related to simpler rotations,
like the elementary rotation matrices about the x,y, z axes. Using the composition rules we
just defined, it is straightforward to study this problem.

First, let us assume that all rotations are about the moving axes. Therefore, one can
come up with twelve different combinations of rotations. The number twelve arises from the
fact that the first axis can be any of the three axes, but the second one can only be chosen
from two, as it cannot be the same as the first; otherwise, the second rotation would be
along the same axis as the first rotation, making it equivalent to just one rotation rather
than two.5 For the same reason, the third rotation must be picked from the two remaining
axes (different from the second rotation’s axis), resulting in a total of 3×2×2 = 12 possible
combinations. Specifically, these are XY Z, XYX, XZY , XZX, Y XZ, Y XY , Y ZX, Y ZY ,
ZXZ, ZXY , ZY Z, and ZY X, where, for example, XYX means that we first rotate about
x, then about y and then again about x. The other combinations can be interpreted in a
similar way.

These rotations about the moving axes are all valid, but in practice, only a few are
commonly used. In particular, the ZY Z combination is the most frequently used. The
corresponding triplet of angles is also known as the Euler angles. Assuming that the rotations
are of an angle α about Z, angle β about Y , and angle γ about Z (always about the moving
axes), the final expression is immediately obtained by applying Eq. (4.13):

R = Rz(α)Ry(β)Rz(γ). (4.15)

Given the three angles, it is then immediate to compute the matrix R. From this expression,
it is natural to ask the inverse question, i.e., given a valid rotation matrix R, how can we
determine the angles α, β, and γ so that R can be obtained through a ZY Z transformation
as per Eq. (4.15)? More precisely, let the given matrix R be

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 (4.16)

5For example, a rotation about x of α followed by a rotation about x of β is equivalent to just one rotation
about x of α + β.

4.5. ROTATION MATRICES 111

Through a somewhat tedious trigonometric exercise, the answer can be determined, and
below, we provide only the result (see the references at the end of the chapter, particularly [49]
for details and the full derivation).

The first angle, α, is
α = atan2(r23, r13),

where atan2 is the inverse of the tangent function that takes into account the signs of its
two arguments. The second angle is

β = atan2

(√
r213 + r223, r33

)
,

and the third one is
γ = atan2(r32,−r31).

It is immediately apparent that the solution to this problem is not unique, as we arbitrar-
ily chose the positive square root for β, thereby restricting β to the range [0, π). If, instead,
we want β to be in the range (−π, 0], then the following formulas can be used (note that the
formula for α remains unchanged):

β = atan2

(
−
√
r213 + r223, r33

)
γ = atan2(−r32, r31).

It is easy to verify that the two solutions are equivalent, meaning they produce the same
rotation matrix. This result is unsurprising, given the periodic nature of the trigonometric
functions involved in defining the elementary rotation matrices.

Example 4.7. Determine the ZY Z Euler angles for the following rotation matrix:

R =

 −0.0474 −0.7891 0.6124
0.6597 0.4356 0.6124
−0.7500 0.4330 0.5000


We simply need to apply the formulas we just derived. First, we compute α:

α = atan2(r23, r13) = atan2(0.6124, 0.6124) = π/4.

Next, we determine β in the range [0, π):

β = atan2

(√
r213 + r223, r33

)
= atan2

(√
0.61242 + 0.61242, 0.5000

)
= π/3.

Finally, we determine γ:

γ = atan2(r32,−r31) = atan2(0.4330, 0.7500) = π/6.

The alternative solution, with β in the range (−π, 0], is

β = atan2

(
−
√
r213 + r223, r33

)
= atan2

(
−
√
0.61242 + 0.61242, 0.5000

)
= −π/3.

and
γ = atan2(−r32, r31) = atan2(−0.4330, 0.7500) = −5π/6.

112 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

When defining the Euler angles, we assumed that all rotations were about the moving
axes. Equivalently, one could assume that all rotations are about the fixed axes, in which
case twelve combinations could also be obtained. Among them, the ZY X sequence is the
most commonly used in practice and is related to the roll-pitch-yaw angles often used in
aeronautics—see Figure 4.16. Note that when considering mobile robots, the attached frame
is typically assigned as shown in Figure 4.16, i.e., the x axis points forward, y points to the
left, and z points upwards (see Figure 4.17).

x

z

y

Figure 4.16: Axes orientation for the roll-pitch-yaw angles. (plane clipart from opencli-
part.org).

x

z

y

Figure 4.17: Axes orientation for the roll-pitch-yaw angles for a mobile robot.

To be precise, the roll-pitch-yaw sequence consists of a rotation α about the x axis (roll),
followed by a rotation β about the y axis (pitch), and then a rotation γ about the z axis
(yaw). Since all rotations are about the fixed frame, we apply Eq. (4.12), and we therefore
obtain (note the order):

R = Rz(γ)Ry(β)Rx(α).

As in the ZY Z case, it is interesting to solve the inverse problem, i.e., given a rotation
matrix R, determine the roll-pitch-yaw angles that produce the given matrix. Once again,

4.5. ROTATION MATRICES 113

the solution can be obtained through trigonometric manipulations, and it is not unique
(see [49] for the complete derivation.). The first solution is

α = atan2(r32, r33) β = atan2

(
−r31,

√
r232 + r233

)
γ = atan2(r21, r11),

which limits β to the range (−π/2, π/2). The second equivalent solution is again obtained
by considering the negative square root for β, given by

α = atan2(−r32,−r33) β = atan2

(
−r31,−

√
r232 + r233

)
γ = atan2(−r21,−r11).

In this case, the angle β is in the range (π/2, 3π/2).

Example 4.8. Determine the roll-pitch-yaw angles for the following rotation matrix:

R =

 0.5721 0.0064 0.8202
0.5721 0.7135 −0.4046
−0.5878 0.7006 0.4045


As in the previous example, all we need to do is apply the formulas we just provided. The
first solution is

α = atan2(r32, r33) = atan2(0.7006, 0.4045) = π/3,

β = atan2

(
−r31,−

√
r232 + r233

)
= atan2

(
0.5878,−

√
0.70062 + 0.40452

)
= π/5,

γ = atan2(r21, r11) = atan2(0.5721, 0.5721) = π/4.

The second solution is obtained using the other set of formulas and yields

α = π/3, β = 4π/5, γ = −3π/4.

Gimbal Lock

The rotation parametrizations presented in the previous subsection share a common problem
that may go unnoticed at first. Let us consider the ZY Z case and explicitly write the
expression in Eq. (4.15). Plugging in Eqs. (4.10) and (4.11) and working out the product,
we obtain:

R =

 cosα cos β cos γ − sinα sin γ − cosα cos β sin γ − sinα cos γ cosα sin β
sinα cos β cos γ + cosα sin γ − sinα cos β sin γ + cosα cos γ sinα sin β

− sin β cos γ sin β sin γ cos β

 . (4.17)

Next, compare Eq. (4.16) with Eq. (4.17), and consider the formulas to determine the
ZY Z Euler angles (say, the first solution). If sin β = 0, then r13 = r23 = r31 = 0. sin β = 0
happens when β = kπ, with k being an arbitrary integer. In this case, the solution to the
inverse problem cannot be found; that is, it is not possible to determine both α and γ, but
only their sum. This is somewhat expected, because if β = 0 (or β = kπ for an arbitrary

114 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

integer), then the first and third rotations both occur about the same axis z, since the second
rotation did not change the orientation of the Z axis. Therefore, the final result is indeed the
result of an overall rotation of α+γ about Z. A similar situation can occur when considering
the roll-pitch-yaw triplet of angles. More generally, this problem arises whenever a triplet of
angles is used to parametrize a rotation in three dimensions. This issue is known as gimbal
lock or singularity. It occurs when the axis of the second rotation becomes parallel to either
the axis of the first or the third rotation. This problem was already observed by Euler,6 who
stated a theorem asserting that any rotation matrix can be obtained as a sequence of no more
than three rotations about three axes, where no two successive rotations are about the same
axis. To overcome this problem, a non-minimal representation relying on four parameters
(rather than three) is discussed next.

4.5.4 Representing rotations with quaternions

Quaternions offer an alternative way to represent rotations in space that overcomes the
singularity problem and many other issues arising when dealing with rotations parametrized
by three angles. The price to pay is the use of a non-minimal representation, i.e., relying on
four rather than three parameters. The representation is also not unique, i.e., there is no
one-to-one correspondence between quaternions and rotation matrices. Both of these issues,
however, are minor when compared with the advantages. It should be noted that quaternions
are a rich algebraic structure that was introduced for other purposes, and there exists a body
of literature much broader than what we will cover here. In a sense, using quaternions to
represent three-dimensional rotations can be seen as a useful side effect, but not the primary
objective. The starting point is Euler’s rotation theorem, which can be stated as follows.

Theorem 4.3 (Euler’s rotation theorem). In three dimensions, every rotation is equivalent
to a single rotation about an axis through the origin.

This result has profound consequences, and it is useful to compare it with the previous
rotation parametrizations obtained through three successive rotations about three axes. This
way of representing rotations is also known as the axis-angle representation, and Figure 4.18
illustrates the idea. The rotation angle is θ, and the rotation axis is r = [r1 r2 r3]

T , where
its coordinates are expressed with respect to the world frame O − xyz.

rθ

Figure 4.18: Interpretation of Euler’s theorem (every rotation is equivalent to a single rota-
tion about an axis through the origin).

A quaternion can be conveniently thought of as an extension of a complex number, fea-
turing one real part and three imaginary parts. Without getting into algebraic technicalities,

6This theorem is sometimes referred to as Euler’s theorem, but this name makes little sense because
multiple original results were proved by Euler, and so there are many Euler’s theorems. Its correct name
would be Euler’s rotation theorem.

4.5. ROTATION MATRICES 115

a quaternion q is represented as q = a+bi+cj+dk, where a, b, c, d are real numbers and i, j, k
are imaginary components subject to the following constraints: i2 = j2 = k2 = ijk = −1.
Note that a real number can be seen as a quaternion for which b = c = d = 0, and a complex
number can be seen as a quaternion in which c = d = 0. Therefore, in a sense, quaternions
generalize both real and complex numbers. In the following, we will focus on unit-length
quaternions, where the length (or norm) of a quaternion is |q| =

√
a2 + b2 + c2 + d2. As the

name suggests, a unit quaternion is a quaternion whose length is one. Without getting into
the details of its derivation, there exists a mapping between unit quaternions and rotation
matrices. To be precise, let q = a+ bi+ cj+dk be a unit quaternion. Its associated rotation
matrix is

R(q) =

 2(a2 + b2)− 1 2(bc− ad) 2(bd+ ac)
2(bc+ ad) 2(a2 + c2)− 1 2(cd− ab)
2(bd− ac) 2(cd+ ab) 2(a2 + d2)− 1

 (4.18)

In the following, it is convenient to write R(q) for the matrix obtained from q by applying
Eq. (4.18). It is easy (albeit perhaps tedious) to verify that this is indeed a rotation matrix,
i.e., it is special orthogonal. Therefore, unit quaternions represent rotations, and Eq. (4.18)
shows how to map a unit quaternion into a rotation matrix. Given a unit quaternion q =
a+ bi+ cj + dk, it is interesting to determine its parameters according to Euler’s theorem,
i.e., the axis of rotation and the angle (see Figure 4.18). The angle θ is given by

θ = 2arccos a. (4.19)

The rotation axis r = [r1 r2 r3]
T is:

r1 =
b

sin θ
2

r2 =
c

sin θ
2

r3 =
d

sin θ
2

(4.20)

Note that these expressions are not defined when sin θ
2
= 0, i.e., when θ = 0 or θ = 2π. This

actually makes sense, because for these two values there is no rotation at all. The opposite
transformation can therefore be defined as well, i.e., given θ and a unit vector r = [r1 r2 r3]

T ,
the associated quaternion is

q = cos
θ

2
+ i sin

θ

2
r1 + j sin

θ

2
r2 + k sin

θ

2
r3 (4.21)

Representing a rotation with quaternions has one slight problem, i.e., the mapping be-
tween quaternions and rotations is not unique. In fact, it is an easy exercise to verify that if
q is a unit quaternion, then −q is also a unit quaternion, and Eq. (4.18) maps them to the
same rotation matrix R. According to Euler’s theorem, the interpretation is that a rotation
of θ about an axis r is equivalent to a rotation of 2π−θ about the axis −r. One last question
we may ask when considering the mapping between quaternions and rotation matrices is the
inverse of Eq. (4.18), i.e., given a rotation matrix R, determine a unit quaternion q such
that R(q) = R. This is obtained with the following formulas [29]:

a =

√
r11 + r22 + r33 + 1

2
b =

r32 − r23
4a

c =
r13 − r31

4a
d =

r21 − r12
4a

(4.22)

116 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

Given two quaternions q1 and q2, it is immediate to define the sum and product oper-
ations by treating them as polynomials in i, j, k and applying the rules defined earlier for
terms like i2, and so on. Moreover, given a quaternion q = a + bi + cj + dk, we define its
conjugate as q∗ = a − bi − cj − dk, i.e., the quaternion obtained by inverting the signs of
the imaginary coefficients. The conjugate of a quaternion is useful for defining the operation
of rotating a point, similarly to what we did for rotation matrices (see Eq. (4.7)). Let q be
a unit quaternion defining a rotation of θ about the axis r, and let p = [px py pz]

T be a
point. The point obtained by rotating p using the rotation defined by q can be computed
as follows. Let p′ = 0+ pxi+ pyj + pzk be a quaternion defined using the components of p.
Then we compute

p′′ = qp′q∗ = p′′ + p′′xi+ p′′yj + p′′zk (4.23)

The rotated point is obtained by taking the imaginary components of p′′, i.e., the rotated
point is pr = [p′′x p

′′
y p

′′
z]

T . Note, moreover, that it can be shown that in this product, the
first coefficient p′′ is always zero because of the way we defined p′.

Example 4.9. Let p = [1 2 3]T , and let R be the following rotation matrix

R =

 0.23859519 −0.67245146 0.70062927
0.49326748 0.7053854 0.50903696
−0.8365163 0.22414387 0.5


Use quaternions to determine the point obtained applying the given rotation to p.

We start by using Eq. (4.21) to determine the quaternion q associated with R. This gives
q = 0.782−0.091i+0.492j+0.373k, and its conjugate is q∗ = 0.782+0.091i−0.492j−0.373k.
The quaternion associated with the point p is p′ = 0+1i+2j+3k. We then apply Eq. (4.23)
and obtain the quaternion 0 + 0.996i+ 3.431j + 1.112k, which means that the coordinates of
the rotated point are [0.996 3.431 1.112]T . It is easy to verify (and a useful exercise, too)
that the same result is obtained using the matrix-vector multiplication Rp.

4.6 Homogeneous coordinates

In section 4.3, we have shown how a frame can be represented by a vector in R3 and a rotation
matrix. Together, they identify the location of the origin of the frame and its orientation.
Using two separate mathematical objects to represent a single entity is error-prone from a
practical perspective. For example, when computing changes of coordinates, it is easy to
make mistakes by mixing together the origins and orientations of different frames. One way
to overcome this problem is by introducing so-called homogeneous coordinates. Homogeneous
coordinates offer a unified representation for points and directions and lead to the definition
of transformation matrices, i.e., a single matrix to represent both the origin and orientation
of a frame (see section 4.7). A point in R3 can be represented in homogeneous coordinates
as a point in R4 whose last coordinate is 1. That is to say, if p = [x y z]T is a point in
three dimensions, then its representation in homogeneous coordinates is given by the four-
dimensional vector p = [x y z 1]T . Note that we use the same symbol p when referring to both
the canonical representation in R3 and the representation using homogeneous coordinates.

4.7. TRANSFORMATION MATRICES 117

Example 4.10. Let p = [3 1 5]T . Its representation in homogeneous coordinates is p =
[3 1 5 1]T .

Next, let us consider how to represent directions using homogeneous coordinates, and
in particular, let us examine how to represent the directions that express the orientation of
a frame with respect to another one. At the beginning of the chapter, we saw that these
axes can be expressed by three orthonormal vectors in R3. In this case, when switching to
homogeneous coordinates, we set the fourth coordinate to 0. This is clarified in the following
example.

Example 4.11. The orientation of frame B−x′y′z′ with respect to frame A−xyz is given
by the following rotation matrix:

R =

 0.5721 0.0064 0.8202
0.5721 0.7135 −0.4046
−0.5878 0.7006 0.4045


If we want to express the three directions in homogeneous coordinates, we must recall that
the first column represents the coordinates of a unit vector along the direction x′, expressed
in frame A − xyz. The second column represents the coordinates of a unit vector along
the direction y′, and the third column represents the coordinates of a unit vector along the
direction z′ (both expressed in frame A − xyz). Therefore, the direction x′ expressed in
homogeneous coordinates is x′ = [0.5721 0.5721 − 0.5878 0]T . Similarly, the direction y′

expressed in homogeneous coordinates is y′ = [0.0064 0.7135 0.7006 0]T , and the direction z′

expressed in homogeneous coordinates is z′ = [0.8202 − 0.4046 0.4045 0]T . In matrix form,
the result is the following 4× 3 matrix

R =


0.5721 0.0064 0.8202
0.5721 0.7135 −0.4046
−0.5878 0.7006 0.4045

0 0 0


where we again use the same symbol R for both the canonical representation and the repre-
sentation using homogeneous coordinates.

In summary, when using homogeneous coordinates, if the last coordinate is 1, we are
representing a point, whereas if the last coordinate is 0, we are representing a direction.
Note that in other contexts (e.g., computer graphics), other values for the last coordinate
are also used, which can be interpreted as scaling. However, we will not need this feature.

4.7 Transformation matrices

We start by defining transformation matrices from a formal standpoint, and we will later
study their numerous interpretations.

Definition 4.3. Let A − xyz and B − x′y′z′ be two frames. Let Ap = [px py pz]
T be the

coordinates of the origin of B − x′y′z′ expressed in frame A, and let A
BR be the rotation

118 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

matrix expressing the orientation of frame B with respect to A. Then, the transformation
matrix expressing frame B−x′y′z′ with respect to frame A−xyz is the 4× 4 matrix defined
as follows:

A
BT =


px

A
BR py

pz
0 0 0 1


The above definition simply describes how a 4 × 4 matrix can be built starting from a

three-dimensional vector and a rotation matrix. Observe that, for a transformation matrix,
the elements of the last row are always the same, i.e., [0 0 0 1]. If we analyze the structure
of A

BT in the context of homogeneous coordinates, a meaningful interpretation immediately
emerges. The last column is nothing but Ap expressed in homogeneous coordinates. Sim-
ilarly, the first three columns represent the directions of A

BR in homogeneous coordinates
as well. That is to say, A

BT is obtained by combining A
BR and Ap after converting them to

homogeneous coordinates. From a conceptual standpoint, this is convenient because we now
use a single object (ABT) instead of two (ABR and Ap) to represent frame B with respect to
A. However, this is not the main advantage. As we will see in the following, transformation
matrices can be associated with both operands and operators that can be used to solve var-
ious problems arising in spatial representations. Each of these interpretations is presented
in the following.

4.7.1 Transformation matrices represent frames

Based on the previous discussion, it is immediate to see that a transformation matrix can
be used to represent a frame because it incorporates both the origin and the orientation.

4.7.2 Transformation matrices are operators to transform points
and directions

Let T be a transformation matrix, and let p be a point expressed in homogeneous coordi-
nates. From an algebraic standpoint, we can consider the product Tp between the 4 × 4
matrix T and the 4× 1 vector p. By explicitly working out the math, an interesting inter-
pretation emerges:

Tp =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



px
py
pz
1

 =


r11px + r12py + r13pz + tx
r21px + r22py + r23pz + ty
r31px + r32py + r33pz + tz

1

 (4.24)

Now, recall Eq. (4.8). We can see that multiplying p by T is equivalent to rotating
p using the rotation matrix R embedded in T (the top-left 3 × 3 submatrix), and then
translating the result by the vector stored in the first three elements of the last column of
T.

4.7. TRANSFORMATION MATRICES 119

Similarly, assume d = [dx dy dz 0]
T is a direction expressed in homogeneous coordinates.

Let us consider the expression Td in this case and work out the math:

Td =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



dx
dy
dz
0

 =


r11dx + r12dy + r13dz
r21dx + r22dy + r23dz
r31dx + r32dy + r33dz

0


In this case, the translation components do not affect the result. This makes sense, as a

vector representing a direction can be rotated but not translated. Additionally, observe that
the result is still a direction expressed in homogeneous coordinates. Therefore, T can be used
to transform either a point or a direction expressed in homogeneous coordinates. It is often
convenient to consider simplified transformation matrices that encode basic transformations
such as translation-only or rotation-only. For example, the transformation matrix associated
with a translation by ∆x, ∆y, ∆z is commonly denoted as T(∆x,∆y,∆z) and is given by:

T(∆x,∆y,∆z) =


1 0 0 ∆x

0 1 0 ∆y

0 0 1 ∆z

0 0 0 1


Given a point p = [px py pz 1]T , applying Eq. (4.24) to compute T(∆x,∆y,∆z)p yields

a translated point:

T(∆x,∆y,∆z)p =


∆x + px
∆y + py
∆z + pz

1


Similarly, we can define transformation matrices for rotation-only transformations about

one of the three axes. For example, the transformation matrix associated with a rotation of
angle θ about the z-axis is denoted as T(z, θ) and is given by (recall Eq. (4.11)):

T(z, θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1


Recalling Eq. (4.9) and Eq. (4.10), we can similarly define T(x, θ) and T(y, θ):

T(x, θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 T(y, θ) =


cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1


By applying Eq. (4.24), we can easily verify that T(z, θ)p yields the point obtained by

rotating p about the z-axis by an angle θ. Equivalent interpretations hold for T(x, θ)p and
T(y, θ)p.

120 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

4.7.3 Transformation matrices are operators to change coordi-
nates

Considering the previous two interpretations, it is immediate to observe that if A
BT is the

transformation matrix representing frame B with respect to frame A, and Bp is the vector
expressing the coordinates of a point p in frame B, then

Ap = A
BT

Bp (4.25)

This result follows directly by comparing Eq. (4.24) with Eq. (4.8). Therefore, transfor-
mation matrices can also be seen as operators for coordinate change.

4.7.4 Transformation matrices are operators to transform trans-
formation matrices

We next consider the product of two transformation matrices. From an algebraic standpoint,
this is a legitimate operation since these are square 4 × 4 matrices, and therefore their
product is defined and results in another 4 × 4 matrix. To be specific, let us consider
two transformation matrices: A

BT, which represents frame B − x′y′z′ with respect to frame
A− xyz, and B

CT, which represents frame C − x′′y′′z′′ with respect to frame B. Let AO′ =
[AO′

x
AO′

y
AO′

z]
T be the coordinates of the origin of frame B with respect to frame A, and let

BO′′ = [BO′′
x

BO′′
y

BO′′
z]

T be the coordinates of the origin of frame C with respect to frame
B. The product of these two transformation matrices is:

A
BT

B
CT =


AO′

x
A
BR

AO′
y

AO′
z

0 0 0 1




BO′′
x

B
CR

BO′′
y

BO′′
z

0 0 0 1

 =

=

 A
BR

B
CR

A
BR

B
O′′ + AO′

0 0 0 1

 =

 A
CR

AO′′

0 0 0 1

 = A
CT (4.26)

Here we used the relationships introduced previously, in particular Eq. (4.14) from The-
orem 4.2 and Eq. (4.8). Exploiting the associative property of matrix multiplication, it is of
course possible to consider a chain of multiplications. In this case, the previous relationship
can be repeatedly applied, leading to the following notable result:

0
nT = 0

1T
1
2T

2
3T . . . n−1

n T

4.7.5 Inverse of a transformation matrix

Since transformation matrices can be used to perform changes of coordinates or to transform
other transformation matrices, it is immediate to ask: what is the inverse of a transformation

4.8. TRANSFORMATION TREES 121

matrix? That is, given A
BT, we are interested in B

AT. By definition, this is a matrix such
that A

BT
B
AT = B

AT
A
BT = I. Through elementary algebra, it is immediate to determine that if

A
BT =

 A
BR

AO′

0 0 0 1


then

B
AT =

 B
AR −B

AR
AO′

0 0 0 1

 (4.27)

where, in Eq. (4.27), it is useful to recall that B
AR = A

BR
T .

Example 4.12. Let us consider again the situation shown in Figure 4.2, where we have two
robots operating in the same environment. Let A be the blue frame (world frame), B be the
green frame attached to the robot on the left, and C be the red frame attached to the robot
on the right. Let us assume that we know A

BT and A
CT, i.e., the pose of the two robots with

respect to the world frame. Assume that the robot on the left detects the purple diamond with
its onboard sensors, and let Bp be the position of the diamond with respect to the robot on
the left. We want to determine Cp, i.e., we want to determine the position of the purple
diamond in the frame attached to the robot on the right.

This question can be answered in two different, but equivalent, ways. First, we can
determine the position of the diamond in the world frame using Eq. (4.25). Once we have
Ap, to determine Cp, we need C

AT. This transformation matrix can be obtained from A
CT

using Eq. (4.27), given that we know its inverse A
CT. Stacking these products together, we

therefore have
Cp = C

AT
A
BT

Bp

The second way to solve this problem is to first compute C
BT and then determine Cp using

again Eq. (4.25). Given that we know A
BT and A

CT, we can determine C
AT with Eq. (4.27)

and then apply Eq. (4.26) to obtain C
BT. Therefore,

Cp = C
BT

Bp

and since C
BT = C

AT
A
BT (Eq. (4.25)), we obtain the same result (as expected) as in the first

case.

4.8 Transformation trees

Example 4.12 illustrates a problem very common in robotics, i.e., change of coordinates. In
such a case, the necessary matrix C

BT was not directly provided, but could be recovered from
other matrices. In the example, the problem was particularly simple because there were only
a handful of transformation matrices and frames to be considered. In real-world applications,
one may have tens of frames and transformation matrices capturing the spatial relationships

122 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

between them. This is particularly evident when considering robot manipulators or mobile
manipulators, where a frame is attached to every link (moving part), and there could be
many of them (see, for example, the PR2 robot in Figure 4.4). In these cases, a principled
method is necessary to determine whether a change of coordinates is possible and how it
can be obtained. Transformation trees are used to solve these problems in an algorithmic
way. A transformation tree captures the relationships between a set of provided frames and
transformation matrices relating them. The definition of a transformation tree is given in
the following, after the more general definition of a transformation graph.

Definition 4.4 (Transformation graph). Let A = {A1, A2, . . . , An} be a set of n frames and

let T = {Ai(1)

Aj(1)
T . . .

Ai(k)

Aj(k)
T} be a set of k transformation matrices between the given frames.

The transformation graph defined by these frames and transformation matrices is a graph
G = (V,E) with n vertices and k edges. Each vertex is labeled with one of the frames, i.e.,
v1 is labeled A1, v2 is labeled A2, and so on. Edge (vl, vm) ∈ E if and only if Al

Am
T ∈ T .

A transformation graph models the availability of transformation matrices between any
two frames in A. An edge between two vertices indicates that the transformation between
the two associated frames is given. The definition does not define an oriented graph, i.e.,
edges do not have an origin and a destination. This is due to the fact that transformation
matrices are always invertible, and therefore, if there is a transformation between Al and
Am, the transformation between Am and Al is also available, as per section 4.7.5.

Definition 4.5 (Transformation tree). A transformation tree is a transformation graph with
no cycles.

Although we defined both transformation trees and transformation graphs, we usually
prefer working with transformation trees rather than transformation graphs. The reason
is that in a graph, cycles are present, and therefore, as we will see in the following, this
means that the same problem (e.g., change of coordinates) can be solved in different ways.
While this is in principle not an issue, this may lead to inconsistencies, i.e., different results
are obtained when the same problem is solved in different ways. These inconsistencies are
due to the fact that, oftentimes, transformation matrices are the result of noisy estimation
processes involving approximations. While this problem can be addressed and managed, the
topic is beyond the scope of these notes, and we therefore assume that no cycles are present.
Transformation trees are illustrated in the following example.

Example 4.13. Consider the situation depicted in Figure 4.19, where 7 frames are given
(A,B,C,D,E, F,G). Assume that the following set of transformation matrices is given:
T = {ABT, BCT, ADT,DET, AFT, FGT}.

The associated transformation graph in this case is indeed a transformation tree featuring
7 vertices and 6 edges, and it is displayed in Figure 4.20. Note that the edges in the tree
are undirected because for each of the given transformation matrices, the inverse can be
determined as well. For example, the edge between A and D exists because A

DT ∈ T . However,
from A

DT we can determine D
AT too, from Eq. (4.27), and therefore both directed edges (vA, vD)

and (vD, vA) exist and are displayed as a single undirected edge between the vertices associated
with frames A and D.

4.8. TRANSFORMATION TREES 123

A

B

C

D

E

G

F

Figure 4.19: Three robots with seven frames.

A

B C

D E

F G

Figure 4.20: Transformation tree associated with the example in Figure 4.19.

Building upon the definition of a transformation tree, we can algorithmically answer
various interesting questions. For example, for a given set of frames A and a set of transfor-
mation matrices T , assume we are given Ap and want to determine if Bp can be computed,
for A,B ∈ A. If B

AT ∈ T , the answer is obviously positive, and is Bp = B
AT

A
p. However,

even if B
AT /∈ T , it may still be possible to determine the answer by indirectly recovering B

AT.
This can be done as follows: First, determine the transformation tree as per Definition 4.5.
Note that the result can be either a tree or a forest, i.e., a set of trees. Next, run a graph
search algorithm to determine if A and B are in the same connected component, i.e., if there
is a path connecting them. If such a path does not exist, the change of coordinates cannot
be performed using the provided information. If instead they are in the same connected
component, it means that there is a unique path between A and B in the transformation
tree, and each edge along the path is associated with a transformation matrix in T . The
transformation matrix needed to perform the change of coordinates is obtained by multiply-

124 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

ing together the transformation matrices along the path from B to A. Note that this path is
oriented, i.e., the transformation matrix associated with the edge from vi to vj is

Ai
Aj
T. This

matrix is either part of T or it can be determined by inverting one of the matrices in T .
Additionally, the path is unique because we are considering a tree and not a graph.

The previous example also elucidates why inconsistencies may emerge if a graph is con-
sidered rather than a tree. If A and B are part of the same connected component of a
graph, there can potentially be more than one path between frame A and frame B. Each
of them, in principle, provides a legitimate method to compute the matrix for the change
of coordinates. However, if the transformation matrices are computed as the result of noisy
perceptual processes, possibly involving approximations, the results may be different, i.e.,
inconsistent.

Finally, as frames are rigidly attached to robots or, more generally, to moving objects,
the transformation matrices associated with edges in the transformation tree vary over time.
Hence, even if the structure (e.g., nodes and vertices) of the tree does not change, the trans-
formation matrices associated with each edge may change. Moreover, in some circumstances,
frames may be added or removed from the system, and therefore the structure of the trans-
formation tree may change as well. Either way, the transformation tree is a dynamic data
structure that in most cases must be queried and updated at runtime.

Example 4.14. Let us refer again to the situation depicted in Example 4.13. Assume that
besides A and T , we are given Ep and we want to compute Bp. First, notice that the
transformation matrix B

ET is not in T , and therefore we need to see if this information can
be retrieved from the available data. The transformation tree is shown in Figure 4.20, and
we notice that frames E and B are in the same component of the forest (in fact, there is just
one tree.) Therefore, it is possible to recover B

ET from the graph. The matrix is obtained by
considering the path from B to E in the tree, i.e., (vB, vA), (vA, vD)(vD, vE). Each of these
edges is associated with a transformation matrix, namely B

AT, A
DT, and D

ET (note how the
direction of the edge defines which transformation matrix we need.) While B

AT is not in T ,
it can be obtained by inverting the matrix A

BT that is part of T . Therefore, the matrix needed
to perform the change of coordinates is

B
ET = B

AT
A
DT

D
ET

Note that this whole process is easy to code in an algorithm that builds the transformation
graph, determines its connected components, and extracts the relevant matrices from paths
in the graph.

4.9 Kinematic motion models

In this section, we present the kinematic models governing some of the most commonly used
mobile robotic platforms. Kinematic models are useful for both analysis and synthesis. In
the analysis problem, we are interested in predicting the kinematic effects of specific in-
puts (e.g., velocities) applied to the robot. In the synthesis problem, on the other hand,
we address the inverse problem, i.e., we want to determine which inputs we should apply
to obtain a desired motion. Both problems are pervasive in robotics applications. As we

4.9. KINEMATIC MOTION MODELS 125

focus on wheeled vehicles, the kinematic models discussed in the following predict the mo-
tion resulting from applying angular velocities to the wheels. Kinematic models are (by
definition) approximations that ignore dynamics, but the relationships we provide are use-
ful for understanding some of the limitations that will affect the motion abilities of these
vehicles, and also for gaining a high-level understanding of the input/output relationships
from a higher-level standpoint (e.g., programming API). However, it should be clear that
kinematic models alone are insufficient, and in many practical scenarios, dynamics should
be considered as well.

4.9.1 Differential Drive

Robots using differential drive arrangements are pervasive in research and practical applica-
tions. Figure 4.21 shows a sample of robots that use differential drive for locomotion.

Figure 4.21: Three differential drive platforms: P2DX rendered in simulation (left), iRobot
Create (center) and Vortex (right).

A differential drive robot has two wheels located on opposite sides of the robot chassis
and uses two independent motors to control each of them. Usually, the robot also has a
third passive (i.e., non-actuated) wheel, placed at the back. This is the case, for example,
with the iRobot Create, the Vortex (Figure 4.21), the DukieBot (Figure A.1a), and many
others. Since the left and right wheels can be rotated at different velocities, by appropriately
setting these velocities, it is possible to implement a variety of maneuvers, including straight
motion (forward/backward), turning in place (clockwise or counterclockwise), or moving
along curved arcs. In the following, we derive these relationships for the differential drive.
According to a kinematic perspective, we assume the motors can be controlled in velocity,
which is consistent with the API provided by ROS.

The parameters governing the motion of a differential drive robot are the following:

• R: the radius of the wheels. For simplicity, we assume that both wheels have the same
radii.

• ωR and ωL: the angular velocities for the right and left wheels, respectively.

• L: the distance (separation) between the wheels.

Figure 4.22 illustrates these quantities and the moving frame associated with a differential
drive.

126 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

x

y

z
O

x′
y′

z′

O′ ϑ

L

2R

Figure 4.22: Moving frame associated with a differential drive and meaning of the parameters
L and R.

As customary for mobile robots, a moving frame B = O′ − x′y′z′ is attached to the
differential drive robot, with its x′ axis pointing forward and its y′ axis pointing to the left.
Since the robot is constrained to move on a plane, the moving frame is described by the
following transformation matrix (see Definition 4.3):

A
BT =


cosϑ − sinϑ 0 x
sinϑ cosϑ 0 y
0 0 1 0
0 0 0 1


This matrix is fully specified by the three parameters x, y, and ϑ, where x and y are the

coordinates of the origin O′, and ϑ is the yaw angle. The point O′ is placed at the midpoint
of the axis connecting the two wheels. For differential drive robots, it is common—when
context allows—to use the triplet (x, y, ϑ) as a compact representation of the robot’s pose,
rather than the full transformation matrix A

BT. With a bit of math (see e.g., [29, 53]), we
can derive the relationships between the parameters defined above and the evolution of the
robot’s pose:

ẋ =
R

2
(ωR + ωL) cosϑ

ẏ =
R

2
(ωR + ωL) sinϑ (4.28)

ϑ̇ =
R

L
(ωR − ωL).

Equation (4.28) is the state transition equation for a differential drive robot, and it can
be compared with Equation (1.5). Note that the differential drive robot has two control
inputs; therefore, the input vector is u = [ωR ωL]

T , and its dimension is p = 2.
Equation (4.28) highlights an important detail with significant practical implications.

Specifically, we have only two control inputs (ωR and ωL) to influence three state derivatives
(ẋ, ẏ, and ϑ̇). This implies that these three components cannot be independently assigned

4.9. KINEMATIC MOTION MODELS 127

arbitrary values, and as a consequence, the robot’s possible motions are inherently con-
strained. According to Equation (4.28), if ωR = ωL ̸= 0, the robot moves in a straight line,
i.e., forward if ωR = ωL > 0 and backward if ωR = ωL < 0. Conversely, if ωR = −ωL ̸= 0,
the robot rotates in place, clockwise when ωR > 0 and counterclockwise when ωR < 0. From
a programming standpoint, this means that the API for controlling a differential drive robot
typically accepts two parameters: the angular speeds of the left and right wheels. How-
ever, from a higher-level perspective, it is often more intuitive to control the robot using its
translational and rotational velocities. The rotational velocity corresponds to ϑ̇, while the
translational speed is given by

√
ẋ2 + ẏ2 for forward motion and −

√
ẋ2 + ẏ2 for backward

motion.
Indeed, many control APIs for differential drive robots, such as those used in ROS,

accept these two parameters: translational and rotational speed. Often, such APIs include
an additional constraint allowing only one of these values to be nonzero at a time. This
enforces simplified control modes in which the robot either moves in a straight line or turns
in place, but not both simultaneously. We will see this design choice in more detail when we
explore the ROS control stack later in this chapter.

Example 4.15. Let the radius of the wheel be R = 0.05m and the separation between the
wheels be L = 0.15m. Determine ωL and ωR such that the translational speed is 0.1m/s and
the rotational speed is 0.05 rad/s.

From the above relationships, the (positive) translational speed can be written as

√
ẋ2 + ẏ2 =

√(
R

2
(ωR + ωL) cosϑ

)2

+

(
R

2
(ωR + ωL) sinϑ

)2

=

√
R2

4
(ωR + ωL)2 =

R

2
(ωR + ωL)

We therefore obtain a linear system of two equations in two unknowns:

R

2
(ωR + ωL) = 0.1

R

L
(ωR − ωL) = 0.05

Substituting the given values for R and L, the system solves to ωR = 2.075 rad/s and
ωL = 1.925 rad/s.

The above example confirms that, from an API standpoint, it is indeed possible to specify
translational and rotational velocities directly and then map these to the (less intuitive)
angular velocities of the left and right wheels. In various scenarios (e.g., in estimation or
prediction problems), it becomes necessary to solve the forward kinematics problem, that
is, to predict the next pose of the robot given its current pose and current velocity inputs.
If the control input is specified as the angular velocity of the left and right wheels, we can
use Eq. (4.28) to derive a first-order, approximate, discrete-time model by discretizing with
a time step ∆t. This yields:

128 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

x(t+∆t) ≈ x(t) + ẋ∆t = x(t) +
R

2
(ωR + ωL) cosϑ(t)∆t

y(t+∆t) ≈ y(t) + ẏ∆t = y(t) +
R

2
(ωR + ωL) sinϑ(t)∆t (4.29)

ϑ(t+∆t) ≈ ϑ(t) + ϑ̇∆t = ϑ(t) +
R

L
(ωR − ωL)∆t

Naturally, the accuracy of this approximation deteriorates as ∆t increases. Alternatively,
if the input is provided as translational velocity vt and rotational velocity vr, we can use the
following approximate expressions derived in [53]. If vr ̸= 0:

x(t+∆t) ≈ x(t) +

[
−vt(t)
vr(t)

sinϑ(t) +
vt(t)

vr(t)
sin (ϑ(t) + vr(t)∆t)

]
y(t+∆t) ≈ y(t) +

[
vt(t)

vr(t)
cosϑ(t)− vt(t)

vr(t)
cos (ϑ(t) + vr(t)∆t)

]
(4.30)

ϑ(t+∆t) ≈ ϑ(t) + vr(t)∆t

If instead vr = 0, these expressions simplify to describe exact straight-line motion (i.e.,
no approximation is involved):

x(t+∆t) = x(t) + vt sinϑ(t)

y(t+∆t) = y(t) + vt cosϑ(t) (4.31)

ϑ(t+∆t) = ϑ(t)

Equations (4.29) and (4.30) provide the discrete-time state transition equations for the
differential drive robot and can be compared with the general form in Eq. (1.7).

4.9.2 Skid steer drive

Alternatively, the robot may have four7 wheels, but still be driven by just two motors. In
this setup, the wheels on the same side are mechanically coupled, typically via a belt or
chain, and are actuated by the same motor. Robots of this type include, for example, the
P3AT (Figure 4.23) and the Husky (Figure 1.1). Due to the mechanical coupling, it is not
possible to independently control the speed of wheels on the same side of the robot. To
achieve turning in place, the motors are driven at the same speed but in opposite directions.
As a result, the wheels skid, hence the term skid steer. More generally, when the two motors
operate at different speeds, the robot follows curved trajectories. However, this typically
induces skidding in all cases except for straight-line motion, where both sides are driven at
equal velocities.

From a programming perspective, both differential drive and skid-steer robots are con-
trolled using the same type of commands. A notable evolution of this concept is the Amiga

7Although four wheels is the most common configuration, the same considerations apply to any even
number of wheels greater than four.

4.9. KINEMATIC MOTION MODELS 129

Figure 4.23: P3AT robot

Figure 4.24: The Amiga robot by Farm-Ng

by Farm-Ng, which is equipped with four independent motors, each controlling one of its
wheels (see Figure 4.24). Despite this more complex hardware setup, the ROS API abstrac-
tion ensures that controlling the Amiga is functionally equivalent to operating platforms like
the Husky or the P3AT. This equivalence will become clearer later in this chapter.

4.9.3 Ackerman Steer

The Ackerman steer is the configuration used in cars and comparable vehicles with steering
wheels. In this section, we present an abstraction useful for planning purposes, but we omit
some of the mechanical details used in physical implementations. For this reason, the model
presented herein is also called the simple car [29]. As we all know from everyday experience,
driving a car can be abstracted to providing two inputs, i.e., the velocity (positive or negative)
and the steering. These two inputs will be indicated as vt (translational speed, as for the
differential drive robot) and ϕ. Figure 4.25 illustrates the abstraction we will use when
studying this type of vehicle, together with the moving frame B = O′ − x′y′z′ associated

130 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

with the vehicle. As for the differential drive, the frame has the x′ axis pointing forward and
the y′ axis pointing to the left. Similarly, ϑ is the rotation about z. As for the differential
drive, the transformation matrix A

BT can be summarized by the triplet pose (x, y, ϑ).

x

y

z
O

(xC , yC)

R
L

x′

y′

z′O′

ϕ

Figure 4.25: Moving frame associated with a differential drive and meaning of the parameters
L and R.

Note that there is a physical constraint on the possible values for the steering angle, i.e.,
|ϕ| < π/2. Next, assume that both vt and ϕ are constant and both different from 0. In this
case, the car moves along a circle whose radius is determined by ϕ and L, i.e., the separation
between the front and rear wheels, and whose center (xC , yC) is determined by ϕ, L, and the
pose of the moving frame B. With some math [29], it is possible to show that the radius of
the center of rotation is

R =
L

tanϕ

From this value and (x, y, ϑ), it is possible to determine the center of rotation (xC , yC). The
following differential relationships provide the state transition equation for the Ackerman
steer vehicle and show how the three coordinates change as a function of the two inputs vt
and ϕ:

ẋ = vt cosϑ

ẏ = vt sinϑ (4.32)

ϑ̇ =
vt
L
tanϕ.

Eq. (4.32) is the state transition equation for the Ackerman steer drive, and it shows that
u = [vr ϕ]

T , i.e., p = 2 also for the Ackerman steer drive. The three coordinates x, y, ϑ
change according to two inputs, vr and ϕ, and this leads to various motion restrictions.
Through a first-order approximation, it is possible to predict how the state will evolve in
time, thus obtaining the discrete-time state transition equation:

4.10. VELOCITY 131

x(t+∆t) ≈ x(t) + vt∆t cosϑ

y(t+∆t) ≈ y(t) + vt∆t sinϑ (4.33)

ϑ(t+∆t) ≈ ϑ(t) +
vt∆t

L
tanϕ

4.10 Velocity

As a robot moves in space, its pose changes over time. Obviously, the first derivative of the
pose with respect to time yields velocity, and this was informally introduced in the previous
section with the discussion of kinematic motion models. A principled treatise of velocities is
beyond the scope of these notes. Since the pose of the robot is defined by a transformation
matrix, it would be necessary to view the transformation matrix as a function of time and
then consider its derivative. A transformation matrix includes both the position, i.e., an
element in R3, and the orientation. The orientation can be equivalently represented as a
3 × 3 rotation matrix R or a quaternion q. The derivative with respect to time for the
position is straightforward to consider and is most likely known to the reader, but things are
slightly more complex when considering the derivative of a rotation matrix (or a quaternion).
Still, recalling that it is possible to parametrize a rotation matrix with three angles, like roll,
pitch, and yaw, we can intuitively guess that there will be three angular velocities associated
with rotations about the frame axes.

4.11 Kinematics in ROS

Due to its practical importance, ROS provides various packages and messages to support
kinematics and geometric processing. Moreover, the package tf2 handles multiple frames
and their relationships, and can be used to track how they evolve over time (see Section 4.13).

4.11.1 The geometry msgs Package

The package geometry msgs defines messages to represent geometric quantities commonly
used in robotics, such as points, orientations, and their derivatives with respect to time.
All quantities previously introduced in this chapter are implemented in ROS, and table 4.1
displays the correspondences between some of the concepts introduced in this chapter and
the associated ROS messages.

The package geometry msgs does not define a message for rotation matrices, because
rotations are represented as is defined as

This represents the transform between two coordinate frames in free space.

Vector3 translation

Quaternion rotation

132 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

Message Type Quantity
geometry msgs::msg::Point Point in R3

geometry msgs::msg::PointStamped Point with time stamp
geometry msgs::msg::Quaternion Orientation
geometry msgs::msg::QuaternionStamped Orientation with time stamp
geometry msgs::msg::Pose Position and orientation (as quaternion)
geometry msgs::msg::PoseStamped Pose with time stamp
geometry msgs::msg::Pose2D Pose in the plane, i.e., x, y, θ
geometry msgs::msg::Transform Transformation matrix
geometry msgs::msg::TransformStamped Transformation matrix with time stamp
geometry msgs::msg::Vector3 Direction in space
geometry msgs::msg::Vector3Stamped Direction in space with time stamp
geometry msgs::msg::Twist Velocity (linear and angular)
geometry msgs::msg::TwistStamped Velocity with time stamp

Table 4.1: ROS messages to represent geometric data.

of type geometry msgs::msg::Quaternion. However, there exists a data type to represent
both rotation and transformation matrices, but this is provided by the tf2 library discussed
in Section 4.13.1. Some of these messages have different names but identical components.
geometry msgs::msg::Pose includes a message of type geometry msgs::msg::Point, called
position, and a message of type geometry msgs::msg::Quaternion, called orientation;
geometry msgs::msg::Transform includes a field of type geometry msgs::msg::Point,
called translation, and one of type geometry msgs::msg::Quaternion, called rotation.
This is consistent with our discussion about transformation matrices, and the fact that they
can be used to represent frames, and therefore, once rigidly attached to a body (robot), they
can represent its pose, too. To represent velocities, the geometry msgs package provides
the message geometry msgs::msg::Twist, which includes linear velocities along the three
axes and angular velocities about the three axes. This message is commonly used to send
velocity commands to mobile robots with a differential or skid-steer drive, and will be further
analyzed later on.

Time stamps

As many geometric quantities change over time, ROS provides stamped versions for many
messages. The structure of the various stamped messages is similar, i.e., in addition to the
message itself, they include a message of type Header from the package builtin interfaces.
For example, the output of the command

ros2 interface show geometry_msgs/msg/Vector3

is

float64 x

4.11. KINEMATICS IN ROS 133

float64 y

float64 z

while

ros2 interface show geometry_msgs/msg/Vector3Stamped

produces

std_msgs/Header header

builtin_interfaces/Time stamp

int32 sec

uint32 nanosec

string frame_id

Vector3 vector

float64 x

float64 y

float64 z

The structure of builtin interfaces/Time was already explored in Section 2.7.1 and
consists of two integers to measure time in seconds and nanoseconds relative to a starting
time. This may be either the system clock or a custom time source if use sim time is set
(see Section 5.4.3 for more details on this topic.) A stamped Vector3 therefore includes a
header providing the timestamp as well as the name of the frame with which the vector is
associated, i.e., frame id. This structure is common to all stamped messages and is aligned
with the theory we discussed earlier in this chapter, where we outlined the importance of
referring quantities to a specific frame.

4.11.2 Pose2D

When dealing with robots moving in the plane, the pose is normally defined by three pa-
rameters only, i.e., x, y, and the yaw angle θ, as per our discussion in Section 4.9.1. For
this reason, it is possible to use messages of type geometry msgs::msg::Pose2D, which are
defined as follows:

float64 x

float64 y

float64 theta

However, it should be noted that oftentimes mobile robots nevertheless broadcast their pose
using messages of type geometry msgs::msg::Pose.

134 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

4.12 Controlling a differential/skid steer robot in ROS

Most differential drive and skid-steer8 robots can be controlled in ROS by publishing mes-
sages of type geometry msgs::msg::Twist to an appropriate topic. The structure of this
message is the following:

#This expresses velocity in free space broken into its linear and angular parts.

Vector3 linear

float64 x

float64 y

float64 z

Vector3 angular

float64 x

float64 y

float64 z

Owing to the kinematic structure of the differential drive we discussed in Section 4.9.1, the
field linear.x is used for the translational speed and angular.z for the rotational speed.
The other fields should be set to 0, as a differential drive robot cannot translate along
the y and z axes of its local frame, nor can it rotate about its x and y axes. The frame
is attached to the robot as shown in Figure 4.22. In this section, we show a simple ex-
ample of differential drive control using the turtlesim package introduced in Chapter 2.
Despite providing an overly simplified environment, turtlesim is useful because the simu-
lated turtle is a differential drive robot and can be controlled by sending messages of type
geometry msgs::msg::Twist. Various commercial mobile robot platforms, like the Husky
robot shown in Figure 1.1, can be controlled using exactly the same code (possibly adjusting
the name of the topic). Listing 4.1 provides the code of a node that moves the turtle to draw
a square on the screen.

is defined as

This represents the transform between two coordinate frames in free space.

Vector3 translation

Quaternion rotation

Listing 4.1: Drawsquare node

1 #include <r c l cpp / rc l cpp . hpp>
2 #include <geometry msgs /msg/ tw i s t . hpp>
3
4 int main (int argc , char ∗∗ argv) {
5
6 rc l cpp : : i n i t (argc , argv) ;
7 r c l cpp : : Node : : SharedPtr nodeh ;

8In the following, for brevity, we refer only to the differential drive, but the same concepts also apply to
the skid-steer drive.

4.12. CONTROLLING A DIFFERENTIAL/SKID STEER ROBOT IN ROS 135

8 rc l cpp : : Rate ra t e (1) ;
9

10 nodeh = rc l cpp : : Node : : make shared (” drawsquare ”) ;
11 auto pub = nodeh−>c r e a t e p u b l i s h e r <geometry msgs : : msg : : Twist>
12 (” t u r t l e 1 / cmd vel ” , 1 0 0) ;
13
14 geometry msgs : : msg : : Twist msg ;
15 while (r c l cpp : : ok ()) {
16 msg . l i n e a r . x = 1 ;
17 msg . angular . z = 0 ;
18 pub−>pub l i sh (msg) ;
19 ra t e . s l e e p () ;
20 msg . l i n e a r . x = 0 ;
21 msg . angular . z = M PI /2 ;
22 pub−>pub l i sh (msg) ;
23 ra t e . s l e e p () ;
24 }
25 }

The source code features familiar lines, such as including the header file rclcpp.hpp and
initializing the node and the publisher. However, in this case, we also need to include the
header file that provides the definition of messages of type geometry msgs::msg::Twist.h.
This implies that the node depends on the package geometry msgs, and therefore, the files
package.xml and CMakeLists.txt should be updated accordingly.

The name of the topic (which must be matched by the publisher) can be obtained using
the command ros2 topic list after starting the node turtlesim node from the turtlesim
package. Observe that, while in general the name of the topic may vary, ground robots
typically accept twist commands on a topic called cmd vel. In this case, the name of the
command is prefixed by the name of the robot, i.e., turtle1, so that the full topic name
is turtle1/cmd vel. Section 5.2 will provide additional details on the process of including
the robot name in the topic name. In the while loop, we alternate between moving the
robot forward and turning it counterclockwise by 90 degrees. This is done by alternately
setting linear.x and angular.z to 1 m/s or π

2
rad/s, respectively. Since the rate object is

initialized with a target frequency of 1 Hz, every time rate.sleep() is called, the program
waits for approximately one second, and the robot will therefore alternately move forward
by 1 meter and rotate counterclockwise by π/2. To run and test this node, you first need to
start the turtlesim node node typing

ros2 run turtlesim turtlesim_node

and then start the node drawsquare.

ros2 run examples drawsquare

If you let the code run for a while, you will observe that the path followed by the turtle
eventually diverges from a square pattern (see Figure 4.26).

This happens because the algorithm implements an open-loop controller (recall Figure
1.6) and does not integrate any information coming from the robot itself. This is almost

136 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

Figure 4.26: After a few iterations, the shape drawn by the turtle diverges from a square.
is defined as

This represents the transform between two coordinate frames in free space.

Vector3 translation

Quaternion rotation

invariably a bad idea, and this simple example shows how this strategy is prone to errors. In
this case, rate.sleep() tries to match the desired 1 Hz frequency, but there is no guarantee
that this will be done accurately. Moreover, part of the time within the cycle is spent
executing other operations, such as assignments, and so on. Therefore, even if rate.sleep()
exactly achieves the target frequency, the time spent translating or rotating will be slightly
different from one second. These errors accumulate over time and eventually the orientation
of the traced square tends to rotate and diverge from the initial one, where the edges are
aligned along the xy directions.

How can we fix this problem? If, after starting the turtlesim node, we run ros2 topic

list, we see that the node publishes a topic called /turtle1/pose, and with ros2 topic

info we can verify that this specific message is of type turtlesim::msg::Pose, which is
defined as:

float32 x

float32 y

float32 theta

4.12. CONTROLLING A DIFFERENTIAL/SKID STEER ROBOT IN ROS 137

float32 linear_velocity

float32 angular_velocity

As can be guessed, the message includes the pose of the robot (x, y, ϑ) as well as its linear
and angular velocity. In particular, the provided orientation theta is the absolute orientation
of the turtle. This message abstracts a sensor, i.e., a system providing information about
the robot, as discussed in Section 1.2. This sensor could then be used to implement a simple
motion strategy (closed loop) where we use information about the actual pose to decide the
command to execute (see also Figure 1.4). More precisely, to match a desired orientation (a
multiple of π/2 to move along perpendicular lines), we do not stop turning after a certain
amount of time has passed, but rather when the actual orientation matches the desired one.
Similarly, the robot stops translating after it has moved a certain distance from the point
where it switched from turning to moving straight. Both the actual orientation and the
actual traveled distance can be obtained from /turtle1/pose, either directly or through
some simple computations. Note that one could devise much more sophisticated closed loop
solutions, but for the time being this is sufficient and addresses the problem we identified.
This revised solution is shown in Listing 4.2. As this node both publishes velocity commands
and retrieves sensor information, it implements both a publisher and a subscriber, following
the same approach presented in Listing 3.15.

Listing 4.2: Drawsquare node with feedback

1 #include <r c l cpp / rc l cpp . hpp>
2 #include <geometry msgs /msg/ tw i s t . hpp>
3 #include <t u r t l e s i m /msg/ pose . hpp>
4
5 f loat x , y , theta ;
6 bool i n i t ;
7
8 void poseCal lback (const t u r t l e s i m : : msg : : Pose : : SharedPtr msg) {
9 x = msg−>x ;

10 y = msg−>y ;
11 theta = msg−>theta ;
12 i n i t = true ;
13 }
14
15 int main (int argc , char ∗∗ argv) {
16
17 rc l cpp : : i n i t (argc , argv) ;
18 r c l cpp : : Node : : SharedPtr nodeh ;
19 r c l cpp : : Rate ra t e (1) ;
20
21 nodeh = rc l cpp : : Node : : make shared (” drawsquarefb ”) ;
22 auto pub = nodeh−>c r e a t e p u b l i s h e r <geometry msgs : : msg : : Twist>
23 (” t u r t l e 1 / cmd vel ” , 1 0 0 0) ;
24 auto sub = nodeh−>c r e a t e s u b s c r i p t i o n <t u r t l e s i m : : msg : : Pose>
25 (” t u r t l e 1 / pose ” ,1000 ,& poseCal lback) ;
26
27 geometry msgs : : msg : : Twist msg ;
28 i n i t = fa l se ;
29

138 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

30 bool r o t a t e = fa l se ;
31 f loat s t a r t x = x ;
32 f loat s t a r t y = y ;
33 double DIRS [] = {0 ,M PI/2,−M PI,−M PI /2} ; // de s i r ed d i r e c t i o n s
34 int d i r e c t i o n = 0 ; // current d i r e c t i o n
35
36 while (! i n i t) // wai t f o r at l e a s t one sensor read ing
37 rc l cpp : : spin some (nodeh) ;
38
39 while (r c l cpp : : ok ()) {
40 rc l cpp : : spin some (nodeh) ; // ge t sensor reading , i f a v a i l a b l e
41 i f (r o t a t e) { // r o t a t i n g ?
42 // reached de s i r ed heading ?
43 i f (((d i r e c t i o n == 0) && (theta < DIRS [0])) | |
44 ((d i r e c t i o n == 1) && (theta < DIRS [1])) | |
45 ((d i r e c t i o n == 2) && (theta > 0)) | |
46 ((d i r e c t i o n == 3) && (theta < DIRS [3]))) {
47 msg . l i n e a r . x = 0 ; msg . angular . z = M PI /8 ; // no ; keep r o t a t i n g
48 }
49 else { // yes
50 msg . l i n e a r . x = 0 ; msg . angular . z = 0 ; // s top the robo t
51 r o t a t e = fa l se ; // sw i t ch to t r a n s l a t i n g
52 s t a r t x = x ; s t a r t y = y ; // record curren t l o c a t i o n
53 }
54 }
55 else { // t r a n s l a t i n g ?
56 i f (hypotf ((x−s t a r t x) , (y−s t a r t y))<2) { // moved l e s s than 2 un i t s ?
57 msg . l i n e a r . x = 0 . 5 ; msg . angular . z = 0 ; // no , keep moving forward
58 }
59 else { // moved 2 un i t s
60 r o t a t e = true ; // sw i t ch to r o t a t e
61 msg . l i n e a r . x = 0 ; msg . angular . z = 0 ; // s top the robo t
62 ++d i r e c t i o n %= 4 ; // t rack next d i r e c t i o n
63 }
64 }
65 pub−>pub l i sh (msg) ; // send motion command
66 }
67 }

The controller goes through two different stages controlled by the variable rotate. When
rotate is true, the robot turns in place, and when it is false, it moves straight ahead. To
decide when to switch from one stage to the other, the robot checks if it has reached one
of the desired orientations (line 43) or if it has moved a prescribed distance from the point
when it switched to translating (line 56). The test in line 43 considers the fact that the
orientation returned by the pose message is in the [−π, π] range9. Therefore, if the robot is
trying to align itself along the directions 0, π/2, and −π/2, it keeps turning as long as it has
not reached that orientation (first, second, and fourth cases in the if condition). If instead
the robot is aligning itself to the π direction, it keeps turning as long as the orientation does
not switch from positive heading to negative heading (i.e., it goes from π to −π). This is

9Note that in different ROS versions this may be different, e.g., in some cases the direction is in the [0, 2π]
range. If that is the case, this code will not work as-is and must be changed.

4.12. CONTROLLING A DIFFERENTIAL/SKID STEER ROBOT IN ROS 139

the third case in the if statement.
Also observe that, in the beginning, it performs a busy waiting cycle (line 36) to wait

for the first pose message to be received. This is necessary because the following code relies
on having received at least one sensor reading to initialize the position and heading of the
turtle. Figure 4.27 shows the result obtained by the revised version of the code. After
many iterations, the turtle is still moving along a well-aligned square, and the drift problem
formerly identified no longer appears.

Figure 4.27: Shape obtained running the revised controller in listing 4.2.

The simple examples presented above can do more than just control the turtle in the
turtlesim environment. In fact, the same code can be used to control real robots as well.
To experiment with this, we launch Gazebo, a high-fidelity robot simulator that can work
seamlessly with ROS. One of the nice features of this pairing is that one can run exactly
the same code in simulation and on the real robot. A complete discussion of Gazebo is
beyond our goals, and here we just use some launch files and examples provided in the
MRTP GitHub. We begin by starting the simulator with an empty world and a model of
the TurtleBot robot – a differential drive:

ros2 launch gazeboenvs tb4_simulation.launch.py

Observe how, in this case, the launch file is written in Python rather than XML. This is
an advanced feature we will explore further in Section 5.9. This command will start10 the
simulator and instantiate the robot, as shown in Figure 4.28. With ros2 topic list, we
can see that, among others, the TurtleBot is subscribed to a topic called /cmd vel of type

10The first time you run this launch file, there will be a delay at the beginning because the simulator
retrieves some files from a remote repository. These will be cached, and subsequent executions will be faster.

140 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

Figure 4.28: Gazebo simulation of the TurtleBot robot in a warehouse environment.

geometry msgs::msg::Twist. As can be guessed, this is the topic used to send velocity
commands to the robot. We would like to use the drawsquare example in Listing 4.1 to
move the robot around, but this cannot be used as-is because there is a mismatch in the topic
names. The robot is subscribed to /cmd vel, but the node publishes to turtle1/cmd vel;
hence, no messages would flow from the node to the robot. This can be fixed in two ways.
One, less flexible, consists of editing the source code and changing the name of the topic, or
perhaps adding it as a command-line parameter. The other approach, which we follow, is to
use a ROS feature called remapping, whereby we remap topics, i.e., we reassign topic names
when the node is started. This is achieved with the following syntax:

ros2 run examples drawsquare --ros-args --remap

turtle1/cmd_vel:=/cmd_vel

Conceptually, this can be thought of as creating a connection between turtle1/cmd vel

and /cmd vel, so that messages sent by drawsquare to turtle1/cmd vel end up in the topic
/cmd vel. Remapping is a convenient ROS mechanism that allows easy reuse of code, and
it will be further discussed in Section 5.1. After starting the node, if you observe Gazebo,
you will see that the robot moves along a path that resembles a square, though it is not a
perfect square. This is due to the fact that Gazebo integrates dynamics into the simulation,
introducing numerous sources of inaccuracy that did not appear with the turtle. Still, this
shows how, with a few lines of code, it is possible to move a mobile robot providing a ROS
interface.

At this point, we might be tempted to try using remapping to run drawsquarefb (Listing
4.2) to control the TurtleBot. However, this cannot be done because the simulated robot
does not publish messages of type turtlesim::msg::Pose, so it is not possible to remap and
pass that information to drawsquarefb. As a side note, though, the robots publish to a topic
odom of type nav msgs::msg::Odometry, which simulates a sensor (called odometry) that
includes the pose of the robot. So, with some changes, one could apply the same approach.
However, the results will not be as good as with the turtle, because in addition to the issues
mentioned above, the information provided by the odometry sensor includes errors that grow
over time (more details will be provided in Chapter 7).

4.13. THE TRANSFORM LIBRARY 141

When using geometry msgs::msg::Twist messages to control a robot, some platform-
specific parameters must be considered. For example, for safety reasons, many robots include
a timeout feature that will stop the robot if no twist command is received for a certain amount
of time. In such cases, it will be necessary to keep sending commands to the robot to keep
it moving.

4.13 The transform library

ROS provides the transform library11 to easily process geometric data and solve transformation-
related problems, such as changes of coordinates. The library is called tf2, as it is the second
iteration that replaced the original one called tf. tf2 is a sophisticated set of components
offering many functionalities. To simplify, we could say that it offers: 1) numerous classes
supporting most of the geometric concepts discussed earlier in this chapter; 2) static func-
tions to perform geometric operations; 3) tools and datatypes to track multiple coordinate
frames changing over time.

4.13.1 tf2 classes, messages and functions

Table 4.2 shows some of the classes provided by tf2 together with a brief description of their
purpose.

Class Description
tf2::Matrix3x3 Rotation Matrix
tf2::Quaternion Quaternion
tf2::Vector3 Point or vector
tf2::Transform Rigid transformation, i.e., rotation and translation

Table 4.2: tf2 classes to represent geometric data.

tf2 provides overloaded versions of various arithmetic operators, making it possible to
perform operations in an intuitive way, such as multiplying a matrix and a vector, two
quaternions, and so on. The package tf2 msgs, also part of the library, defines two messages,
namely tf2 msgs::msg::TF2Error and tf2 msgs::msg::TFMessage, whose structures are
as follows.

geometry_msgs/TransformStamped[] transforms

std_msgs/Header header

builtin_interfaces/Time stamp

int32 sec

uint32 nanosec

string frame_id

string child_frame_id

Transform transform

11Although it is called library, owing to the fact that everything in ROS belongs to a package, these
functionalities are offered through packages.

142 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

Vector3 translation

float64 x

float64 y

float64 z

Quaternion rotation

float64 x 0

float64 y 0

float64 z 0

float64 w 1

i.e., a it includes vector of messages of type geometry msgs::msg::TransformStamped.
As outlined earlier, stamped messages include both a structure and a header. The mes-
sage std msgs::msg::Header has already been discussed in Section 4.11.1, and the mes-
sage geometry msgs::msg::Transform includes a translation and a rotation, consistent
with what we learned when transformation matrices were introduced in Section 4.7. The
fields translation and rotation define the origin and orientation of the frame, whereas
child frame id in geometry msgs::msg::TransformStamped is a string identifying the
frame (i.e., the frame name). The header section of the message defines the timestamp
of the frame (useful for moving frames), as well as the string frame id identifying the frame
with respect to which this frame is referenced. Therefore, B

AT will be represented by a
message TransformStamped with child frame id set to A and frame id set to B.

As the name implies, messages of type tf2 msgs::msg::TF2Error are instead used to
exchange information about errors occurred in the tf2 system. The structure of the message
is the following:

uint8 NO_ERROR = 0

uint8 LOOKUP_ERROR = 1

uint8 CONNECTIVITY_ERROR = 2

uint8 EXTRAPOLATION_ERROR = 3

uint8 INVALID_ARGUMENT_ERROR = 4

uint8 TIMEOUT_ERROR = 5

uint8 TRANSFORM_ERROR = 6

uint8 error

string error_string

The field error string stores a message describing the error, while error stores an integer
whose value should be interpreted according to the constants defined in the message itself.
Finally, the package includes the definition of a large number of functions that can be used
to perform various geometric operations, such as combining two transformations. Some of
these are discussed in the following.

4.13.2 Quaternions and rotations

The package geometry msgs does not provide a message for rotation matrices, because ro-
tations are instead exchanged as quaternions. However, the package tf2 includes classes

4.13. THE TRANSFORM LIBRARY 143

and methods that can be used to model quaternions and easily convert between quaternions
and rotation matrices. The class tf2::Quaternion represents a quaternion. It may seem
redundant that quaternions are represented in two packages, but there is a reason for this.
geometry msgs::msg::Quaternion is just a message to be transmitted and it includes just
data, but it does not include auxiliary methods to operate on the data. These additional
methods are available only in tf2::Quaternion. While the ROS documentation is the
ultimate reference, we outline the following methods that may be useful:

• getAngle returns the angle associated with the quaternion (see Eq.(4.19));

• getAxis returns the axis associated with the quaternion (see Eq.(4.20));

• setEulerZYZ sets the quaternion to the rotation associated with a given triplet of
Euler angles (see Section 4.5.3);

• setRPY sets the quaternion to the rotation associated with a given triplet of roll-pitch-
yaw angles (see Section 4.5.3).

In addition, the package tf2 defines numerous static functions that can be used on
quaternions to perform a variety of useful operations. Among these, the following are often
used in practice:

• tf2::impl::getYaw: accepts as a parameter an instance of tf2::Quaternion and
returns the associated yaw angle. This is extremely useful for mobile robots moving in
the plane.

• tf2::toMsg: converts an instance of tf2::Quaternion into a message of type
geometry msgs::Quaternion, so that it can be published (see also Listing 4.4 for more
details).

• tf2::fromMsg: converts a message of type geometry msgs::Quaternion into the
equivalent class of the tf2 package.

tf2 also provides a class called tf2::Matrix3x3 that represents a rotation matrix. Its
method setRotation can be used to convert a quaternion into a rotation matrix (see
Eq. (4.18)), whereas the method getRotation determines the quaternion equivalent to the
given rotation matrix, as per Eq. (4.22). The class tf2::Matrix3x3 also includes various
other methods to directly operate on the rotation matrix, such as computing the inverse,
transpose, etc. Listing 4.3 shows how to use some of the classes and methods we have just
introduced.

Listing 4.3: Geom Node

1 #include <r c l cpp / rc l cpp . hpp>
2 #include <t f 2 /LinearMath/ Quaternion . h>
3 #include <t f 2 /LinearMath/Matrix3x3 . h>
4 #include <t f 2 /LinearMath/Transform . h>
5 #include <t f 2 /LinearMath/ Vector3 . h>
6 #include <t f2 geometry msgs / t f2 geometry msgs . hpp>
7 #include <t f 2 / impl / u t i l s . h>

144 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

8
9

10 int main (int argc , char ∗∗ argv) {
11
12 rc l cpp : : i n i t (argc , argv) ;
13 r c l cpp : : Node : : SharedPtr nodeh ;
14 nodeh = rc l cpp : : Node : : make shared (”geom”) ;
15
16 t f 2 : : Quaternion q1 , q2 , q3 ;
17 q1 . setRPY (0 ,0 , M PI / 2) ;
18 q2 . setRPY (0 , M PI / 4 , 0) ;
19 q3 = q1∗q2 ;
20 RCLCPP INFO(nodeh−>g e t l o g g e r () , ”%f %f %f %f ” ,
21 q3 . x () , q3 . y () , q3 . z () , q3 .w()) ;
22 double yaw = t f 2 : : impl : : getYaw (q3) ;
23 RCLCPP INFO(nodeh−>g e t l o g g e r () , ”q3 has yaw %f ” ,yaw) ;
24 t f 2 : : Matrix3x3 r ;
25 r . s e tRotat ion (q3) ;
26 t f 2 : : Vector3 o1 (0 , 1 , 3) , o2 (1 , 4 , 0) ;
27 t f 2 : : Transform t1 (q2 , o1) ;
28 t f 2 : : Transform t2 (r , o2) ;
29 t f 2 : : Transform t3= t1 ∗ t2 ;
30 t f 2 : : Vector3 o r i = t3 . ge tOr ig in () ;
31 RCLCPP INFO(nodeh−>g e t l o g g e r () , ”%f %f %f ” , o r i . x () , o r i . y () , o r i . z ()) ;
32
33 }

Two quaternions, q1 and q2, are created and initialized by specifying the associated
roll-pitch-yaw angles. A third quaternion, q3, is then obtained using the overloaded multi-
plication operator, and therefore represents the composite rotation. Next, a 3 × 3 rotation
matrix r is initialized to store the same rotation associated with q3. Finally, two 4 × 4
transformation matrices, t1 and t2, are created by specifying their rotation and translation
components, and a third transformation matrix, t3, is obtained by combining them. Ob-
serve that when creating a transformation matrix, one can specify the rotation using either
a quaternion or a rotation matrix, thus offering great flexibility. The output of the program
is the following.

[INFO] [1673573523.415627261] [geom]: -0.270598 0.270598 0.653281 0.653281

[INFO] [1673573523.415738210] [geom]: 0.707107 5.000000 2.292893

4.13.3 Conversions between different representations

In Listing 4.4, we show a node that subscribes to a topic, receives data in one representation,
and republishes it in a different format. As in the case of Listing 4.2, the node acts as
both a publisher and a subscriber, and it makes use of the ros::spin some function. The
node receives the pose of the turtle as a message of type turtlesim::msg::Pose, which
includes only two coordinates and the orientation, and then republishes it as a message of
type geometry msgs::msg::Pose, which includes the three-dimensional position and the
orientation represented as a quaternion.

4.13. THE TRANSFORM LIBRARY 145

Listing 4.4: RepublishPose Node

1 #include <r c l cpp / rc l cpp . hpp>
2 #include <t u r t l e s i m /msg/ pose . hpp>
3 #include <geometry msgs /msg/ pose . hpp>
4 #include <t f 2 /LinearMath/ Quaternion . h>
5 #include <t f2 geometry msgs / t f2 geometry msgs . hpp>
6
7 f loat x ;
8 f loat y ;
9 f loat theta ;

10 bool v a l i d ;
11
12 void poseReceived (const t u r t l e s i m : : msg : : Pose : : SharedPtr msg) {
13 x = msg−>x ;
14 y = msg−>y ;
15 theta = msg−>theta ;
16 v a l i d = true ;
17 }
18
19 int main (int argc , char ∗∗ argv) {
20
21 rc l cpp : : i n i t (argc , argv) ;
22 r c l cpp : : Node : : SharedPtr nodeh ;
23 nodeh = rc l cpp : : Node : : make shared (” r epub l i shpo s e ”) ;
24
25 auto sub = nodeh−>c r e a t e s u b s c r i p t i o n <t u r t l e s i m : : msg : : Pose>
26 (” t u r t l e 1 / pose ” ,10 ,& poseReceived) ;
27 auto pub = nodeh−>c r e a t e p u b l i s h e r <geometry msgs : : msg : : Pose>(” pose ” , 1 0 0 0) ;
28
29 geometry msgs : : msg : : Pose poseToPublish ;
30 t f 2 : : Quaternion q ;
31 v a l i d = fa l se ;
32
33 while (r c l cpp : : ok ()) {
34 rc l cpp : : spin some (nodeh) ;
35 i f (v a l i d) {
36 poseToPublish . p o s i t i o n . x = x ;
37 poseToPublish . p o s i t i o n . y = y ;
38 poseToPublish . p o s i t i o n . z = 0 ;
39 q . setRPY (0 ,0 , theta) ;
40 poseToPublish . o r i e n t a t i o n = t f 2 : : toMsg (q) ;
41 pub−>pub l i sh (poseToPublish) ;
42 v a l i d = fa l se ;
43 }
44 }
45 }

The main function starts with the usual initializations and creates both a subscriber and
a publisher object. The subscriber is associated with the handler function poseReceived,
which extracts the x, y, and theta components of the message and stores them in three global
variables with matching names. In the main function, we run an infinite loop controlled by
rclcpp::ok(). Within this loop, we check for messages from the topic turtle1/pose using
the function rclcpp::spin some(). If a message is received, the handler function copies the

146 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

relevant values into the global variables and marks the data as valid. In the main loop, if a
message is marked as valid, we prepare an object of type geometry msgs::msg::Pose by first
copying the position values and then setting up the quaternion component orientation. To
this end, we use an intermediate object of type tf2::Quaternion called q, and initialize it
using the method setRPY with a given triplet of roll/pitch/yaw angles. Finally, we convert
the object to an instance of geometry msgs::msg::Quaternion and publish the message to
the topic pose, which we previously created. After publishing the message, it is marked as
invalid, to ensure that each incoming message is reposted only once. Note that we use the
intermediate object because geometry msgs::msg::Quaternion does not offer any method
to easily create a quaternion from other parameterizations. We could have set those values
manually using the formulas given in Section 4.5.4; however, that approach is error-prone,
whereas the method we use here is shorter and relies on well-tested code. This node de-
pends on the packages turtlesim, geometry msgs, and tf2, and therefore the configuration
files must be updated accordingly. Moreover, to run and test this code, the turtlesim

environment must be up and running.

4.13.4 Transform tree

The transform library implements many of the ideas discussed when presenting transforma-
tion trees (see Section 4.8). tf2 handles the transformation tree buffered in time, i.e., it
is possible to look up spatial relationships either at the current time or in the past, e.g., 3
seconds ago. By default, the length of the temporal buffer is 10 seconds, but this can be
changed. The ability to locate transformations back in time is particularly useful, considering
that robots move around their environment and therefore many mutual relationships change
over time. tf2 also provides a set of tools (in the form of nodes) to debug applications,
such as visualizing the transformation tree, performing coordinate transformations from the
command line, and so on. Moreover, tf2 standardizes how frames should be represented
and named, and it defines some standard frames that are pervasively used in ROS. tf2 is
a rather sophisticated system, and it can operate in a fully distributed setup, with nodes
dispersed over a network. In the following, we discuss just the fundamental principles and
refer the reader to the official documentation for the full picture.

To take advantage of the tf2 infrastructure, one needs to listen for transforms and/or
broadcast transforms. By listening to transforms, one can receive relevant transforms broad-
cast in the system and then take advantage of the provided utilities to perform geometric
operations. Conversely, by broadcasting transforms, one can communicate transforms to
other nodes. In many instances, substantial benefits can be gained from tf2 simply by lis-
tening to transforms broadcast by other nodes in the system. In fact, many standard ROS
nodes are set up to automatically broadcast this information. Because the transformation
tree is buffered in time, exchanged transforms are time-stamped, i.e., they are instances of
geometry msgs::msg::TransformStamped, which we analyzed earlier. Frames in ROS are
given symbolic names expressed as strings, e.g., map, base link, etc. Accordingly, transfor-
mations exchanged with tf2 refer to frames using these symbolic names.

Frames are exchanged through two topics: /tf and /tf static. The difference be-
tween the two is that, as the name suggests, /tf static is used for transformations that
do not change over time. This is useful, for example, to communicate the geometry of

4.13. THE TRANSFORM LIBRARY 147

a robot where the transformation relating two objects rigidly connected to each other re-
mains constant. For example, referring to Image 4.3, the mutual position between the
orange and green frames does not change over time and is therefore a good candidate for
being exchanged through /tf static. Both /tf and /tf static exchange messages of
type tf2 msgs::TFMessage. However, nodes do not usually publish or subscribe to these
topics directly. Instead, they receive or send transformations using instances of the classes
TransformListener and TransformBroadcaster. Listing 4.5 shows how a node can listen
for various transformations using tf2. To run this example and observe the output, you
must start a Gazebo simulation with frame names matching those used in the example:

ros2 launch gazeboenvs gazebo_husky.launch.py

The node instead must be run as follows:

ros2 run examples tflistener --ros-args -r /tf:=/a200_0000/tf

This is another instance of remapping, first seen in section Section 4.12. The reason is that
by default TransformListener listens to a topic called /tf but the Gazebo simulation uses
a different topic name, i.e., /a200 0000/tf. Through remapping, we adjust this topic name
mismatch.

The logic is rather simple. First, an instance of tf2 ros::Buffer is created. This is the
storage area to buffer transforms up to 10 seconds in the past, as per the default configuration.
Then, an instance of type tf2 ros::TransformListener is created and linked to the buffer.
Inside the main loop, the method lookupTransform is used to return the transformation
between two frames whose names are given as the first and second parameters. The third
parameter specifies the desired point in time, and by specifying tf2::TimePointZero we
indicate that we are requesting the most recent transformation. Note that the function
returns the transform from the first parameter to the second parameter, i.e., in our example,
it returns the coordinates of the frame base link expressed in the frame odom. If we swap the
order of the parameters, the code obviously still works and returns the inverse transformation
matrix. This is consistent with our discussion in Section 4.8, where we outlined that if
two frames are part of the same connected component, then it is possible to compute the
transformation in either direction. This node depends on the packages tf2 and tf2 ros,
and the package and make files must be correspondingly updated.

Listing 4.5: Transformation Listener

1 #include <r c l cpp / rc l cpp . hpp>
2 #include <t f 2 r o s / t r a n s f o r m l i s t e n e r . h>
3 #include <t f 2 r o s / b u f f e r . h>
4 #include <geometry msgs /msg/ transform stamped . hpp>
5
6 int main (int argc , char∗∗ argv){
7
8 rc l cpp : : i n i t (argc , argv) ;
9 r c l cpp : : Node : : SharedPtr nodeh ;

10 nodeh = rc l cpp : : Node : : make shared (” t f l i s t e n e r ”) ;
11

148 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

12 t f 2 r o s : : Bu f f e r b u f f e r (nodeh−>g e t c l o c k ()) ;
13 t f 2 r o s : : Trans formListener l i s t e n e r (b u f f e r) ;
14 geometry msgs : : msg : : TransformStamped transformStamped ;
15
16 while (r c l cpp : : ok ()){
17
18 try{
19 transformStamped = b u f f e r . lookupTransform (
20 ”odom” , ” b a s e l i n k ” , t f 2 : : TimePointZero) ;
21
22 }
23 catch (t f 2 : : TransformException &ex) {
24 RCLCPP WARN(nodeh−>g e t l o g g e r () , ”%s ” , ex . what ()) ;
25 r c l cpp : : Rate (1 . 0) . s l e e p () ;
26 continue ;
27 }
28 RCLCPP INFO(nodeh−>g e t l o g g e r () , ”Obtained t rans fo rmat ion ”) ;
29 RCLCPP INFO(nodeh−>g e t l o g g e r () , ” Trans la t i on : %f %f %f ” ,
30 transformStamped . trans form . t r a n s l a t i o n . x ,
31 transformStamped . trans form . t r a n s l a t i o n . y ,
32 transformStamped . trans form . t r a n s l a t i o n . z) ;
33 RCLCPP INFO(nodeh−>g e t l o g g e r () , ” Rotation : %f %f %f %f ” ,
34 transformStamped . trans form . r o t a t i o n . x ,
35 transformStamped . trans form . r o t a t i o n . y ,
36 transformStamped . trans form . r o t a t i o n . z ,
37 transformStamped . trans form . r o t a t i o n .w) ;
38 }
39 return 0 ;
40 }

If, instead of the most recent transformation, we are looking for a transformation in the
past, we can change the last parameter to indicate how far in the past we are looking. This
can be done by initializing an instance of an object of type rclcpp::Time as follows:

rclcpp::Time pastlookup=nodeh->get_clock()->now()-tf2::durationFromSec(3);

In this case, pastlookup is initialized to refer to three seconds into the past, and if it is passed
as the third parameter to the lookupTransform, the function will accordingly retrieve the
past transformation from the time buffer12 Since, by default, transformations are buffered
in time for ten seconds only, one should not attempt to retrieve transformations more than
ten seconds in the past (unless the default behavior is changed).

Finally, it is worth observing that lookupTransform does not look up just transforms that
are directly connected to each other, but can traverse the tree and determine compounded
transformations. For example, Figure 4.29 shows the frames attached to a Husky robot,
while Figure 4.30 displays a part of the corresponding tree. If the above code is executed
in a situation like this, the code can be modified to return the transform between odom and
front left wheel even if are not directly connected.

Similarly, to broadcast a transformation to other nodes in the system, an object of type

12If you try making this change in Listing 4.5, it will not work because you need to tell ROS to retrieve
time from the simulator and not from the system time. This will be explained in Chapter 5.

4.13. THE TRANSFORM LIBRARY 149

Figure 4.29: Frames associated with a Husky robot (see Figure 1.1).

view_frames Result

odom

base_link

 Broadcaster: default_authority
Average rate: 48.454
Buffer length: 1.197

Most recent transform: 21.291
Oldest transform: 20.094

front_left_wheel

 Broadcaster: default_authority
Average rate: 16.667
Buffer length: 1.14

Most recent transform: 21.291
Oldest transform: 20.151

front_right_wheel

 Broadcaster: default_authority
Average rate: 16.667
Buffer length: 1.14

Most recent transform: 21.291
Oldest transform: 20.151

rear_left_wheel

 Broadcaster: default_authority
Average rate: 16.667
Buffer length: 1.14

Most recent transform: 21.291
Oldest transform: 20.151

rear_right_wheel

 Broadcaster: default_authority
Average rate: 16.667
Buffer length: 1.14

Most recent transform: 21.291
Oldest transform: 20.151

Recorded at time: 1749664846.9495637

Figure 4.30: Tree showing the relationships for the frames attached to a Husky robot as
returned by the Gazebo simulation.

150 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

TransformBroadcaster can be used. The mechanism is symmetric to the one we saw in
Listing 4.5. An instance of TransformStamped is initialized as we described above, and
then broadcast to the other nodes using the method sendTransform. Listing 4.6 shows this
process.

Listing 4.6: Transformation Broadcaster

1 #include <r c l cpp / rc l cpp . hpp>
2 #include <t f 2 r o s / t rans f o rm broadcas t e r . h>
3 #include <geometry msgs /msg/ transform stamped . hpp>
4 #include <t f 2 /LinearMath/ Quaternion . h>
5
6 int main (int argc , char∗∗ argv){
7
8 rc l cpp : : i n i t (argc , argv) ;
9 r c l cpp : : Node : : SharedPtr nodeh ;

10 nodeh = rc l cpp : : Node : : make shared (” t f b r o a d c a s t e r ”) ;
11
12 t f 2 r o s : : TransformBroadcaster broadcas te r (nodeh) ;
13 geometry msgs : : msg : : TransformStamped transformStamped ;
14 t f 2 : : Quaternion q ;
15
16 while (r c l cpp : : ok ()){
17 transformStamped . header . stamp = nodeh−>g e t c l o c k ()−>now () ;
18 transformStamped . header . f rame id = ” b a s e l i n k ” ;
19 transformStamped . c h i l d f r a m e i d = ”myframe” ;
20 transformStamped . trans form . t r a n s l a t i o n . x = 4 . 0 ;
21 transformStamped . trans form . t r a n s l a t i o n . y = 0 . 0 ;
22 transformStamped . trans form . t r a n s l a t i o n . z = 2 . 0 ;
23 q . setRPY (0 , 0 , 0) ;
24
25 transformStamped . trans form . r o t a t i o n . x = q . x () ;
26 transformStamped . trans form . r o t a t i o n . y = q . y () ;
27 transformStamped . trans form . r o t a t i o n . z = q . z () ;
28 transformStamped . trans form . r o t a t i o n .w = q .w() ;
29 broadcas te r . sendTransform (transformStamped) ;
30 }
31 return 0 ;
32 }

If we execute this node

ros2 run examples tfbroadcaster

and then run ros2 topic echo /tf, we get and output like the following

transforms:

- header:

stamp:

sec: 1673894532

nanosec: 133698111

4.13. THE TRANSFORM LIBRARY 151

frame_id: base_link

child_frame_id: myframe

transform:

translation:

x: 4.0

y: 0.0

z: 2.0

rotation:

x: 0.0

y: 0.0

z: 0.0

w: 1.0

thus confirming that the node is now broadcasting transformations that are managed by the
tf2 system.

Finally, tf2 provides also some tools to inspect and debug the structure of the transfor-
mation tree. Among these, the package tf2 tools includes a node that listens for the frames
broadcast in the system and builds the graph for the transformation tree. This utility can
be run as follows:

ros2 run tf2_tools view_frames --ros-args -r /tf:=/a200_0000/tf

and will generate and save a file with the transform tree structure. The tree shown in figure
4.30 was built using this utility. Note that in this case, too, we had to use topic remapping
because view frames looks for a topic called /tf.

4.13.5 Standard Frames

ROS has defined some conventions for naming frames. This facilitates code reuse and sharing,
as long as these guidelines are consistently followed. The following frames are extensively
used to name frames in ROS applications.

• base link is a frame rigidly attached to the robot base. For mobile robots, this frame
follows the conventions described in Section 4.9, i.e., the x axis points forward, y is to
the left, and z points upwards. Being rigidly attached to the robot, base link varies
over time, for example when expressed with respect to the frames described later. If
there are multiple robots in an application, each of them will have its own base link,
and care must be taken to avoid confusion. Importantly, there is no mandated rule for
where base link should be placed, but for differential drive and skid-steer robots it is
very often placed at the center, so that a rotation in place by the robot corresponds to
a rotation about the z axis with no change in the origin of the frame.

• odom is a world-fixed frame, i.e., it does not change over time. The pose of a robot
expressed in this frame can drift over time, but remains continuous (as it would if
the pose came from odometry—hence the name). Typically, the odom frame is placed
where the robot starts. Sensors like encoders return the transformation between the

152 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

base link frame and the odom frame. This will become clearer when discussing sensors
in Chapter 7 and localization algorithms in Chapter 9.

• map is also a world fixed frame with the z axis pointing upwards. Differently from the
odom frame, the pose of a robot expressed in this frame should not drift over time and
is not supposed to be continuous.

• earth is another world fixed frame whose origin is at the center of the earth. This
frame becomes useful if there are multiple robots operating using different map frames.
In such case, earth is a common ancestor frame that can be used to related quantities
expressed in different maps.

Both odom and map are world-fixed frames, meaning that they do not change over time.
On the contrary, base link is not a world-fixed frame because it is rigidly attached to the
robot and therefore can vary over time as the robot moves. The different requirements
for the odom and map frames suggest that the robot pose in the map frame is typically
computed by localization algorithms like the particle filter (see Section 8.5) that match the
frame specification. Instead, the robot pose in the odom frame should be computed through
methods like encoders, inertial navigation units, and similar approaches that guarantee a
continuous evolution over time. In many instances, the two frames are coincident, but this
is not a requirement.

Figure 4.30 shows another important feature of how transform trees and standard frames
are defined in ROS. Each frame can have multiple child frames, but exactly one parent.
According to the previous discussion, base link could be in principle expressed either in
the odom frame or in the map frame, but this is not allowed because of the constraint of having
a single parent. In the figure just odom is established, so there is no ambiguity. However, if
both map and odom are present, then map is the parent frame for odom (see Figure 4.31).

map odom base link

Figure 4.31: Arrangement of standard frames in ROS.

Finally, if there are multiple robots, it is possible that each of them is started with its own
map and odom frames. In this situation, the frame earth is used as well, and the arrangement
of frames is shown below (compare this with figure 4.19).

Further reading

Kinematics is a fundamental topic discussed in most robotics textbooks, like for example
[16,27,49, 51], just to name a few. A discussion about the design of the tf package is given
in [22].

4.13. THE TRANSFORM LIBRARY 153

earth

map1 odom1 base link1

map2 odom2 base link2

Figure 4.32: Arrangement of standard frames in ROS for a multiple robot application.

154 CHAPTER 4. GEOMETRIC REPRESENTATIONS AND KINEMATICS

Chapter 5

Additional ROS concepts

In this chapter, we introduce some more advanced ROS concepts that can be useful as you
start developing complex ROS applications.

5.1 Remapping

We saw in Chapter 2 that ros2 run is used to run executables. The help information
provided by ros2 run -h shows that everything coming after the executable name becomes
an argument passed to the executable. While an executable can, in general, accept arbitrary
arguments, there are a few that are standard and are associated with each ROS executable.
One of these is the name of the node, which can be altered when the executable is started
as follows (note that instead of --remap, one can also use the shorter -r):

ros2 run talklisten talker --ros-args --remap __name:=newtalker

We can verify that the name of the node has changed running ros2 node list which will
produce

/newtalker

and the same information is observed in the output produced by the node:

[INFO] [1673935144.419936102] [newtalker]: Sending message #1

[INFO] [1673935145.409056027] [newtalker]: Sending message #2

[INFO] [1673935146.409073411] [newtalker]: Sending message #3

[INFO] [1673935147.409061516] [newtalker]: Sending message #4

[INFO] [1673935148.408931236] [newtalker]: Sending message #5

In general, an executable can initiate more than one node through a process called compo-
sition. When that is the case, a slightly different syntax should be used to specify which
node we are renaming. This last example is an instance of remapping, i.e., the process of
altering some default properties of a node (the name in this case). We have already seen
a remapping example in Section 4.12, where we remapped the name of a topic to redirect

155

156 CHAPTER 5. ADDITIONAL ROS CONCEPTS

the messages of drawsquare to the simulated Turtlebot robot, which expected the twist
commands on a topic with a different name. This use of remapping is extremely common,
as it allows repurposing existing nodes without having to recompile them. The general form
is the following:

ros2 run packagename executablename --ros-args --remap

originaltopicname:=newtopicname

where, in this case, the remapping involves the name of a topic. In general, multiple
topics can be remapped if needed. Remapping can be applied to the node name, topic
names, and namespaces, a feature that will be introduced in the next section. Remappings
can also be specified in launch files, as we will see later.

5.2 Namespaces

Namespaces in ROS are introduced to avoid name clashes, similarly to the concept used
in programming languages like C++. For example, if multiple instances of the same node
are run, they would use the same names for resources like topics. We have already seen an
example of this behavior when running the different talker/listener nodes. In some instances,
this may be acceptable, but in others, it may be necessary to keep separate the resources
associated with each node. For example, we may desire that the talker sends its message
to a specific listener, and not to every listener. Similarly, two nodes developed by different
developers could use the same name for a service or a topic. These name clashes can be
avoided by assigning a different namespace to each node. Namespaces can be specified in
different ways. First, we can remap the namespace from the command line, similarly to what
we have just done for the node name or the topic names:

ros2 run talklisten talker --ros-args --remap __ns:=/t1

With this syntax we are starting the executable talker and its resources will be associated
with the namespace t1. For example, if we run ros2 node list we get

/t1/talker

and if we run ros2 topic list we get

/parameter_events

/rosout

/t1/message

Moreover, the output produced by the node now looks like the following

[INFO] [1674254684.393268432] [t1.talker]: Sending message #1

[INFO] [1674254685.378026668] [t1.talker]: Sending message #2

5.3. ROS NAMES 157

[INFO] [1674254686.378038624] [t1.talker]: Sending message #3

[INFO] [1674254687.377929448] [t1.talker]: Sending message #4

[INFO] [1674254688.378053505] [t1.talker]: Sending message #5

[INFO] [1674254689.377921921] [t1.talker]: Sending message #6

[INFO] [1674254690.377917991] [t1.talker]: Sending message #7

where we see that the name of the node is now prefixed by the assigned namespace (i.e., the
name is t1.talker). Hence, by having started the node with a namespace called /t1, the
resources (topics, names, services, etc.) associated with talker now have names prefixed by
/t1. It should be clear that if we now run listener, the node will not print anything on
the screen, because it subscribes to a topic called message, but talker is now publishing to
/t1/message. Of course, this can be fixed by remapping the topic for listener, too:

ros2 run talklisten listener --ros-args --remap message:=/t1/message

As it may be cumbersome to specify namespaces, remappings, and so on from the com-
mand line, these can be specified in a launch file, as shown in Listing 5.1.

Listing 5.1: Launch file with namespaces and remapping

1 <launch>
2 <node pkg=” t a l k l i s t e n ”
3 exec=” t a l k e r ”
4 name=” newtalker ”
5 namespace = ”/ t1 ”
6 launch−p r e f i x=”gnome−t e rmina l −−” />
7 <node pkg=” t a l k l i s t e n ”
8 exec=” l i s t e n e r ”
9 name=” l i s t e n e r ”>

10 <remap from=”/message” to=”/ t1 /message” />
11 </node>
12 </ launch>

The key elements to note are that the namespace can be specified as an attribute of the
tag node, while the topic remapping is an element of the node, with attributes from and to

(with their obvious meanings). The attribute name, which we already encountered, specifies
the name for the node in the executable.

5.3 ROS names

Now that we have introduced namespaces, we can revisit the naming conventions for ROS
resources such as topics, services, and nodes to better understand how to organize and name
resources. As one can imagine, having two resources with exactly the same name may
sometimes be desired but may also lead to unexpected consequences. For example, if from
two different consoles we start the executable talker from the demo nodes cpp package,
the two executables start and each spawns an instance of a node called talker. Both
nodes publish strings to the same topic named chatter. With regard to publishing to the
same topic, this is not a problem, as we indeed discussed that topics are many-to-many

158 CHAPTER 5. ADDITIONAL ROS CONCEPTS

communication channels identified by their names, so having multiple nodes publishing to a
topic with a shared name is a feature and not a bug. But in some instances, we may desire
to keep things separate. This was, for example, the case when we spawned multiple turtles
in the turtlesim environment. In that case, it was essential for each turtle to have its own
dedicated topic to receive velocity commands. Before moving forward, it is useful to run
ros2 node list while the two executables are running. The output is:

WARNING: Be aware that there are nodes in the graph that share an exact name,

this can have unintended side effects.

/talker

/talker

This shows that, in general, it is possible to have two nodes with the same name, but the
warning message reminds us that we should carefully consider whether this is what we really
want. At this point, if we prefer the nodes to have different names to avoid ambiguity, we can
use one of the remapping strategies discussed in the previous sections, either changing the
node names or starting the nodes in different namespaces. Both approaches assign different
names to the nodes, thus eliminating the warning, but the overall effects differ. If we start
the nodes1 by remapping the name using --remap name, they will both continue to publish
to the same topic called /chatter. Indeed, what we did was just change the name of the
node. ros2 node list can be used to confirm that the nodes have different names, but
the name of the topic they publish to remains unchanged. If instead we assign a different
namespace to the executables when they start, we end up with nodes that not only have
different names but also publish to different topics. For example, we can start one of the
two nodes in a different namespace as follows:

ros2 run demo_nodes_cpp talker --ros-args --remap __ns:=/t2

If we now run ros2 node list, the output will be:

/t2/talker

/talker

and the output of ros2 topic list will be (omitting topics unrelated to the discussion):

/chatter

/t2/chatter

As we now know, the node started in the /t2 namespace is publishing to /t2/chatter,
i.e., the new namespace has been used to remap the name of the topic it publishes to. If we
now start the listener node from the same package, it will only receive messages from one
of the nodes, because it subscribes to the topic /chatter, and not to /t2/chatter.

At this point, we can introduce the concept of fully qualified names in ROS. Topics and
services have both fully qualified names and relative names. A fully qualified name starts

1As a matter of fact, to get different names you need to remap just one of the two.

5.4. PARAMETERS 159

with the / character and explicitly identifies the namespace in which the resource exists.
In contrast, relative names do not start with / and are interpreted with respect to the
namespace of the node that creates or accesses the resource. If a resource is created without
setting a namespace, its fully qualified name is simply the name of the resource preceded
by a /. If instead the resource is created within a namespace, its fully qualified name is
constructed by prefixing the namespace name followed by a /, then the resource name.

This behavior explains some of the patterns we observed earlier in our examples. For
instance, if we revisit Listing 3.2, we see that the code publishes to a topic called message. If
we start the executable without remapping the namespace and then run ros2 topic list,
we will see the topic listed as /message, which is its fully qualified name. However, if we start
the same node with the command --ros-args --remap ns:=/test, we will find that ros2
topic list now shows /test/message as the topic name. This is because the publisher
was created using a relative name (message), and the namespace /test is automatically
prepended to form the fully qualified name. As we will see in a later example, it is also
possible to access resources using their fully qualified names (starting with /) directly from
within a ROS node. In some cases, doing so is not only possible but also necessary to ensure
the correct behavior of the system. Finally, this is why when we remap a namespace using
--ros-args --remap ns, the namespace must be specified as an absolute path—i.e., it
must start with the / character.

5.4 Parameters

While node names and namespaces are associated with all ROS nodes, it is also possible to
introduce parameters that are specific to a particular node being developed. These parame-
ters can be specified in various ways: directly in the launch file, from the command line, or
via a configuration file. For example, a node that interfaces with a laser range finder may
require a parameter to set its resolution, or a node that receives data from a GPS sensor
may need to operate at different frequencies depending on the application. Such values can
be declared as parameters with sensible default values to be used when no specific values are
provided by the user. However, they can also be dynamically changed from the command
line or passed when launching the executable, either using ros2 run or within a launch file.
Regardless of the method used for setting the parameters, if a node relies on parameters in
its source code, developers can use classes and functions from the rclcpp package to: declare
parameters, retrieve their values, and modify them as needed during runtime. Additionally,
the ros2 command-line tool provides the param command, which allows users to interact
with node parameters from the terminal. For example, if we start both the talker and
listener nodes from the demo nodes cpp package, and we run the following command:

ros2 param list

we obtain the following output:

/listener:

qos_overrides./parameter_events.publisher.depth

160 CHAPTER 5. ADDITIONAL ROS CONCEPTS

qos_overrides./parameter_events.publisher.durability

qos_overrides./parameter_events.publisher.history

qos_overrides./parameter_events.publisher.reliability

start_type_description_service

use_sim_time

/talker:

qos_overrides./parameter_events.publisher.depth

qos_overrides./parameter_events.publisher.durability

qos_overrides./parameter_events.publisher.history

qos_overrides./parameter_events.publisher.reliability

start_type_description_service

use_sim_time

ros2 param list lists all parameters associated with the nodes currently running. The out-
put shows that, among others, the nodes are associated with a parameter called use sim time.
In fact, this parameter is included by default in all ROS nodes. Its purpose will be explained
in more detail later on, but in brief, it allows a node to choose whether to use the system’s
real-time clock or a simulated clock. This is an essential feature when running simulations,
for example in Gazebo or RViz. If we want to learn more about use sim time we can use

ros2 param describe talker use_sim_time

where we specify the name of node and the name of a parameter associated with it. In this
case the output will be

Parameter name: use_sim_time

Type: boolean

Constraints:

showing that use sim time is boolean parameter not associated with any constraint. If we
want to retrieve the value of the parameter we execute

ros2 param get talker use_sim_time

end we get

Boolean value is: False

These interactions from the command line reveal that parameters are local to nodes and not
global. Both talker and listener have a parameter named use sim time, but each node
maintains its own copy, which is not shared with the other. This is why we must specify
the name of the node when using commands such as describe, get, and others we will
encounter later.

Having established the basics of interacting with parameters from the command line, we
now turn our attention to how parameters can be accessed programmatically from within a
node. Listing 5.2 shows how a node can declare a parameter and retrieve its value.

5.4. PARAMETERS 161

Listing 5.2: Parameter Client

1 #include <r c l cpp / rc l cpp . hpp>
2
3 int main (int argc , char ∗∗ argv) {
4
5 rc l cpp : : i n i t (argc , argv) ;
6 r c l cpp : : Node : : SharedPtr nodeh ;
7 nodeh = rc l cpp : : Node : : make shared (” paramcl i ent ”) ;
8 // dec l a r e a parameter o f type s t r i n g c a l l e d sensorpor t
9 nodeh−>dec lare parameter<std : : s t r i ng >(” s en so rpo r t ” , ”/dev/ tty0 ”) ;

10 std : : s t r i n g port ;
11 while (r c l cpp : : ok ()) {
12 // r e t r i e v e the parameter as a s t r i n g
13 port = nodeh−>get parameter (” s en so rpo r t ”) . ge t paramete r va lue () .
14 get<std : : s t r i ng >() ;
15 RCLCPP INFO(nodeh−>g e t l o g g e r () , ”Parameter va lue : %s ” , port . c s t r ()) ;
16 r c l cpp : : spin some (nodeh) ;
17 }
18
19 }

Parameters have a name (a string) and are typed, and the type must be specified when the
parameter is declared (a string in this case, but other types can be used, too). Importantly,
when the parameter is declared, a default value must be specified for when the user does not
specify a value for the parameter. In this case, we declare a parameter called sensorport

of type string and assign /dev/tty0 as the default value. In the main loop, we retrieve the
parameter using its name, get its value, and convert it to the correct type (string) before
printing it to the screen. If you run this node, which is part of the examples package, it will
continuously print to the screen the default value that was hard-coded in the source:

[INFO] [1674454638.194856406] [paramclient]: Parameter value: /dev/tty0

Obviously, greater flexibility is achieved if the parameter is changed from outside. The
first option is to specify the value of the parameter when the node is started using ros2

run. This can be done as follows, where we use the option -p, followed by the name of the
parameter and its value:

ros2 run examples paramclient --ros-args -p "sensorport":="/dev/USB0"

In this case the output will be

[INFO] [1674454718.161467518] [paramclient]: Parameter value: /dev/USB0

where we can see that now the parameter specified when starting the executable has super-
seded the default value. Another option is to change the value of a parameter on the fly,
after the node has already started. This can be done using the command ros2 param set.
To set the value of the parameter sensorport we use the following syntax

162 CHAPTER 5. ADDITIONAL ROS CONCEPTS

ros2 param set paramclient sensorport /dev/USB1

where we specify the node name, the parameter name, and the new value. This command
must be given after the node is already running; otherwise, it will return an error message.
In this case, if we first start paramclient and then execute this command, we will see that
the value of the parameter changes at runtime. The final way to change a parameter at start
time is by including its desired value in the launch file, as shown in Listing 5.3.

Listing 5.3: Launch file with parameters

1 <launch>
2 <node pkg=” examples ”
3 exec=” paramcl i ent ”
4 name=”param”>
5 <param name=” senso rpo r t ” value=”/dev/USB0” />
6 </node>
7 </ launch>

Parameters can also be changed by a node using the function set parameter value that
mirrors the function get parameter value we saw in Listing 5.2.

The methods described thus far become cumbersome when a node depends on multiple
parameters. In such cases, it is more practical to group all parameters in a text file that
can be easily edited and then pass the parameters when the node is run. To this end, ROS
provides the command dump. To show all of the parameters of a node in YAML format, one
can run the following command:

ros2 param dump <nodename>

which will print to the screen the parameters of the named node. Importantly, these param-
eters can be saved to a file using redirection, then edited and reused at a later time. To load
the parameters saved in a YAML file into a node, there are two methods. The first is to use
the command load as follows:

ros2 param load <nodename> <parameterfile>

where parameterfile is the name of a YAML file with the parameters and values (either
previously generated with dump and possibly edited, or created from scratch). To use this
method, the node must already be up and running. Another method consists of passing
the name of the parameter file when the node is started. For example, assuming that
parameters.yaml is the name of the file with the parameters we want to pass to the node
listener in the package talklisten, we can start it as follows:

ros2 run talklisten listener --ros-args --params-file parameters.yaml

The advantage is that, in this case, the node is started and the parameters are loaded with
a single command. Finally, it is also possible to specify the name of the parameter file in
the launch file. This is illustrated in listing 5.4.

5.4. PARAMETERS 163

Listing 5.4: Launch file with parameters in YAML file

1 <launch>
2 <node pkg=” examples ”
3 exec=” paramcl i ent ”>
4 <param from=” $(f ind−pkg−share examples)/ launch / parameters . yaml”/>
5 </node>
6 </ launch>

Note that in this case we use the macro $(find-pkg-share examples) to specify the
relative location of the parameters file rather than the absolute path. With this setup, the
parameters.yaml file is found in the launch folder of the examples package. These files
are often placed there, or, perhaps more commonly, in a separate dedicated folder typically
called config.

5.4.1 YAML configuration files for ROS

YAML files can be generated with the dump command or created from scratch using a text
editor. Listing 5.5 shows the content of parameters.yaml, which can be used as a template.

Listing 5.5: YAML configuration file

1 / paramc l i en t :
2 r o s p a r a m e t e r s :
3 s e n s o r p o r t : /dev/ tty5
4 u s e s i m t i m e : f a l s e

In ROS, YAML parameter files follow a specific structure. The first entry is the name of the
node receiving the parameters, followed by ros parameters. Then, according to the YAML
format, a sequence of key–value pairs follows. It is important to remember that the YAML
file format requires indentation to separate different sections, and this requirement must be
strictly followed. Notably, a single file can specify parameters for multiple nodes, allowing
the same configuration file to be passed to each node. To achieve this, simply list the name
of each node, followed by ros parameters and then the parameters for that node.

5.4.2 Runtime parameters changes

In the previous discussion, we have seen that a parameter can be set when the node starts,
but it can also be changed while the node is running by using ros2 param set. This raises
the question of how a node can be notified on the fly that a parameter has been changed
during its execution, and how it can appropriately react to it. Parameter changes can be
intercepted by a node by subscribing to a topic called parameter events, which is created
every time a ROS executable starts. In fact, we have already seen this topic when practicing
the command ros2 topic list in Section 2.5. When a parameter is changed, a message
is published to parameter events, and nodes subscribed to the topic will receive a message
with details about the change. ros2 topic info shows that parameter change has type
rcl interfaces/msg/ParameterEvent, and ros2 interface show displays the following
structure:

164 CHAPTER 5. ADDITIONAL ROS CONCEPTS

The time stamp when this parameter event occurred.

builtin_interfaces/Time stamp

int32 sec

uint32 nanosec

Fully qualified ROS path to node.

string node

New parameters that have been set for this node.

Parameter[] new_parameters

string name

ParameterValue value

uint8 type

bool bool_value

int64 integer_value

float64 double_value

string string_value

byte[] byte_array_value

bool[] bool_array_value

int64[] integer_array_value

float64[] double_array_value

string[] string_array_value

Parameters that have been changed during this event.

Parameter[] changed_parameters

string name

ParameterValue value

uint8 type

bool bool_value

int64 integer_value

float64 double_value

string string_value

byte[] byte_array_value

bool[] bool_array_value

int64[] integer_array_value

float64[] double_array_value

string[] string_array_value

Parameters that have been deleted during this event.

Parameter[] deleted_parameters

string name

ParameterValue value

uint8 type

bool bool_value

int64 integer_value

float64 double_value

5.4. PARAMETERS 165

string string_value

byte[] byte_array_value

bool[] bool_array_value

int64[] integer_array_value

float64[] double_array_value

string[] string_array_value

The interpretation is straightforward. An event has a timestamp stamp and is associated with
a node named node. In addition, an event can include new parameters, changed parameters,
and deleted parameters, each of which is stored in the field with the corresponding name and
is an array of elements of type rcl interfaces/msg/Parameter. A parameter is composed
of a string name and a value of type ParameterValue. A key field in this message is
type, which indicates the type of the parameter (recall that all parameters are typed). The
value stored in type indicates which field should be read. Values for type are defined in
ParameterType, which is as follows:

These types correspond to the value that is set in the ParameterValue message.

Default value, which implies this is not a valid parameter.

uint8 PARAMETER_NOT_SET=0

uint8 PARAMETER_BOOL=1

uint8 PARAMETER_INTEGER=2

uint8 PARAMETER_DOUBLE=3

uint8 PARAMETER_STRING=4

uint8 PARAMETER_BYTE_ARRAY=5

uint8 PARAMETER_BOOL_ARRAY=6

uint8 PARAMETER_INTEGER_ARRAY=7

uint8 PARAMETER_DOUBLE_ARRAY=8

uint8 PARAMETER_STRING_ARRAY=9

Therefore, based on the integer value assigned to type, we know which field in an in-
stance of ParameterValue should be read. For example, if type is 2, the value is stored in
integer value, and so on. With this information, we can now write a new node that de-
clares a parameter order of type integer and subscribes to parameter event to take action
when the parameter is changed (in this case, for simplicity, we simply print a message to the
screen). The complete program is given in Listing 5.6.

Listing 5.6: Node reacting to parameter events

1 #include <r c l cpp / rc l cpp . hpp>
2 #include < r c l i n t e r f a c e s /msg/ parameter event . hpp>
3 #include < r c l i n t e r f a c e s /msg/ parameter type . hpp>
4
5 rc l cpp : : Node : : SharedPtr nodeh ;
6
7 // c a l l b a c k func t i on c a l l e d when a parameter event i s r e c e i v ed
8 void processEvent (const r c l i n t e r f a c e s : : msg : : ParameterEvent : : SharedPtr msg) {
9 i f (msg−>node == ”/paramevent”) { // i s t h i s event f o r the curren t node?

166 CHAPTER 5. ADDITIONAL ROS CONCEPTS

10 i f (msg−>changed parameters . s i z e () > 0) { // any parameter changed?
11 // scan a l l changed parameters
12 for (unsigned int i = 0 ; i < msg−>changed parameters . s i z e () ; i++)
13 i f (msg−>changed parameters [i] . name == ” order ”){ // changed order ?
14 i f (msg−>changed parameters [i] . va lue . type == // i s i t an i n t e g e r ?
15 r c l i n t e r f a c e s : : msg : : ParameterType : :PARAMETER INTEGER) {
16 int order ; // ge t i t
17 order = nodeh−>get parameter (” order ”) . ge t paramete r va lue () .
18 get<int >() ;
19 // p r i n t i t
20 RCLCPP INFO(nodeh−>g e t l o g g e r () , ”Parameter order has changed”) ;
21 RCLCPP INFO(nodeh−>g e t l o g g e r () , ”New va lue va lue : %d” , order) ;
22 }
23 }
24 }
25 }
26 }
27
28 int main (int argc , char ∗∗ argv) {
29
30 rc l cpp : : i n i t (argc , argv) ;
31 nodeh = rc l cpp : : Node : : make shared (”paramevent”) ;
32 // s u b s c r i b e r to be n o t i f i e d o f changes to parameters
33 auto sub = nodeh−>c r e a t e s u b s c r i p t i o n <r c l i n t e r f a c e s : : msg : : ParameterEvent>
34 (” parameter events ” ,10 ,& processEvent) ;
35 // dec l a r e a parameter o f type i n t e g e r c a l l e d order
36 nodeh−>dec lare parameter<int>(” order ” , 5) ;
37 int order ;
38 order = nodeh−>get parameter (” order ”) . ge t paramete r va lue () . get<int >() ;
39 RCLCPP INFO(nodeh−>g e t l o g g e r () , ” I n i t i a l va lue : %d” , order) ;
40 RCLCPP INFO(nodeh−>g e t l o g g e r () , ”Waiting . . . ”) ;
41 // j u s t wai t f o r even t s to happen . . .
42 rc l cpp : : sp in (nodeh) ;
43
44
45 }

The main function subscribes to the topic parameter events, declares an integer pa-
rameter called order, prints the initial default value, and then cedes control to the non-
returning spin function that handles messages. The core logic is found in the callback
function processEvent. For each received parameter event, the function first checks if the
event refers to the current node by comparing the names. If this is the case, it scans all
changed parameters, and if it determines that the parameter order has been modified, it
retrieves its value as an integer and prints it to the screen. This example also demon-
strates something new: how we can access symbolic constants declared in messages of type
rcl interfaces/msg/ParameterType. It is also worthwhile to observe that this node de-
pends on the package rcl interfaces, and therefore the manifest file and CMakeLists.txt

must be updated accordingly (see files in the GitHub repository for details). If we run the
node paramevent (part of the examples package) and then from a separate shell we give the
command

5.5. CALLING SERVICES 167

ros2 param set paramevent order 11

the output will be

[INFO] [1674956136.149450904] [paramevent]: Initial value: 5

[INFO] [1674956136.149729008] [paramevent]: Waiting...

[INFO] [1674956142.647169868] [paramevent]: Parameter order has changed

[INFO] [1674956142.647300391] [paramevent]: New value value: 11

thus showing that the node has correctly identified at run time that the value of the parameter
order associated with itself has been altered by an entity outside the node.

5.4.3 The parameter use sim time

As formerly stated, all nodes in ROS are associated with a parameter called use sim time

that can be set or retrieved as discussed above. use sim time is a boolean parameter telling
ROS whether it should retrieve the time from the system clock or from a special topic called
/clock. This latter option is meaningful when a node is interacting with a simulator (e.g.,
Gazebo, discussed later in this chapter) rather than with the real world. In this case, setting
use sim time to true tells the node to retrieve the time (clock) from the simulator and not
from the system clock. This is useful when the robot must reason about time, for example,
when retrieving transformations from the past using tf2. Note that when a node is started,
use sim time is set by default to false, so one should set use sim time to true when an
executable running in simulation is started.

5.5 Calling Services

As we anticipated in Chapter 2, in addition to topics, ROS provides services, i.e., a method
to implement procedure calls between nodes. In this paradigm, a server node offers a
service, and a client node uses the service. In essence, services provide a mechanism to
perform remote procedure calls between nodes, where input parameters and results are
exchanged through messages. It is also worth noting that although this approach resembles
the client/server paradigm, nodes can act as both clients and servers in the same application.
As with topics and messages, in addition to using standard services provided by ROS, it is
possible to create new services, although this will not be covered in this book. We saw an
example of services in action in Section 2.10, where we used ros2 service call to call a
service from the command line. In this section, we now show how we can write nodes that
can call services. To this end, we use a Gazebo simulated environment as we did in Section
4.12:

ros2 launch gazeboenvs tb4_simulation.launch.py

This will start Gazebo and spawn a simulated TurtleBot2 robot equipped, among other

2See https://www.turtlebot.com/ for more information about this platform.

https://www.turtlebot.com/

168 CHAPTER 5. ADDITIONAL ROS CONCEPTS

things, with a range scanner that can be used to build a map of the environment (more details
about sensors will be provided in Chapter 7). Most importantly, the launch command will
also start various nodes, including a slam toolbox node that builds a map and publishes it
on the topic map, and a node map saver that offers a service save map which can save the
map to a file. This information about topics and services can be obtained using the various
ros2 commands we previously discussed and that should be familiar to the reader by now.
ros2 service list -t shows that the type of save map is nav2 msgs/srv/SaveMap and
with

ros2 interface show nav2_msgs/srv/SaveMap

we see that its structure is

URL of map resource

Can be an absolute path to a file: file:///path/to/maps/floor1.yaml

Or, relative to a ROS package: package://my_ros_package/maps/floor2.yaml

string map_topic

string map_url

Constants for image_format. Supported formats: pgm, png, bmp

string image_format

Map modes: trinary, scale or raw

string map_mode

Thresholds. Values in range of [0.0 .. 1.0]

float32 free_thresh

float32 occupied_thresh

bool result

The service accepts as parameters four strings specifying the name of the topic where
the map is published (map topic), the name of the file where it should be saved (map url),
the image format (image format), and the type (mode) of the map (map mode). The last
two parameters, of type float, specify the thresholds used to classify a map cell as free or
occupied (mapping will be discussed in detail in Chapter 9). The service returns a boolean
result indicating whether the service succeeded or not, i.e., whether the map was saved. In
Listing 5.7, we show how a service call is performed from inside a node rather than from the
command line.

Listing 5.7: Service Client

1 #include <r c l cpp / rc l cpp . hpp>
2 #include <nav2 msgs/ srv /save map . hpp>
3
4 int main (int argc , char ∗∗ argv) {
5
6 rc l cpp : : i n i t (argc , argv) ;
7 r c l cpp : : Node : : SharedPtr nodeh ;
8 nodeh = rc l cpp : : Node : : make shared (” s e r v i c e c a l l ”) ; // c rea t e node
9

10 // c rea t e c l i e n t f o r s e r v i c e

5.5. CALLING SERVICES 169

11 rc l cpp : : Cl ient<nav2 msgs : : s rv : : SaveMap> : : SharedPtr c l i e n t =
12 nodeh−>c r e a t e c l i e n t <nav2 msgs : : s rv : : SaveMap>(”/ map saver /save map”) ;
13
14 // wai t i n d e f i n i t e l y f o r s e r v i c e to become a v a i l a b l e
15 while (! c l i e n t −>w a i t f o r s e r v i c e ())
16 RCLCPP INFO(nodeh−>g e t l o g g e r () , ”Waiting f o r s e r v i c e to be a v a i l a b l e ”) ;
17
18 // c rea t e a r e que s t o b j e c t f o r the SetCameraInfo s e r v i c e
19 auto r eque s t = std : : make shared<nav2 msgs : : s rv : : SaveMap : : Request >() ;
20 request−>map topic = ”/map” ;
21 request−>map url = ” . /mymap” ;
22 request−>image format = ”png” ;
23 request−>map mode = ” t r i n a r y ” ;
24 request−>f r e e t h r e s h = 0 .2 f ;
25 request−>occup i ed thr e sh = 0 .8 f ;
26 // send r e que s t to s e r v e r
27 auto re sponse = c l i e n t −>a sync s end reque s t (r eques t) ;
28 i f (r c l cpp : : s p i n u n t i l f u t u r e c o m p l e t e (nodeh , re sponse) ==
29 rc l cpp : : FutureReturnCode : : SUCCESS) { // wai ted and got succe s s ?
30 // p r i n t r e s u l t
31 RCLCPP INFO(nodeh−>g e t l o g g e r () , ” Success ? %d” ,
32 response . get ()−> r e s u l t) ;
33 }
34 else // Error :
35 RCLCPP ERROR(nodeh−>g e t l o g g e r () ,
36 ” Error c a l l i n g s e r v i c e save map”) ;
37
38 r c l cpp : : shutdown () ;
39 return 0 ;
40
41 }

The code starts with the usual node initialization. Next, to call a service from within
the node, we create an instance of the class rclcpp::Client, where, through templates, we
specify the type of service (nav2 msgs::srv::SaveMap) as well as the name of the service
we want to call (/map saver/save map). In this case, we use the fully qualified name of
the service and not a relative name, because we want our code to work correctly even if its
namespace is remapped at startup. Note that create client is a member function of the
class rclcpp::Node. Next, before calling the service, we have to ensure that the server node
is ready to provide the service. This is achieved with the wait for service function of the
class rclcpp::Client. In this example, since we do not pass any parameters, the client
waits indefinitely; however, it is also possible to pass a timeout to abort the wait after a
specified deadline. After having ascertained that the server is ready, we create an instance of
the request message for nav2 msgs::srv::SaveMap, where we set the parameters described
earlier (topic name, file name, etc.). At this point, we can send the request to the server
by calling the method async send request of the client object. To wait for the response
message, we use a new version of the spin function, namely spin until future complete,
which takes two parameters3, namely a node and a so-called future. This function blocks
until it receives a response from the server. The response from the server is stored in the

3The function may actually accept a timeout as well, but we do not discuss it here.

170 CHAPTER 5. ADDITIONAL ROS CONCEPTS

response object, and the function returns a code indicating success or failure of the spin.
Then, the client accesses the fields in the response object and prints the result to the screen.

5.6 OOP in ROS

In all examples seen so far, we created instances of the class rclcpp::Node, used some of its
methods to create publishers and subscribers, and then spun when needed. This approach
is legitimate and viable for small applications, but it is not the recommended approach for
larger software systems. In particular, we have seen that having certain functionalities such
as callback functions external to the node required storing some data globally, with all the
associated drawbacks (see, e.g., the examples in Chapter 3). Additionally, some of the logic
governing how nodes work was not encapsulated within the node itself and in our examples
it was always placed in the main function or in an external callback function.

These issues can be overcome by embracing object-oriented programming (OOP) in ROS.
This is done by creating nodes as instances of newly defined classes inheriting from the class
rclcpp::Node. This new class encapsulates all the data and processing naturally associated
with a node. In the following, we first revisit the simplest examples from Chapter 3 and
then introduce some new features. Listing 5.8 shows how the example in Listing 3.2 can be
rewritten using OOP.

Listing 5.8: Talker using classes

1 #include <r c l cpp / rc l cpp . hpp> // needed f o r ba s i c f unc t i on s
2 #include <std msgs /msg/ s t r i n g . hpp> // needed because we pu b l i s h s t r i n g s
3
4 class Talker : public r c l cpp : : Node {
5 public :
6 Talker () : Node (” ta lke roop ”) {
7 // c rea t e p u b l i s h e r
8 pub = this−>c r e a t e p u b l i s h e r <std msgs : : msg : : Str ing >(”message” , 1) ;
9 // c rea t e ra t e at 1Hz

10 ra t e = std : : make shared<r c l cpp : : Rate >(1) ;
11 }
12
13 void run () {
14 std msgs : : msg : : S t r ing s t r i n g t o s e n d ;
15 int counter = 0 ;
16 while ((counter++ < 100) && (rc l cpp : : ok ())) {
17 RCLCPP INFO(this−>g e t l o g g e r () , ” Sending message #%d” , counter) ;
18 // prepare message to send
19 s t r i n g t o s e n d . data = ”Message # ” + std : : t o s t r i n g (counter) ;
20 pub−>pub l i sh (s t r i n g t o s e n d) ; // pu b l i s h message
21 rate−>s l e e p () ; // wai t
22 }
23 }
24
25 private :
26 r c l cpp : : Publ i sher<std msgs : : msg : : Str ing > : : SharedPtr pub ;
27 r c l cpp : : Rate : : SharedPtr ra t e ;
28 } ;

5.6. OOP IN ROS 171

29
30 int main (int argc , char ∗∗ argv) {
31
32 rc l cpp : : i n i t (argc , argv) ; // i n i t i a l i z e the ROS subsystem
33 Talker node ; // crea t e node
34 node . run () ;
35 r c l cpp : : shutdown () ; // shutdown ROS
36 return 0 ;
37 }

We declare a new class Talker that inherits from rclcpp::Node, and inside its construc-
tor we create the resources needed by the node, namely the publisher and the Rate object.
These are private data members and therefore not accessible from the outside. The main
logic of the node (iterating 100 times and publishing corresponding messages to the topic) is
now included in a public run method inside Talker. In the main function, we simply create
an instance4 of Talker and call its run method.

Before moving to the listener node, it is worthwhile observing that Talker is a producer,
i.e., a node that generates data (strings) to be consumed by other nodes without receiving
its data from other nodes through topics. This paradigm is typical of nodes interfacing with
sensors, whereby the node polls the sensor at regular intervals. For this reason, as we will see
later, it makes more sense to declare a new callback function that will be called at regular
intervals by a pre-initialized timer. Such callback function will be dealt with by the spin

function, like the callback functions associated with incoming messages. It follows that the
approach we presented in listing 5.8, where we embedded the logic in a function explicitly
called, is not very common, albeit correct.

In listing 5.9 we instead present the OOP version of the listener node formerly presented in
listing 3.3. Like in the previous example, we declare a class that inherits from rclcpp::Node,
and inside its constructor we create the subscriber. The main difference with listing 3.3 is that
the callback function is now a member function, and so there is no need to declare a global
variable to have a reference to the node and retrieve its logger. This approach eliminates the
need for most global variables we saw in earlier examples. In the main function we observe
that the spin function receives, as usual, a pointer to an instance of a node, and in this case
the instance is generated on the fly when the function is called.

Listing 5.9: Listener using classes

1 #include <r c l cpp / rc l cpp . hpp> // needed f o r ba s i c f unc t i on s
2 #include <std msgs /msg/ s t r i n g . hpp> // needed because we r e c e i v e s t r i n g s
3
4
5 class L i s t e n e r : public r c l cpp : : Node {
6 public :
7 L i s t e n e r () : Node (” l i s t e n e r o o p ”) {
8 sub = this−>c r e a t e s u b s c r i p t i o n <std msgs : : msg : : Str ing>
9 (”message” ,10 , std : : bind(& L i s t e n e r : : ca l lback , this , s td : : p l a c e h o l d e r s : : 1)) ;

4The reader may observe that in this case we do not use a pointer, but rather create an instance of the
class. This is due to some C++ technicalities and makes the code shorter when it comes to calling run. As
explained, in the future we will most often use callbacks, so this way of directly calling methods will not be
frequently used.

172 CHAPTER 5. ADDITIONAL ROS CONCEPTS

10 }
11
12 private :
13 // c a l l b a c k func t i on c a l l e d every time a message i s r e c e i v ed from the
14 // t op i c ”message”
15 void c a l l b a c k (const std msgs : : msg : : S t r ing : : SharedPtr msg) {
16 // process the message : j u s t p r i n t i t to the screen
17 RCLCPP INFO(this−>g e t l o g g e r () , ” Received : %s ” ,msg−>data . c s t r ()) ;
18 }
19
20 rc l cpp : : Subscr ipt ion<std msgs : : msg : : Str ing > : : SharedPtr sub ;
21
22 } ;
23
24 int main (int argc , char ∗∗ argv) {
25
26 rc l cpp : : i n i t (argc , argv) ; // i n i t i a l i z e ROS subsystem
27 rc l cpp : : sp in (std : : make shared<Li s t ener > ()) ; // crea t e and sp in
28 rc l cpp : : shutdown () ;
29 return 0 ;
30
31 }

We conclude this section presenting an alternative version of the talker using a callback
function triggered by a timer. The source code is provided in listing 5.10.

Listing 5.10: Talker with timer

1 #include <chrono>
2 #include <r c l cpp / rc l cpp . hpp> // needed f o r ba s i c f unc t i on s
3 #include <std msgs /msg/ s t r i n g . hpp> // needed because we pu b l i s h s t r i n g s
4
5
6 using namespace std : : c h r o n o l i t e r a l s ;
7
8 class TalkerTimer : public r c l cpp : : Node {
9 public :

10 TalkerTimer () : Node (” ta lke roopt imer ”) {
11 // c rea t e p u b l i s h e r
12 pub = this−>c r e a t e p u b l i s h e r <std msgs : : msg : : Str ing >(”message” , 1) ;
13 // c rea t e t imer
14 t imer = this−>c r e a t e w a l l t i m e r (1 s , s td : : bind(&TalkerTimer : : ca l lback , this)) ;
15 counter = 0 ;
16 }
17
18 private :
19 void c a l l b a c k () {
20 std msgs : : msg : : S t r ing s t r i n g t o s e n d ;
21 RCLCPP INFO(this−>g e t l o g g e r () , ” Sending message #%d” , counter) ;
22 s t r i n g t o s e n d . data = ”Message # ” + std : : t o s t r i n g (counter) ;
23 pub−>pub l i sh (s t r i n g t o s e n d) ; // pu b l i s h message
24 counter++;
25 }
26
27 int counter ;

5.7. RVIZ2 173

28 rc l cpp : : Publ i sher<std msgs : : msg : : Str ing > : : SharedPtr pub ;
29 r c l cpp : : TimerBase : : SharedPtr t imer ;
30 } ;
31
32 int main (int argc , char ∗∗ argv) {
33
34 rc l cpp : : i n i t (argc , argv) ; // i n i t i a l i z e the ROS subsystem
35 rc l cpp : : sp in (std : : make shared<TalkerTimer > ()) ;
36 r c l cpp : : shutdown () ; // shutdown ROS
37 return 0 ;
38 }

The main feature in this alternative version of the talker is the timer object, initialized
inside the constructor using the member function create wall timer of rclcpp::Node.
This function takes two parameters: the length of the interval between trigger events (1
second in this case), and a pointer to a callback function to be called every time the timer is
triggered. In this case, as with the listener in listing 5.9, the callback function is a member
function of the class TalkerTimer. The main function now resembles the one we saw in listing
5.9, where an instance of the class is created on the fly and passed to the rclcpp::spin

function. This timer-triggered approach is useful when a producer node needs to poll a
resource at a regular frequency.

5.7 rviz2

rviz2 is an extremely useful tool for debugging and testing ROS applications. It is the ROS2
port of rviz, a visualization tool capable of displaying a wide variety of data exchanged
through topics (the name rviz stands for ROS visualization).

rviz2 provides real-time visualization of sensor data, including laser scans, point clouds,
and camera feeds, and can also display robot models and coordinate frames using the tf2

library. Additionally, rviz2 can visualize outputs from various algorithms such as planning
and localization, as long as the data is published through topics.

To start rviz2, run the command ros2 run rviz2 rviz2 or simply rviz2. Once
launched, a graphical user interface appears (see Figure 5.1), allowing users to add dis-
plays for graphical visualization of sensor data and related information. Moreover, rviz2
can be used to send messages or call services. For a complete overview of its features, the
reader is referred to the online documentation.

Alternatively, rviz2 can accept a configuration file (with extension .rviz) as a parame-
ter, which specifies the panels to open automatically and the topics to display. Such config-
uration files are often provided by ROS packages. For example, the nav2 bringup package
(discussed in Chapter 6) includes its own rviz configuration file, which can be passed to
rviz2 as follows:

ros2 run rviz2 rviz2

-d /opt/ros/jazzy/share/nav2_bringup/rviz/nav2_default_view.rviz

In this case rviz2 starts displaying something similar to what is shown in figure 5.2,

174 CHAPTER 5. ADDITIONAL ROS CONCEPTS

Figure 5.1: rviz2 starting window.

where the tool shows different topics and panels.

5.8 ros2 bag

ros2 bag is a tool used to record and replay messages exchanged through ROS topics. This
functionality is particularly useful for data collection, testing, and debugging. Recorded data
is saved into files known as ROS bags, which can be played back later. To create a bag file,
the command ros2 bag record <topic> is used, where <topic> is a list of one or more
topics to be recorded. For example:

ros2 bag record /turtle1/cmd_vel /turtle1/pose

creates a bag file that stores messages transmitted through the topics /turtle1/cmd vel and
/turtle1/pose. Alternatively, the command ros2 bag record -a can be used to record
all active topics. ros2 bag creates a directory that contains the recorded data alongside
a YAML file that describes the structure and metadata of the bag. By default, the bag
is stored in a folder named rosbag2 YYYY MM DD-HH MM SS, where the suffix corresponds to
the timestamp when recording begins. To stop recording, simply press CTRL+C. To specify a
custom name for the output folder, the -o option can be used, as in:

ros2 bag record -o my_file_name /turtle1/cmd_vel /turtle1/pose

The command record accepts a large number of options, including duration, specific

5.9. LAUNCH FILES IN PYTHON 175

Figure 5.2: rviz2 starting window when run with a configuration file specifying the panels
and topics to display.

start time, topic remapping, compression, and more. To replay a recorded bag, use the
command ros2 bag play <bagfile> where <bagfile> is a list of one or more previously
recorded bag filenames. Like record, the play command also supports various options that
modify its behavior. Among these, a particularly important one is the --clock flag. If
ros2 bag play is started without --clock (which is the default), the bag data is played
using the system clock, ignoring the original message timing. If instead --clock is provided,
then ros2 bag additionally publishes a /clock topic that replicates the timestamps from
the original recording. In this case, messages are replayed according to their original timing,
and all subscribing nodes must have the parameter use sim time set to true (see also
Section 5.4.3). Both playback modes are useful depending on the use case. However, it is
crucial to ensure consistency. If --clock is enabled, all nodes subscribing to the replayed
topics must also use simulated time, otherwise, the results may be unpredictable.

To inspect the contents of a bag file, use ros2 bag info <bagfile> to retrieve metadata
about the topics and message types stored in the bag. Note that ros2 bag can generate
large files quickly, especially when recording high-frequency or high-bandwidth topics. Care
should therefore be taken during extended or extensive recording sessions.

5.9 Launch files in Python

In Section 2.13 we introduced XML launch files. The XML format is simple and may
suffice for many basic applications. However, as the complexity of a system increases, it may
become necessary to introduce more sophisticated flow control when launching a set of nodes.
For example, it may be desirable to launch different nodes depending on user input, system

176 CHAPTER 5. ADDITIONAL ROS CONCEPTS

configuration, hardware availability, or other runtime conditions. In such cases, XML launch
files may no longer be adequate, and it is often more convenient to write the launch logic in
Python. A Python launch file is a standard Python script that uses a set of ROS-specific
modules to define and start nodes and processes. These files have the extension .launch.py

and typically rely on the launch and launch ros modules provided by ROS. As for launch
files written in XML, launch files written in Python shall be placed in a folder called launch.

The core of a Python launch file is a function named generate launch description,
which must return an instance of the LaunchDescription class. This object encapsulates
the list of nodes and actions that should be executed when the launch file is run. Listing 5.11
shows how to launch the nodes for one of the turtlesim examples we presented in Chapter 2
(compare with listing 2.3.)

Listing 5.11: Python launch file

1 from launch import LaunchDescr ipt ion
2 from l aunch ro s . a c t i o n s import Node
3
4 def g e n e r a t e l a u n c h d e s c r i p t i o n () :
5
6 return LaunchDescr ipt ion ([
7 Node (
8 package=’ t u r t l e s i m ’ ,
9 executab l e=’ tu r t l e s im node ’ ,

10 name=’ t u r t l e s i m ’
11) ,
12 Node (
13 package=’ t u r t l e s i m ’ ,
14 executab l e=’ t u r t l e t e l e o p k e y ’ ,
15 name=’ t e l e o p k e y ’ ,
16 p r e f i x =[’ gnome−t e rmina l −− ’]
17)
18])

As we can see, when the instance of LaunchDescription is created, we pass a list of
instances of the class Node, with one instance for node to be started. Note that we only
need to define the function generate launch description but it is not necessary to call
it because it will be called when the launch file is processed by ros2. To run a lunch file
written in Python we use exactly the same syntax used when starting launch files written in
XML:

ros2 launch examples talkerlistener.launch.py

Each feature previously described for launching nodes (such as remapping, setting param-
eters, and more) can be incorporated when creating instances of the Node class. For example,
listing 5.12 is equivalent to listing 5.4 and shows how a node can receive parameters from a
YAML file.

Listing 5.12: Python launch file with parameters from a YAML file

1 from launch import LaunchDescr ipt ion
2 from l aunch ro s . a c t i o n s import Node

5.9. LAUNCH FILES IN PYTHON 177

3 from launch . s u b s t i t u t i o n s import PathJo inSubst i tut ion
4 from ament index python . packages import g e t p a c k a g e s h a r e d i r e c t o r y
5
6 def g e n e r a t e l a u n c h d e s c r i p t i o n () :
7
8 pkg examples = g e t p a c k a g e s h a r e d i r e c t o r y (’ examples ’)
9 p a r a m s f i l e p a t h = PathJo inSubst i tut ion (

10 [pkg examples , ’ launch ’ , ’ parameters . yaml ’])
11
12 return LaunchDescr ipt ion ([
13 Node (
14 package=’ examples ’ ,
15 executab l e=’ paramcl i ent ’ ,
16 parameters =[p a r a m s f i l e p a t h]
17)
18])

For a comprehensive overview of these features and additional capabilities, the reader is
referred to the official documentation of the launch and launch ros libraries.

178 CHAPTER 5. ADDITIONAL ROS CONCEPTS

Chapter 6

Planning

6.1 Introduction

As pointed out in Steve LaValle’s book Planning Algorithms [27], the terms planning and
problem solving have often been used interchangeably, and the distinction between the two
is somewhat blurry. Moreover, these terms may mean different things to different people.
Informally speaking, planning refers to the task of selecting a sequence of actions to achieve a
given goal. Although the goal is often simply reaching a certain place, its abstract formulation
allows, in general, to pursue much more complex objectives. Examples include finding an
object, exploring an area, or tracking a moving intruder, just to name a few. We will
formalize this concept more precisely later, when specific planning problems are defined and
addressed. Throughout this chapter, we focus exclusively on planning problems in discrete
time. At least three distinct types of planning problems can be identified.

Open Loop Planning (aka Deterministic Planning): Given a start state xs, a goal
state xg (or a set of goal states), and a state transition equation f(x,u), determine a sequence
of inputs u1,u2, . . . ,un to transform the start state into the goal state. This sequence of
actions is also called a plan. The following diagram, initially introduced in Section 1.3,
illustrates this type of planning problem:

xs = x0 x1 = f(x0,u1) x2 = f(x1,u2) . . . xn = f(xn−1,un) = xg
u1 u2 u3

In this chapter, consistently with the literature, we use symbols like xi to indicate states
and uj for inputs. These symbols are chosen solely to simplify the notation and should not
be interpreted as implying that states and inputs are scalar quantities. In fact, the state is
typically a vector or a more complex object (e.g., a transformation matrix representing the
position and orientation of a robot). Similarly, the input often includes multiple components,
such as the left and right angular velocities for a differential drive robot, or its translational
and rotational velocities. The function f can, for example, represent one of the kinematic
models introduced in Chapter 4. However, from a planning perspective, the specific nature
of this function is not critical, since the algorithms will be formulated in a more abstract
manner that is largely independent of such details. All that is required is a method to
compute the next state given a current state and an action. From the planning perspective,
this can be treated as a black box. This level of abstraction is advantageous, as it allows for

179

180 CHAPTER 6. PLANNING

broader applicability, as pointed out earlier.
In general, open loop planning is not an ideal approach because it relies on the assump-

tion that the next state is a deterministic function of the current state and input. This
assumption rarely holds true in practice due to the many disturbances affecting a robot’s
operation. Nevertheless, algorithms that solve the open loop planning problem remain use-
ful for two main reasons. First, they introduce foundational concepts that can be extended
to address more complex planning problems. Second, they may produce an ideal reference
trajectory (i.e., a sequence of states) that can be used as an input for a controller tasked
with trajectory tracking. It is important to note that open loop planning does not explic-
itly consider state observability (or estimation), i.e., the problem of determining the current
state, because the state can be deterministically computed from the initial state and the
sequence of inputs applied. In this idealized framework, if the start state xs is known and
the plan is given, sensors to determine the following states are not necessary, because these
states can be computed by repeated applications of the function f . As a result, perception
plays no role in open loop planning algorithms.

Feedback Planning: In feedback planning, one is given a start state xs and a goal state
xg, and the objective is to determine a feedback function (also called a policy) π : X → U
that specifies, for each state, the action to take. Feedback planning relies on two key as-
sumptions. First, the state is fully observable, that is, at any given moment, the current
state xt can be accurately determined, typically via a suitable sensor,. Importantly, this
sensor is assumed to be error-free, meaning it provides an exact measurement of the state.
Second, feedback planning accounts for uncertainty in the state transitions. After applying
an action u, the resulting next state is not deterministically predictable. If transitions were
deterministic, a simpler open-loop (deterministic) planner, as described earlier, would suf-
fice. For this reason, feedback planning uses a policy π that maps every possible state to
an action, allowing the robot to act appropriately regardless of how the state evolves. This
contrasts with deterministic planning, where the computed plan specifies actions only along
the predicted trajectory and provides no guidance for states outside that path.

Planning in Belief Spaces: In the most general case, one is still given xs and xg,
but the assumption of state observability no longer holds. That is to say, the current state
cannot be determined with certainty, but only probabilistically. This is for example the case
when the sensor is not error-free, like in most practical scenarios. Therefore, a feedback
function like π can no longer be defined because the state is not known. Indicating with
P(X) the set of all possible probability distributions (beliefs) over X, a planner in belief
spaces will produce a function β : P(X) → U associating to each belief the next action to
take. This formulation would lead us to study partially observable Markov decision processes
(POMDPs). However, we will not consider POMDPs in the following because their basic
solution is provably inefficient, and more efficient methods are beyond the scope of these
notes.

In all the methods described above there is an additional, common underlying hypothesis,
i.e., that the set of states is finite. This will be instrumental to develop the graph-based

6.2. DISCRETE MODELS 181

planning methods we introduce in the remainder of this chapter.

We conclude this introduction with a concrete example of the type of problems we are
interested in. Figure 6.1 shows a map of an environment where each pixel represents a square
patch of space in the physical world. White grid cells indicate free space, black grid cells
indicate non-traversable space (i.e., obstacles such as walls or pieces of furniture), and gray
grid cells mark areas that are unknown, i.e., neither known to be free nor occupied. In
some regions, the map may appear messy and imprecise, which is indeed the case because
it was autonomously built by a robot exploring the environment (mapping algorithms will
be described in Chapter 9.) Such a map can be stored as a matrix of numerical values, such
as unsigned integers stored on 8 bits, or floating-point numbers in the range [0, 1]. While
the map shown in the figure classifies each grid cell into three categories (free, occupied,
unknown), it is also possible, and very common, to use a variety of values. For example,
each cell may be assigned a value representing the probability that the cell is occupied. In
this case, assigning each cell a value between 0 and 1 is a natural and convenient choice.
With this representation, free cells have a value of 0, occupied cells have a value of 1, and
values in between represent the level of confidence that the cell is occupied. Alternatively,
a cell may store a cost to traverse, i.e., a measure of the effort required to cross the cell. In
this case, free cells would be assigned a value of 0, while cells closer to obstacles could have
higher values to reflect the fact that, although traversable, it may be preferable to choose a
different path to avoid proximity to obstacles. Two locations are marked on the map, namely
a starting location (labeled as S) and a goal location (labeled as G). In this case, we are not
specifying orientations, so S and G are simply represented as pairs of (x, y) values. A typical
problem we face in planning is computing a sequence of actions to move a robot from S to
G without colliding with any obstacles. In this chapter, we tackle some of the challenges
related to this task, although, as will be discussed later, a plan alone is not sufficient to
successfully move the robot from the start location to the goal location due to unavoidable
disturbances. The figure, however, provides a general motivation for the problems we study
later on.

6.2 Discrete Models

In the remainder of this chapter, we present various planning algorithms that share the
following features. A finite, discrete state space set is defined: S = {x1, x2, . . . , xn}. The
hypothesis of finiteness for the state space is essential to ensure the correctness of some of the
algorithms presented in the following. For example, the DFS algorithm discussed in Section
6.3.3 is not guaranteed to operate correctly if the state space has infinite cardinality. In the
following, we will exclusively consider problems with finite state spaces.

For each state xi ∈ S, a finite set of actions (or inputs) U(x) is defined. U(x) is the set
of actions that can be executed in state x. From these two sets, the set of all actions can be
defined as U =

⋃
x∈S U(x). From the above assumptions, it follows that U is also discrete

and finite. According to these definitions, different action sets may be available in different
states (or, stated differently, not all actions in U are available in all states in S). Throughout
the remainder of the discussion, when referring to the action to be executed in a state x ∈ S,
we tacitly assume that the action belongs to U(x), although, with slight abuse of notation,

182 CHAPTER 6. PLANNING

S

G

Figure 6.1: A typical planning problem for a mobile robot. Given a map of an environment
and a start (S) and goal (G) location, determine a sequence of actions to move the robot
from S to G.

we may write for brevity that the action belongs to U .

When studying planning algorithms, we will consider an important property, i.e., com-
pleteness. A planning algorithm is complete if it will always find a solution when one exists.
This property is relatively easy to check and enforce in the case of discrete algorithms, but
will be much more problematic when considering other types of planners, like sampling-based
motion planning algorithms.

Another important characterization is whether the search is uninformed or informed. In
the uninformed case, the structure of the problem is the only input available to the planner.
In essence, this is the structure of an underlying graph, as it will be defined in the following
(start, goal, edges, etc.). In informed search, the planner also has access to some heuristic
identifying more promising search directions to consider. Examples of both informed and
uninformed search will be given in the following. Since informed algorithms rely on more
information than uninformed ones, they are in general more efficient. A good heuristic
requires some domain-specific knowledge and is typically problem dependent. However, it
may not always be possible to determine a good heuristic to guide the search of an informed
algorithm, and therefore both types of approaches are used in practice.

6.2.1 On Abstractions

Most of the algorithms we discuss in this section start from the hypothesis that the state
space S and the set of actions available for each state U(x) are provided upfront. Where
do these sets come from, and is this hypothesis consistent with real-world problems? There

6.3. OPEN LOOP PLANNING 183

are indeed automatic ways to build these sets, but S and U are problem dependent, and
therefore algorithms or systems aiming at creating these two sets must be tailored to the
specific problem being tackled. For example, consider again the situation we discussed in
Figure 6.1, and assume the robot we are dealing with is a differential drive like the ones
displayed in Figure 4.21. If we discard the orientation of the robot, it is relatively simple
(albeit perhaps tedious) to write a program that pre-processes the map and builds a grid
of equally sized square cells covering the free space part of the environment, i.e., the white
region (in fact, grid cells do not even need to be of equal size or square, but this is a useful
simplification).

How big should each grid cell be? The answer is not unique and there is a tradeoff
between accuracy and size of the state space. For example, we could assume that each grid
cell is large enough that the robot can be fully contained in it. Each such grid cell could
then be one state in S and we would say that the robot is in state x ∈ S if it is entirely
inside cell x.1

For what concerns the set of actions U(x) available in state x, one has to consider the
motion capabilities of the robot. As we assumed to deal with a differential drive, it is
appropriate to hypothesize that from each grid cell it is possible to move to any neighboring
grid cell. Such an action may imply some maneuvering, e.g., turning in place, then moving
forward, then possibly turning in place again. But from a planning perspective, this is just
one action that, once successfully applied, will bring the robot from one grid cell (i.e., one
state) to another one.

For simplicity, we could assume that for each state/grid cell x we only consider actions
that move the robot to a neighboring cell, but if a library of appropriate maneuvers is
available, nothing prevents considering actions that, when applied, would cause the robot to
move between two far-away grid cells. In fact, such complex maneuvers could be obtained
by solving multiple smaller planning problems. However, this is a route we will not follow.
Either way, assuming that S and U are available to the planning algorithm is an assumption
that is not inconsistent from the implementation standpoint.

6.3 Open Loop Planning

Open loop planning builds upon the discrete model described above by adding a determin-
istic, time-invariant state transition function:

xt = f(xt−1, ut) xt ∈ S, ut ∈ U(xt−1). (6.1)

The meaning is the same as introduced in Eq. (1.7), i.e., if at time t− 1 we are in state xt−1

and apply input ut, then at time t we are in state xt. The requirement that ut ∈ U(xt−1)
can be enforced through the following definition:

K = {(x, u) ∈ S × U | x ∈ S ∧ u ∈ U(x)}. (6.2)

Then, the function f can be defined as f : K → S. In essence, K defines the set of all
legitimate state/input pairs.

1To keep things simple, let us for the time being ignore the fact that a robot could be sitting at the
boundary of two neighboring cells xi and xj , and therefore be neither in xi nor in xj .

184 CHAPTER 6. PLANNING

Given S and U , a directed graph G = (V,E) is defined as follows. The set of vertices
is V = S. The set of edges is defined by f as follows: if there exists u ∈ U(xi) such that
xj = f(xi, u), then we add a directed edge from xi to xj. Note that the set of edges is
in one-to-one correspondence with the set K, i.e., for each element (x, u) ∈ K there is an
edge in E. Stated differently, each edge is in one-to-one correspondence with an input, so a
path in the graph corresponds to a sequence of inputs applies to the corresponding traversed
edges. This graph is called the planning graph, and it is the essential concept for turning a
planning problem into a graph search problem. Throughout this chapter, unless otherwise
stated, planning graphs will be directed. This means that if there exists an action ui ∈ U(xj)
such that xk = f(xj, ui), it does not necessarily mean that there exists an action uz ∈ U(xk)
such that xj = f(xk, uz). Stated in graph terms, this means that (xj, xk) ∈ E does not
necessarily imply that (xk, xj) ∈ E.

Example 6.1. A classic problem considered when introducing planning problems is the grid
world. It consists of an environment divided into cells arranged in a grid (hence the name).
Figure 6.2 shows one such world. White grid cells are traversable, i.e., they represent a
location where the robot can be. For this reason, they are also called free cells. Black cells
are instead occluded, i.e., they model locations that the robot cannot traverse or occupy. Each
free (white) cell is associated with a state in the corresponding planning problem. No states
are associated with the occluded (black) cells. In the figure, x1, x2, x3, and x4 are four of the
33 states in the problem (the grid is 6×6, but the three occluded cells are not associated with
any state, therefore there are 33 states in total).

x1 x2

x3 x4

Figure 6.2: Grid world

Four actions are defined, namely up/down/left/right (indicated as U/D/L/R in the fol-
lowing). Not all actions are available in all states due to motion constraints. For example,
in state x1 we have U(x1) = {D,R} because it is possible to move down and right, but not
up or left. Similarly, U(x2) = {D,L,R} and U(x4) = {D,L, U}. In state x3, all actions are
available, and therefore U(x3) = {D,R,L, U}. The transition function corresponds to the
deterministic motion from one cell to another when an action is executed, e.g., f(x1, R) = x2,
f(x2, D) = x3, and so on. From this information, it is straightforward to build the associated
planning graph. The graph includes, for example, edges (x1, x2), (x2, x1), (x2, x3), etc. The
sequence of edges (x1, x2)(x2, x3)(x3, x4) forms a path in the planning graph and is associated
with the sequence of actions (plan) R,D,R. This means that to go from x1 to x4, a valid
plan is R,D,R.

6.3. OPEN LOOP PLANNING 185

Given a start state xs ∈ S and a goal state xg ∈ S, the objective is to determine a
plan (or sequence of actions) u1, u2, . . . , uk transforming the start state into the goal state,
as per the state transition function. Transforming the state means that if we start with
the state xs and we sequentially apply all actions in the plan, we end up in the goal state.
It should at this point be evident that this problem is related to graph search, since it is
equivalent to finding a path in the planning graph (G, V) induced by S,K and f . For sake
of completeness, we recall the definition of path in a graph.

Definition 6.1. Path Let G = (V,E) be a graph, and x1 ∈ V , xn ∈ V be two vertices. A
path p between x1 and xn is a sequence of vertices x1, x2, . . . , xn such that (xi, xi+1) ∈ E for
1 ≤ i ≤ n− 1.

In the following we will consider two different search problems. The first one is applicable
to any graph.

Directed Graph Search Problem: Given a directed graph G = (V,E), and
vertices xs ∈ V , xg ∈ V , determine a path from xs to xg or return failure if no
path can be found.

The above formulation does not merely ask whether a path between xs and xg exists (the
so-called feasibility problem), but rather requires returning the full path, if it exists. The
second graph search problem is instead defined over weighted graphs. A graph G = (V,E)
is weighted if there exists a cost function c : E → R associating a cost to every edge. Given
a weighted graph, the cost of a path in the graph is defined as follows.

Definition 6.2 (Cost of a path). Let G = (V,E) be a weighted graph, and let c : E → R be
its cost function. Let p = x1, x2, . . . , xn be a path in G. The cost of path p is the sum of the
costs of its edges, i.e.,

c(p) =
n−1∑
i=1

c(xi, xi+1). (6.3)

In the definition of the cost of a path, we have not imposed any restriction on the cost
function c, but in the following problem definition we require that the cost function is non-
negative.

Weighted Directed Graph Search Problem: Given a directed weighted
graph G = (V,E) with a non-negative cost function c : E → R≥0, and vertices
xs ∈ V , xg ∈ V , determine a path of minimum cost from xs to xg, or return
failure if no path can be found.

When comparing the directed graph search problem with the weighted version, it is
immediate to recognize that the latter is an optimization problem, whereas the former is
not. That is to say, in general, there exist multiple paths between xs and xg. The weighted
directed graph search problem asks to return one path of smallest cost, whereas the directed
graph search problem requires just returning any feasible path. As is usual in optimization
problems, the smallest cost is unique, but there generally exist multiple paths achieving the
minimal cost.

186 CHAPTER 6. PLANNING

6.3.1 Common Traits in Graph Search Algorithms

The four graph search algorithms we present in the following share a few commonalities,
which we describe before discussing each algorithm individually.2 First, all algorithms begin
by processing the starting vertex xs and iteratively analyze more and more vertices. Vertices
to be processed are stored in a data structure commonly referred to as the OPEN list or
queue. OPEN is an abstract data type supporting the operations insert and remove. In
some instances, OPEN will be prioritized using a key, in which case we rely on a rebalance
operation to update the structure if the key of one of its elements is modified. All algorithms
also rely on the concepts of expansion and visited vertices. A vertex is said to be expanded
when it is removed from OPEN and all of its neighbors are processed. The specific operations
executed during the expansion step vary depending on the algorithm. A vertex y is visited
when a vertex x is expanded and there exists an edge (x, y) ∈ E. To determine the neighbors
of a vertex x, we look at all edges (x, y). Due to the way edges are defined in the planning
graph, this is equivalent to evaluating the effects of the various actions available in U(x).
After a node is removed from the OPEN data structure, it is typically moved into a container
called CLOSED. From an implementation standpoint, CLOSED is often optional and its
primary role is analytical, helping us understand algorithmic behavior and verify properties
such as completeness. Nonetheless, to remain consistent with standard literature, we include
it in the pseudocode.

Since we are dealing with a generic graph, a vertex can be visited multiple times if it can be
reached from xs via different paths. The algorithms we present include mechanisms to handle
vertex re-visitation correctly and prevent infinite loops. To simplify the implementation, it
is useful to associate attributes with the vertices. One attribute common to all algorithms
is the parent attribute. The parent of a node x is null if no path from xs to x has been
discovered yet. This attribute is also called back pointer in the literature. Once a path p
from xs to x is found, the parent of x is a pointer to the vertex that precedes x on path p.
Consequently, if a path from xs to xg is found by the algorithm, it can be reconstructed by
recursively following the parent pointers backward from xg to xs. Some of the algorithms
we discuss are informed, and others are uninformed; however, all are complete. Finally, all
the algorithms we will present construct a spanning tree T rooted at xs and extending to
various vertices in the graph (the coverage depends on the specific algorithm). As we will
show, the spanning tree T encodes plans for moving from xs to any vertex included in the
tree. These plans can be recovered by navigating from any vertex in the tree back to the
root using the parent pointers.

6.3.2 Breadth First Search

Breadth First Search (BFS from now onwards) is a classic graph search algorithm to solve
the Directed Graph Search Problem. BFS can be used to implement a complete, uninformed
planning algorithm. Its defining feature is the policy followed to manage the OPEN list.
In particular, in BFS, OPEN is a first-in-first-out data structure. In addition to the parent
attribute, BFS associates a binary attribute visited to every vertex. This attribute is initially
set to false and changed to true after the vertex has been discovered for the first time.

2This description mostly follows the approach described in [29].

6.3. OPEN LOOP PLANNING 187

BFS searches the graph starting from xs and iteratively processes all vertices in G sorted by
their distance from xs, i.e., first all vertices one hop away from xs, then all vertices two hops
away, and so on. The search terminates when xg is visited, or it fails if no more vertices
can be explored and xg has not been reached. Since G may include cycles, the algorithm
uses the visited attribute to avoid revisiting the same vertices3. If a path between xs and
xg exists, BFS returns the path with the smallest number of edges between xs and xg. This
statement will be formalized with a theorem later on.

Algorithm 1 sketches the pseudocode for the algorithm. Note that many BFS implemen-
tations also store, for each node, the distance from xs as they are discovered. Algorithm 1
does not record this information, but it is straightforward to add it. The algorithm starts
by setting all parents to null and marking all vertices as not visited (loop at line 1). Then,
it initializes the empty containers OPEN (line 4) and CLOSED (line 5), inserts the start
node xs into OPEN (line 6), and marks it as visited (line 7). In the main loop (lines 8–18),
the algorithm removes one vertex x from OPEN (line 9), inserts it into CLOSED (line 10),
and expands it (line 11). If a node x′ is visited for the first time, the visited field is updated
(line 13), and the parent is set to x (line 14). If x′ is equal to the goal vertex xg, the search
terminates with success, and a path can be extracted by traversing the sequence of parent
pointers from xg back to xs (line 16). Otherwise, the node is inserted into OPEN (line 18).
This operation continues as long as there are more vertices in OPEN. If the main loop ter-
minates, it means that xg has not been discovered yet and there are no more vertices to
process. Therefore, the algorithm reports failure (line 19).

3A node whose visited attribute is true is either in the OPEN or CLOSED containers. However, storing
this attribute with the nodes themselves is more efficient than checking if the node is included in these data
structures.

188 CHAPTER 6. PLANNING

Data: G = (V,E), xs ∈ V , xg ∈ V
Result: Path from xs to xg if it exists, or FAILURE

1 foreach x ∈ V do
2 x.parent← null;
3 x.visited← false;

4 OPEN .initializeEmpty();
5 CLOSED.initializeEmpty();
6 OPEN .insert(xs);
7 xs.visited← true;
8 while not OPEN.empty() do
9 x← OPEN .remove();

10 CLOSED.insert(x);
11 foreach x′ ∈ V such that (x, x′) ∈ E do
12 if x′.visited =false then
13 x′.visited← true;
14 x′.parent← x ;
15 if x′ = xg then
16 return ExtractPath(xs, xg);
17 else
18 OPEN .insert(x′);

19 return FAILURE;

Algorithm 1: BFS/DFS algorithm

Because of how we defined the set of edges E, each edge is associated with an action u,
so once a path is returned, one can determine a sequence of actions consistent with Eq. (6.1)
that transforms the start state xs into the goal state xg. It is important to note that in
BFS, the parent of a node is initially set to null and is changed at most once during the
execution of the algorithm, specifically when the node is discovered for the first time. If a
path between xs and xg is found, the path can be recovered by traversing the parent pointers
from xg back to xs (this is done by the function ExtractPath). As this path is traced, the
corresponding actions can also be determined due to the one-to-one correspondence between
edges and actions. Therefore, the plan is built by backtracking from xg to xs via the parent
pointers.

At the end of the computation, BFS produces a tree rooted at xs. The tree does not span
all vertices in G, but only those visited during the algorithm’s execution. More precisely,
the tree spans all nodes that have at some point been inserted into the OPEN queue.
According to our implementation, a vertex may not be included in the tree for two reasons.
First, the vertex is not reachable from xs. Second, the vertex is reachable from xs, but its
distance (measured as the number of hops) is greater than the distance from xs to xg, and
the computation terminates before the vertex is visited.

The following example illustrates how BFS works and how the various attributes change
during execution.

Example 6.2. Let us consider the graph shown in Figure 6.3 and analyze how BFS pro-
cesses it. To this end, it is convenient to examine each iteration of the main while loop in

6.3. OPEN LOOP PLANNING 189

Algorithm 1, showing the attributes (e.g., visited and parent) for each vertex, as well as the
status of the OPEN queue.

In what follows, Step 0 refers to the state before the first iteration of the main loop. It is
assumed that when a node has multiple neighbors, they are processed in alphabetical order.
For example, when xs is expanded, node A is added to the queue before node C. Table 6.1
illustrates the progression of the algorithm. For each node, we display two fields: the parent
(the name of the parent node, or N for null) and the visited flag (T for true, F for false).
The queue OPEN is also shown, with the leftmost vertex representing the head of the queue.
At Step 5, node B is extracted from the queue, which becomes empty, and is then expanded.
The goal vertex xg is discovered, and the algorithm terminates. The path between xs and
xg is reconstructed by following the parent fields (back pointers) stored in the nodes. The
parent of xg is B, the parent of B is C, and the parent of C is xs, thus forming the desired
path. The parent of xs is null, indicating the root of the search.

A B

xg E

F

CD

xs

Figure 6.3: A simple directed graph.

Step OPEN xs A B C D E F xg
0 xs N/T N/F N/F N/F N/F N/F N/F N/F
1 A,C N/T xs/T N/F xs/T N/F N/F N/F N/F
2 C,F N/T xs/T N/F xs/T N/F N/F A/T N/F
3 F,B N/T xs/T C/T xs/T N/F N/F A/T N/F
4 B N/T xs/T C/T xs/T N/F N/F A/T N/F
5 ∅ N/T xs/T C/T xs/T N/F N/F A/T B/T

Table 6.1: BFS progress while processing the graph in Figure 6.3.

Figure 6.4 shows the corresponding tree rooted at xs obtained by running the BFS algo-
rithm to find a path between xs and xg. The tree does not include node D because there is no
path from xs to D, and it also does not include E because the search terminates as soon as
xg is discovered, i.e., before E is visited. Observe that the tree also encodes a path between
xs and F , even though F is not part of the path from the start to the goal vertex.

190 CHAPTER 6. PLANNING

xs

A C

F B

xg

Figure 6.4: Tree produced by BFS.

Computational Complexity. It is straightforward to determine the time complexity
of BFS. The initialization step (for loop at line 1) takes time O(|V |). Each operation on
OPEN and CLOSED (insert, remove) takes time O(1) and each vertex is inserted or
removed at most once. Therefore O(|V |) is also an upper bound for the time complexity of
the operations on OPEN and CLOSED. Finally, each edge (x, y) ∈ E is processed at most
once when x is removed from OPEN , and for each edge a constant number of operations is
performed (expansion step, line 11). Therefore the compounded complexity of all expansions
steps is O(|E|) and the overall complexity of the algorithm is O(|V |+ |E|).

Theorem 6.1. Algorithm BFS is complete, i.e., if a path between xs and xg exists, then
BFS will find it and return the path between xs and xg.

Theorem 6.2. If algorithm BFS returns a path between xs and xg, then it returns a path
with the smallest number of edges.

The proofs of Theorems 6.1 and 6.2 can be found in any algorithms textbook (e.g., [13]).
Note that Theorem 6.2 states that the algorithm returns a path with the smallest number
of edges, and not the path with the smallest number of edges because in general there could
be more than one.

Remark 6.1. The graph shown in Figure 6.3 may seem overly simple and disconnected from
practical robotic applications. This is true, and the example is simple on purpose to allow
its complete analysis in a few steps. However, the same algorithm can be used “as is” for
cases where the graph models more complex scenarios. To see how, the reader should revisit
the grid world example (Example 6.1) and Figure 6.1.

6.3.3 Depth First Search

Depth First Search (DFS) works almost exactly as BFS, and the pseudocode given in Al-
gorithm 1 does not need any change. The only difference is the policy used to manage the

6.3. OPEN LOOP PLANNING 191

OPEN data structure. While BFS uses a first-in-first-out approach, DFS uses a last-in-
first-out policy. Differently from BFS, the path returned by DFS is not guaranteed to be a
path with the least number of vertices. If the graph is finite, though, DFS is guaranteed to
return a valid path, if it exists.

Example 6.3. We solve again Example 6.2, but this time using DFS. As in the previous
example, we show the progress of the algorithm using the same tabular form (Table 6.2).

Step OPEN xs A B C D E F xg
0 xs N/T N/F N/F N/F N/F N/F N/F N/F
1 A,C N/T xs/T N/F xs/T N/F N/F N/F N/F
2 B,A N/T xs/T C/T xs/T N/F N/F N/F N/F
3 A N/T xs/T C/T xs/T N/F N/F N/F B/T

Table 6.2: BFS progress while processing the graph in Figure 6.3.

Figure 6.5 shows the tree produced by DFS when solving the same planning search
problem depicted in Figure 6.3 (compare this tree with Figure 6.4)

xs

A C

B

xg

Figure 6.5: Tree produced by DFS.

In this case the algorithm does not discover a path to F because C is expanded before A
because of the last-in-first-out policy. Moreover, after expanding C the algorithm discovers B
and this in turn is again expanded before A, thus terminating the execution of the algorithm
as soon as xg is discovered.

Computational Complexity. The only difference between DFS and BFS is in the pol-
icy governing OPEN . In both cases insertion and removal take O(1). Hence the complexity
of the algorithms is the same, i.e., O(|V |+ |E|).

Theorem 6.3. Algorithm DFS is complete, i.e., if a path between xs and xg exists, then
DFS will find it and return the path between xs and xg.

192 CHAPTER 6. PLANNING

The proof of theorem 6.3 can be found in any algorithm textbook (e.g., [13]). Note that
in this case we cannot infer other properties with regard to the properties of the returned
path (e.g., number of edges in the path). Moreover, recall that throughout this chapter we
are dealing with finite graphs, and this is an essential pre-requisite for Theorem 6.3.

6.3.4 Dijkstra’s Algorithm

We next introduce a graph algorithm to solve the more complex (and realistic) Weighted
Directed Graph Search Problem, where costs are associated with edges. Recalling that
each edge represents an action, the cost of an edge is therefore the cost to execute the
action associated with the edge, such as the time it takes to execute it, the amount of
energy consumed, or the distance traveled. Starting from the edge costs, Dijkstra’s algorithm
computes a cost for every node x. The cost of a node x is also called “cost to come,” and
it is the cost along the shortest path from xs to x discovered so far. In the following, this
cost is indicated with the letter g. The key words in this definition of g are “so far.” That is
because this cost is iteratively refined (i.e., lowered) as better paths are discovered while the
algorithm processes the graph. Note that in Dijkstra, we do not need the discovered attribute
because a vertex may be discovered multiple times along different paths. Consequently, the
parent of a node can be repeatedly modified during the execution of the algorithm, i.e., every
time the cost of a node is lowered. Figure 6.6 shows some of the quantities characterizing
Dijkstra’s algorithm. The cost to come g is the cost between xs and x along the path from xs
to xg passing through x Note that g is well defined irrespective of whether the path between
xs and xg is the shortest path or not.

xs x xg
g

Figure 6.6: The figure shows a node x along one path from xs to xg. The cost to come g is
the cost of the best path (discovered so far) between xs and x. Such path is not necessarily
a shortest path between xs and xg, because a better one could be discovered at a later time.

It is easy to show that if x lies along a shortest path between xs and xg, then the cost to
come g must be the smallest among all paths from xs to x. In fact, if there were a different
path with cost g′ < g, then a better path from xs to xg could be obtained by swapping the
original path of cost g with the one with cost g′, but this contradicts our assumption that
the path was optimal. Similarly, one can reason about the length of the path between x and
xg. Dijkstra’s algorithm works by iteratively lowering the cost to come for the vertices in
the graph, until it can no longer be lowered (and hence it is optimal).

In Dijkstra’s algorithm, the container OPEN is a priority queue whose key is the cost
to come g. Every time the cost to come of a node in the queue is lowered, the queue needs
to be updated using the rebalance method. Algorithm 2 sketches the pseudocode for the
algorithm.

In the initialization step (loop starting at line 1), the cost of all nodes is set to ∞ and
the parents are initialized to null (lines 2 and 3). These values reflect that no path from xs
to any node has been discovered yet. The cost of xs is set to 0 (line 4) before it is inserted in

6.3. OPEN LOOP PLANNING 193

Data: G = (V,E), xs ∈ V , xg ∈ V, c : E → R≥0

Result: Shortest path from xs to xg if it exists, or FAILURE
1 foreach x ∈ V do
2 x.g ←∞;
3 x.parent← null;

4 xs.g ← 0;
5 OPEN .initializeEmpty();
6 OPEN .insert(xs);
7 CLOSED.initializeEmpty();
8 while not OPEN .empty() do
9 x← OPEN .remove();

10 CLOSED.insert(x);
11 if x = xg then
12 return ExtractPath(xs, xg);
13 foreach x′ ∈ V such that (x, x′) ∈ E do
14 if x′.g =∞ then
15 x′.parent← x ;
16 x′.g ← x.g + c(x, x′);
17 OPEN .insert(x′);

18 else if x.g + c(x, x′) ≤ x′.g then
19 x′.g ← x.g + c(x, x′);
20 x′.parent← x ;
21 OPEN .rebalance(x′);

22 return FAILURE;

Algorithm 2: Dijkstra’s algorithm

the queue (line 6) because, by definition, the cost of going from xs to xs is 0 (no action must
be taken to go from xs to xs, so no cost is incurred). As for BFS and DFS, xs is inserted
into the OPEN queue before the main loop starts, and CLOSED is initialized to the empty
container (line 7). In the main loop, the node x with the smallest cost to come g is removed
from OPEN (line 9) and moved into CLOSED. If the node is equal to xg, the algorithm
terminates and a path of minimum cost is returned (line 12). Note that this is correct, i.e.,
a better path from xs to xg cannot be found because all costs are non-negative, and since xg
is removed from the OPEN list, it means it has the lowest cost among those in the queue
(recall that it is prioritized by the cost to come g). No shortest path can be found later on
because all nodes still in OPEN have cost to come g(x) no smaller than g(xg), and all those
that could be included in OPEN at a later point will have a cost to come no smaller than
those in OPEN right now. Therefore, it is impossible to find a lower cost for any vertex
x once it is removed from OPEN . Otherwise, if x is not xg, it is expanded (line 13). If a
neighboring node x′ has cost equal to ∞, then it is being discovered for the first time (line
14). In such a case, the parent is set to x (line 15) and the cost to come is set to x.g+c(x, x′)
(line 16) because a path with this cost has just been discovered by appending the edge (x, x′)
to the best path between xs and x. Moreover, the node is inserted in OPEN (line 17). If

194 CHAPTER 6. PLANNING

instead the cost of a node x′ is different from∞ but larger than x.g+ c(x, x′) (line 18), then
it means that a path had been previously found, but a better one has just been determined.
In this case, the cost to come g of x′ is updated (lowered) to x.g + c(x, x′) (line 19), and
the parent is also modified and set to x (line 20) because the new shortest path from xs to
x′ is obtained by appending (x, x′) to the best path between xs and x. In this case, x′ was
already in OPEN because it was inserted when its cost was first lowered from ∞. There-
fore, the rebalance operation is applied to adjust the position of the node in the queue since
its key has been modified (line 21). As for BFS and DFS, if the algorithm exits the main
loop, it means that no more vertices can be discovered and xg has not been found among
those processed already. Therefore, no path exists and the algorithm returns failure (line 22).

Computational Complexity. The clear difference between Dijkstra’s algorithm and
BFS/DFS is the different policy used to handle OPEN . The complexity of the operations
insert and remove obviously depends on the underlying data structure used to implement
the priority queue, and this also affects the time complexity of the rebalance operation. If
OPEN is implemented as a binary heap, then the overall complexity is O((|V |+|E|) log |V |).
An even more efficient algorithm can be obtained using a Fibonacci heap (see [13] for more
details). In this latter case, the time complexity is O(|V | log |V |+ |E|).

Theorem 6.4. If a path between xs and xg does not exist, Dijkstra’s algorithm returns
FAILURE. If a path between xs and xg exists, Dijkstra returns a path of minimum cost, as
per the path cost defined in Eq. (6.3).

Dijkstra’s algorithm is another standard algorithm in graph theory, and the proof for
Theorem 6.4 can also be found in most algorithm textbooks, e.g., [13]. Dijkstra’s algorithm
is often also described as a label correcting algorithm because it repeatedly updates (corrects)
the g values (labels) associated with the vertices. The reader is referred to [29] or [7] for
more details on label correcting algorithms.

Example 6.4. Consider the weighted graph shown in figure 6.7 where each edge is now
associated with a non-negative cost.

xs

A

B C

D

E

F xg

G

3

2

5

10

2

10

3 102

2

1 10

15

4

2

2

Figure 6.7: A simple weighted directed graph.

The following table is analogous to Table 6.1 and shows how the algorithm progresses.
For each node, the parent and the g cost are displayed. In the OPEN priority queue, nodes

6.3. OPEN LOOP PLANNING 195

are shown with their associated priority key, sorted from the lowest key to the highest key.
Note how, from step 3 to 4, the keys for both nodes C and E are lowered, and their respective
positions in the queue are swapped. Moreover, observe that, differently from BFS and DFS,
the algorithm terminates when the goal node xg is extracted from OPEN (step 8), and not
when it is first discovered (step 5), because when it is inserted in OPEN for the first time,
its cost g is not necessarily the lowest possible.

Step OPEN xs A B C D E F G xg
0 xs/0 N/0 N/∞ N/∞ N/∞ N/∞ N/∞ N/∞ N/∞ N/∞
1 A/2, B/3, F/5 N/0 xs/2 xs/3 N/∞ N/∞ N/∞ xs/5 N/∞ N/∞
2 B/3, F/4, E/12 N/0 xs/2 xs/3 N/∞ N/∞ A/12 A/4 N/∞ N/∞
3 F/4, E/12, C13 N/0 xs/2 xs/3 B/13 N/∞ A/12 A/4 N/∞ N/∞
4 C/6, E/8 N/0 xs/2 xs/3 F/6 N/∞ F/8 A/4 N/∞ N/∞
5 D/8, E/8, xg/16 N/0 xs/2 xs/3 F/6 C/8 F/8 A/4 N/∞ C/16
6 E/8, xg/10 N/0 xs/2 xs/3 F/6 C/8 F/8 A/4 N/∞ D/10
7 xg/10 N/0 xs/2 xs/3 F/6 C/8 F/8 A/4 E/23 D/10

Figure 6.8 shows the resulting tree obtained after running Dijkstra’s algorithm on the
given graph. Each vertex is associated with the cost of the shortest path from xs discovered
by the algorithm before it terminates.

0

2

3 6

8

8

4 10

23

Figure 6.8: Tree produced by Dijkstra’s algorithm.

Observe that in the final tree node G is associated with a cost 23 and that is not optimal
because a path through xg can reach G with cost 12. However, since the algorithm terminates
when xg is removed from OPEN , it is not guaranteed that the best path from xs to every
node in the graph has been found. This is the case for G and, in general, this may happen
for the nodes still in OPEN when the algorithm terminates. Indeed, the common feature of
nodes in OPEN is that their optimal cost has yet to be determined.

In the previous example, we have seen that when the algorithm terminates, it determines
the cost of an optimal path between xs and xg, but an optimal path between xs and nodes
different from xg is not necessarily found. To alter this behavior, one could modify Algorithm
2 to obtain the so-called single source shortest path that computes the shortest path from xs
to all vertices in the graph reachable from xs. Algorithm 3 sketches this minor modification.

196 CHAPTER 6. PLANNING

Note that in this case xg is not part of the input, because the algorithm computes the shortest
path between xs and all vertices in G.

Data: G = (V,E), xs ∈ V, c : E → R≥0

Result: Shortest from xs to each vertex in V reachable from xs
1 foreach x ∈ V do
2 x.parent← null;
3 x.g ←∞;

4 xs.g ← 0;
5 OPEN .initializeEmpty();
6 CLOSED.initializeEmpty();
7 OPEN .insert(xs);
8 while not OPEN .empty() do
9 x← OPEN .remove();

10 CLOSED.insert(x);
11 foreach x′ ∈ V such that (x, x′) ∈ E do
12 if x′.g =∞ then
13 x′.g ← x.g + c(x, x′);
14 x′.parent← x ;
15 OPEN .insert(x′);

16 else if x.g + c(x, x′) ≤ x′.g then
17 x′.g ← x.g + c(x, x′);
18 x′.parent← x ;
19 OPEN .rebalance(x′);

Algorithm 3: Single source shortest path algorithm

When the algorithm terminates, one can easily verify if a vertex is reachable from xs
or not by checking the cost to come g attribute. If it is different from ∞, it means that
an optimal path was determined, and by recursively following the parent attribute it is
possible to determine a path of minimum cost. Figure 6.9 shows the result obtained running
Algorithm 3 on the graph given in Figure 6.7. Compare this tree with the one in Figure 6.8.

6.3.5 A∗ algorithm

A∗ is one of the most influential algorithms in artificial intelligence and is a so-called informed
search method. The term informed is used because A∗ assumes the availability of a heuristic
function h estimating the cost-to-go from each vertex to xg. Note that while in Dijkstra’s
algorithm g is the exact cost to come from the source xs to a vertex, in A∗ h is an estimate
of the cost to go from x to the goal vertex xg. The intuition is that g and h combined
give an estimate of the cost of the shortest path between xs and xg constrained to include
x. The heuristic h “informs” the algorithm in the sense that it focuses the search in the
most promising direction. This heuristic is not assumed to be available to BFS, DFS, or
Dijkstra’s algorithm, and these algorithms are therefore said to execute an uninformed search.
The better the heuristic, the higher the increase in performance; that is, the fewer vertices

6.3. OPEN LOOP PLANNING 197

0

2

3 6

8

8

4 10

12

Figure 6.9: Tree produced by Single Source Shortest Path algorithm.

expanded before the optimal solution is found. To understand the role of the heuristic,
consider Figure 6.10, showing a path from xs to xg passing through x. Let g be the exact
cost to come from xs to x along the path, and hexact the exact cost to go from x to xg.
Therefore, the overall cost of this path is g + hexact. If the path is a shortest path from
xs to xg, then based on the observation we made while discussing Dijkstra’s algorithm,
the path from xs to x must be a shortest path, and similarly the path from x to xg must
be a shortest path. Of course, since one of the very reasons to run a planning algorithm
is to determine these paths, we neither know them nor their costs beforehand. Dijkstra’s
algorithm iteratively refines the cost to come g until it eventually converges to the optimal
value, but it never considers the cost to go. In A∗ we assume the availability of an estimate
for hexact, and we indicate it as h. Therefore, if at a certain point we have determined the
exact, optimal cost to come g, an estimate for the overall cost of the path is g + h. This is
an estimate because h it includes h which is an estimate and not an exact cost.

xs x xg
g

h

hexact

Figure 6.10: The figure shows a node x along one path from xs to xg. The cost to come g
is the cost of the best path (discovered so far) between xs and x. hexact is the cost of the
shortest path between x and xg, whereas h is an estimate of hexact.

To ensure the correctness of the algorithm, the heuristic h must be admissible, i.e., it
must never overestimate the cost to go; that is, it must always satisfy h ≤ hexact. This
concept is formalized by the following definition.

Definition 6.3. (Admissible heuristic.) Let G = (V,E) be a weighted graph where c : E →
R≥0 is the cost function. Let xg ∈ V be a goal vertex and for each vertex v ∈ V let c(pv,xg) be
the cost of a shortest path from v to xg. An admissible heuristic is a function h : V → R≥0

such that for each vertex v, h(v) ≤ c(pv,xg).

198 CHAPTER 6. PLANNING

Note that based on the above definition, the function h(v) = 0 for each v ∈ V is an
admissible heuristic because c(pv,xg) ≥ 0 for each vertex v. In fact, Dijkstra’s algorithm is
the special case of A∗ obtained when using this trivial (albeit correct) heuristic. Moreover, if
h is an admissible heuristic, then h(xg) = 0 because the cost to go from xg to xg is of course
0. Another desirable property of heuristic functions is consistency, although this concept is
more restrictive and, in general, not necessary to ensure correctness.

Definition 6.4. (Consistent heuristic.) Let G = (V,E) be a weighted graph where c : E →
R≥0 is the cost function, and let xg ∈ V be a goal vertex. A function h : V → R≥0 is a
consistent heuristic if

1. for a pair of vertices u, v ∈ V with (v, u) ∈ E, it holds that h(v) ≤ c(v, u) + h(u);

2. h(xg) = 0.

It is easy to see that a heuristic is consistent if it does not overestimate the cost of any
edge c(v, u). A consistent heuristic is also admissible, but not all admissible heuristics are
consistent. Figure 6.11 and Table 6.3 show a simple case of a graph and a heuristic that
is admissible but not consistent. Observe that the minimum cost to go from xs to xg is 7,
and therefore h(xs) = 6 is admissible. However, c(xs, A) < h(xs) − h(A), thus making the
heuristic inconsistent.

xs

A

B

xg

9

4 3

4

Figure 6.11: A weighted directed graph where every edge is associated with a non-negative
cost.

Node h
xs 6
xg 0
A 1
B 1

Table 6.3: Inconsistent estimate for the graph in Figure 6.11

If a heuristic function is consistent, the implementation of A∗ is simpler and the algorithm
is more efficient, in the sense that it will expand fewer nodes. If instead the heuristic
is admissible but not consistent, the algorithm is still correct, but its implementation is

6.3. OPEN LOOP PLANNING 199

slightly more complicated and it will expand more nodes, thus being less efficient. This is
somewhat intuitive because a consistent heuristic is more informative than a heuristic that
is just admissible, and it better directs A∗ search. In the limit, if h(v) = c(pv,xg), i.e., if the
estimate coincides with the true cost to go, A∗ will expand only the nodes on the shortest
path between xs and xg, thus minimizing the number of expanded nodes. However, this
limit case is unrealistic, because if the estimate coincides with the true shortest cost, then it
is pointless to solve the planning problem since the solution is already known. Nevertheless,
a good heuristic is one that is as close as possible to c(pv,xg), and the more accurate the
heuristic, the bigger the performance gap between A∗ and Dijkstra’s algorithm.

If a consistent heuristic h is used, A∗ works like Dijkstra’s algorithm, with the only
difference that vertices in OPEN are prioritized by the estimated cost f(v) = g(v) + h(v)
instead of just g(v). Note that with h(v) = 0 we have an admissible heuristic and we indeed
obtain Dijkstra’s algorithm. Algorithm 4 sketches the pseudocode for A∗ when a consistent
heuristic h is used. The reader should compare it with Algorithm 2.

Data: G = (V,E), xs ∈ V , xg ∈ V, c : E → R≥0

Result: Shortest path from xs to xg if it exists, or FAILURE
1 foreach x ∈ V do
2 x.parent← null;
3 x.g ←∞;
4 x.f ←∞;

5 xs.g ← 0;
6 xs.f ← xs.g + h(xs);
7 OPEN .initializeEmpty();
8 CLOSED.initializeEmpty();
9 OPEN .insert(xs);

10 while not OPEN .empty() do
11 x← OPEN .remove();
12 CLOSED.insert(x);
13 if x = xg then
14 return ExtractPath(xs, xg);
15 foreach x′ ∈ V such that (x, x′) ∈ E do
16 if x′.g =∞ then
17 x′.g ← x.g + c(x, x′);
18 x′.f ← x′.g + h(x′);
19 x′.parent← x ;
20 OPEN .insert(x′);

21 else if x.g + c(x, x′) ≤ x′.g then
22 x′.g ← x.g + c(x, x′);
23 x′.f ← x′.g + h(x′);
24 x′.parent← x ;
25 OPEN .rebalance(x′);

26 return FAILURE;

Algorithm 4: A∗ algorithm with consistent heuristic.

200 CHAPTER 6. PLANNING

As in Algorithm 2, A∗ starts by initializing the attributes of all nodes (loop in line 2).
In this case, three attributes are maintained for every node: parent and g as in Algorithm
2, and additionally f , which is the key used to prioritize the OPEN data structure. Before
inserting xs into OPEN, its g and f attributes are set to 0 and h(xs), respectively (lines
5 and 6). Then the main loop starts and proceeds similarly to Dijkstra’s algorithm. The
main differences are two. First, when a vertex is discovered for the first time (line 16), it
is necessary to set not only the parent and g attributes, but also the f attribute (line 18).
Second, if a better path to reach a vertex is found (line 21), it is necessary to update the cost
to come g, the total cost estimate f , and the parent. Note that the condition governing this
update (line 21) is based on the cost to come (g) only, and not on the total cost estimate f .

Example 6.5. Figure 6.12 shows a weighted graph, whereas Table 6.4 displays the h value
(estimated cost to go) for each of its vertices. The reader should verify that this estimate is
consistent and therefore admissible. Consequently, we can use Algorithm 4.

As we did previously for Dijkstra’s algorithm, it is instructive to examine step by step
how the algorithm works. The key feature here is to consider that f and g are updated as
the algorithm progresses, and the OPEN queue is now prioritized by the value f = g + h.
This is displayed in the following table. For space reasons, we omit the step number and
only show the ordered elements in OPEN without the values of f used to prioritize them.
For each node, we use the notation P/g/f , where P is the parent, g is the cost to come, and
f = g + h.

OPEN xs A B C D E F xg
xs N/0/5 N/∞/∞ N/∞/∞ N/∞/∞ N/∞/∞ N/∞/∞ N/∞/∞ N/∞/∞

B,A, F N/0/5 xs/1/7 xs/2/5 N/∞/∞ N/∞/∞ N/∞/∞ xs/5/7 N/∞/∞
F,A,C N/0/5 xs/1/7 xs/2/5 B/8/9 N/∞/∞ N/∞/∞ B/3/5 N/∞/∞
C,A,E N/0/5 xs/1/7 xs/2/5 F/4/5 N/∞/∞ F/10/14 B/3/5 N/∞/∞

xg, A,D,E N/0/5 xs/1/7 xs/2/5 F/4/5 C/6/10 F/10/14 B/3/5 C/6/6

When xg is extracted from OPEN the computation terminates, and figure 6.13 shows the tree
produced after A∗ is run on the graph.

xs

A

B C

D

E

F xg

2

1

2

2

1

9

2

6

7

5

7

1

5

1

Figure 6.12: A weighted directed graph where every edge is associated with a non-negative
cost.

6.3. OPEN LOOP PLANNING 201

Node h
xs 5
xg 0
A 6
B 3
C 1
D 4
E 4
F 2

Table 6.4: Consistent estimate cost to go h for the graph in Figure 6.12

xs

A B

F

E C

D xg

Figure 6.13: Tree produced by the A∗ algorithm.

If the heuristic function h is admissible but not consistent, nodes that have already been
moved to the CLOSED list may be rediscovered with a lower cost. In such cases, these
nodes need to be moved back into the OPEN list. Algorithm 5 shows the modifications
required in the algorithm to handle this situation.

Theorem 6.5. If a path between xs and xg does not exist, A∗ returns FAILURE. If a path
between xs and xg exists and h is an admissible heuristic, A∗ returns a path of minimum
cost, as per the path cost defined in Eq. (6.3).

What is the advantage of using a heuristic, and what constitutes a good heuristic? Thanks
to the heuristic, A∗ focuses the expansion of nodes towards promising directions, and will
in general find a solution expanding fewer nodes than Dijkstra’s algorithm (and so it will
be faster). Of course, in the ideal situation one would like to have a perfect heuristic, i.e.,
one such that h(v) = c(pv,xg) for each vertex. But in this case solving the planning problem
would be useless, because the heuristic would already provide the optimal path.

202 CHAPTER 6. PLANNING

Data: G = (V,E), xs ∈ V , xg ∈ V, c : E → R≥0

Result: Shortest path from xs to xg if it exists, or FAILURE
1 foreach x ∈ V do
2 x.parent← null;
3 x.g ←∞;
4 x.f ←∞;

5 xs.g ← 0;
6 xs.f ← xs.g + h(xs);
7 OPEN .initializeEmpty();
8 CLOSED.initializeEmpty();
9 OPEN .insert(xs);

10 while not OPEN .empty() do
11 x← OPEN .remove();
12 CLOSED.insert(x);
13 if x = xg then
14 return ExtractPath(xs, xg) ;
15 foreach x′ ∈ V such that (x, x′) ∈ E do
16 if x′.g =∞ then
17 x′.g ← x.g + c(x, x′);
18 x′.f ← x′.g + h(x′);
19 x′.parent← x ;
20 OPEN .insert(x′);

21 else if (x.g + c(x, x′) ≤ x′.g) AND x′ ∈ OPEN then
22 x′.g ← x.g + c(x, x′);
23 x′.f ← x′.g + h(x′);
24 x′.parent← x ;
25 OPEN .rebalance(x′);

26 else if (x.g + c(x, x′) ≤ x′.g) AND x′ ∈ CLOSED then
27 x′.g ← x.g + c(x, x′);
28 x′.f ← x′.g + h(x′);
29 x′.parent← x ;
30 OPEN .insert(x′);
31 CLOSED.remove(x′);

32 return FAILURE;

Algorithm 5: A∗ algorithm with admissible but not consistent heuristic.

To determine good admissible heuristics, some domain knowledge is usually very useful.
For example, in planning problems related to navigation tasks where the state of the robot
is its position and the robot must reach a given target location, an immediate admissible
heuristic is given by the length of the straight segment between the robot pose and the goal
location.

6.4. NAVIGATION FUNCTIONS 203

6.3.6 Examples

We now compare how BFS, Dijkstra, and A∗ solve the same planning problem. Figure 6.14a
shows an elevation map retrieved from the internet. Green areas indicate areas of lower
elevation, whereas brown areas are associated with locations at higher elevations. Figure
6.14b shows a mesh representation of the same area. The task is to move from the top-left
location marked with a red dot to the location in the middle, also marked with a red dot.
From each location, it is possible to take four actions (up/down/left/right) to move to a
nearby location. Unfeasible actions are removed for locations near the borders or at the
corners. Figure 6.14c shows the path determined by the BFS algorithm. Recall that in
BFS all actions have the same costs, and the algorithm finds the path with the minimum
number of transitions. Figure 6.14d shows instead the contents of the CLOSED list once
the algorithm terminates. Nodes in the CLOSED list are marked as green pixels on the
map. Note the uniform diagonal frontier generated by the algorithm. This confirms that
BFS expands nodes according to the distance intended as the number of hops from the
source.

We next consider the weighted case and compare the paths produced by Dijkstra’s and
A∗ . The cost of an action is induced by the elevation map. To this end, let e(x) be the
elevation associated with state x, as per Figure 6.14b. For (x, x′) ∈ E, if e(x) ≥ e(x′), then
c(x, x′) = 1, i.e., moving downhill or to a cell at the same elevation has cost 1. If instead
e(x) ≤ e(x′), then c(x, x′) = 1 + K(e(x′) − e(x)), i.e., moving uphill costs 1 plus a term
proportional to the difference in elevation. Hence it may make more sense to take a longer
path (in terms of number of actions), rather than a steeper path. Figure 6.14e shows that
path returned by Dijkstra’s algorithm to determine a path of smallest cost according to
the cost function just defined. The cost of the path is 168. Figure 6.14f shows instead the
contents of the CLOSED list after a solution is found. Note that in this case the frontier
is not uniform because nodes are extracted from the OPEN list according to their cost-to-
come. Finally, Figure 6.14g shows an optimal path determined by A∗ and Figure 6.14h shows
instead the contents of the CLOSED list after A∗ terminates. First, compare Figure 6.14g
with 6.14e. The two paths are different, but the associated cost is the same, i.e., 168. This
is consistent with the former observation that both Dijkstra and A∗ solve the same problem,
i.e., they determine a path of minimal cost. In this case, the path is different but the cost is
the same. Next, compare Figure 6.14h with 6.14f. As for the BFS algorithm, nodes in the
CLOSED list are displayed as bright green pixels. The figures clearly show that A∗ takes
advantage of the provided heuristic and better focuses the search, thus terminating after
having expanded far fewer nodes. The more accurate the estimate h, the wider the gap.

6.4 Navigation Functions

In section 6.3.4, we introduced the single-source shortest path algorithm as a minor modifi-
cation of Dijkstra’s algorithm. This algorithm is interesting because it does not compute just
a plan, but rather a family of plans, i.e., a plan for each possible vertex in the graph. One
can think of this algorithm as a form of pre-processing. After having run the algorithm over
a given planning graph, we can answer any planning question of the type “Compute a plan

204 CHAPTER 6. PLANNING

Elevation map (top view)

(a) Elevation map (top view)

150

100

Elevation map (lateral view)

50

0
150

100

50

0

5

10

0

(b) Elevation map (lateral view)
Path found by BFS

(c) Path determined by BFS

Nodes expanded by BFS

(d) Nodes expanded by BFS
Path found by Dijkstra

(e) Path determined by Dijkstra

Nodes expanded by Dijkstra

(f) Nodes expanded by Dijkstra
Path found by A*

(g) Path determined by A∗

Nodes expanded by A*

(h) Nodes expanded by Astar

Figure 6.14: Planning examples.

from xs to v” for any v in the planning graph. Of course, if we change the starting vertex xs,
the tree returned by Dijkstra’s algorithm no longer provides the right answer. Navigation
functions are conceptually similar, but they swap the roles between source and goal vertex.
A navigation function provides a family of plans to reach a goal vertex xg starting from

6.4. NAVIGATION FUNCTIONS 205

any vertex in the graph. This concept is rather simple (almost trivial) for the deterministic
case but is important to handle uncertainties, e.g., when the robot may veer of course while
navigating to xg. In such case, it is not necessary to plan a new path because the navigation
function provides the correct action to execute irrespective of where the robot is. The above
intuition can be formalized as follows. For a given planning graph G = (V,E), a navigation
function ψ assigns a non-negative value4 to each vertex, i.e., ψ : V → R≥0. Note that this
definition so far is rather generic. A navigation function ψ defines a plan as follows. For
vertex x ∈ V , let e(x) be the set of edges (x, y) outgoing from x. Then

e′ = arg min
(x,y)∈e(x)

{ψ(y)}

In other words, among all edges outgoing from x, the navigation function implicitly
defines a plan by selecting the edge (action) leading to the connected vertex y with the
lowest value of ψ. Ties are arbitrarily resolved. Recalling that each edge is associated with
an action, the navigation function therefore defines a plan.

Note that e′ not only identifies an action but also a vertex y reachable from x. This
vertex will be indicated as e′(x). Unless we impose additional properties on the navigation
function, the associated plan is, in general, not very useful. The following definition identifies
the useful navigation functions.

Definition 6.5. Let G = (V,E) be a planning graph and let xg ∈ V be a goal vertex. A
navigation function ψ : V → R≥0 is feasible if it satisfies the following three conditions.

1. ψ(xg) = 0.

2. If x ∈ V is a vertex from which there is no path to xg, then ψ(x) =∞.

3. If x is a state from which xg can be reached, then for y = e′(x) we have ψ(y) < ψ(x).

Feasible navigation functions are also called potential functions because, by following the
negative gradient, they can be used to reach the goal state xg. Figure 6.15 shows a valid
navigation function for a grid world. The goal vertex xg is marked by the value 0, and black
obstacle cells are assigned the value ∞ (not shown in the figure).

It is straightforward to verify that if at every cell we move to a neighboring cell with
lower ψ value and we iterate this method, we eventually reach xg. How can we compute
a navigation function? For a case like the one displayed in the figure, and assuming that
(x, y) ∈ E ⇒ (y, x) ∈ E, it is sufficient to run BFS from xg and let the algorithm go as
long as there are more elements in the OPEN queue, much like we did for the single source
shortest path.

Navigation functions can be used to define control policies, i.e., functions that assign to
each state an action to be executed. Policies are commonly indicated with the letter π. If we
start at a state x, the action to execute is π(x). Once we execute this action, we move to a
state y. From there we again follow the policy and execute action π(y), and so on. As fornerly
stated, this approach is not particularly meaningful if everything is deterministic, but will

4To avoid additional notation, with slight imprecision we assume ∞ ∈ R≥0, i.e., the navigation function
may assign ∞ to some vertices.

206 CHAPTER 6. PLANNING

6 5 4 5 6 5

5 4 3 3 x4 4

4 3 2 x4 2 3

3 2 1 0 1 2

4 x2 x4 1 2 3

5 4 3 2 3 4

Figure 6.15: Feasible navigation function for a grid world. The goal vertex xg is the cell with
the value 0.

be important to implement planners capable of dealing with noisy state transition equations.
Policies of this type are also called feedback control policies or feedback plans (recall section
6.1) because they are based on the assumption that the state is always known, i.e., that the
state is observable.

Finally, note that the term navigation is also often used to indicate another process
integrating perception and obstacle avoidance with plan execution, for example to avoid a
person that may be approaching the robot. Navigation functions as described in this section
are off-line processes that do not include any perception but rather rely on a provided map
of the environment. Therefore not able to implement this type of avoidance. However,
since they are simple to compute, they can be repeatedly computed online integrating both
preexisting information and sensor data acquired on the fly, thus providing a system capable
of handling dynamic obstacles and changes in the environment.

6.5 ROS Actions

Before discussing how planning is implemented in ROS through the navigation stack Nav2,
it is necessary to dig a bit deeper into ROS actions, which were briefly introduced in Section
2.11. Actions are extensively used in Nav2 that will be discussed later. Actions implement
non-blocking, pre-emptable function calls, i.e., control is returned to the client (caller) after
the action is initiated, and its execution can be interrupted (pre-empted) by the client before
it is completed. The functionality of an action is performed by an action server that runs on
a separate thread from the client. Therefore, server and client run in parallel. Actions are
appropriate when the task performed by the server may take a long time to complete. In
such a case, if progress stalls, the client may decide to interrupt the execution of an action.
This is, for example, the case when the robot is commanded to reach a certain location.
While the planning phase itself may be quick, it may take a significant amount of time for
the robot to get to the desired final location. In this case, a non-blocking action is called,
so that the client can still perform other operations while the robot is moving towards its
goal location. A fundamental difference between actions and services is that during the
execution of an action, feedback information is passed back to the client so that progress
can be monitored and additional steps undertaken if needed (e.g., terminating the action
through pre-emption if no progress is reported or the objective has changed.) Moreover,

6.5. ROS ACTIONS 207

once an action terminates, a result is passed back to the client. With a service, instead,
no feedback information is provided to the client during the exectution. Just the result is
communicated at the end. The following terms define the components involved in an action.

Action Server : the node offering and implementing an action.

Action Client : the node sending a request to an action server.

Goal : the message sent by the client to the server when an action is initiated. The type
and content of the goal message depends on the action being called.

Feedback : a message periodically sent back by the server to the client to report about
progress. Multiple feedback messages of the same type are in general sent while the
action is being executed.

Result : a unique message sent by the server back to the client once the action is completed.
The message usually includes information about the outcome of the action (e.g, success
or failure.)

From the client standpoint, it is not only possible to terminate an action before it is completed
(pre-emption), but it is also possible to enter a busy-waiting state waiting for the action to
complete. This option, however, should be used with caution, as it goes against the very
reason actions are introduced. As in the case of messages and services, ROS comes with
its own set of predefined actions, but it is possible to define new ones. In the following, we
will only discuss how to use existing actions and will therefore focus on the client side. The
reader is referred to the ROS official documentation for the steps necessary to introduce new
actions and to implement an action server.

Figure 6.16 illustrates the typical interaction between an action client and an action
server. Green sections on the vertical bars indicate that the associated node is performing
some computation, whereas red segments indicate a state of busy waiting.

After a goal request is sent, the client continues its own computation, and messages sent
back by the action server are asynchronously processed through callback functions, exactly
as we do with a subscribed topic. In fact, it is necessary to call one of the spin functions to
retrieve these messages, since they are passed through dedicated topics.

Actions in ROS are offered through the rclcpp action package. From the client per-
spective, the main function is create client, which creates a client object that can then
interact with an action server. The function takes as a parameter a pointer to a node and the
name of the action for which a client is being created (see listing 6.1 for an example). Once a
client object has been created, the following member functions can be called to interact with
the associated action server (refer to the official ROS 2 documentation for more details):

wait for action server : waits until the action server is ready to receive a goal. The
function can optionally accept a timeout parameter to limit the wait time. If no
timeout is given, the function is blocking.

action server is ready : returns true if the action server is ready to accept a goal request.

208 CHAPTER 6. PLANNING

Client Server
wait_for_action_server()

async_send_goal(goal,goalOptions)

actionFeedback1

actionFeedback2

actionFeedbackN

Result

std::shared_future(GoalHandle)

async_get_result(GoalHandle)

std::shared_future(WrappedResult)

Figure 6.16: Interactions between action server and action client. Red sections on the bars
lines indicate busy waiting, whereas green sections indicate that the node is active.

async send goal : sends a goal to the action server and registers callback functions to be
called when the action completes, when the action becomes active, and when feedback
messages are received from the action. The three callbacks are stored in an object of
type SendGoalOptions. The function returns a shared future object to a GoalHandle

(see below for a discussion about futures.)

async get result : gets the result for an active goal specified through a goal handle re-
turned by async send goal. The function returns a shared future to a WrappedResult
holding the result.

async cancel goal : pre-empts the action by canceling the current goal. The function
returns a future that is set when the cancel request is honored.

Before we discuss more in depth these functions, a few more details are needed.

6.5.1 Futures

As formerly stated, action clients and servers run concurrently as separate threads and are
implemented on top of the C++ standard libraries for concurrency support. Consequently,
some of the results produced by the action server are returned as instances of the templatized
class std::future or std::shared future. A future is an object that is used to gain access

6.5. ROS ACTIONS 209

to a shared state and provide access to the result produced by an asynchronous operation.
Specifically, in this context, a future is used to pass results between the server and the client,
so that the client can verify if the server has terminated its operation and provided the
result. In ROS, one can use the function spin until future complete to spin until the
result expected to be passed back through a future is ready (thus blocking the caller). We
already saw an instance of this call in Listing 5.7. Once the future has been filled, the result
can be obtained with the member function get. The reader is referred to the official C++
implementation for more details about futures, while in the following examples we will show
the bare minimum to interact with ROS actions.

6.5.2 Goals, Goal Options, Goal Handles and Wrapped Results

In dealing with actions, there are some specific classes that are important. The function
async send goal accepts two parameters. The first is a Goal specifying the parameters for
the action being called. The second parameter is an instance of SendGoalOptions storing
the pointers to three callback functions to be called while the action is executed. The three
callback functions are called to process the response from the action server when an action
is sent, the feedback messages sent during the action execution, and the result sent by the
action server when the action terminates. In the following, we provide a minimal example
showing how to interact with an action server. More specifically, we will call an action called
Spin that is provided by the TurtleBot robot and that makes the robot turn in place. Note,
however, that the action Spin has nothing to do with the function spin we saw earlier.
The structure of the Goal parameter passed as the first parameter to async send goal can
be ascertained using ros2 interface show. For example, the Spin action discussed in the
example is an action of type nav2 msgs::action::Spin, and its interface is as follows:

float32 target_yaw

builtin_interfaces/Duration time_allowance

int32 sec

uint32 nanosec

#result definition

Error codes

Note: The expected priority order of the error should match the message order

uint16 NONE=0

uint16 UNKNOWN=700

uint16 TIMEOUT=701

uint16 TF_ERROR=702

uint16 COLLISION_AHEAD=703

builtin_interfaces/Duration total_elapsed_time

int32 sec

uint32 nanosec

uint16 error_code

210 CHAPTER 6. PLANNING

string error_msg

#feedback definition

float32 angular_distance_traveled

From the output we see that the goal consists of a structure with two fields. target yaw

is a floating point value specifying how much the robot should turn (the value is given in
radians). time allowance is an instance of Duration from the package builtin interfaces

and specifies how much time is allowed for action completion. If not specified, in the current
implementation of Nav2, it defaults to 10 seconds. For an action of type T, the Goal object
is created with a call to T::Goal() (see example 6.1 for the syntax details.)

async send goal returns either the pointer to a future to GoalHandle (see Figure 6.16)
or a nullptr if the server rejects the goal. At this point, the client can proceed in two ways.
It can call spin until future complete on the returned future to get the GoalHandle and
then call async get result on the handle to get a future to a WrappedResult that will be
completed when the action finishes. The WrappedResult, when ready, holds a result code (as
per the values shown in the action interface), as well as a shared pointer to the result segment
in the action definition. The result segment in the action definition is the middle one, so
in the previous example it would be total elapsed time plus an integer error code and a
string error msg. Alternatively, the client can simply call one of the spinning functions until
eventually the callback function associated with the result is called. The callback function
also receives a WrappedResult, so both methods end up getting the same values.

Listing 6.1 shows how a minimal client example can establish a connection to an action
server, send a goal, and then process the messages sent back.

Listing 6.1: Action Client

1 #include <r c l cpp / rc l cpp . hpp>
2 #include <r c l c p p a c t i o n / r c l c p p a c t i o n . hpp>
3 #include <nav2 msgs/ ac t i on / sp in . hpp>
4 #include <act ion msgs /msg/ g o a l s t a t u s . hpp>
5
6 class Act ionCa l l e r : public r c l cpp : : Node {
7
8 public :
9 using GoalHandleSpin =

10 r c l c p p a c t i o n : : ClientGoalHandle<nav2 msgs : : a c t i on : : Spin >;
11 Act ionCa l l e r () : Node (” a c t i o n c a l l e r ”) {
12 s p i n c l i e n t = r c l c p p a c t i o n : : c r e a t e c l i e n t <nav2 msgs : : a c t i on : : Spin>
13 (this , ” sp in ”) ;
14 r o t a t i n g = fa l se ;
15 }
16
17 void RotateRobot (double target yaw) {
18 using namespace std : : p l a c e h o l d e r s ;
19 s p i n c l i e n t −>w a i t f o r a c t i o n s e r v e r () ;
20 auto goa l message = nav2 msgs : : a c t i on : : Spin : : Goal () ;
21 goa l message . target yaw = target yaw ;
22
23 auto s e n d g o a l o p t i o n s =
24 r c l c p p a c t i o n : : Cl ient<nav2 msgs : : a c t i on : : Spin > : : SendGoalOptions () ;

6.5. ROS ACTIONS 211

25 s e n d g o a l o p t i o n s . g o a l r e s p o n s e c a l l b a c k =
26 std : : bind(& Act ionCa l l e r : : r e sp on s e c a l l b a c k , this , 1) ;
27 s e n d g o a l o p t i o n s . f e e d b a c k c a l l b a c k =
28 std : : bind(& Act ionCa l l e r : : f e edback ca l l back , this , 1 , 2) ;
29 s e n d g o a l o p t i o n s . r e s u l t c a l l b a c k =
30 std : : bind(& Act ionCa l l e r : : r e s u l t c a l l b a c k , this , 1) ;
31
32 auto s e n d g o a l f u t u r e =
33 s p i n c l i e n t −>async s end goa l (goal message , s e n d g o a l o p t i o n s) ;
34 r c l cpp : : s p i n u n t i l f u t u r e c o m p l e t e (g e t n o d e b a s e i n t e r f a c e () ,
35 s e n d g o a l f u t u r e) ;
36 }
37
38 bool RobotIsRotat ing () { return r o t a t i n g ; }
39
40 private :
41 r c l c p p a c t i o n : : Cl ient<nav2 msgs : : a c t i on : : Spin > : : SharedPtr s p i n c l i e n t ;
42 bool r o t a t i n g ;
43 void r e s p o n s e c a l l b a c k (const GoalHandleSpin : : SharedPtr & goa l hand l e)
44 {
45 i f (! goa l hand l e) {
46 RCLCPP ERROR(this−>g e t l o g g e r () , ”Goal was r e j e c t e d by a c t i on s e r v e r ”) ;
47 } else {
48 RCLCPP INFO(this−>g e t l o g g e r () , ”Goal accepted by a c t i on s e r v e r ”) ;
49 r o t a t i n g = true ;
50 }
51 }
52
53 void r e s u l t c a l l b a c k (const r c l c p p a c t i o n : : Cl ientGoalHandle
54 <nav2 msgs : : a c t i on : : Spin > : : WrappedResult & r e s u l t)
55 {
56 i f (int (r e s u l t . code) == act ion msgs : : msg : : GoalStatus : : STATUS SUCCEEDED)
57 RCLCPP INFO(g e t l o g g e r () , ” Rotation completed with s u c c e s s ”) ;
58 r o t a t i n g = fa l se ;
59 }
60
61 void f e e d b a c k c a l l b a c k (r c l c p p a c t i o n : : Cl ientGoalHandle
62 <nav2 msgs : : a c t i on : : Spin > : : SharedPtr ,
63 const std : : sha r ed pt r
64 <const nav2 msgs : : a c t i on : : Spin : : Feedback> f)
65 {
66 RCLCPP INFO(g e t l o g g e r () , ”Angle %f ” , f−>a n g u l a r d i s t a n c e t r a v e l e d) ;
67 }
68 } ;
69
70 int main (int argc , char ∗∗ argv) {
71
72 rc l cpp : : i n i t (argc , argv) ; // i n i t i a l i z e the ROS subsystem
73 Act ionCa l l e r node ; // c rea t e node
74 node . RotateRobot (2 . 0) ; // turn ˜ 114 degrees
75 while (node . RobotIsRotat ing ())
76 r c l cpp : : spin some (node . g e t n o d e b a s e i n t e r f a c e ()) ;
77 r c l cpp : : shutdown () ; // shutdown ROS
78 return 0 ;

212 CHAPTER 6. PLANNING

79 }

The class ActionCaller calls the action spin that is part of Nav2, which will be dis-
cussed next. The action will spin the robot in place to a given angle. To offer this func-
tionality, the class features three callback methods (response callback, result callback,
and feedback callback) as well as a pointer to an object of type rclpp action::Client

called spin client. Note that rclpp action::Client uses templates to specify the type
of service used by the client (nav2 msgs::action::Spin).

The client object is initialized in the constructor with the function create client, whose
first parameter is a pointer to a node and the second is a string with the name of the action
(spin, in this case). The action is then called in the method RotateRobot. First, we wait for
the action server to become available by calling wait for action server. Then, a goal mes-
sage to be sent to the server is created with the Goal method of nav2 msgs::action::Spin

and is initialized with the assigned target yaw. In this case, since time allowance is not
specified, we use the default value of 10 seconds. The goal message is sent to the server
together with an instance of SendGoalOptions that includes three pointers to the callback
functions to be called when the action server acknowledges the receipt of the goal, when
feedback is received, and when the result is received. The request to the server is then sent
using the method async send goal, which takes as parameters the goal message and the
goal options. This function activates the action and returns a future that the client can use
to process the message returned by the action server in response to the goal request. This is
done by calling spin until future completed. This is a blocking function that returns a
future to a GoalHandle. In this case, rather than waiting or spinning on the future, in the
main function, after the Spin method has been called, we use spin some to process incoming
feedback and result messages. Eventually, when the result callback function is called, the
variable rotating is set to false and the cycle ends. Note that after the action is called,
the caller and the action server proceed in parallel.

To test this simple program and see it in action open a shell and give the following
commands

ros2 launch gazeboenvs tb4_simulation.launch.py

This will launch a Gazebo simulation with the TurtleBot robot. In a separate shell, run

ros2 run examples actioncall

This will make the robot turn in place in Gazebo. To see more articulated examples of
interactions with ROS actions, see the package navigation in the MRTP GitHub.

6.6 The navigation stack Nav2

Because of its practical importance, ROS supports planning in various ways. However,
as stated earlier in this chapter, an open-loop strategy, where a plan is executed without
incorporating any feedback from sensors, is not a practical approach (see Figure 1.6). For
this reason, the planning components available in ROS are tightly integrated into a more

6.6. THE NAVIGATION STACK NAV2 213

complex system called Nav2 (navigation stack), which provides both planning and execution
with sensor feedback, as well as replanning when needed. From a very high-level standpoint,
Nav2 integrates all the components shown in Figure 1.3, i.e., perception, planning, and
execution. Nav2 is a complex, highly configurable software system that implements a wide
variety of planning and navigation algorithms. It is used by many companies to deploy
successful commercial products and many of its core developers are from the corporate
world.

A complete discussion of Nav2 is beyond the scope of these notes. The reader is referred
to its official website5 for a detailed overview of its many interconnected components. Al-
though we provide an introduction to Nav2 here, some of its core functionalities rely on
localization and mapping algorithms that have not yet been covered and will be discussed
in later chapters. Nevertheless, this is an appropriate point to introduce the component, as
it demonstrates how the material presented so far is essential for deploying robots in the
physical world. In simplified terms, the navigation stack extracts a planning graph from a
given map of the environment, computes a plan, and then executes it by sending appropri-
ate commands to the robot’s motors. Nav2’s default configuration and primary use cases
are geared toward 2D planning and navigation, making it well-suited to the types of robots
considered in these notes. However, it is worth mentioning that it can also incorporate input
from sensors such as depth cameras, which provide three-dimensional data. Additionally, its
plugin-based architecture allows users to retune or extend components to handle more com-
plex scenarios, like outdoor navigation in uneven terrain. Figure 6.17 sketches the high-level
architecture of Nav2.

BT Navigator Server

Planner
Server

Controller
Server

Behavior Tree

TF

map

Sensor Data

Robot
Base

Behavior
ServerGlobal

Costmap
Local

Costmap Route
Server

Smoother
Server

Nav2

Figure 6.17: General overview of Nav2 (figure adapted from https://docs.nav2.org/.)

The larger box represents the overall Nav2 system. Its inputs can be identified on the
left, and its output appears at the bottom. Inputs include:

5https://docs.nav2.org/

https://docs.nav2.org/
https://docs.nav2.org/

214 CHAPTER 6. PLANNING

• a behavior tree specifying how to orchestrate the interactions among submodules;

• transformations from tf2, which describe the kinematic arrangement of objects in the
environment (including the current pose of the robot), as well as the configuration of
sensors mounted on the robot;

• a map of the environment in which the robot is operating (see Figure 6.1);

• sensor data from the robot’s onboard systems, particularly sensors capable of measuring
distances to obstacles.

The output of Nav2 is a stream of commands sent to the robot’s actuators. One of
the key strengths of Nav2 is its adaptable architecture, which can be configured for different
robot bases. This allows developers to write high-level robot software that is largely agnostic
to the underlying hardware configuration.

Inside Nav2, we find six modules, each implemented as a ROS server that provides actions
or services. At the top is the BT (Behavior Tree) Navigator Server, which implements the
highest level of planning and handles the execution of high-level commands, such as “Go to
pose p” or “Navigate through the following waypoints: p1, p2, p3.” This server is responsible
for orchestrating the functionalities provided by the other five servers to accomplish a given
task. In doing so, it balances goal-directed behaviors (e.g., moving toward the goal) with
so-called recovery behaviors, which are executed when the robot encounters unexpected situ-
ations or ceases to make progress. As shown in the figure, the BT Navigator Server receives
as input a Behavior Tree, i.e., a set of rules that specify how to switch between different
tasks. The BT Navigator Server will be discussed in more detail in Section 6.9. The other
five servers offer specific functionalities that will be described shortly and are activated by
the BT Navigator Server. Note that sensor data are provided to two of these servers: the
Controller Server and the Planner Server. Finally, it is worth noting that only the Con-
troller Server is responsible for interacting directly with the robot base by issuing cmd vel

commands to move the robot.
During the execution stage, nodes within Nav2 continuously poll the sensors to make

necessary corrections; in other words, they implement a closed-loop system. Nav2 also
requires that an estimate of the robot’s pose be continuously available via tf, in order to
determine which action to execute next. This estimate can come either directly from a
sensor (e.g., GPS) or from a more sophisticated estimation algorithm (e.g., a particle filter
or Kalman filter, both of which will be discussed in Chapter 8), possibly fusing data from
multiple sources. When setting up the navigation stack, all of these components must be
configured, and multiple nodes are typically launched when using it. The functionalities of
the five additional servers are briefly described next. These servers are also referred to as
plugins because they can be reconfigured using plugin modules.

Planner Server: The Planner Server is responsible for computing a global plan between
the assigned start and goal poses. The computed plan is informed by the available map
of the environment and can take into account the kinematic model of the robot. The
output of the planner is an open-loop reference path. The default implementation of
this server uses some of the planning algorithms discussed earlier in this chapter (see
Section 6.7 for more details).

6.6. THE NAVIGATION STACK NAV2 215

Controller Server: The Controller Server (also known as the local planner) follows the
path computed by the Planner Server. It does this by issuing velocity commands to the
underlying platform. In doing so, the controller implements a closed-loop strategy, i.e.,
it continuously monitors the onboard sensors to ensure the robot follows the assigned
path while avoiding obstacles. The Controller Server is informed by the kinematic
model of the robot and, importantly, by sensor data (see Section 6.8 for more details).

Smoother Server: The Smoother Server modifies a path produced by the Planner Server to
account for additional criteria that the planner may not have considered. For example,
the smoother may eliminate sharp turns (to smooth the path) or increase clearance
from obstacles. This server may be queried optionally.

Behavior Server: This module implements maneuvers to handle failures or unforeseen
events (e.g., when the robot gets stuck and cannot make progress). The behaviors
implemented by this module are triggered by the BT Navigation Server when the robot
fails to make progress toward its assigned goal. Currently, this server implements three
maneuvers: spin, wait, and back up. The spin service we invoked in the example in
Section 6.5 is, in fact, one of the maneuvers offered by the Behavior Server.

Route Server: The Route Server is a high-level planner that computes paths on a naviga-
tion graph. This differs from the Planner Server, which computes paths based on the
environment map, although the navigation graph may have been extracted from the
environment map.

Planning and executing a path in a cluttered environment (e.g., navigating between two
locations in a shopping mall) is generally a complex task. It becomes even more challenging
when the robot must account for dynamic events such as people approaching or changes
in the environment (e.g., a moved obstacle). For this reason, a simple pipeline consisting
of (1) planning, (2) smoothing, and (3) following the path using the controller is often not
sufficiently robust. More sophisticated behaviors are necessary, for example, backing away
from a suddenly appearing obstacle or replanning an entirely new path after encountering
an unforeseen dead end. To ensure robustness and fault tolerance, the BT Navigator Server
is introduced. Nav2 includes a predefined set of behavior trees, allowing beginning users
to rely on these defaults without needing to design their own. In the above breakdown
of functionalities, the Planner Server is also referred to as the global planner, while the
Controller Server is referred to as the local planner. The distinction between these two will
be discussed shortly.

6.6.1 Localization, Maps, and Costmaps

The availability of a map and the ability to localize the robot within that map are es-
sential to most planning and navigation algorithms, and Nav2 is no exception. During
startup, Nav2 loads a static environment map using a bitmap representation similar to
Figure 6.1. This map is typically made available through a topic called /map, of type
nav msgs::msg::OccupancyGrid. A detailed discussion of map representations and map-
ping algorithms will be given in subsequent chapters, but for the time being, the reader may

216 CHAPTER 6. PLANNING

refer back to the brief discussion on map representations provided at the end of Section 6.1.
Poses passed to Nav2 are expressed with respect to the map frame defined in the map data
(see Subsection 4.13.5). Additionally, as the robot moves, it must continuously estimate
its own location relative to the map frame. This assumption is consistent with our earlier
discussion on graph-based planning, where we assumed the robot always knows the vertex
(state) where it is located (refer to the grid world examples discussed previously). In indoor
environments, localization can be achieved by matching readings from onboard sensors to
the provided map (localization will be discussed in Chapter 8). In outdoor environments,
the robot’s pose may instead be obtained from a GPS receiver or, more commonly, by fusing
multiple data streams using a Kalman filter. For now, it is sufficient to note that a dedicated
node launched when Nav2 starts provides this localization functionality.

Nav2 defines and maintains two costmaps that influence the global and local planners
described above (refer to Figure 6.18 for the following discussion). These costmaps are called
the global costmap and the local costmap. As shown in Figure 6.17, sensor data influence
both of these costmaps. Importantly, while both maps are affected by sensor input, they are
commonly configured so that updates occur at different frequencies, with the local costmap
being updated at a higher rate. The global costmap is used by the global planner to find a
long-term, feasible path from the robot’s current position to a distant goal. This is achieved
using planning algorithms such as Dijkstra and A∗ , which operate on weighted graphs. The
local costmap, in contrast, is used by the local planner (control server) to perform short-
term, reactive collision avoidance while following the global path determined by the global
planner. While the global costmap, by definition, is intended to be global and span the
entire workspace, the local costmap is smaller and covers a rectangular area centered around
the robot (e.g., it may cover a square area with a size of 3 meters). Both costmaps are
obtained by superimposing different layers that combine various information sources. The
specific layers included in each costmap can be configured and generally vary, though some
configurations are more common than others. The global costmap typically overlays the
static layer, the obstacle layer, and the inflation layer. The local costmap, on the other
hand, typically includes the inflation layer and the obstacle (or voxel) layer. The static layer
may or may not be included in the local costmap; when it is, it serves to seed the local
costmap. The different layers are defined as follows:

Static Layer: Represents the static map of the environment retrieved from /map at startup.

Obstacle Layer: Incorporates information about static and dynamic obstacles detected by
the onboard sensors. This layer handles dynamic components that were not modeled
in the static layer.

Voxel Layer: Similar to the obstacle layer, but relies on sensors providing three-dimensional
data, such as depth cameras or three-dimensional range finders.

Inflation Layer: The inflation layer adds a safety margin by increasing the costs of cells sur-
rounding the obstacles (thus inflating them). This encourages the planner to stay clear
of obstacles when possible. The inflation layer retrieves its data from the other layers.
The width of the inflation can be configured using a parameter called inflation radius,
which should be chosen based on the size of the robot.

6.6. THE NAVIGATION STACK NAV2 217

(a) Map of the environment (as pro-
vided through the /map topic.) This
corresponds to the static layer in the
global costmap

(b) Global costmap with the static layer
and the inlation layer.

(c) Local costmap with the obstace
layer and the inflation layer.

(d) Superimposition of the global and
local costmaps.

Figure 6.18: Visualization of the different costmaps used by Nav2.

These costmaps are handled by the nav2 costmap 2d package, and they are all instances
of nav msgs::msg::OccupancyGrid. Accordingly, they are represented as bidimensional
regular grids, where each cell contains a cost value between 0 and 255. Free space is repre-
sented by the value 0, while forbidden regions (also called a lethal obstacle) are represented
by the value 254. The value 255 is used to represent cells with an unknown state and ob-
stacles have the value 253. Intermediate values are also used, with higher values guiding

218 CHAPTER 6. PLANNING

the planner to prefer paths that maintain a safe clearance from obstacles (recall how plan-
ning algorithms consider costs when computing an optimal path). The cost associated with
each cell is used by both the planner and the controller servers. The global costmap can be
retrieved from /global costmap/costmap, while the local costmap can be retrieved from
/local costmap/costmap. Although usually not necessary, it is also possible to retrieve the
individual layers (the topics and types can be determined using ros2 topic). The values
computed by both the local and global maps are influenced by the shape of the specific robot
used to initialize Nav2. By using both a global and a local map, Nav2 is able to produce
plans that address both long-term objectives (e.g., reaching a faraway location) and short-
term ones (e.g., avoiding a suddenly appearing obstacle or correcting the trajectory when
the robot veers off course due to disturbances).

6.7 The Planner Server

The planner server can be configured to run different planning algorithms depending on
the application (leveraing its architecture based on plugins). A complete list of available
plugins is available on the Nav2 website. Here we only discuss the NavfnPlanner plugin,
which is widely used. NavfnPlanner computes a path from the current pose to an assigned
target pose. More precisely, it computes a path between a start and an assigned goal cell
in a grid (with the start grid cell identified by the current robot pose). To accomplish
this, the first step is converting the global costmap (i.e., a grid) into a weighted graph.
Each cell in the costmap corresponds to a vertex in the graph, and edges between vertices
are added only if the corresponding cells are adjacent. Edge costs are set based on the
values stored in the costmap. More precisely, the cost of an edge from vertex vi to vertex
vj is based on the value stored in the costmap grid cell corresponding to vertex vj. The
value is not simply copied but is transformed linearly so that each cost falls between two
predetermined values called COST NEUTRAL and COST OBSTACLE, which by default are set to
50 and 253, respectively. NavfnPlanner computes a navigation function by setting the goal
vertex potential value to 0 and then propagating potential values to neighboring cells using6

either Dijkstra or A∗ (Dijkstra is the default). This is akin to the single-source shortest path
algorithm (see Algorithm 3), where the queue OPEN may be sorted using either the cost-
to-come g (Dijkstra) or the estimated cost f = h + g (A∗). Once the start cell is reached,
a path from the starting cell to the goal cell is retrieved performing gradient descent the
computed navigation function (recall the discussion in Section 6.4.) Figure 6.19 shows an
example of a path produced by the NavfnPlanner to move the robot from the top right
location to the bottom left location. Note how the path stays clear of obstacles. This is
because the traversal cost for a cell, factored in by both Dijkstra and A∗ is higher for cells
closer to obstacles.

6The cost-to-come uses a slightly more complex formula than simple addition, but the underlying principle
is the same.

6.8. THE CONTROLLER SERVER 219

Figure 6.19: Global path (red line) produced by the NavfnPlanner. The start location is at
the top, while the goal location is at the bottom. The green circle shows the shape of the
robot.

6.8 The Controller Server

The controller server is implemented by the node controller server through the action
follow path. The controller server implements the local planner, whose task is to follow
the global path generated by the planner server. This path-following process integrates
collision avoidance and reactive motion control by querying the local costmap, which is
continuously updated using data from onboard sensors. This allows the controller server
to avoid obstacles that may have been missing in the global costmap (e.g., humans moving
around the environment) and were therefore unknown to the global planner server. It is
the local planner that ultimately sends commands to move the robot. The controller server
operates at a high frequency, and therefore each velocity command sent to the robot (i.e.,
messages of type geometry msgs::msg::TwistStamped) is intended to be executed only for a
short duration before being replaced by a newly computed one. The interaction between the
planner server and the controller server is orchestrated by the BT Navigator server, described
in the next subsection. The BT Navigator server first calls the planner server, providing a
desired goal pose, and receives back a path, i.e., a message of type nav::msg::Path, whose
structure is shown below:

An array of poses that represents a Path for a robot to follow.

Indicates the frame_id of the path.

std_msgs/Header header

builtin_interfaces/Time stamp

220 CHAPTER 6. PLANNING

int32 sec

uint32 nanosec

string frame_id

Array of poses to follow.

geometry_msgs/PoseStamped[] poses

std_msgs/Header header

builtin_interfaces/Time stamp

int32 sec

uint32 nanosec

string frame_id

Pose pose

Point position

float64 x

float64 y

float64 z

Quaternion orientation

float64 x 0

float64 y 0

float64 z 0

float64 w 1

As we can see, a path consists of an sequence of poses expressed in the frame frame id. The
path is then passed to the controller server through a call to the follow path action.

Like the planner server, the controller server can be configured through dynamic plugins
to implement its reactive path-following function using a variety of algorithms. These are
called controller plugins, and a complete list is available on the Nav2 website. Here we discuss
the DWB controller, which is widely used in practice and is the default in the examples we
present. DWB is a configurable implementation of a local planner based on an algorithm
known in the literature as the Dynamic Window Approach (DWA). DWB is based on the
following idea. First, a set of candidate local trajectories is generated. Different plugins can
be used to generate trajectories using various algorithms (these algorithms are referred to as
trajectory generator plugins.) Next, the set of local trajectories is scored based on how well
they track the global trajectory and how safe they are. Then, the best one determines the
velocity commands that will be executed. The algorithm responsible for scoring the local
trajectories is called a critic. Interestingly, multiple critics can be used at the same time, and
the overall score is obtained by summing the individual scores. This approach is illustrated
in Figure 6.20. As of now, there are two algorithms for trajectory generation:

Standard Trajectory Generator: This algorithm samples the control space of the robot
(e.g., rotational and translational velocities). For each sample, it applies the forward
kinematic model of the robot for a fixed (and short) amount of time and determines
what the resulting trajectory would be. For the forward simulation, it uses a set of
equations similar to those presented in Section 4.9 (e.g., Eq. (4.29) or Eq. (4.30) and
Eq. (4.31)).

Limited Acceleration Generator: This is similar to the previous one but samples a

6.9. THE BT NAVIGATOR SERVER 221

Figure 6.20: Conceptual illustration of how the DWB planner works. Given the global
trajectory to follow (solid black line), a set of K tentative local trajectories is generated
by a trajectory generation plugin (K = 7 in this example). All these trajectories are then
evaluated by the critic, and the best one is executed. In this case, the red trajectory would
receive a low score because it collides with an obstacle in the local costmap.

smaller space constrained by the acceleration limits of the robot, making it more effi-
cient in terms of planning time.

According to the ROS documentation, the two methods perform similarly in terms of
planning success; therefore, the second one is often preferred due to its greater efficiency.
DWB comes with ten different critic plugins that can be used in combination, where each
critic scores a trajectory and a weighted sum of the individual scores provides a comprehen-
sive evaluation. Critic plugins consider aspects such as (this is a partial list): how well the
local plan aligns with the global plan; how much forward progress the local plan achieves;
the cost of the path relative to the local costmap; and so on. Figure 6.21 shows the interplay
between the global and local plans.

6.9 The BT Navigator Server

Planning in a complex, possibly dynamic environment often requires repeated planning or
performing maneuvers to recover from unforeseen circumstances. Therefore, a pipeline more
complex than plan/smooth/execute is necessary. Nav2 implements these high level strategies
through the BT Navigator Server which is the orchestrator and top-level decision-maker
in the Nav2 stack. The BT Navigator Server is implemented by the bt navigator node
which provides two main actions: navigate to pose and navigate through poses. The
BT Navigator server implements its high level functionalities through behavior trees (hence
the name), a planning formalism to specify how different operations (e.g., plan, backup,
replan, etc.) should be triggered depending on how the execution of the plan evolves. Nav2
comes with multiple behavior trees to implement the various high level functionalities offered
and when Nav2 starts it is possible to specify which one should be passed to the BT Navigator
server (see Figure 6.17). Additionally, it is also possble to specify new behavior trees in XML.

In the following we discuss the logic embedded in the behavior tree governing the motion
to a desired pose in response to a call to the navigate to pose action. From a high level
perspective, this system is composed of two subsystems. The first, called the navigation
subtree, is in charge of making progress towards the goal pose. It is expected that most of

222 CHAPTER 6. PLANNING

Figure 6.21: Global plan (green) computed by the planner server and local plan (red) com-
puted by the controller server.

the time the robot is executing the tasks defined in the navigation subtree. The second,
called the recovery subtree, is in charge of recovering from problematic situations that may
arise while navigating to the goal pose (e.g., the robot cannot make progress.)

From a high level perspective, the logic is as follows. The robot starts executing the nav-
igation subtree. When it gets stuck, it switches to the recovery subtree. After the recovery
subtree terminates its execution, the execution goes back to the navigation subtree. The
alternation between the two can continue, i.e., if the robot gets stuck again the recovery sub-
tree is triggered again, although after a fixed (and configurable) number of switches without
reaching the goal position the BT Navigator Server terminates the execution, signaling a
failure in the attempt to reach the goal pose (in the default settings, the recovery subtree is
triggered at most six times.)

The navigation subtree works as follows. The planner server computes a global path to
the goal pose and passes the path to the controller server for execution. To make things more
robust, the global path is not computed once, but rather recomputed at a fixed frequency (1
Hz by default) to ensure that changes in the environment modeled into the global costmap
are taken into consideration. Every time a path is recomputed, it is passed to the controller
server (recall that the controller server only tracks a segment of the global path.) If either
the planner server or the controller server fails, then a contextual recovery is tried, i.e., the
planner checks 1) if the goal has changed; or 2) if clearing the associated costmap results in

6.10. INTERACTING WITH NAV2 223

the server being able to resume the execution. Resuming the execution in this case means
going back to the plan/control cycle. If the contextual recovery fails, the robot switches to
the recovery subtree.

The goal of the recovery tree is to perform a set of actions that may restart the navigation
tree. The recovery tree starts by checking if the goal has changed. If that is the case, then
the recovery terminates and the control goes back to the navigation tree. If the goal has not
changed, then the navigation tree executes four operations in a round-robin fashion. The
four operations are 1) clear the costmaps; 2) spin; 3) wait; 4) backup. Note that the last
three operations are actions offered by the behavior server. As soon as one of these actions
is successful, control goes back to the navigation tree. However, if the navigation tree is still
unable to resume, control comes back to the recovery tree but rather than restarting from
the first operation (clear cost maps) it will start from the first one that was not tried in
the previous round (e.g., if the previous execution of recovery succeeded through spin but
navigation still fails, the next operation will be wait, and so on.)

6.10 Interacting with Nav2

Given the complexity of functionalities offered by Nav2, interacting with it may seem more
complicated than it is. In fact, despite the fact that countless functionalities can be reconfig-
ured, in most instances one can simply rely on the default settings and switch to fine tuning
only when these do not work properly. In this section, we show how to call Nav2 actions
both from the command line and from code. Before starting, it is necessary to make sure
that Nav2 is up and running. In particular, it is important for the localization module to
be properly initialized with the starting location of the robot. Here we rely on the Gazebo
simulations provided with Jazzy and slightly adapted7 to make the following examples work.
To initialize the simulation environment, simply type:

ros2 launch gazeboenvs tb4_simulation.launch.py

This will open the same simulation environment we saw in Section 4.12 and will properly
initialize Nav2. At this point, we can send a goal position to the BT Navigator server via
the command line interface, for example:

ros2 action send_goal /navigate_to_pose nav2_msgs/action/NavigateToPose

"{pose: {header: {frame_id: map}, pose: {position: {x: 10.0, y: 4.0,

z: 0.0}, orientation: {x: 0.0, y: 0.0, z: 0.707, w: 0.707}}}}" --feedback

After having connected to the server, the action commences, printing the action feedback
messages to the screen. At the end, the action result is printed to the screen as well (the
following shows the last feedback message and the result):

7If you start the same simulations coming with the nav2 bringup package, the initial position of the
robot is not initialized and you will have to do it manually, either from rviz2 or by calling a service. The
one provided in the MRTP website comes with the initial position already set.

224 CHAPTER 6. PLANNING

Feedback:

current_pose:

header:

stamp:

sec: 281

nanosec: 232000000

frame_id: map

pose:

position:

x: 9.96245331540172

y: 4.109822104188528

z: 0.0

orientation:

x: 0.0

y: 0.0

z: 0.6133636328253297

w: 0.7898006418883908

navigation_time:

sec: 9

nanosec: 231000000

estimated_time_remaining:

sec: 3

nanosec: 290356111

number_of_recoveries: 0

distance_remaining: 0.14307163655757904

Result:

error_code: 0

error_msg: ’’

Goal finished with status: SUCCEEDED

Note that even though the target 2D pose was (x, y) = (10, 4), the robot stops at a slightly
different position (9.962, 4.109). The same is true for the orientation. This is because Nav2
is run with the default configuration that considers a pose reached with a certain error
tolerance. This configurable parameter can be changed to make the action execution more
precise.

The other alternative to interface with Nav2 is to write ROS nodes that call Nav2 services
and actions. To simplify this task, Nav2 provides a so-called Simple Commander API whose
goal is to offer “navigation as a library” to Python3 programmers. The navigation package
in the MRTP GitHub implements a C++ porting of most8 functionalities of the same library.
Listing 6.2 shows how the library can be used to interact with the navigation library. The
reader is referred to the MRTP website for a detailed description of the API. To test the

8The C++ porting was initially developed based on the Foxy version and replicates the API offered at
that time. In Jazzy, a few more functionalities have been added and those at the moment have not been
ported yet.

6.10. INTERACTING WITH NAV2 225

code first start the following Gazebo simulation:

ros2 launch nav2_bringup tb3_simulation_launch.py headless:=False

and then run the demo:

ros2 run navigation testpackage

This command starts both Gazebo and RViz. It is instructive to look at the trajectories and
maps being plotted in Rviz while the robot goes through the the different steps.

Listing 6.2: Navigation Library Client

1 #include <r c l cpp / rc l cpp . hpp>
2 #include <nav igat ion / nav igat i on . hpp>
3 #include <iostream>
4 #include <memory>
5
6 /∗ Tests a l l f u n c t i o n a l i t i e s in the nav i ga t i on l i b r a r y ∗/
7
8 int main (int argc , char ∗∗ argv) {
9

10 rc l cpp : : i n i t (argc , argv) ;
11 Navigator nav igator (true) ; // c rea t e node wi th debug in f o on ly
12
13 // F i r s t t e s t i n i t i a l i z a t i o n methods
14 geometry msgs : : msg : : Pose : : SharedPtr i n i t =
15 std : : make shared<geometry msgs : : msg : : Pose >() ;
16 i n i t −>p o s i t i o n . x = −2;
17 i n i t −>p o s i t i o n . y = −0.5;
18 i n i t −>o r i e n t a t i o n .w = 1 ;
19 nav igator . S e t I n i t i a l P o s e (i n i t) ; // t e s t S e t I n i t i a l P o s e
20 nav igator . WaitUntilNav2Active () ; // t e s t Wai tUnt i lAct ive
21
22 // Now s t a r t t e s t i n g f u n c t i o n a l i t i e s
23
24 nav igator . Spin () ; // t e s t Spin ac t i on
25 while (! nav igator . IsTaskComplete ()) { // t e s t IsTaskComplete
26 auto f e edback pt r = nav igator . GetFeedback () ; // t e s t GetFeedback
27 auto p t r s p i n = std : : s t a t i c p o i n t e r c a s t
28 <const nav2 msgs : : a c t i on : : Spin : : Feedback>(f e edback pt r) ;
29 std : : cout << ”Feedback : angular d i s t ance t r a v e l e d ” <<
30 pt r sp in −>a n g u l a r d i s t a n c e t r a v e l e d << std : : endl ;
31
32 }
33 auto r e s u l t = nav igator . GetResult () ; // t e s t GetResul t
34 i f (r e s u l t == r c l c p p a c t i o n : : ResultCode : :SUCCEEDED)
35 std : : cout << ” Spin a c t i on succeeded ” << std : : endl ;
36 else
37 std : : cout << ” Spin goa l was not achieved ” << std : : endl ;
38
39 nav igator . Spin (−1 .57) ; // execu te Spin ac t i on again to cance l i t
40 int i = 0 ;

226 CHAPTER 6. PLANNING

41 // wai t f o r 3 f eedback messages and then cance l
42 while ((! nav igator . IsTaskComplete ()) && (i < 3)) {
43 i ++;
44 }
45 nav igator . CancelTask () ; // t e s t CancelTask
46 r e s u l t = nav igator . GetResult () ;
47 i f (r e s u l t == r c l c p p a c t i o n : : ResultCode : :CANCELED)
48 std : : cout <<” Spin a c t i on was cance l ed as intended ” << std : : endl ;
49 else
50 std : : cout <<” Cancel task did not r e turn the expected r e s u l t . ” << std : : endl ;
51
52
53 // t e s t GoToPose
54 geometry msgs : : msg : : Pose : : SharedPtr
55 goa l po s = std : : make shared<geometry msgs : : msg : : Pose >() ;
56 goa l pos −>p o s i t i o n . x = 2 ;
57 goa l pos −>p o s i t i o n . y = 1 ;
58 goa l pos −>o r i e n t a t i o n .w = 1 ;
59 // move to new pose
60 nav igator . GoToPose (goa l po s) ;
61 while (! nav igator . IsTaskComplete ()) {
62 auto f e edback pt r = nav igator . GetFeedback () ;
63 auto pt r go topose = std : : s t a t i c p o i n t e r c a s t
64 <const nav2 msgs : : a c t i on : : NavigateToPose : : Feedback>(f e edback pt r) ;
65 std : : cout << ” Distance remaining : ”
66 << ptr gotopose −>d i s tance r ema in ing << std : : endl ;
67 }
68 r e s u l t = nav igator . GetResult () ;
69 i f (r e s u l t == r c l c p p a c t i o n : : ResultCode : :SUCCEEDED)
70 std : : cout << ”GoToPose a c t i on succeeded ” << std : : endl ;
71 else
72 std : : cout << ”GoToPose goa l was not ach ieved ” << std : : endl ;
73
74 // t e s t c learLocalCostMap
75 std : : cout << ” Clear ing l o c a l costmap” << std : : endl ;
76 nav igator . ClearLocalCostmap () ;
77
78 // t e s t c learLocalCostMap
79 std : : cout << ” Clear ing g l o b a l costmap” << std : : endl ;
80 nav igator . ClearGlobalCostmap () ;
81
82 // t e s t c learAl lCostMaps
83 std : : cout << ” Clear ing a l l costmaps” << std : : endl ;
84 nav igator . ClearAllCostmaps () ;
85
86
87 // t e s t Backup
88 nav igator . Backup (0 . 1 , 0 . 1) ; // backup 0.1m at 0.1 m/s
89 while (! nav igator . IsTaskComplete ()) {
90
91 }
92 r e s u l t = nav igator . GetResult () ;
93 i f (r e s u l t == r c l c p p a c t i o n : : ResultCode : :SUCCEEDED)
94 std : : cout << ”Backup ac t i on succeeded ” << std : : endl ;

6.10. INTERACTING WITH NAV2 227

95 else
96 std : : cout << ”Backup goa l was not achieved ” << std : : endl ;
97
98 // t e s t GetGlobalCostmap
99 std : : shared ptr<nav2 msgs : : msg : : Costmap> g loba l costmap =

100 nav igator . GetGlobalCostmap () ;
101 std : : cout << ” Global costmap has dimensions ” <<
102 global costmap−>metadata . s i z e x << ” , ” <<
103 global costmap−>metadata . s i z e y << std : : endl ;
104
105 // t e s t GetLocalCostmap
106 std : : shared ptr<nav2 msgs : : msg : : Costmap> l o ca l co s tmap =
107 nav igator . GetLocalCostmap () ;
108 std : : cout << ” Global costmap has dimensions ” <<
109 loca l costmap −>metadata . s i z e x << ” , ” <<
110 loca l costmap −>metadata . s i z e y << std : : endl ;
111
112 // t e s t GetPath
113 goa l po s = std : : make shared<geometry msgs : : msg : : Pose >() ;
114 goa l pos −>p o s i t i o n . x = 2 ;
115 goa l pos −>p o s i t i o n . y = −1;
116 goa l pos −>o r i e n t a t i o n .w = 1 ;
117 // move to new pose
118 auto path = nav igator . GetPath (goa l po s) ;
119 while (! nav igator . IsTaskComplete ()) {
120
121 }
122 r e s u l t = nav igator . GetResult () ;
123 i f (r e s u l t == r c l c p p a c t i o n : : ResultCode : :SUCCEEDED) {
124 std : : cout << ”GetPath ac t i on succeeded ” << std : : endl ;
125 std : : cout << ” Received a path with ” << path−>poses . s i z e () <<
126 ” in t e rmed ia t e poses ” << std : : endl ;
127 }
128 else
129 std : : cout << ”GetPath goa l was not ach ieved ” << std : : endl ;
130
131 // t e s t Fol lowPath (but on ly i f a path was re turned)
132 i f (r e s u l t == r c l c p p a c t i o n : : ResultCode : :SUCCEEDED) {
133 nav igator . FollowPath (path) ;
134 while (! nav igator . IsTaskComplete ()) {
135
136 }
137 r e s u l t = nav igator . GetResult () ;
138 i f (r e s u l t == r c l c p p a c t i o n : : ResultCode : :SUCCEEDED)
139 std : : cout << ”FollowPath ac t i on succeeded ” << std : : endl ;
140 else
141 std : : cout << ”FollowPath goa l was not achieved ” << std : : endl ;
142 }
143
144 // t e s t FollowWaypoints
145 geometry msgs : : msg : : PoseStamped p1 , p2 , p3 ;
146 p1 . pose . p o s i t i o n . x = 2 ;
147 p1 . pose . p o s i t i o n . y = 1 ;
148 p2 . pose . p o s i t i o n . x = −2;

228 CHAPTER 6. PLANNING

149 p2 . pose . p o s i t i o n . y = 1 ;
150 p3 . pose . p o s i t i o n . x = −2;
151 p3 . pose . p o s i t i o n . y = −1;
152 std : : vector<geometry msgs : : msg : : PoseStamped> p o i n t L i s t ;
153 p o i n t L i s t . push back (p1) ;
154 p o i n t L i s t . push back (p2) ;
155 p o i n t L i s t . push back (p3) ;
156 nav igator . FollowWaypoints (p o i n t L i s t) ;
157 while (! nav igator . IsTaskComplete ()) {
158
159 }
160 r e s u l t = nav igator . GetResult () ;
161 i f (r e s u l t == r c l c p p a c t i o n : : ResultCode : :SUCCEEDED)
162 std : : cout << ”FollowWaypoints a c t i on succeeded ” << std : : endl ;
163 else
164 std : : cout << ”FollowWaypoints goa l was not ach ieved ” << std : : endl ;
165
166 // t e s t ChangeMap −− shou ld f a i l
167 nav igator . ChangeMap(”bogusmap . png”) ;
168 r e s u l t = nav igator . GetResult () ;
169 i f (r e s u l t == r c l c p p a c t i o n : : ResultCode : :SUCCEEDED)
170 std : : cout << ”ChangeMap ac t i on succeeded ” << std : : endl ;
171 else
172 std : : cout << ”ChangeMap goa l was not ach ieved ” << std : : endl ;
173
174 rc l cpp : : shutdown () ; // shutdown ROS
175 return 0 ;
176 }

The library is accessed by creating an instance of the class Navigator and then calling
its various methods. An important point to consider is that, differently from the previous
example, the simulation file provided with the nav2 bringup package does not set the initial
position of the robot. Therefore, before starting to interact with Nav2, it is necessary to
set the robot’s initial pose by calling the method SetInitialPose. If the pose is instead
already set, this is not necessary. Then, a call to WaitUntilNav2Active stops the program, if
needed, until the various components of Nav2 are up and running. From that point onwards,
it is possible to call the various methods as shown in the example. Calls to methods that
invoke actions (such as Spin, GoToPose, etc.) are non-blocking. These can be canceled
while being executed by calling the method CancelTask, and it is also possible to retrieve
feedback messages while they are executed with the method GetFeedback. Action results
can be accessed using the method GetResult. On the contrary, calls to methods that invoke
services (such as ClearLocalCostMap or ChangeMap) are blocking, but are nevertheless quick
to execute.

Further Reading

LaValle’s book [29] provides a thorough introduction to planning algorithms with a particular
emphasis on robotics problems. The classic AI book by Russel and Norvig also covers search
planning algorithms [47]. Another book presenting planning algorithms within a robotics

6.10. INTERACTING WITH NAV2 229

framework is [11]. Finally, [13] is the definitive guide about algorithms, including the graph
search methods presented in this chapter. The reader is referred to it for proofs about
complexity, correctness, etc. The Nav2 system is extensively discussed in its website, while
a more concise introduction can be found in [37]. Additional articles, such as [32, 35, 36],
provide details about the various algorithms implemented inside Nav2’s components. The
Dynamic Window Approach was originally proposed in [23].

230 CHAPTER 6. PLANNING

Chapter 7

Perception

7.1 Introduction

So far we have not explicitly considered how the robot could acquire information about
its surrounding environment or about itself. This has not been necessary for two reasons.
First, it was assumed that the robot already had a model of its world (e.g., the planning
graph), and it was moreover hypothesized that the outcome of actions was fully predictable.
Under these conditions one can develop algorithms that do not rely on perception, or in
other words, one can rely on an open loop approach. As formerly stated, these hypotheses
are either unrealistic (the effect of actions is never fully predictable) or impractical (a robot
is often tasked with operating in an environment for which a full model is not available or
changes over time). Consequently, the open loop approach is doomed to fail in practice.
Indeed, as we discussed in section 6.6, realistic systems to implement navigation in the real
world integrate perception while plans are executed.

Consequently, robots are equipped with numerous sensors to extract information about
their surrounding environment or about themselves. In Chapter 1 we have introduced the
formalism to consider perception in robotics. In particular, we have introduced the state
observation equation (Eq. (1.2)) to model this process. The following is the discrete, time-
invariant version of the relationship (Eq. (1.8)):

zt = h(xt,ut). (7.1)

As anticipated in Chapter 1, in many instances it is possible to assume that the sensor
reading is independent of the input given to the robot, and therefore the above relationship
can often be simplified as follows (time-invariant version of Eq. (1.9)):

zt = h(xt). (7.2)

These equations outline that the sensor reading zt at time t is a function of the state at time
t (i.e., xt) and possibly of the input, though most often this is not the case, as in Eq. (7.2).
This notation tacitly makes two assumptions. The first is that if the robot is equipped with
multiple sensors, and they are all queried at time t, then their collective readings can be
stacked together in a single vector zt with an adequate number of components. If this is
not the case, e.g., different sensors are queried at different times, or if one prefers to keep

231

232 CHAPTER 7. PERCEPTION

the various readings separate, then it is necessary to introduce multiple state observation
functions h1, h2, . . . , to separately consider every sensor. The other assumption is that the
function h implicitly models the environment. Indeed, the sensor reading is not only a
function of the robot state xt (and possibly of the input ut), but of the environment, too.
For example, consider the simple case of a robot equipped with a sensor measuring the
distance from the closest obstacle in front of the robot. This can be easily implemented
with a laser range finder. The distance returned by the sensor is obviously a function of
both where the robot is in the environment and of the environment itself. However, for a
static environment, this dependency can be included in h itself and therefore not explicitly
included among the arguments of the function h. In some cases considered later on, this
dependency may be explicitly noted. This is, for example, the case when the environment
changes over time, or when it is convenient to explicitly outline this dependency because of
the task we are solving (e.g., building a map of the environment.)

A realistic sensor, however, is not well modeled by Eq. (7.1) nor Eq. (7.2), because they
do not account for the unavoidable noise affecting the perception process. More realistic
relationships would be

zt = h(xt,ut, ψt) zt = h(xt, ψt)

where ψt is a disturbance at time t. The impact of noise and how to deal with it will be
considered in Chapter 8. In this chapter, instead, we focus on how sensors can be queried
in ROS. All sensors are subject to measurement errors. The simplest way to think of these
errors is through an additive noise component, i.e.,

h(xt,ut, ψt) = hc(xt,ut) + ψt

or
h(xt, ψt) = hc(xt) + ψt

where hc is the error-free sensor reading (“correct” sensor reading) and ψt is the error.
These two components cannot be separated, but one may in general have some statistical
description for the error ψt. In other cases, the error may affect the correct sensor reading
in more subtle ways. Note, however, that the correct sensor reading hc is mostly useful for
conceptual purposes, but is not really accessible in reality. This model will be heavily used
in Chapter 8, where estimation algorithms are discussed.

7.1.1 Dead Reckoning

The equations described above are not strictly applicable for one class of sensors very popular
in mobile robotics that go under the name of dead reckoning. These sensors produce an
estimate of the state (e.g., pose) by integrating the state derivative (e.g., velocity) over time.

x(t) = x(0) +

∫ t

0

ẋ(ν)dν. (7.3)

As per Eq. (1.1), the state derivative ẋ at time t depends on the input u, and therefore
strictly speaking, the value returned at a given time t is a function of the initial value at

7.2. SENSORS 233

time 0 and the sequence of inputs given up to time t (and not just of the state and input at
time t as in Eq. (7.1).) The odometry sensor we present in section 7.4.6 is a prime example
of this type of sensor. Sensors based on dead reckoning share the following features. First,
they require an initial condition, i.e., x(0) in Eq. (7.3) (oftentimes this is set to a default
value, e.g., a vector of 0s). Second, their error tends to grow over time, as is typical of
processes relying on integration. Finally, note that Eq. (7.3) describes a numerical method
to obtain a state estimate. Therefore, an odometry sensor must incorporate this computation
internally. However, such computation in some cases is relatively striaghtforward as Eq. (7.3)
is implemented as a discrete time approximation.

7.2 Sensors

Sensor technology continuously evolves. Consequently, any survey aiming at describing the
technical details of the state of the art is doomed to quickly become obsolete. In these
notes, we abstract away from the underlying technology and focus instead on the type of
information returned by sensors, how it can be used to develop more robust robot control
systems, and how it is handled in ROS.

Sensors can be characterized in different ways. A first distinction is between propriocep-
tive and exteroceptive sensors. Proprioceptive sensors return information about the robot.
For example, they may return its velocity, its orientation in space, the battery level, and so
on. Exteroceptive sensors return information about the outside of the robot, i.e., about the
environment. These include, for example, cameras, range finders (i.e., sensors measuring the
distances to obstacles), etc. Most of the time, robots use both types of sensors. The following
lists are in no way meant to be exhaustive. Our emphasis is on the type of information they
provide, without considering the underlying physical processes generating the information
collected.

7.2.1 Proprioceptive sensors

Encoder: an encoder provides information about the angular position and/or velocity of
a motor. Typically, there is one encoder per motor (or per wheel). By relating the
angular velocity of a motor with the models presented in Section 4.9, it is possible
to infer, for example, the velocity of the robot. The value returned by this sensor is
typically a vector with two numeric values (e.g., angular position and angular velocity)
per motor. Encoder values are often used to implement dead reckoning.

Accelerometer: as the name suggests, this sensor measures the acceleration along one or
more axes. An accelerometer returns a vector of values, i.e., the acceleration compo-
nents along a set of predefined axes (typically one or three).

Gyroscope: a gyroscope measures angular velocity or angular orientation relative to a
predefined frame.

Inertial Measurement Unit: under this category we include a family of sensors integrat-
ing accelerometers and gyroscopes to return both linear acceleration as well as angular

234 CHAPTER 7. PERCEPTION

velocities and/or orientation. These sensors are also sometimes referred to as inertial
navigation units or using other names. The terminology is not standard. The term
inertial navigation system is instead used to indicate the system including both the
sensor and the computational unit processing the data returned by the sensor. The
specific values provided by the sensor depend on the underlying technology, and typ-
ically include acceleration along three axes, orientation (e.g., as a quaternion), and
angular velocities.

Battery sensor: this sensor provides information about the battery system powering the
robot. Typically, it provides a vector of numeric values, like the current voltage, the
current charge, etc.

7.2.2 Exteroceptive sensors

Sonar: a sonar returns the distance to the closest obstacle in a given direction (see Figure
7.1). Sonars typically have a relatively short maximum range (e.g., three meters), and
a relatively wide opening, so they can be effectively used for safety purposes (obstacle
detection and avoidance), but are not ideal for localizing features in the environment
or building maps. Robots often mount various sonars, and the sensor system returns a
vector with one value per sonar. Sonars are rather noisy and imprecise but extremely
inexpensive.

Laser rangefinder: a laser rangefinder (also called LiDAR for Light Detection and Rang-
ing) measures distances along a set of directions. Those most commonly found in
robotics are so-called planar rangefinders, meaning that they return distances along
a plane (see Figure 7.1). Typically, they have an angular field of view of 180 or 270
degrees, and a spacing of 1 or half a degree between two adjacent readings. The sensor
returns a vector with one value per reading. As for the sonar, a laser rangefinder has
a maximum range, and when a returned value equals the maximum range, it typically
means that the closest obstacle in that direction is farther than the maximum range.
Laser rangefinders are much more accurate than sonars, but also more expensive.

3D rangefinder: this type of sensor can be thought of as the three-dimensional version
of a laser rangefinder, i.e., its readings are not arranged on a plane, but rather span
a solid angle. The value returned is typically represented by a point cloud, i.e., a
set of point coordinates referred to a reference frame placed on the sensor. Three-
dimensional LiDAR sensors are extensively used in autonomous vehicles. Technology
for these sensors is continuously improving, and there exist very different approaches
to generate a point cloud. While the information produced by these sensor is very
rich, the main drawback is their cost and the fact that they produce a high volume of
information that may require quite some computational power for timely processing.

GPS: a GPS sensor returns the latitude and longitude of the robot (and typically also
the altitude) by measuring the signals received from a set of satellites. Although the
GPS returns the pose of the robot, it is considered an exteroceptive sensor because it
determines this information by measuring quantities external to the robot.

7.3. SENSORS IN ROS 235

Camera (2D): robots often use one or more cameras. These return a matrix of values
encoding the information about every pixel (e.g., RGB values, etc.).

Depth Camera: a depth camera (also called RGB-D camera) produces measurements for
the depth (distance) of the pixels in the image, thus producing a 3D point cloud (see
Figure 7.2). Fueled by sustained user demand for a variety of applications, technological
advances in this domain are at an all-time high.

Contact sensor: contact sensors are used to determine if the robot is touching something.
In mobile robots, they are often placed around the robot. Each sensor returns a binary
value (contact/no contact). These sensors are also called bumper sensors.

Figure 7.1: A Pioneer P3AT robot with a range finder and sonars.

Figure 7.2: An Intel RealSense depth camera.

7.3 Sensors in ROS

ROS provides support for sensors in two ways. First, it provides the package sensor msgs

defining various messages useful to exchange information returned by sensors. In addition, it
provides nodes to interact with various hardware devices. In essence, these nodes implement
drivers, i.e., they exchange information with the underlying hardware often using proprietary
or device-specific protocols, and they provide data to the rest of the application by publishing
suitable messages on assigned topics. From a design point of view, the node subscribing to
these topics is independent and decoupled from the pipeline upstream, i.e., it can ignore the
process that led to the messages appearing on the topic it subscribes to. This is consistent
with ROS overall architecture based on loosely coupled nodes and makes code much more
portable and easier to maintain. Table 7.1 shows the associations between messages defined

236 CHAPTER 7. PERCEPTION

Message Type Sensor
BatteryState Status of battery (e.g., voltage and other info)
Image Camera image
Imu Inertial Measurement Unit
JointState Status of set of joints (position, velocity, torque)
LaserScan Planar range finder (e.g., laser)
NavSatFix GPS
PointCloud Collection of 3D points returned by a 3D rangefinder (deprecated)
PointCloud2 Collection of 3D points returned by a 3D scanner (2nd version)
Range Single range reading (e.g., sonar)

Table 7.1: Association between messages in the sensor msgs package and sensors.

in the sensor msgs package and sensors (only a subset of messages is displayed). A notable
sensor missing in the table is the 2D camera. The package sensor msgs includes messages of
type sensor msg::msg::Image and sensor msg::msg::ImageCompressed to transmit and
receive images and compressed images (essentially, a matrix of data). However, given that
computer vision is a discipline on its own, in the following we will not investigate this type
of sensor and the associated ROS infrastructure.

7.4 Sensor messages of common use

In this section we discuss some of the messages most commonly used in ROS to exchange
and process sensor data.

7.4.1 Laser Scan

Messages of type sensor msgs::LaserScan are used to transmit data produced by a planar
laser range finder, such as the Sick LMS 200 mounted on the robot shown in Figure 7.1. A
laser range finder is a sensor that returns an array of readings with distances along a set of
predefined directions lying on a plane. Each message contains the data from a single scan
and has the following structure:

std_msgs/Header header # timestamp in the header is the acquisition time of

builtin_interfaces/Time stamp

int32 sec

uint32 nanosec

string frame_id

the first ray in the scan.

#

in frame frame_id, angles are measured around

the positive Z axis (counterclockwise, if Z is up)

with zero angle being forward along the x axis

7.4. SENSOR MESSAGES OF COMMON USE 237

float32 angle_min # start angle of the scan [rad]

float32 angle_max # end angle of the scan [rad]

float32 angle_increment # angular distance between measurements [rad]

float32 time_increment # time between measurements [seconds] - if your scanner

is moving, this will be used in interpolating position

of 3d points

float32 scan_time # time between scans [seconds]

float32 range_min # minimum range value [m]

float32 range_max # maximum range value [m]

float32[] ranges # range data [m]

(Note: values < range_min or > range_max should be discarded)

float32[] intensities # intensity data [device-specific units]. If your

device does not provide intensities, please leave

the array empty.

The message includes the familiar std msgs::msg::Header field, which contains infor-
mation about when the scan was taken and the frame with respect to which the results are
reported. Typically, the field frame id in header is set to base laser, and the relation-
ship between base laser and base link can be determined through the tf static topic.
In the coordinate frame specified by frame id, angles are measured around the positive
z-axis, with zero angle pointing forward along the x-axis. Note that ranges smaller than
range min or larger than range max are considered spurious and should be discarded. The
three fields angle min, angle max, and angle increment are expressed in radians and de-
fine the geometry of the sensor (see Figure 7.3 for the meaning of these parameters). The
fields range min and range max define the valid interval for range measurements; readings
outside these bounds should be discarded. The field ranges is an array containing the
range readings. While the number of elements can be explicitly retrieved using the size

attribute, it can also be inferred from angle min, angle max, and angle increment. The
field intensities contains an intensity value for each range reading; its interpretation is
sensor-specific, and it will not be used in the following. Similarly, the fields time increment

and scan time provide timing information which, in simple applications, can be ignored.1

Figure 7.4 shows a rendering in RViz of the data returned by a range scanner with a 360
degrees field of view. The pose of the robot is indicated by the frame on the lower right, and
the robot is operating in the environment shown in figure 6.18.

Listing 3.15 shows the code of a node reading from a rangefinder from the topic scan,
extracting the closest value, and returning it on a different topic called closest. This is
shown in listing 7.1 (as for example 3.15. To test this code you need to run

ros2 launch gazeboenvs tb4_simulation.launch.py use_rviz:=True

to generate the data. To run the node run

1What are these times used for? If the robot moves while performing a scan, the sensor itself moves as
well. These fields can be used to compensate for the sensor motion during the scan.

238 CHAPTER 7. PERCEPTION

Figure 7.3: Interpretation of the parameters included in a sensor msgs::msg::LaserScan

message.

ros2 run examples pubsubstl

and to visualize the output run

ros2 topic echo closest

Listing 7.1: Publisher/subscriber node

1 #include <r c l cpp / rc l cpp . hpp>
2 #include <sensor msgs /msg/ l a s e r s c a n . hpp> // to r e c e i v e l a s e r scans
3 #include <std msgs /msg/ f l o a t 3 2 . hpp> // to send f l o a t i n g po in t numbers
4 #include <algor ithm> // f o r s t l min a l gor i thm
5
6 class FindClosest : public r c l cpp : : Node {
7 public :
8 FindClosest () : Node (” pubsubst l ”) {
9 pubf = this−>c r e a t e p u b l i s h e r <std msgs : : msg : : Float32 >(” c l o s e s t ” , 1 0 0 0) ;

10 sub = this−>c r e a t e s u b s c r i p t i o n <sensor msgs : : msg : : LaserScan>
11 (” scan ” ,10 , std : : bind(&FindClosest : : processScan ,
12 this , s td : : p l a c e h o l d e r s : : 1)) ;
13 }
14
15 private :
16 void processScan (const sensor msgs : : msg : : LaserScan : : SharedPtr msg) {
17 std : : vector<f loat > : : c o n s t i t e r a t o r minval =
18 min (msg−>ranges . begin () , msg−>ranges . end ()) ;
19 std msgs : : msg : : Float32 msg to send ;
20 msg to send . data = ∗minval ;
21 pubf−>pub l i sh (msg to send) ; // pu b l i s h r e s u l t
22 }
23 rc l cpp : : Publ i sher<std msgs : : msg : : Float32 > : : SharedPtr pubf ;

7.4. SENSOR MESSAGES OF COMMON USE 239

Figure 7.4: RViz visualization of data returned by a range scanner with a 360 degree field
of view. Red dots indicate the readings returned by the LiDAR. The robot is located in the
middle where the frames are displayed. This fgure is best interpreted looking at the Gazebo
simulation, too.

24 rc l cpp : : Subscr ipt ion<sensor msgs : : msg : : LaserScan > : : SharedPtr sub ;
25 } ;
26
27 int main (int argc , char ∗∗ argv) {
28
29 rc l cpp : : i n i t (argc , argv) ;
30 r c l cpp : : sp in (std : : make shared<FindClosest > ()) ; // crea t e and sp in
31 rc l cpp : : shutdown () ;
32 return 0 ;
33 }

7.4.2 Single Range

Messages of type sensor msgs::Range are used to acquire data from single-reading range
sensors, such as ultrasound or infrared. These sensors also return distance measurements
and operate on the principle of emitting a signal and detecting its reflection (if any). Robots
often mount several of these sensors, like the P3AT shown in Figure 7.1, which has sixteen
sonars (eight on the front and eight on the back). Each sensor, however, returns its own

240 CHAPTER 7. PERCEPTION

reading. The structure of the message is as follows:

std_msgs/Header header # timestamp in the header is the time the ranger

builtin_interfaces/Time stamp

int32 sec

uint32 nanosec

string frame_id

returned the distance reading

Radiation type enums

If you want a value added to this list, send an email to the ros-users list

uint8 ULTRASOUND=0

uint8 INFRARED=1

uint8 radiation_type # the type of radiation used by the sensor

(sound, IR, etc) [enum]

float32 field_of_view # the size of the arc that the distance reading is

valid for [rad]

the object causing the range reading may have

been anywhere within -field_of_view/2 and

field_of_view/2 at the measured range.

0 angle corresponds to the x-axis of the sensor.

float32 min_range # minimum range value [m]

float32 max_range # maximum range value [m]

Fixed distance rangers require min_range==max_range

float32 range # range data [m]

(Note: values < range_min or > range_max should be

discarded)

Fixed distance rangers only output -Inf or +Inf.

-Inf represents a detection within fixed distance.

(Detection too close to the sensor to quantify)

+Inf represents no detection within the fixed distance

(Object out of range)

float32 variance # variance of the range sensor

0 is interpreted as variance unknown

Besides the usual header field, there is the radiation type, which indicates the type of
signal used to determine the reading—either ultrasound (value 0) or infrared (value 1). The
message accommodates both range sensors that return distances within a range, as well as
fixed-distance rangers that determine whether an obstacle is closer than a fixed threshold
(hence the name).

For range sensors returning distances, similar to the LaserScan message, there are two
fields, min range and max range, which specify the range outside of which readings should

7.4. SENSOR MESSAGES OF COMMON USE 241

be discarded. Additionally, range indicates the distance returned, and variance provides
the associated variance.

For fixed-distance rangers, only two readings are returned: -Inf if the obstacle is closer
than the specified range, and +Inf if it is farther.

In both cases, field of view specifies the sensor’s opening angle in radians (see Fig-
ure 7.5). In essence, the distance reading corresponds to an obstacle that reflected the signal
and is located somewhere within the field of view.

Figure 7.5: Meaning of the parameters included in a sensor msgs::Range message.

7.4.3 Inertial Measurement Unit

Messages of type sensor msgs::msg::Imu are used to exchange information produced by
inertial measurement units (IMUs). Since there is considerable variability among these
devices, the message is structured to include all possible estimates. However, when working
with a specific device, some quantities may not be computed; in such cases, the corresponding
field includes a flag indicating the lack of data. IMUs combine multiple accelerometers
and gyroscopes to determine linear accelerations and angular velocities. Moreover, through
integration, orientation can also be determined. The structure of the message is as follows:

std_msgs/Header header

builtin_interfaces/Time stamp

int32 sec

uint32 nanosec

string frame_id

geometry_msgs/Quaternion orientation

float64 x 0

242 CHAPTER 7. PERCEPTION

float64 y 0

float64 z 0

float64 w 1

float64[9] orientation_covariance # Row major about x, y, z axes

geometry_msgs/Vector3 angular_velocity

float64 x

float64 y

float64 z

float64[9] angular_velocity_covariance # Row major about x, y, z axes

geometry_msgs/Vector3 linear_acceleration

float64 x

float64 y

float64 z

float64[9] linear_acceleration_covariance # Row major x, y z

In addition to the header, the message includes the orientation (represented as a quaternion),
the angular velocity, and the linear acceleration. Each of these fields is accompanied by an
associated 3× 3 covariance matrix. If a specific device does not return one of the fields—or
a component within a field (e.g., it does not return the linear acceleration along the z
axis)—the first element in the corresponding covariance matrix is set to −1 to indicate that
the data is missing. For example, if the IMU does not provide the linear acceleration, then
linear acceleration covariance[0] is set to −1. Therefore, before using any of the fields,
it is always necessary to first check the covariance matrix to determine whether the data is
actually provided by the sensor. Note that the covariance matrices are filled in row-major
order, and accelerations are expressed in m/s2.

7.4.4 GPS

Robots operating outdoors often rely on GPS modules to determine their location through
the Global Positioning System or Global Navigation Satellite System (these terms can be
considered synonyms in the following). The message sensor msgs::msg::NavSatFix is
used to transmit this type of data, and its structure is as shown by the command ros2

interface show.

std_msgs/Header header

builtin_interfaces/Time stamp

int32 sec

uint32 nanosec

string frame_id

Satellite fix status information.

NavSatStatus status

#

int8 STATUS_UNKNOWN = -2 #

7.4. SENSOR MESSAGES OF COMMON USE 243

int8 STATUS_NO_FIX = -1 #

int8 STATUS_FIX = 0 #

int8 STATUS_SBAS_FIX = 1 #

int8 STATUS_GBAS_FIX = 2 #

int8 status -2 #

uint16 SERVICE_UNKNOWN = 0 #

uint16 SERVICE_GPS = 1

uint16 SERVICE_GLONASS = 2

uint16 SERVICE_COMPASS = 4 #

uint16 SERVICE_GALILEO = 8

uint16 service

Latitude [degrees]. Positive is north of equator; negative is south.

float64 latitude

Longitude [degrees]. Positive is east of prime meridian; negative is west.

float64 longitude

Altitude [m]. Positive is above the WGS 84 ellipsoid

(quiet NaN if no altitude is available).

float64 altitude

Position covariance [m^2] defined relative to a tangential plane

through the reported position. The components are East, North, and

Up (ENU), in row-major order.

#

Beware: this coordinate system exhibits singularities at the poles.

float64[9] position_covariance

If the covariance of the fix is known, fill it in completely. If the

GPS receiver provides the variance of each measurement, put them

along the diagonal. If only Dilution of Precision is available,

estimate an approximate covariance from that.

uint8 COVARIANCE_TYPE_UNKNOWN = 0

uint8 COVARIANCE_TYPE_APPROXIMATED = 1

uint8 COVARIANCE_TYPE_DIAGONAL_KNOWN = 2

uint8 COVARIANCE_TYPE_KNOWN = 3

uint8 position_covariance_type

As usual, the header defines the time when the reading was taken. frame id is the position
of the antenna receiver, and not of the vehicle (assuming this is base link.) The meaning
of the other fields is self-explanatory. An important field is status, which indicates whether
the fix is valid and also specifies which satellite system was used. The status field should
always be checked before using the fix in a message of type NavSatFix.

A technology that can greatly enhance GPS accuracy is Real-Time Kinematic GPS, usu-

244 CHAPTER 7. PERCEPTION

ally referred to as RTK GPS. RTK GPS increases localization accuracy by using a base
station placed at a known fixed location and broadcasting suitable correction signals. With
this setup, a robot or a vehicle (referred to as rovers in this context) can increase the accu-
racy of their localization by integrating not only the signals it receives from the satellites,
but also the corrections it receives from the base station. RTK GPS can provide position
with centimeter-level precision and is increasingly used in outdoor robotic applications. Im-
portantly, from the ROS standpoint, RTK GPS and GPS use the same interface, i.e., they
both provide their data through sensor msgs::msg::NavSatFix messages.

7.4.5 Point Clouds

ROS provides two different messages to represent point clouds produced by sensors depth
cameras, 3D LiDARs, and similar devices. The older is sensor msgs::msg::PointCloud,
whose structure is as follows:

Time of sensor data acquisition, coordinate frame ID.

std_msgs/Header header

builtin_interfaces/Time stamp

int32 sec

uint32 nanosec

string frame_id

Array of 3d points. Each Point32 should be interpreted as a 3d point

in the frame given in the header.

geometry_msgs/Point32[] points

#

#

float32 x

float32 y

float32 z

Each channel should have the same number of elements as points array,

and the data in each channel should correspond 1:1 with each point.

Channel names in common practice are listed in ChannelFloat32.msg.

ChannelFloat32[] channels

#

string name

float32[] values

After the header with the timestamp and the frame name, there is an array of three-
dimensional points with x, y, z coordinates, referenced to the frame frame id specified in
the Header. The channels array contains as many elements as points, and carries addi-
tional data for each point, such as distance, RGB color, and so on. The type of information
is specified in the name field, and the corresponding data is stored in the values field. Al-
lowable values for the name field can be found in the specification of the ChannelFloat32

7.4. SENSOR MESSAGES OF COMMON USE 245

message.

Messages of type sensor msgs::msg::PointCloud are deprecated. Users are advised to
use the newer sensor msgs::msg::PointCloud2, which has the following structure.

Time of sensor data acquisition, and the coordinate frame ID

(for 3d points).

std_msgs/Header header

builtin_interfaces/Time stamp

int32 sec

uint32 nanosec

string frame_id

2D structure of the point cloud. If the cloud is unordered, height is

1 and width is the length of the point cloud.

uint32 height

uint32 width

Describes the channels and their layout in the binary data blob.

PointField[] fields

uint8 INT8 = 1

uint8 UINT8 = 2

uint8 INT16 = 3

uint8 UINT16 = 4

uint8 INT32 = 5

uint8 UINT32 = 6

uint8 FLOAT32 = 7

uint8 FLOAT64 = 8

string name #

uint32 offset #

uint8 datatype #

uint32 count #

bool is_bigendian # Is this data bigendian?

uint32 point_step # Length of a point in bytes

uint32 row_step # Length of a row in bytes

uint8[] data # Actual point data, size is (row_step*height)

bool is_dense # True if there are no invalid points

The main difference is that this type of messages allows to represent n-dimensional data.
Another difference with sensor msgs::msg::PointCloud is that different data types can
be used, as evidenced by the constants defined in the fields field. Messages of this type
are useful to interface ROS with the Point Cloud Library (PCL), an external, independent
library for 2D/3D point processing. Support for the integration between ROS and PCL is
offered by the perception pcl stack.

246 CHAPTER 7. PERCEPTION

7.4.6 Odometry

Most mobile robots can use information about their own motion to estimate where they are.
In the simplest possible scenario, it is possible to project, or integrate forward, the commands
given to the motors to estimate the robot’s position (for example, using equations like (4.30)
for a differential drive platform). This approach was introduced in Section 7.1.1 and is known
as odometry. More generally, odometry estimates both pose and velocity and integrates data
from multiple sources (e.g., IMUs, encoders, etc.). Odometry data is exchanged through
messages of type nav msgs::msg::Odometry. The structure is as follows:

Includes the frame id of the pose parent.

std_msgs/Header header

builtin_interfaces/Time stamp

int32 sec

uint32 nanosec

string frame_id

Frame id the pose points to. The twist is in this coordinate frame.

string child_frame_id

Estimated pose that is typically relative to a fixed world frame.

geometry_msgs/PoseWithCovariance pose

Pose pose

Point position

float64 x

float64 y

float64 z

Quaternion orientation

float64 x 0

float64 y 0

float64 z 0

float64 w 1

float64[36] covariance

Estimated linear and angular velocity relative to child_frame_id.

geometry_msgs/TwistWithCovariance twist

Twist twist

Vector3 linear

float64 x

float64 y

float64 z

Vector3 angular

float64 x

float64 y

float64 z

float64[36] covariance

7.4. SENSOR MESSAGES OF COMMON USE 247

The frame id field in the header refers to the odom frame in ROS. The interpretation of
the remaining sections is straightforward. The only notable aspect is that both position

and twist include a 6 × 6 covariance matrix to represent uncertainty. Indeed, the main
consideration regarding the pose provided by odometry is that it drifts over time due to
the accumulation of errors, as is typical of methods based on integration. Therefore, relying
exclusively on this information to determine the robot’s pose is prone to failure. However,
odometry information (pose and velocities) is often a key component of sensor fusion al-
gorithms that combine data from multiple sources. This will be discussed in subsequent
chapters.

7.4.7 Images

For completeness, we provide the structure of the messages sensor msgs::msg::Image and
sensor msgs::msg::CompressedImage, even though they are not listed in Table 7.1. The
structure of sensor msgs::msg::Image is as follows, where we see that, unsurprisingly, an
image is represented as a matrix of pixels.

This message contains an uncompressed image

(0, 0) is at top-left corner of image

std_msgs/Header header # Header timestamp should be acquisition time of image

builtin_interfaces/Time stamp

int32 sec

uint32 nanosec

string frame_id

Header frame_id should be optical frame of camera

origin of frame should be optical center of cameara

+x should point to the right in the image

+y should point down in the image

+z should point into to plane of the image

If the frame_id here and the frame_id of the CameraInfo

message associated with the image conflict

the behavior is undefined

uint32 height # image height, that is, number of rows

uint32 width # image width, that is, number of columns

The legal values for encoding are in file

include/sensor_msgs/image_encodings.hpp

If you want to standardize a new string format, join

ros-users@lists.ros.org and send an email proposing a new encoding.

string encoding # Encoding of pixels -- channel meaning, ordering, size

taken from the list of strings in include/sensor_msgs/image_encodings.hpp

uint8 is_bigendian # is this data bigendian?

248 CHAPTER 7. PERCEPTION

uint32 step # Full row length in bytes

uint8[] data # actual matrix data, size is (step * rows)

After the header, we find the dimensions of the image (height and width). The
encoding string specifies the schema used to encode the image and can be any value defined
in the file include/sensor msgs/image encodings.h. Examples of defined encodings in-
clude rgb8 for images in which each pixel is in RGB format with 8 bits per channel, rgba16
for an RGB-alpha encoding with 16 bits per channel, and so on. The field step defines the
length of a row in bytes, and data contains the image data. Note that data is an array
of unsigned integers containing step × height elements. Finally, the field is bigendian

specifies how to interpret values stored in more than one byte.
In real-world applications, one typically relies on additional packages to acquire, transmit,

and process images. These include drivers for specific devices, such as usb cam to interface
with V4L USB cameras or cv camera to capture images using OpenCV, and cv bridge to
conver them into OpenCV.image format. Image processing in ROS applications typically
relies on external libraries such as OpenCV.

Finally, the structure of messages of type sensor msgs::msg::CompressedImage is the
following.

This message contains a compressed image.

std_msgs/Header header # Header timestamp should be acquisition time of image

builtin_interfaces/Time stamp

int32 sec

uint32 nanosec

string frame_id

Header frame_id should be optical frame of camera

origin of frame should be optical center of cameara

+x should point to the right in the image

+y should point down in the image

+z should point into to plane of the image

string format # Specifies the format of the data

uint8[] data # Compressed image buffer

The interpretation should by now be straightforward. The field format specifies how the
image is compressed. The reader is referred to the full message specification for a list of
available formats.

Further reading

Various robotics textbooks like [50] and [27] include chapters describing the physical prin-
ciples supporting various sensing technologies. A rich, albeit meanwhile dated, survey on
sensor technologies is given in [9]. For details about GPS sensors and algorithms, see [38].

Chapter 8

Estimation and Filtering

8.1 Introduction

In this chapter, we introduce the mathematical foundations of the estimation problem, with
particular attention to applications from the robotics domain. Some of the algorithms we
will present are readily available in ROS. However, for the sake of explanation, this chap-
ter focuses on theory only, while details related to ROS implementations will be given in
Chapter 9.

Informally speaking, estimation is the process of determining a quantity from data ob-
tained through measurements that are incomplete and/or inaccurate. The data used to
answer an estimation question must therefore carry direct or indirect information about the
quantity being estimated. Determining the height of a building by measuring the length of
its shadow is an example of an estimation problem. Filtering is a specific type of estimation
problem in which the quantity being estimated is the state of a dynamical system, and thus
changes over time. In the example introduced above, the length of the shadow (i.e., the
measurement) changes during the day, but the height of the building does not, so it is not
a filtering problem. A typical example of a filtering problem in robotics is determining the
pose of a robot that moves in its environment. In filtering problems, the state is estimated
by considering uncertain measurements, as well as the uncertain dynamics governing the
state evolution over a given sequence of inputs. The following diagram is a slight variation
of what we saw in Chapter 1. Note that, in this case, the sensor reading at time t is just a
function of the state at time t, i.e., xt.

x0 x1 = f(x0,u1) x2 = f(x1,u2) x3 = f(x2,u3) . . .

z1 = h(x1) z2 = h(x2) z3 = h(x3)

u1 u2 u3

The objective of the filtering problem is to estimate xt given the sequence of inputs
u1, . . . ,ut and the sequence of sensor measurements z1, . . . , zt. A fundamental complication
in this formulation is that both the state transition equation and the sensor measurements
are noisy. Accordingly, the following diagram is the one we should consider when thinking
about realistic estimation and filtering problems.

249

250 CHAPTER 8. ESTIMATION AND FILTERING

x0 x1 = f(x0,u1, ζ1) x2 = f(x1,u2, ζ1) x3 = f(x2,u3, ζ3) . . .

z1 = h(x1, ψ1) z2 = h(x2, ψ2) z3 = h(x3, ψ3)

u1 u2 u3

In this case, the disturbances ζi and ψi are not accessible to the estimation algorithm, and
therefore, even if one assumes f and h are deterministic, it would still be impossible to exactly
predict the next state or the sensor reading, even when x and u are known. An alternative
way to model these noise sources is to assume that f and h are probability distributions rather
than deterministic functions. That is, xi is treated as a sample drawn from a distribution f
that depends on xi−1 and ui, and zi is a sample drawn from a distribution h that depends
on xi.

Estimation and filtering algorithms are central to mobile robotics applications, and they
are used to solve fundamental problems such as localization and mapping. This is illustrated
in the following motivating example.

Example 8.1. A differential drive robot moving on the plane is equipped with a sensor that
returns the distance to a landmark whose position Apl, expressed in the world frame A, is
known (see Figure 8.1). The motion of the robot is uncertain, and the sensor returns noisy
readings.

z1 z2

z3

x0 x1

x2

x3

u1 u2 u3

x

y

O

Figure 8.1: Localization as a filtering problem.

The initial pose of the robot, Apr
0, expressed in frame A, is also known. Three commands,

u1, u2, and u3, are given to the robot in sequence, and after each command the sensor is
queried, returning the values z1, z2, and z3. That is, z1, z2, and z3 are the measured distances
from Apl when the robot is at positions x1, x2, and x3, respectively. A filtering algorithm can
then be used to estimate Apr

1,
Apr

2, and
Apr

3, i.e., the pose of the robot as it evolves over time.
The estimate is based on the sequence of inputs given to the robot and the sensor readings
collected. As is common in the estimation literature, the quantity being estimated is denoted
as xi, with the index i indicating its dependence on time.

The previous example sketches an instance of the localization problem, a fundamental
challenge in mobile robotics. Note that, because of the uncertainty in pose evolution, the pose
for t > 0 becomes a random quantity even if the initial pose is known with no uncertainty.
Therefore, even if one knows x0 exactly, after the robot executes the first input u1 (assumed

8.2. MATH PRELIMINARIES 251

to be known without uncertainty), the next state x1 is still a random quantity due to noise.
In this case, the state is a three-dimensional random vector representing the pose x, y, ϑ.
Estimating xt through filtering, therefore, means computing a probability density function1

for xt. This simple example also introduces another important concept: recursive filtering.
In most practical scenarios, one does not collect all sensor readings and all inputs up to time
t and then estimate xt. Instead, sensor readings and inputs are processed incrementally as
they are received. Starting from x0, u1, and z1, the filtering algorithm computes an estimate
for x1. After u2 and z2 are received, an estimate for x2 is computed, and so on. However,
for efficiency reasons, this is not done by reprocessing from scratch all data received up to
that point. Instead, the estimate for x2 is computed using u2, z2, and the estimate for
x1 computed at the previous time step. This approach is called recursive filtering. The
advantage is that the time complexity to compute the new estimate is independent of the
length of the history.

Remark 8.1. In computer science, recursive algorithms are often considered conceptually
elegant but inefficient (e.g., the recursive algorithm to compute Fibonacci numbers or the fac-
torial). However, in estimation theory, the opposite is true: recursive estimation algorithms
are widely used precisely because they are very efficient.

Two problems related to filtering are smoothing and prediction. In smoothing, the
estimate for xt is computed considering measurements and inputs that occurred after t,
i.e., ut+1, . . . ,ut+k and zt+1, . . . , zt+k for some k > 1. In most robotics applications, we
are interested in solutions to the filtering problem because it is solved online; however, in
some cases smoothing is applicable. For example, one may try to recover a posteriori the
trajectory followed by a robot after the mission terminates and all inputs and sensor readings
are available. Another relevant problem in some applications is prediction, where we estimate
xt starting from u1, . . . ,ut−k and z1, . . . , zt−k for some k > 1. In the following, for the sake
of brevity, we focus exclusively on filtering and refer the reader to the references at the end
of the chapter for smoothing and prediction algorithms.

The filtering algorithms we consider in this chapter belong to the class of Bayesian filters
and build upon the theory of Bayesian inference. In the next section, we provide a very brief
introduction to the mathematical foundations of this problem, and the reader is referred to
the references at the end of the chapter for more details.

8.2 Math Preliminaries

In this section we provide a concise introduction to the general estimation problem. Albeit
elegant, this formulation finds few practical applications because it relies on the ability to
compute various integrals in closed form. Therefore, in the following sections we study
special instances of this general framework that are computationally more efficient and can
be integrated into tightly timed robot control software. The topics discussed next assume
basic knowledge of probability theory. The reader is referred to Appendix A for a quick
review of the relevant material.

1In the following, for simplicity, we consider density functions, but similar concepts apply when the result
of the filtering process is a probability mass distribution.

252 CHAPTER 8. ESTIMATION AND FILTERING

There exist two approaches to estimation. In the classical approach, the quantity being
estimated is a constant (scalar or vector) that is unknown. In the Bayesian approach, the
quantity being estimated is assumed to be a random variable from a set of possible values,
say Θ. Accordingly, a prior over Θ is assumed, and the objective is to produce a posterior
(recall the terminology used when introducing Bayes’ rule). In the following, we exclusively
deal with Bayesian estimation techniques2. Accordingly, a prior about the quantity being
estimated will always be assumed to be available.

Let xt be the state of a dynamic system we want to estimate, where the subscript t
indicates the time step. As per our Bayesian standpoint, let x0 be the prior about the state
(i.e., the knowledge we have at time 0 before the filtering process starts), let u1, . . . ,ut be
the inputs applied up to time t, and z1, z2, . . . , zt be the sensor readings collected up to time
t. It is customary to indicate estimated quantities using a hat symbol, and the estimate for
the state at time t is then indicated as x̂t. So, x is the unknown state we want to estimate,
and x̂ is its estimate as produced by an estimation algorithm. The estimation problem can
be then be cast as follows

x̂t = g(x0,u1,u2, . . . ,ut, z1, z2, . . . , zt) (8.1)

where function g is called estimator, and the algorithm computing g is called estimation
algorithm. Recall that in a Bayesian framework xt is a random variable and its estimate is
a probability density function.

Therefore, the estimate x̂t provides the following posterior probability

p(xt = x | x0,u1,u2, . . . ,ut, z1, z2, . . . , zt)

for each possible value x that the random variable xt may assume. The above expression is
often written in shorter form as

p(xt | x0,u1,u2, . . . ,ut, z1, z2, . . . , zt).

In some textbooks, the posterior distribution is also called belief. Evidently, there exist
infinite estimators, and we will look for an estimator that is good (or ideally even optimal)
according to a chosen criterion. An ideal criterion would be

Ext,x̂t [||x̂t − xt||2] (8.2)

but we do not know xt, so this is not viable in practice. However, we know the noisy
measurement zt and through the function h we can predict what the measurement would be
if our estimation were correct, i.e., ẑ = h(x̂). Hence the following criterion could instead be
used:

Ezt,ẑt [||ẑt − zt||2] (8.3)

where the term z − ẑ is called measurement residual.

2There is a long-standing debate about the relative merits and demerits of either approach. This is
beyond the scope of these notes

8.2. MATH PRELIMINARIES 253

Eq. (8.1) reveals the importance of recursive estimation techniques. As more and more
data is collected over time, the estimation algorithm would depend on more and more inputs,
and this could slow it down if they have to be all taken into account at every step. For this
reason, the estimation algorithms we will consider in this chapter are recursive estimators,
i.e., they have the following form:

x̂t = g(x̂t−1,ut, zt). (8.4)

The estimate at time t is just a function of the estimate at time t − 1 (i.e., x̂t−1) and the
last input ut and observation zt. The estimate at time t − 1 in turn depends on x̂t−2, ut−1

and zt−1. These relationships can be unfolded all the way to x̂1 that can be computed from
x0,u1 and z1. It can therefore be seen how the prior x0 is essential to bootstrap the Bayesian
estimation process.

In the beginning of this section we noted that in the Bayesian setting the state xt is
a random variable. Therefore the estimation algorithm g will return a description of the
random variable x̂t, e.g., its PDF. If we make the assumption that x̂ is a random variable
following a known canonical distribution (e.g., a multivariate Gaussian), the estimation
algorithm will determine the parameters defining the distribution (e.g., mean and covariance
matrix). This will be the case for the Kalman filter algorithm presented later on. This class
of problems is called parametric estimation, as the problem is to determine the parameters
of a PDF modeling the quantity being estimated. However, it is also possible to assume
that the random variable being estimated has a PDF that is not described in closed form
by a finite set of parameters, but can rather be represented or approximated using some
other description. In such case the estimation algorithm will return a representation for this
non-parametric description. This is for example the case of the particle filter. Both cases
will be considered in the remainder of this chapter.

In Bayesian estimation, besides the availability of the prior x0 we assume also the avail-
ability of the following two models.

1. State Transition Model:
p(xt|xt−1,ut) (8.5)

This is the probability distribution for the next state xt conditioned on the current
state xt−1 and the current input ut. This model captures the uncertainty the robot
experiences as it moves around.

2. Sensor Model:
p(zt|xt) (8.6)

This is the probability distribution for the sensor reading at time t given the current
state. This model captures the uncertainty in the perceptual process, and is influenced
by both the state of the robot (explicitly) and the environment in which the robot
operates (implicitly). Concrete examples will be given later on.

Note that while in principle it may be complex to determine these two probability distribu-
tions, in the following we will simply assume they are available and they can be computed
in constant time when needed (for a fixed choice of their arguments).

254 CHAPTER 8. ESTIMATION AND FILTERING

8.3 Discrete Estimation Algorithms

As robots operate in the physical world, many of the quantities of interest are naturally mod-
eled as real numbers, e.g., position, orientation, etc. In some instances it will be possible to
formulate estimation algorithms operating on continuous variables (e.g., the Kalman Filter.)
However, in many other circumstances, approaches based on discretization will instead be
embraced. While these pose some practical challenges, they are nevertheless useful to study
because they rely on the same concepts that will also be utilized to implement widely used
algorithms.

Utilizing a discretized approach means that even though the underlying quantity may be
continuous, its domain is subdivided into a finite partition, and an approximate discretized
representation is used. Stated differently, the quantity being estimated is a discrete random
variable. For example, when considering the pose of a robot moving inside a room, we may
subdivide the environment into a finite number of equally sized square cells and approximate
the (x, y) position with the centers of the cells. Similarly, we can discretize the orientation ϑ
as well, thus getting a three-dimensional grid with two dimensions for the position discretized
position and one dimension for the discretized orientation. Using this discretized approach,
the pose of the robot is therefore a discrete random variable defined by a PMF, and an
estimation algorithm will therefore determine a PMF over the same alphabet.

In the following we introduce some notation that will make the description of estimation
algorithms shorter. Let us assume that X is a discrete random variable that can assume
n different values, i.e., its alphabet is x1, . . . , xn. The random variable X is described by a
PMF over x1, . . . , xn, i.e.,

P (X = x1) P (X = x2) . . . P (X = xn)

Since this is a PMF, these values must all be non-negative and add up to 1, i.e.,
∑n

i=1 P (X =
xi) = 1. In the following, for brevity we will sometimes write P (x1) as a shorthand for
P (X = x1).

Example 8.2. Assume that a robot is moving in an empty rectangular room and we are in-
terested in estimating where it is (location only, without considering the orientation). To this
end, we can subdivide the room into n equally sized rectangles that will be labeled x1, . . . , xn.
Let X be the random variable for the location of the robot (e.g., the projection on the xy
plane of its center of mass.) The estimation algorithm will determine a PMF over x1, . . . , xn
that should be interpreted as follows: P (X = x1) is the estimated probability that the robot is
inside the rectangle labeled x1, P (X = x2) is the estimated probability that the robot is inside
the rectangle labeled x2, and so on.

All algorithms we will consider in the following are based on some variation of Bayes rule
(see A.4):

P (A|B) =
P (B|A)P (A)

P (B)
. (8.7)

Before embarking in a full study of estimation algorithms using Bayes rule, let us state
a fact that will have great practical importance. Assume X is a discrete random variable
and assume we want to estimate its PMF over its finite alphabet x1, . . . , xn. To this end,

8.3. DISCRETE ESTIMATION ALGORITHMS 255

we can query a sensor that returns a random variable Z carrying some information about
X. This would implment a form of indirect estimation and is the prevailing approach. Let
z be the value returned from the sensor. Let us furthermore assume that we know P (z|xi)
for all xis and all possible values of z. Assume moreover, that we have a prior for each of
the xi values, i.e., we know P (X = xi). Under these conditions, an estimation algorithm
could therefore update this prior integrating the sensor reading, thus producing a posterior
PMF using Bayes rule. We can start applying Bayes rule (8.7) to each of the values xi, thus
obtaining:

P (X = x1|Z = z) =
P (Z = z|X = x1)P (X = x1)

P (Z = z)

P (X = x2|Z = z) =
P (Z = z|X = x2)P (X = x2)

P (Z = z)

. . .

P (X = xn|Z = z) =
P (Z = z|X = xn)P (X = xn)

P (Z = z)

In the above expressions the numerators are all known because of the assumptions we made,
but we did not assume to know P (Z = z). However, this is unimportant because we can
indirectly retrieve this value and complete our calculations. The reason is that P (Z = z)
appears in the denominator of all expressions, and moreover, since we are dealing with a
PMF, the sum of all these probabilities on the right sides must add up to one. Therefore:

n∑
i=1

P (X = xi|Z = z) =
n∑

i=1

P (Z = z|X = xi)P (X = xi)

P (Z = z)

=
1

P (Z = z)

n∑
i=1

P (Z = z|X = xi)P (X = xi) = 1

Hence:

P (Z = z) =
n∑

i=1

P (Z = z|X = xi)P (X = xi)

and this can be calculated since all elements on the right-hand side are known. This result
is not surprising since this expression is given by the total probability theorem (see theorem
A.2.) Consequently, when applying Bayes rule to compute posterior PMFs we usually do
not even indicate the denominator 1

P (Z=z)
because it can be computed by normalization. In

fact, the above expressions are usually written as

P (xi|z) = ηP (z|xi)P (xi)

where we used the shortened notation P (xi) for P (X = xi) and wrote η for 1
P (z)

.

Remark 8.2. To apply Bayes rule one needs P (B) > 0. In our former discussion we have
not explicitly assumed that P (z) > 0 because by stating that the sensor returned the reading
z it follows that P (Z = z) can not be zero.

256 CHAPTER 8. ESTIMATION AND FILTERING

Example 8.3. A robot is equipped with a camera and an image processing algorithm (clas-
sifier) to determine whether there is a given object in an image captured by the camera (say
a human). Let X be the binary random variable for the event “there is a human in the
picture”, i.e. X = 1 indicates that the event is true. The classifier algorithm returns a
binary random variable Z to indicate whether it has detected a human in the image or not.
The classification algorithm is not perfect, i.e., it may incur in missed detections (fails to
detect a human in the picture when there is one), or false positives (indicates that there is a
human in the picture when there is none). The performance of the sensor is the following:

P [Z = 1|X = 0] = 0.2 P [Z = 0|X = 0] = 0.8

P [Z = 1|X = 1] = 0.7 P [Z = 0|X = 1] = 0.3.

Note that the performance of the sensor is asymmetric, i.e., its false positive probability (0.2)
is different from its missed detection probability (0.3). Assuming that the prior of the event
X = 1 is P [X = 1] = 0.2 and that the sensor returns Z = 1, determine the posterior for the
random variable X conditioned on the sensor reading.

This question can be answered by a straightforward application of Bayes rule. First note
that P [X = 0] = 1 − P [X = 1] = 0.8. Next, we compute the posterior for both the events
X = 1 and X = 0 applying Bayes rule A.4:

P [X = 1|Z = 1] =
P [Z = 1|X = 1]P [X = 1]

P [Z = 1]
= ηP [Z = 1|X = 1]P [X = 1]

P [X = 0|Z = 1] =
P [Z = 1|X = 0]P [X = 0]

P [Z = 1]
= ηP [Z = 1|X = 0]P [X = 0]

Plugging in the values we get P [X = 1|Z = 1] = η0.7 · 0.2 and P [X = 0|Z = 1] = η0.2 · 0.8.
To determine the normalizer η we exploit our previous observation that the posteriors must
add up to one, i.e., P [X = 1|Z = 1]+P [X = 0|Z = 1] = 1. Therefore η0.2·0.8+η0.7·0.2 = 1,
i.e.,

η =
1

0.2 · 0.8 + 0.7 · 0.2
=

1

0.3

Plugging η into the previous formulas we therefore obtain the posteriors

P [X = 1|Z = 1] = ηP [Z = 1|X = 1]P [X = 1] =
1

0.3
0.7 · 0.2 =

0.14

0.3
≈ 0.46 . . .

P [X = 0|Z = 1] = ηP [Z = 1|X = 0]P [X = 0] =
1

0.3
0.2 · 0.8 =

0.16

0.3
≈ 0.53

Before concluding, note that we derived η through normalization, but this is equivalent to
compute P [Z = 1] using the total probability theorem (see A.2).

A term pervasively used in robotics estimation is belief. Belief is the posterior probability
conditioned on inputs and sensor readings (compare with Eq. (8.1)). Therefore, we could
say that the estimation algorithms we will present later aim at computing a belief over a
certain state space.

8.3. DISCRETE ESTIMATION ALGORITHMS 257

Before embarking on the full discussion of the Bayes filter to compute posterior distri-
butions conditioned on both inputs and observations, let us first consider two simpler cases.
First, consider the case where we want to compute the posterior distribution of a random
variable X based on two sensor readings (rather than one). We indicate with Z1 the random
variable for the first sensor reading and Z2 the random variable for the second sensor reading.
Let the two sensor readings be z1 and z2, and as in the previous discussion, assume a prior
distribution for X is given, and we moreover know P (z1|xi) and P (z2|xi) for each xi. Fi-
nally, let us assume that the two variables Z1 and Z2 are independent from each other. More
importantly, from now onwards we assume that the probability of making an observation
at time t depends exclusively on the state at time t. The posterior for X can be computed
using Eq. (A.5), i.e., Bayes rule with background knowledge:

P (xi|z1, z2) =
P (z1|xi, z2)P (xi|z2)

P (z1|z2)
=
P (z1|xi)P (xi|z2)

P (z1)
.

The final expression was simplified because we assumed Z1 and Z2 are independent, and
therefore P (z1|z2) = P (z1) and P (z1|x, z2) = P (z1|x). This expression can be further ex-
panded using Bayes rule again to compute P (xi|z2), i.e.,

P (xi|z1, z2) =
P (z1|xi)
P (z1)

P (xi|z2)
1

=
P (z1|xi)
P (z1)

P (z2|xi)P (xi)
P (z2)

=
P (z1|xi)
P (z1)

P (z2|xi)
P (z2)

P (xi),

where in the last expression we evidenced P (xi) to show that the posterior integrating the
observations can be seen as a scaling of the prior P (xi).

The reader should note that we have initially assumed that z2 was the variable providing
background knowledge in the first iteration of Bayes rule. This was an arbitrary decision
and we could have started with z1 as well. However, as it is immediate to verify, the final
result would not change. This is consistent with the intuition that if one collects multiple
independent measurements under the same conditions3, the final result of the estimation
process should not depend on the order in which these measurements are processed. It is
at this point trivial to show that this observation extends to an arbitrary number of sensor
readings, i.e.,

P (xi|z1, z2, . . . , zn) =
P (z1|xi)
P (z1)

P (z2|xi)
P (z2)

· · · P (zn|xi)
P (zn)

P (xi)

=

(
n∏

j=1

P (zj|xi)
P (zj)

)
P (xi) = η

(
n∏

j=1

P (zj|xi)

)
P (xi) (8.8)

In this last expression we have again evidenced the η factor that can be determined through
normalization without knowing the various P (zi). P (z|x) is the aforementioned sensor model,
and it is the probabilistic version of the state observation equation we introduced in Eq. (1.9),
i.e., zt = h(xt). The following example illustrates these concepts in a very simple setting.

3Technically speaking, this means that the observations are independent identically distributed random
variables.

258 CHAPTER 8. ESTIMATION AND FILTERING

Example 8.4. Assume a robot is located in an environment that has been discretized into 5
regions (cells). In each region there is a unique detectable landmark and the robot is equipped
with a sensor to detect and identify the landmark located in its region. The sensor may
return l1, l2, . . . , l5, to indicate which landmark it has detected (see Figure 8.2.) For example
l1 means the red landmark has been detected, l2 means the blue landmark has been detected,
and so on. Each landmark is detectable only when the robot is located in the corresponding
cell.

Figure 8.2: Each of the five possible locations is marked with a distinctive landmark (colored
star). By querying an appropriate sensor capable of detecting the landmark in the region,
the robot can estimate its location, i.e., a PMF for the discrete random variable representing
the area in which it is located.

By querying the sensor n times, the objective is to estimate in which region the robot is
located, i.e., we want to estimate P (xi|z1, . . . , zn). To make things simpler, it is assumed
that the robot does not move between the sensor readings. In an ideal world, if the robot had
a perfect sensor not subject to any error, with a single sensor reading it could determine with
certainty its location. However, as in the real world, we assume that the sensor is not perfect,
and therefore multiple readings will be made to estimate the location of the robot. To answer
this question using the previous formulas, we need to also specify the prior over x1, . . . , x5
and P (z = lj|xi) for all possible lj and xi. Let us assume that the prior is P (x1) = 0.6
and P (x2) = P (x3) = P (x4) = P (x5) = 0.1. Note that the prior is not uniform but may
rather model domain-specific a priori knowledge about where the robot could be. For the
sensor model, let us assume the following: P (li|xi) = 0.6 and P (lj|xi) = 0.1 for j ̸= i. That
is to say that if the robot is in region xi, the sensor returns li with probability 0.6 (correct
reading) and any of the other landmarks with equal probability (wrong reading). Note that,
obviously, for a given xi we have

∑5
j=1 P (z = lj|xi) = 1. Assume the robot queries the sensor

n = 5 times obtaining l3, l1, l3, l3, l3. What is the posterior distribution for each of the xi?
To answer this question we need to apply Eq. (8.8) to each of the xis:

P (xi|l3, l1, l3, l3, l3) = ηP (l3|xi)4P (l1|xi)P (xi).

8.3. DISCRETE ESTIMATION ALGORITHMS 259

Substituting, the following posterior is obtained (note that numbers are rounded):

P (x1|l3, l1, l3, l3, l3) = 0.027

P (x2|l3, l1, l3, l3, l3) = 0.007

P (x3|l3, l1, l3, l3, l3) = 0.9708

P (x4|l3, l1, l3, l3, l3) = 0.007

P (x5|l3, l1, l3, l3, l3) = 0.007

Figure 8.3 shows how the posterior varies as the sensor readings are integrated. The top
left histogram shows the prior, while each successive diagram shows the posterior after each
of the 5 sensor readings are integrated. The last diagram shows the final results.

1 2 3 4 5
0

0.5

1

P
(x

)

1 2 3 4 5
0

0.2

0.4

P
(x

)

1 2 3 4 5
0

0.5

1

P
(x

)

1 2 3 4 5
0

0.5

P
(x

)

1 2 3 4 5
0

0.5

1

P
(x

)

1 2 3 4 5
0

0.5

1

P
(x

)

Figure 8.3: Prior (top left) and posterior (remaining diagrams) after the various sensor
readings are sequentially considered.

Note that the diagrams show the posterior assuming that the sensor readings are integrated
in the given order, i.e., first l3, then l1, then l3, and so on. However, consistently with our
previous discussion, the final result does not depend on the order, as per Eq. (8.8).

Similarly, we can consider the effect of using the probabilistic motion model introduced
in Eq. (8.5). As formerly stated, this model gives the probability that the next state is xt

given that the current state is xt−1 and the applied input ut. With the motion model, we
can determine the posterior for the state conditioned on a given input. The key is in using
Eq. (8.5) in the total probability theorem, where the yis are a partition of the state space
(i.e., yis are the elements of the alphabet of the random variable X being estimated.)

260 CHAPTER 8. ESTIMATION AND FILTERING

P (x|u) =
n∑

i=1

P (x|yi, u)P (yi). (8.9)

In this case, too, we must assume the availability of the prior PMF P (y).

Example 8.5. Consider a robot moving along a single dimension, e.g., along a corridor with
finite length. Let us assume the set of possible poses along the corridor has been discretized
into a finite set of n = 30 equally sized segments (cells). A prior non-uniform distribution
about the initial pose of the robot is available and displayed in figure 8.4 (that is the P (yi)
in Eq. (8.9)).

0 5 10 15 20 25 30

locations

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

p
ri
o

r

Figure 8.4: Prior distribution for the robot pose along the corridor.

The robot then executes one action u aimed at moving one step to the right. When the
robot is at either end of the corridor (rightmost or leftmost cell) it cannot move past the
boundary. The motion model in Eq. (8.9) is as follows. For the first 28 cells (i.e., all except
the last two at the very right) the model is

P (x′|x, u) =


0.1 if x′ = x

0.7 if x′ = x+ 1

0.2 if x′ = x+ 2

This means the robot moves one cell to the right with probability 0.7, moves two cells to
the right (overshoots) with probability 0.2, and remains in the same cell (skids in place)
with probability 0.1. For cell number 29, the robot either moves one cell to the right with
probability 0.9 or remains there with probability 0.1 (in this case the robot cannot overshoot
because of the corridor dead end.) Finally, if the robot is in cell number 30 (rightmost cell),
it remains there with probability 1 because it cannot move to the right at all. The motion
model, combined with the prior given in figure 8.4 and Eq. (8.9) allows us to compute a
posterior for each pose. The result is shown in figure 8.5.

Some interesting observations can be made. First, as expected, the peak of the distribution
shifted to the right, consistently with the motion executed. The distribution of the peak,

8.3. DISCRETE ESTIMATION ALGORITHMS 261

0 5 10 15 20 25 30

locations

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

p
o

s
te

ri
o

r

Figure 8.5: Posterior distribution for the robot pose along the corridor.

moreover, is more spread and the peak is lower. This is consistent with our former statement
that executing actions will in general increase uncertainty. At the left, we observe that the
probability of the first cell is significantly lower. This is because if the robot were there, there
would be only a 0.1 probability of remaining there (so the updated value is 0.1 times the
prior.) At the other end, we notice a new peak. This is consistent with the fact that the robot
cannot go past the last position. So the probability increases because the robot will end up in
the last cell as a result of three possible events: 1) starting from cell 30 and remaining there;
2) starting from cell 29 and moving one cell to the right (expected move); 3) starting from
cell 28 and moving two cells to the right (overshooting).

As a final comment, one could observe that if the robot were to repeatedly execute the
action u (move one cell to the right), the peak at the end would keep growing until eventually
reaching a value close to 1, while all other values would tend to 0. This actually makes sense
because if the corridor has a finite length and the robot keeps attempting to move to the right,
it will with very high probability eventually reach the dead end to the right. However, the
probability will not be 1 (why?). The reader is encouraged to analytically verify why this is
the case.

As for the previous case, we can consider the estimate based on two inputs rather than
one, i.e., P (x|u1, u2). In this case, assume that the two inputs are given in sequence, i.e., u1
is applied first, and u2 is applied next. Intuitively, if one thinks about composing maneuvers
with a vehicle, inverting the order of maneuvers leads to different final results, and therefore
the order matters.

Example 8.6. Consider a differential drive robot and two inputs u1 and u2. For the time
being, let us assume that the robot is not affected by any noise. u1 has the rotational velocity
equal to π

2
rad/s and the translational velocity equal to 0, whereas u2 has the translational

velocity equal to 1 m/s and the rotational velocity equal to 0. Both inputs are executed for
1 s. If we execute first u1 and then u2, the robot first rotates in place and then translates. If
we swap the order, the robot first translates and then rotates in place. At the end, the robot
will have the same orientation, but its (x, y) location will be different. Therefore, the final

262 CHAPTER 8. ESTIMATION AND FILTERING

pose depends on the order in which the inputs are executed.

This intuition can be easily analytically confirmed, and it is of course true also when
disturbances affect the robot.

Remark 8.3. The previous derivations rely on the availability of the sensor model p(z|x) and
of the motion model P (x|y, u). Where do we get them from? Various approaches are possible.
For sensors, error characterizations are often provided by the manufacturer. Alternatively,
both for sensor and motion models, it is possible to derive them from data. Following this
approach, one collects multiple sensor readings or executes certain inputs multiple times and
then derives a model fitting the data. The model could be “black-box,” a computational module
that maps inputs to outputs with certain guarantees that it fits the data it was trained on.
The method to perform this mapping is unrelated to the underlying physical processes that
were used to collect the data, but simply models the correspondences. Alternatively, the model
could be grounded in the physical phenomena explaining the sensor process or the actuation
mechanism. Irrespective of that, in the following we simply assume that both the sensor and
motion models are given and are part of the input to the problem.

8.4 Recursive Discrete Bayes Filter

Building upon the material presented in the previous section, we can now introduce the
discrete Bayes filter. The discrete Bayes filter offers an attractive framework for efficiently
estimating non-parametric distributions. However, it should be noted that other estimation
methods presented later on, such as the Kalman filter, are special cases of the general Bayes
filter method.

Starting from Eq. (8.1), we want to determine a posterior (i.e., the belief) for the state
at time t conditioned on all sensor readings and inputs given up to that time, as well as
knowledge about the initial state x0. This can be written as follows:

P (xt|x0, u1, . . . , ut, z1, . . . , zt).

Before starting our derivation, we reiterate a couple of assumptions made in the previous
sections. Sensor readings depend on the current state only, but are independent of each
other, the inputs, and the previous states. In addition, the motion model is Markovian;
that is, the PMF for the next state depends exclusively on the current state and the current
input. Let us call x̂t the estimate at time t, conditioned on all available data up to that
time, i.e.,

x̂t = P (xt|x0, u1, . . . , ut, z1, . . . , zt). (8.10)

At this point, we can rework this expression using the insights derived in the previous section.

8.4. RECURSIVE DISCRETE BAYES FILTER 263

x̂t = P (xt|x0, u1, . . . , ut, z1, . . . , zt) (8.11)

=
P (zt|x0, u1, . . . , ut, z1, . . . , zt−1, xt)P (xt|x0, u1, . . . , ut, z1, . . . , zt−1)

P (zt|x0, u1, . . . , ut, z1, . . . , zt−1)
(8.12)

=
P (zt|xt)P (xt|x0, u1, . . . , ut, z1, . . . , zt−1)

P (zt)
(8.13)

=
P (zt|xt)

∑
xt−1

P (xt|x0, u1, . . . , ut, z1, . . . , zt−1, xt−1)P (xt−1|x0, u1, . . . , ut, z1, . . . , zt−1)

P (zt)
(8.14)

=
P (zt|xt)

∑
xt−1

P (xt|xt−1, ut)P (xt−1|x0, u1, . . . , ut, z1, . . . , zt−1)

P (zt)
(8.15)

=
P (zt|xt)

∑
xt−1

P (xt|xt−1, ut)P (xt−1|x0, u1, . . . , ut−1, z1, . . . , zt−1)

P (zt)
(8.16)

=
P (zt|xt)

∑
xt−1

P (xt|xt−1, ut)x̂t−1

P (zt)
(8.17)

= ηP (zt|xt)
∑
xt−1

P (xt|xt−1, ut)x̂t−1 (8.18)

The above chain of equalities can be derived as follows. Eq. (8.12) follows from Eq. (8.11)
by applying Eq. (A.5) where x0, u1, . . . , ut, z1, . . . , zt−1 are the background knowledge vari-
ables. Eq. (8.13) is obtained exploiting the assumption that the sensor reading depends
only on the current state xt and is independent from previous sensor readings, states and
inputs. Next, Eq. (8.14) is obtained from Eq. (8.13) applying the total probability theorem
(Eq. (A.2)) where the partition Ω is the set of states at time t− 1. We next exploit the hy-
pothesis that the motion model is Markovian and the state at time t is exclusively a function
of the state at t − 1 and of the last input ut. This leads to Eq. (8.15). The next equations
follows observing that xt−1 does not depend on ut, i.e., the input applied once4 we are in xt−1.
Therefore ut can be dropped from the set of conditioning variables and we get Eq. (8.16).
Next observe that the last term in Eq. (8.16) is nothing but x̂t−1 as per Eq. (8.10). This
leads to Eq. (8.17) and Eq. (8.18) follows writing η for the normalization constant. The
last expression can be seen as the product of two terms, i.e.,

∑
xt−1

P (xt|xt−1, ut)x̂t−1 and
ηP (zt|xt). The first, is the prediction step, and it increases uncertainty, whereas the second
is the correction step decreasing uncertainty by querying the sensor.

The estimation technique we just presented is also called histogram filter because it
assigns a posterior to each of the discrete values for X. Hence, these values can be visualized
as a histogram, especially when considering unidimentional situations like those described
in Examples 8.4 and 8.5. The implementation of the algorithm is rather straightforward,
assuming that the motion model and sensor model are given. Algorithm 6 sketches the
pseudocode, assuming that X is a discrete random variable whose alphabet has n elements,
i.e., x1, x2, . . . , xn.

4ut will influece xt but does not influence xt−1 because it is executed after the system has reached state
xt−1.

264 CHAPTER 8. ESTIMATION AND FILTERING

Data: x̂t−1, zt, ut
Result: Estimate x̂t

1 for i← 1 to n do
2 x′i ←

∑
xt−1

P (x′i|xt−1, ut)x̂t−1;

3 for i← 1 to n do
4 x′′i ← P (zt|xi)x′i;
5

1
η
←
∑n

i=1 x
′′
i ;

6 for i← 1 to n do
7 x̂i ← ηx′′i ;

Algorithm 6: Discrete Bayes Filter

The computational complexity of the algorithm clearly depends on the number of ele-
ments in the alphabet n. Assuming that P (xt|xt−1, ut) and P (zt|x′i) can be computed in
O(1), the complexity of the algorithm is O(n2). The quadratic term stems from the predic-
tion step (for loop in line 1). Note however that this result relies on the assumption that
the sensor and actuation models can be compute in constant time. One critical aspect is
the dependency on n. If the discrete Bayes filter is used to solve the localization algorithm,
one would split the state space in cells (normally equally sized). For example, one could
partition the state space for the pose x, y, ϑ in a regurlar grid. From an accuracy stand point
one would like to have the cells as small as possible, because each point inside the same grid
cell is indistinguishable. However, this means increasing n, and thus slowing the algorithm.
There exist various computational expedients one may apply to counter this problem, but
these come at the price of a more complicated implementation. For this, and various other
reasons, other algorithms have been developed and are often used in practice.

8.5 Particle Filters

Particle filters are used to solve non-linear, non-Gaussian estimation problems5, and represent
the posterior through a set of particles. In the following, the term particle is synonymous
with sample drawn from a certain distribution. The intuition is the following. Imagine
drawing a set of independent samples from a random variable with a fixed, unknown PDF.
Such samples will be denser in areas where the PDF is higher and more sparse where the
PDF is lower. Therefore, from the set of samples, one can get an idea about the unknown
PDF they are drawn from. As the number of samples grows, one can get more and more
confident about the shape of the underlying PDF.

For example, in Figure 8.6 we show the histogram for 1000 samples drawn from a Gaussian
distribution with mean µx = 2 and σ = 5. Even without knowing the underlying parameters,
by looking at the samples one can start to guess these values. For example, already with
just 1000 samples it appears that the mean is somewhere around 2.

Unsurprisingly, as the number of samples grows, the histogram of the sample distribution

5When distributions are Gaussian, the Kalman Filter or the Extended Kalman Filter can be used in the
linear and non-linear case, respectively.

8.5. PARTICLE FILTERS 265

Figure 8.6: Histogram of the distribution of 1000 samples drawn from a N (2, 5).

resembles more and more the underlying PDF. This is evident in Figure 8.7, where we show
the distribution of 10,000 samples drawn from the same underlying PDF.

Figure 8.7: Histogram of the distribution of 10000 samples drawn from a N (2, 5).

While estimating the parameters of a Gaussian from a set of samples may be instructive,
the power of this approach lies in estimating more complex posteriors, in particular non-

266 CHAPTER 8. ESTIMATION AND FILTERING

parametric distributions. This is shown in Figure 8.8, where we again display the histograms
for 1000 and 10,000 samples drawn from the same underlying PDF (in this case, a bimodal
distribution.)

Figure 8.8: Histogram of the distribution of 1000 samples (left) and 10000 samples (right)
from the same bimodal distribution.

The theory of estimation with particle filters has broad applicability and a general dis-
cussion is beyond the scope of these notes. In the following, we restrict our attention to
using particle filters to estimate the pose of the robot. Indeed, particle filters became popu-
lar in robotics because they provide an efficient, general solution to this problem. Building
upon our former observations, the idea behind estimation with particle filters is to estimate
a posterior through a set of samples drawn from it. Of course, this is easier said than done,
because the very reason to run an estimation algorithm is to derive the posterior, so one
cannot directly draw samples from it.

This problem can be somehow circumvented by assuming the capability of sampling
from other, easier distributions. In particular, earlier on we assumed the availability of a
motion model, i.e., P (x′|x, u), that is, the ability to determine the probability that the next
state is x′ assuming that the current state is x and the applied input is u. This setup is
appropriate in the case of the discrete Bayes filter. In general, in the continuous case, we
would consider f(x′|x, u), where f is a PDF, rather than the probability P of an element.
Recall that for fixed x and u, f is a PDF, i.e., it is non-negative and it must integrate to 1.
To implement the particle filter algorithm, we assume the ability to generate samples from a
random variable with PDF f for each possible choice of x and u. The trick is that while we
cannot draw samples from the posterior probability we want to estimate, drawing samples
from f is simpler. The reason is that f captures the underlying motion ability of the robot,
so we can determine it in an analytic way. From now onwards, we assume that such a PDF
is given and that samples can be generated.

The other element we need is the sensor model, that is g(h|x) where g is a density
function. In fact, in this case, too, we move from the discrete domain to the continuous
domain, so PMFs are substituted by PDFs. For a fixed x, g is a PDF, and therefore it
is non-negative and integrates to 1. Building upon these elements, the recursive particle
filter estimation algorithm starts from a set of particles representing the estimate x̂t−1 and
generates a new set of particles representing the estimate x̂t. To do so, as for the case of the
discrete Bayes filter, it also needs the latest input ut and the latest sensor reading zt. Let

8.5. PARTICLE FILTERS 267

Pt−1 be the set of particles representing the estimate x̂t−1. Let us assume it consists of N
particles and let x̂it−1 be the i-th particle in Pt−1. The algorithm works in two stages.

In the first stage, for each particle in Pt−1 a new (intermediate) particle is generated and
assigned a weight. The ith new particle, called xit, is created by sampling from the PDF
f(x̂it−1, ut), and its weight is set to g(zt|xit). Let wi be the weight assigned to the new particle,
and let P ′

t be the set of the newly generated intermediate particles.
In the second stage, Pt is computed by sampling particles from P ′

t. Each sample is
independently drawn from P ′

t with repetitions and with probability proportional to the
weight of the particle. This step is called importance sampling. Algorithm 7 sketches this
approach.

Data: Pt−1, zt, ut
Result: New set of particles Pt

1 for i← 1 to N do
2 xit ∼ f(x̂it−1, ut);
3 wi ← g(zt|xit);
4 for i← 1 to N do
5 x̂it ∼ sample from P ′

t with probability proportional to wi;

Algorithm 7: Particle filter for localization

The first loop starting at line 1 generates the new set of intermediate particles, whereas
the second loop at line 4 performs the importance sampling step. The informal intuition is
the following. The algorithm uses each existing particle x̂it−1 jointly with the latest input
ut to sample a new candidate particle xit. This represents a prediction about how the robot
could have moved if x̂it−1 was the true pose. Note that since xit is sampled from a PDF,
such a sample already models the uncertainty associated with the motion. Moreover, even
if there are multiple identical particles (say x̂it−1 = x̂jt−1), the prediction step will, with high

probability, produce predictions xit ̸= xjt due to the stochastic sampling. The next step
assigns to each prediction a weight using the sensor model PDF g. Informally speaking,
predictions that “explain well” the sensor reading zt will receive a high weight through g,
while those that poorly match the sensor reading will receive a low weight. Observe that the
assigned weight depends on both the input and the sensor reading, because g is conditioned
on the predicted particle and the predicted particle takes the input ut as a parameter for the
sampling f . This way, when the importance sampling step occurs, particles that are in good
agreement with both ut and zt have a higher chance of being selected. Moreover, even if a
particle is selected more than once during the resampling step, this is not a problem, and is
in fact desirable (think about the examples discussed in the previous figures.)

Algorithm 7 gives a general idea of the particle filter estimation process but omits many
important details. The first, of course, concerns the number of particles to be used to
estimate the posterior. A large number of particles is desirable because it, in principle,
allows a smaller approximation error, but at the same time, at each iteration, all particles
must be reprocessed to generate the new set, so from this standpoint, a smaller number of
particles is preferable. Determining the right number of particles for a given localization
problem is in general not simple and requires some experience, although there exist more

268 CHAPTER 8. ESTIMATION AND FILTERING

sophisticated versions of the algorithm that will adjust the size of the particle set on the fly.
Another relevant problem is how to initialize P0, i.e., the initial set of particles. This is one
of the appealing aspects of estimation with particle filters. If one has a good estimate of the
initial pose of the robot, i.e., a prior distribution, P0 shall be initialized by drawing samples
from that distribution. If, on the contrary, a prior is not available, one can initialize P0

using a uniform distribution over the set of possible states. Note that this lack of knowledge
in fact corresponds to assuming a uniform prior over the set of possible poses. In this case,
the filter is used to solve the so-called global localization problem. One final problem is
how to translate the posterior represented by the particles into a usable representation. For
example, in a localization problem, one is interested in (x, y, ϑ), possibly with an associated
uncertainty margin, rather than a set of particles.

We next display a couple of examples of solutions to the localization problem using the
particle filter. Both are derived using ROS, and the reader is referred to section 9.4 for
details about the node implementing this algorithm. Both cases are executed in the map
displayed in figure 8.9.

Figure 8.9: Map used for the localization example with the particle filter.

Figure 8.10 shows the evolution of the particles for the case where the prior is initially
set to a Gaussian centered in the middle of the map. Note how the particle set first shrinks,
but also occasionally spreads. The number N at the top is the number of particles, and it

8.5. PARTICLE FILTERS 269

varies through the run because the node implementing the algorithm features an advanced
technique to adjust the size on the fly.

Figure 8.10: Particle Filters Example.

Figure 8.11 instead shows a run where the particle filter is initialized using a uniform
distribution for the particles. This is useful when there is no prior information about the

270 CHAPTER 8. ESTIMATION AND FILTERING

initial location of the robot. Hence, a uniform prior is used to represent the lack of prior
knowledge about the location of the robot. This is well shown in the snapshot at time t = 1.
As time progresses, the particles concentrate in few regions, as shown for time t = 7 and
t = 20. By the time t = 33 the filter is essentially tracking two hypotheses, as shown by
the two clusters of particles. This ambiguity continues for a while (next three snapshots),
but by the time t = 70 (last snapshot) all particles have converged in the vicinity of single
location.

Remark 8.4. In Section 8.2, we pointed out that estimation is often cast as an optimization
problem where the goal is to minimize a suitably defined error measure (e.g., the root mean
square error of the measurement residual, as per Eq. (8.3)). One should note that, while
particle filters perform very well in practice and are often the method of choice in many
applications, it is not straightforward to quantify the estimation error.

8.6 Probabilistic Motion Models

The discrete Bayes filter presented in Section 8.4 and the particle filter presented in Section
8.5 rely on the availability of probabilistic models for the motion model. In particular, for the
discrete Bayes filter, it is necessary to compute P (xt+1|xt, ut) (see Algorithm 6), whereas for
the particle filter, it is necessary to sample from the distribution f(xt, ut) (see Algorithm 7).
In this section, we briefly discuss how these models can be formulated. The reader is referred
to Chapter 5 in [53] for a detailed discussion of these topics and the theoretical justification
of these relationships. The formulas we present in this section are in fact taken from [53]
and are specialized for the case where we deal with a mobile robot whose configuration is
(x, y, ϑ) and the input is given as translational and rotational velocity, i.e., ut = (vt, vr) (see
Section 4.9).

We start by providing the formulas to compute P (xt+1|xt, ut) that is needed for the
discrete Bayes filter. To this end, we assume the availability of a function fG(x, σ

2) that
provides the PDF in x of a Gaussian distribution with zero mean and variance σ2. The
idea is the following: given two poses xt and xt+1, compute the nominal input u′ that would
drive the robot from xt to xt+1 under the assumption that there is no noise and the motion
is carried out in time ∆t (a fixed parameter). The probability of executing u′ instead of
ut is then related to P (xt+1|xt, ut). However, there is an additional source of error to be
considered—namely, the fact that the final orientation of the robot in xt+1 is affected by
an orientation error assumed to be independent from the input errors6. Algorithm 8 builds
upon these ideas and provides P (xt+1|xt, ut).

The algorithm computes the nominal input u′ that would drive the robot from xt to xt+1

in a noise-free scenario. This is done by the InverseModel function. In addition, a final
orientation error δϑ is computed as well. Finally, the probability is returned by multiplying
together the densities of three Gaussians. Note that the variance of these distributions
depends on a six-dimensional vector α = (α1, α2, . . . , α6) that models the accuracy (or lack
thereof) of the robot being used. From a practical standpoint, these parameters could be

6See [53] for a detailed discussion about why this is a necessary assumption.

8.6. PROBABILISTIC MOTION MODELS 271

Figure 8.11: Particle Filters Example.

estimated through a (time-consuming) experimental approach, where many trajectories are
collected and the parameters are then estimated.

Following a similar reasoning, given xt and ut, a new pose can be obtained by sampling
from the PDF f(xt, ut), as needed by the particle filter. The idea is to alter ut with appro-

272 CHAPTER 8. ESTIMATION AND FILTERING

Data: xt+1 = (x′, y′, ϑ′), xt = (x, y, ϑ), ut = (vt, vr)
Result: P (xt+1|xt, ut)

1 u′ = (v′t, v
′
r)← InverseModel(xt+1,xt);

2 δϑ← ϑ′−ϑ
∆t
− v′r;

3 return fG(vt − v′t, α1v
2
t + α2v

2
r) · fG(vr − v′r, α3v

2
t + α4v

2
r) · fG(δϑ, α5v

2
t + α6v

2
r);

Algorithm 8: Probabilistic Motion Model

priate noise to obtain a new input u′, and to use this new input to determine the new pose
with a deterministic motion model (see Eq. (4.30)). As with the probabilistic motion model,
an additional orientation error is added at the end. Algorithm 9 illustrates this idea. The
algorithm relies on the availability of a function s(σ2) that returns a sample from N (0, σ2).
The function ForwardModel implements Eq. (4.30), and, like Algorithm 8, the algorithm
relies on the vector of parameters α.

Data: xt = (x, y, ϑ), ut = (vt, vr)
Result: xt+1 ∼ f(xt, ut)

1 v′t ← vt + s(α1v
2
t + α2v

2
r);

2 v′r ← vr + s(α3v
2
t + α4v

2
r);

3 δϑ← s(α5v
2
t + α6v

2
r);

4 (x′, y′, ϑ′)← ForwardModel(x, y, ϑ, v′t, v
′
r);

5 ϑ′ ← ϑ′ + δϑ∆t;
6 return (x′, t′, ϑ′);

Algorithm 9: Sample generation

8.7 Kalman Filter

We now switch to a different parametric estimation technique based on the assumption that
the posterior is represented as a (multivariate) Gaussian distribution. Consequently, the
estimation algorithm aims at determining the mean vector and covariance matrix of the
posterior distribution. Before embarking on the full discussion, it is useful to recall some
important facts about Gaussians and their transformations.

Let x be a Gaussian random vector with mean µx and covariance Σx. Recall that mean
and covariance fully define the PDF of a Gaussian distribution. Let y be a random vector
obtained from x through a linear transformation, i.e.,

y = Ax.

Then y is also a Gaussian random vector with mean µy = Aµx and covarianceΣy = AΣxA
T .

More generally, if y is obtained from x through an affine transformation

y = Ax+ b (8.19)

where b is a constant vector, then y is still a Gaussian random vector with mean µy =
Aµx + b and covariance Σy = AΣxA

T .

8.7. KALMAN FILTER 273

Next, consider the case where x is the sum of two independent Gaussian vectors y and
z,

x = y + z.

Then x is also Gaussian, with mean µx = µy + µz and covariance Σx = Σy + Σz. If x
is a random vector (not necessarily Gaussian) and y is obtained from x through the affine
transformation in Eq. (8.19), then the above relationships still hold, i.e., µy = Aµx + b
and Σy = AΣxA

T . These equalities can be easily shown by applying the definitions of
expectation and covariance, and by noting that integration is a linear operator. However, in
this latter case where x is a random vector (not necessarily Gaussian) , µy and Σy do not
necessarily define the PDF of y because y is not Gaussian.

Example 8.7. Let x ∼ N (µx,Σx) and y ∼ N (µy,Σy) be two independent random vectors.
Let b be a constant vector, and define z = Ax + By + b where A, B and b are matrices
and a vector with suitable dimensions. In this case, z is also a Gaussian vector with mean
µz = Aµx +Bµy + b and covariance Σz = AΣxA

T +BΣyB
T . These results can be easily

derived using the relationships described above.

8.7.1 Linear Case

We start by considering a dynamical system whose state x evolves in discrete time according
to the following linear model (see also Eq. (1.10) and Eq. (1.11)):

xt = Atxt−1 +Btut + vt (8.20)

where vt is a Gaussian vector with zero mean and covariance matrix Rt. Moreover, we
assume that vi is independent of vj for each i ̸= j. The input ut is assumed to be known
and free of uncertainty. For greater generality, the matrices At and Bt are considered time-
dependent, as indicated by the index t. An observation of the state is obtained through a
linear transformation:

zt = Htxt +wt (8.21)

where wt is a Gaussian vector with zero mean and covariance matrix Qt. Similarly, we
assume that wi is independent of wj for each i ̸= j. The matrix Ht is also assumed to be
time-dependent.

Because of the noise present in both Eq. (8.20) and Eq. (8.21), the state x and observation
z become random vectors even if all matrices and the input are deterministic. In this
scenario, the objective of the estimation process is to determine a statistical description of
these random vectors, and in particular of x. The Kalman Filter (KF) approach assumes
that x is normally distributed, and therefore aims to derive its mean vector and covariance
matrix as these two parameters fully define its PDF.

Remark 8.5. We have assumed that At, Bt, and Ht may vary over time, but they are known
for every time step t. In many practical instances, these matrices are constant. However,
for greater generality, the framework is presented using a time-varying formulation.

Remark 8.6. We have assumed that the input ut is known, as is Bt. In some cases, one
may assume that the input is also a Gaussian random vector. The subsequent derivations
would not change significantly (see a later remark).

274 CHAPTER 8. ESTIMATION AND FILTERING

Consistent with the recursive estimation approach, our objective is to provide an estimate
for the state at time t, starting from its estimate at time t − 1, the control ut at time t,
the sensor reading zt at time t, and the covariance matrices Rt and Qt. In particular, since
our estimate aims to determine the mean and covariance of xt, we will assume knowledge
of the previously estimated mean and covariance at time t− 1. Therefore, the inputs to the
estimation problem are:

• µt−1: mean of the estimate for x at time t− 1;

• Σt−1: covariance of the estimate for x at time t− 1;

• ut: input at time t;

• zt: observation at time t;

• Rt: covariance matrix for the system evolution noise at time t;

• Qt: covariance matrix for the observation noise at time t.

The outputs of the estimation problem are:

• µt: mean of the estimate for x at time t;

• Σt: covariance of the estimate for x at time t.

The Kalman Filter provides a recursive, optimal method to solve the estimation problem
based on the two steps we have already encountered: prediction and correction (also called
update). Before discussing the details of the algorithm, it is useful to once again consider
the following sequence:

x0
u1−→ x1

z1−→ x1
u2−→ x2

z2−→ x2 . . .

In Algorithm 10, we provide the equations that implement the prediction and correction
steps.

Data: µt−1,Σt−1,ut, zt
Result: µt,Σt

/* Prediction */

1 µ̄t = Atµt−1 +Btut;
2 Σ̄t = AtΣt−1A

T
t +Rt;

/* Update */

3 Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)

−1;
4 µt = µ̄t +Kt(zt −Htµ̄t);
5 Σt = (I−KtHt)Σ̄t;
6 return µt,Σt;

Algorithm 10: Linear Kalman Filter

The prediction step produces an estimate for xt (i.e., its mean and covariance) after
accounting for the effects of the input ut, but before incorporating the measurement zt. The

8.7. KALMAN FILTER 275

mean and covariance obtained after the prediction step are denoted as µ̄t and Σ̄t, where
the bar indicates that these values have been computed without considering the most recent
observation. The correction step refines the estimate for xt by incorporating the latest sensor
reading zt. This step updates the predicted values µ̄t and Σ̄t, and yields the final estimate
at time t, denoted by µt and Σt. Note that to bootstrap the method, we need an initial
estimate for the mean and covariance; that is, we require µ0 and Σ0.

The KF method is particularly interesting when the initial estimate is Gaussian dis-
tributed, i.e., µ0 and Σ0 represent the mean and covariance of a Gaussian random vector. In
this case, thanks to the properties outlined earlier, the dynamic state xt remains Gaussian be-
cause it results from the sum of an affine transformation of Gaussian variables, Axt−1+But,
and another Gaussian variable, vt. If x0 is a random vector with mean µ0 and covariance
Σ0 but is not Gaussian, the method is still valid and the relationships still hold. The KF
algorithm continues to provide the correct mean and covariance; however, these quantities
no longer fully characterize the probability distribution of xt because it is not Gaussian.

Remark 8.7. We previously stated that the KF method provides an optimal estimate. This
optimality is defined with respect to a specific objective function that minimizes the estimation
error, as given in Eq. (8.2).

Remark 8.8. If the vector ut is also a Gaussian random vector with mean µut and covariance
matrix Σut, then the first equation in the prediction step becomes µ̄t = Atµt−1 +Btµut, and
the second equation becomes Σ̄t = AtΣt−1A

T
t +BtΣutB

T
t +Rt. The correction step remains

unchanged.

Remark 8.9. In some cases, inputs and observations may not alternate in a one-to-one
fashion. For example, the system might receive an observation every three inputs, or it may
receive multiple observations in a row. In such cases, the step corresponding to the missing
data is simply skipped, i.e., one would perform multiple predictions in sequence or multiple
corrections in sequence.

Remark 8.10. The term (zt −Htµ̄t) is called innovation.

Before continuing with the nonlinear case, it is instructive to consider a very simple
unidimensional example.

Example 8.8. Let us consider a unidimensional case governed by the following simple equa-
tions:

xt = xt−1 + ut

zt = xt

Let vt and wt have constant variance, as specified below. The first input u1 is 2, and the
first sensor reading z1 is 6. Finally, let x0 ∼ N (1, 0.5). Figure 8.12 shows the result of the
estimation process for x1 for different values of R and Q, as indicated in the titles of the
subcharts.

In all figures, the red distribution represents the prior (constant in all examples), the green
distribution represents the prediction, the blue distribution represents the measurement, and

276 CHAPTER 8. ESTIMATION AND FILTERING

the black distribution represents the posterior. Note that as the ratio between R and Q varies,
the shape of the posterior (black distribution) changes accordingly. In the first three cases,
the posterior has lower variance than the prior, but in the last case this is no longer true, as
evidenced by the lower peak. Moreover, observe how the mean of the posterior may be closer
to the mean of the measurement or the prediction; this also depends on the ratio between R
and Q.

0 2 4 6 8 10

x

0

0.2

0.4

0.6

0.8

1

1.2

f(
x
)

R = 0.50, Q = 0.50

0 2 4 6 8 10

x

0

0.2

0.4

0.6

0.8

1

1.2

f(
x
)

R = 0.50, Q = 1.00

0 2 4 6 8 10

x

0

0.2

0.4

0.6

0.8

1

1.2

f(
x
)

R = 0.50, Q = 0.40

0 2 4 6 8 10

x

0

0.2

0.4

0.6

0.8

1

1.2

f(
x
)

R = 1.00, Q = 2.00

Figure 8.12: Prior (red), prediction (green), measurement (blue), posterior (black) for dif-
ferent values of Q and R.

Example 8.9. We now consider a small variation of the previous example, in which the robot
is equipped with two sensors that measure the same unidimensional state. This scenario is
modeled as follows:

xt = xt−1 + ut

zt = Hxt

where the observation matrix H and the covariance matrix of the observation noise are given
by

H =

[
1
2

]
, Q =

[
0.1 0
0 0.5

]
.

8.7. KALMAN FILTER 277

Observe the structure of H. In the ideal, noise free scenario, the first sensor reading returns
the state x (because the first element in H is 1), while the second sensor returns 2x (because
the second element in H is 2). As in the previous example, let the initial state be distributed
as x0 ∼ N (1, 0.5), let the control input be u1 = 1, and assume the first sensor reading is

z1 =

[
3
3

]
.

The prediction step follows the same state transition model and yields a predicted mean
and variance:

µ̄1 = 2, σ̄2
1 = 1.

However, the correction step is different due to the multiple, possibly conflicting, sensor
measurements. In this case, the first sensor reading suggests that the prediction underes-
timates the state (the prediction is 2, but the sensor indicates 3), while the second sensor
reading suggests it overestimates it (the prediction is still 2, but the sensor indicates 1.5
because it returns the value multiplied by 2). The Kalman gain resolves this conflict by
weighting each observation based on its reliability:

K1 = σ̄2
1H

T
(
Hσ̄2

1H
T +Q

)−1
= [0.5263 0.2105].

Using this Kalman gain, the posterior mean and variance are:

µ1 = µ̄1 +K1(z1 −Hµ̄1) = 2.3158,

σ1 = (1−K1H)σ̄2
1 = 0.0526.

This example highlights how the Kalman filter effectively combines multiple sensor read-
ings with different noise characteristics to produce an optimal estimate of the system state.

8.7.2 Nonlinear Case

In many practical cases, the state evolves according to a nonlinear relationship and the
observation is a nonlinear function of the state. In this case, Eqs. (8.20) and (8.21) are
replaced by the following nonlinear relationships:

xt = ft(xt−1,ut) + vt (8.22)

zt = ht(xt) +wt (8.23)

The same assumptions hold regarding the noise terms vt and wt, i.e., 0 mean and Gaus-
sian distributed. Additionally, as in the linear case, we consider time-dependent state evolu-
tion function ft and observation function ht. The Extended Kalman Filter (EKF) provides
an estimate of xt by linearizing the nonlinear functions ft and ht. However, the estimate is
no longer optimal, as the linearization introduces approximation error. The EKF uses the
following Jacobian matrices:

At =
∂ft(x,u)

∂x
, Bt =

∂ft(x,u)

∂u
, Ht =

∂ht(x)

∂x
. (8.24)

278 CHAPTER 8. ESTIMATION AND FILTERING

Data: µt−1,Σt−1,ut, zt
Result: µt,Σt

/* Prediction */

1 µ̄t = ft(µt−1,ut);
2 Σ̄t = AtΣt−1A

T
t +Rt;

/* Update */

3 Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)

−1;
4 µt = µ̄t +Kt(zt − ht(µ̄t));
5 Σt = (I−KtHt)Σ̄t;
6 return µt,Σt;

Algorithm 11: Extended Kalman Filter

These matrices are evaluated at the latest state estimate µt−1. Based on these definitions,
the EKF algorithm shown in Algorithm 11 performs the prediction and correction steps as
follows (compare with Algorithm 10).

In the first equation of the prediction step, we use the nonlinear state evolution function
ft, and in the second equation of the correction step, we use the nonlinear observation
function ht. Note also that in the previous formulation, we have not used the matrix Bt

because we again assumed that the input is known with no uncertainty. However, if this
was not the case, we would use the same formulation given in the previous remark where we
considered ut as Gaussian.

8.7.3 Numerical Example

We provide a fully worked-out example of two estimation steps for the EKF. The state
transition equations and observation equations are inspired by a differential robot moving
on the plane. Its state is x = [x y θ]T and consists of the pose (x, y) and heading (θ). The
robot has two inputs, i.e., u = [l r]T , where l is its translational speed and r is its rotational
speed. The robot can either move forward or rotate in place, but it cannot move along an
arc. This means that at any given time t, either lt ̸= 0 and rt = 0, or lt = 0 and rt ̸= 0, but
it cannot be that both lt ̸= 0 and rt ̸= 0 simultaneously. Under these assumptions, the state
transition equation has the following structure, where it was tacitly assumed that ∆t = 1:

xt = f(xt−1,ut) + vt =

 xt−1 + lt cos(θt−1)
yt−1 + lt sin(θt−1)

θt−1 + rt

+ vt.

vt is a zero mean Gaussian vector with covariance matrix R

R =

 0.2 0 0
0 0.2 0
0 0 0.1


The robot is equipped with two sensors. The first one gives the distance from a land-

mark at a know location (xL, yL) = (2, 2), and the second provides the heading deviation

8.7. KALMAN FILTER 279

(difference) from a reference direction θR = 0.1. These two sensors can be modeled as follows:

zt = ht(xt) +wt =

[√
(xL − xt)2 + (yL − yt)2

θt − θR

]
+wt

where vt is a zero mean Gaussian vector with covariance matrix (assumed constant)

Q =

[
0.1 0
0 0.05

]
The initial state is Gaussian distributed with mean µ0 = [0 0 0]T and covariance

Σ0 =

 0.3 0 0
0 0.1 0
0 0 0.2


Assume that the first two inputs are u1 = [0.5 0]T and u2 = [0 0.2]T , and the first two

sensor readings are z1 = [2.4 0]T and z2 = [2.1 0.2]T . Based on this information, compute
µ2 and Σ2.

To answer the question, we use the EKF, starting by computing the Jacobian matrices
A and H.

A =
∂f

∂x
=


∂(xt−1+lt cos(θt−1))

∂xt−1

∂(xt−1+lt cos(θt−1))
∂yt−1

∂(xt−1+lt cos(θt−1))
∂θt−1

∂(yt−1+lt sin(θt−1))
∂xt−1

∂(yt−1+lt sin(θt−1))
∂yt−1

∂(yt−1+lt sin(θt−1))
∂θt−1

∂(θt−1+rt)
∂xt−1

∂(θt−1+rt)
∂yt−1

∂(θt−1+rt)
∂θt−1

 =

 1 0 −lt sin(θt−1)
0 1 lt cos(θt−1)
0 0 1



H =
∂h

∂x
=

[
∂(
√

(xL−xt)2+(yL−yt)2)

∂xt

∂(
√

(xL−xt)2+(yL−yt)2)

∂yt

∂(
√

(xL−xt)2+(yL−yt)2)

∂θt
∂(θt−θR)

∂xt

∂(θt−θR)
∂yt

∂(θt−θR)
∂θt

]

=

[
xt−xL√

(xL−xt)2+(yL−yt)2
yt−yL√

(xL−xt)2+(yL−yt)2
0

0 0 1

]

Note that both A and H are evaluated at the most recent estimates. For A, this will be
the estimate at the previous step (note the indices t− 1), while for H it is the result of the
prediction step (note the indices t).

From these matrices and the provided data, we can compute the desired estimation. We
start with the prediction at time 1 (where µx0 is the x component of µ0, and so on):

µ̄1 = f(µ0,u1) =

 µx0 + l1 cos(µθ0)
µy0 + l1 sin(µθ0)

µθ0 + r1

 =

 0 + 0.5 cos(0)
0 + 0.5 sin(0)

0 + 0

 =

 0.5
0
0


To compute Σ̄1 we use the matrix A evaluated at µ0 (most recent estimate)

280 CHAPTER 8. ESTIMATION AND FILTERING

Σ̄1 = AΣ0A
T +R =

 1 0 −l1 sin(µθ0)
0 1 l1 cos(µθ0)
0 0 1

 0.3 0 0
0 0.1 0
0 0 0.2

 1 0 −l1 sin(µθ0)
0 1 l1 cos(µθ0)
0 0 1

T

+

 0.2 0 0
0 0.2 0
0 0 0.1

 =

 0.5 0 0
0 0.35 0.1
0 0.1 0.3


Next, we can perform the correction step. We start with the Kalman Gain

K1 = Σ̄1H
T
1 (H1Σ̄1H

T
1 +Q)−1

for which we need the matrix H evaluated at µ̄1 (most recent estimate)

H1 =

[
µ̄x1−xL√

(xL−µ̄x1)2+(yL−µ̄y1)2

µ̄y1−yL√
(xL−µ̄x1)2+(yL−µ̄y1)2

0

0 0 1

]
=

[
−0.6 −0.8 0
0 0 1

]
Plugging this matrix into the previous expression we get

K1 =

 −0.6176 −0.1412−0.5294 0.1647
−0.0235 0.8518


from which we can complete the correction step and compute µ1

µ1 =µ̄1 +K1(z1 − h(µ̄1)) =

=

 0.5
0
0

+

 −0.6176 −0.1412−0.5294 0.1647
−0.0235 0.8518

[2.4
0

]
− h

 0.5
0
0

 =

 0.5476
0.0694
0.0875


and then Σ1

Σ1 = (I−K1H1)Σ̄1

=

 1 0 0
0 1 0
0 0 1

−
 −0.6176 −0.1412−0.5294 0.1647
−0.0235 0.8518

[−0.6 −0.8 0
0 0 1

] 0.5 0 0
0 0.35 0.1
0 0.1 0.3

 =

=

 0.3147 −0.1588 −0.0071
−0.1588 0.1853 0.0082
−0.0071 0.0082 0.0426


To determine µ2 and Σ2 we perform exactly the same computations, but starting our

most recent estimates, i.e., µ1 and Σ1 instead µ0 and Σ0.

µ̄2 = f(µ1,u2) =

 µx1 + l2 cos(µθ1)
µy1 + l2 sin(µθ1)

µθ1 + r2

 =

 0.5476
0.0694
0.2875



8.8. MAPPING AS AN ESTIMATION PROBLEM 281

Σ̄2 = AΣ1A
T +R =

 1 0 −l2 sin(µθ1)
0 1 l2 cos(µθ1)
0 0 1

 0.3147 −0.1588 −0.0071
−0.1588 0.1853 0.0082
−0.0071 0.0082 0.0426

 ·
 1 0 −l2 sin(µθ1)

0 1 l2 cos(µθ1)
0 0 1

T

+

 0.2 0 0
0 0.2 0
0 0 0.1

 =

 0.5147 −0.1588 −0.0071
−0.1588 0.3853 0.0082
−0.0071 0.0082 0.1426



H2 =

[
µ̄x2−xL√

(xL−µ̄x2)2+(yL−µ̄y2)2

µ̄y2−yL√
(xL−µ̄x2)2+(yL−µ̄y2)2

0

0 0 1

]
=

[
−0.6012 −0.7991 0

0 0 1.0000

]

K2 = Σ̄2H
T
2 (H2Σ̄2H

T
2 +Q)−1 =

 −0.4812 −0.0425−0.5596 0.0360
−0.0016 0.7404


From the Kalman gain K2 and the matrix H2 we can then finish the correction step:

µ2 =µ̄2 +K2(z2 − h(µ̄2)) =

=

 0.5476
0.0694
0.2875

+

 −0.4812 −0.0425−0.5596 0.0360
−0.0016 0.7404

[2.1
0.2

]
− h

 0.5476
0.0694
0.2875

 =

 0.6991
0.2466
0.2973


and then Σ2

Σ2 = (I−K2H2)Σ̄2

=

 1 0 0
0 1 0
0 0 1

−
 −0.4812 −0.0425−0.5596 0.0360
−0.0016 0.7404

[−0.4424 −0.8968 0
0 0 1

] ·
 0.5147 −0.1588 −0.0071
−0.1588 0.3853 0.0082
−0.0071 0.0082 0.1426

 =

 0.4266 −0.2607 −0.0021
−0.2607 0.2661 0.0018
−0.0021 0.0018 0.0370


Note how after one iteration the covariance matrix Σ2 is no longer diagonal, and after two
iterations all its off-diagonal elements are different from 0, indicating that the components
are no longer uncorrelated.

8.8 Mapping as an Estimation Problem

So far in this chapter, estimation algorithms have been mostly used to solve problems related
to localization, i.e., estimating the pose of the robot in a known map. At the beginning of

282 CHAPTER 8. ESTIMATION AND FILTERING

the chapter, we clarified that when we use the sensor model p(z|x) in localization algorithms,
we implicitly assume that the map of the environment is known. For instance, in the last
example, we assumed the location of the landmark was known, i.e., we assumed knowledge of
the environment where the robot operates. However, one can also swap the perspective and
use estimation algorithms to determine the map of the environment under the assumption
that the pose of the robot is known. This problem, too, can be cast as an estimation question
and is known as mapping, which will be further expanded in Chapter 9.

We should clarify upfront that in many practical scenarios, the assumption that the pose
of the robot is known does not hold. Nevertheless, this problem is interesting for two reasons.
First, in some specific cases, one can ensure that the pose of the robot is known (e.g., by
using some external infrastructure, such as RTK GPS), and then use the mapping algorithm
to build a representation of the environment. Second, the mapping problem is also an es-
timation problem of independent interest. As the name suggests, mapping algorithms are
estimation algorithms aimed at building a spatial representation (i.e., a map) of the envi-
ronment. Different spatial models have been proposed and used by the robotics community
over the years. In this section, we only consider occupancy grids, while more models will be
introduced in Chapter 9. In the following, we present an algorithm to build occupancy grid
maps starting from sequences of poses and sensor readings. An occupancy grid is a spatial
representation where the space is divided into a regular grid of equally sized cells (see Figure
6.1 for an example). Accordingly, the map m can be seen as a collection of n cells. To
each grid cell, we associate a binary random variable indicating whether the cell is occupied
or not. The value 1 indicates that the cell is occupied, and let mi be the binary random
variable associated with the ith cell in the map. The mapping problem can then be seen as
the problem of estimating the joint posterior distribution for the n binary random variables
associated with the n cells in the map. Before getting into the analytic derivation, it is
instructive to consider a simple idealized case to gain some intuition. Consider the situation
sketched in Figure 8.13, where a robot at a known position xt is equipped with a laser range
finder. To simplify the discussion, let us consider just one of the readings returned by the
sensor, and let us call it zt. The grid cells in the map can be divided into three groups.

zt
xt

Figure 8.13: Mapping principle

For some cells, like those depicted in orange in the figure, the sensor reading zt carries
no information. For these cells, the probability p(mi = 1) should therefore not be updated
based on this sensor reading. For other cells, like those shown in green, the sensor information
indicates that p(mi = 1) should be lowered. In this case, the probability should be decreased
because the laser beam traverses the cells; however, in general, this probability update needs
to be tailored to the specific sensor being used. Finally, for some cells, like the one in
red, p(mi = 1) should be increased because the sensor reading indicates that this cell is
occupied. As with the cells whose probability is lowered, the nature of the sensor clarifies

8.8. MAPPING AS AN ESTIMATION PROBLEM 283

why the probability should be increased (in this case, because the beam is reflected by the
cell, indicating the presence of an obstacle). For a range finder, the above reasoning should
be repeated for all readings returned by the sensor.

Moreover, note that by knowing the pose of the robot, the geometry of the sensor, and
the values it returns, it is possible to partition all grid cells in the map into one of the
three above groups. An outstanding question in the above discussion is by how much the
probability should be either increased or lowered when an update is necessary. This question
is related to the specific sensor being used. Additionally, due to the fact that sensors are
affected by errors, no conclusion should be drawn from a single sensor reading; that is, a
single reading indicating that a cell is occupied should not be used to infer that p(mi = 1) = 1
(or p(mi = 1) = 0 if the sensor indicates the cell is free).

We next turn these intuitions into a recursive Bayesian estimation algorithm. The fol-
lowing discussion closely follows the presentation in [53] (chapter 4 and chapter 9) and [11]
(chapter 9), and the reader is referred to these excellent references for more details. As is
immediately evident, considering the map as a joint collection of n grid cells scales poorly
with the size of the map, because with n grid cells one can have 2n possible maps, and it
would be computationally too demanding to compute the posterior of each of those maps.
Therefore, a standard assumption to simplify the problem is that all grid cells are indepen-
dent of each other, and we consequently develop an algorithm to estimate the posterior of a
single grid cell. This algorithm will then be applied to all grid cells in the map.

Taking a Bayesian approach, our objective is to estimate the following posterior:

p(mi = 1|x1, x2, . . . , xn, z1, z2, . . . , zn)

where mi is the ith grid cell in map m. Note that in this case we do not consider the inputs
given to the robot because we assume the pose is known, so the inputs carry no additional
information. As in our previous estimation problems, we start by applying Bayes’ rule and
simplifying the following expressions by making suitable independence assumptions. For
brevity, we write p(mi) for p(mi = 1):

p(mi|x1, x2, . . . , xn, z1, z2, . . . , zn) = (8.25)

=
p(zn|x1, x2, . . . , xn, z1, z2, . . . , zn−1,mi)p(mi|x1, x2, . . . , xn, z1, z2, . . . , zn−1)

p(zn|x1, x2, . . . , xn, z1, z2, . . . , zn−1)
(8.26)

=
p(zn|xn,mi)p(mi|x1, x2, . . . , xn, z1, z2, . . . , zn−1)

p(zn|x1, x2, . . . , xn, z1, z2, . . . , zn−1)
(8.27)

=
p(mi|xn, zn)p(zn|xn)p(mi|x1, x2, . . . , xn, z1, z2, . . . , zn−1)

p(mi)p(zn|x1, x2, . . . , xn, z1, z2, . . . , zn−1)
(8.28)

=
p(mi|xn, zn)p(zn|xn)p(mi|x1, x2, . . . , xn−1, z1, z2, . . . , zn−1)

p(mi)p(zn|x1, x2, . . . , xn, z1, z2, . . . , zn−1)
(8.29)

The rationale of the derivation is as follows. Eq. (8.26) is obtained from Eq. (8.25)
by applying Bayes’ rule with background knowledge. Next, Eq. (8.27) is obtained from
Eq. (8.26) by noting that the sensor reading at time n (zn) depends only on the grid cell mi

284 CHAPTER 8. ESTIMATION AND FILTERING

and the pose at time n (xn), but not on the previous sensor readings or previous poses. We

then apply Bayes’ rule again to the term p(zn|xn,mi), i.e., p(zn|xn,mi) =
p(mi|xn,zn)p(zn|xn)

p(mi|xn)
.

Further observing7 that p(mi|xn) = p(mi), we obtain Eq. (8.28). Finally, to derive Eq. (8.29),
we observe that xn does not carry any information about mi if we do not know zn, so we drop
it. Without additional assumptions, this expression cannot be further simplified, and it still
includes some terms we do not know. To circumvent these issues, we go through the same
derivation to estimate p(mi = 0). Of course, p(mi = 0) = 1− p(mi = 1), but the derivation
is still convenient to simplify the unknown terms in Eq. (8.29). In the following, for brevity,
we write p(¬mi) for p(mi = 0). Following exactly the same derivation we discussed above,
we get:

p(¬mi|x1, x2, . . . , xn, z1, z2, . . . , zn) = (8.30)

=
p(¬mi|xn, zn)p(zn|xn)p(¬mi|x1, x2, . . . , xn−1, z1, z2, . . . , zn−1)

p(¬mi)p(zn|x1, x2, . . . , xn, z1, z2, . . . , zn−1)
(8.31)

At this point we take the ratio between the two estimates, i.e.,

p(mi|x1, x2 . . . , xn, z1, z2, . . . , zn)
p(¬mi|x1, x2, . . . , xn, z1, z2, . . . , zn)

and after substituting Eq. (8.29) and Eq. (8.30) we notice that the terms p(zn|xn) and
p(zn|x1, x2, . . . , xn, z1, z2, . . . , zn−1) cancel out. This leads to the following expression:

p(mi|x1, . . . , xn, z1, . . . , zn)
p(¬mi|x1, . . . , xn, z1, . . . , zn)

=
p(mi|xn, zn)p(¬mi)p(mi|x1, . . . , xn−1, z1, . . . , zn−1)

p(mi)p(¬mi|xn, zn)p(¬mi|x1, . . . , xn−1, z1, . . . , zn−1)
(8.32)

At this point, recall that p(mi) = 1 − p(¬mi), and we further introduce the following
quantity, defined for all events x whose probability is neither 0 nor 1:

Odds(x) =
p(x)

1− p(x)
. (8.33)

Using this definition, we can rewrite Eq. (8.32) as follows:

Odds(p(mi|x1, . . . , xn, z1, . . . , zn)) =
Odds(p(mi|xn, zn)) ·Odds(p(mi|x1, . . . , xn−1, z1, . . . , zn−1))

Odds(mi)
.

(8.34)

For computational reasons that will soon become evident, rather than directly working
with the Odds, it is more practical to work with its logarithm, exploiting the fact that the
log function is invertible. The last equation can therefore be rewritten as follows:

7One could speculate that knowing the robot pose is xn tells us something about whether cell mi is
occupied or not. In particular, if mi is within the robot’s footprint at state xn, the cell must be free. However,
it is convenient to make this independence assumption, and it still provides an acceptable approximation.

8.8. MAPPING AS AN ESTIMATION PROBLEM 285

logOdds(p(mi|x1, . . . , xn, z1, . . . , zn)) = (8.35)

= log

(
Odds(p(mi|xn, zn)) ·Odds(p(mi|x1, . . . , xn−1, z1, . . . , zn−1))

Odds(mi)

)
= logOdds(p(mi|xn, zn)) + logOdds(p(mi|x1, . . . , xn−1, z1, . . . , zn−1))− logOdds(mi)

This last expression shows once again the recursive nature of the estimation algorithm.
The logOdds obtained after integrating the last pose xt and the last sensor reading zt is com-
puted by adding a term considering these quantities (logOdds(p(mi|xn, zn))) to the logOdds
of the previous estimate (logOdds(p(mi|x1, . . . , xn−1, z1, . . . , zn−1))). Note moreover that the
estimate also depends on the logOdds of the prior, i.e., logOdds(mi), and that this term
will be 0 if the prior is p(mi) = 0.5, i.e., if the prior information assigns equal probability
that mi is free or occupied.

Once the logOdds have been computed, p(mi) can be obtained by inverting Eq. (8.33).
Putting everything together, then, the algorithm updates every cell in the map considering
all the sensor readings received. As a consequence of the above derivation, it can be observed
that p(mi) should never be exactly 0 or 1, because in either case the logOdds are undefined.
Indeed, if p(mi) = 1 or p(mi) = 0, then there is no point in applying an estimation algorithm
altogether, since there is no uncertainty. The previous derivation leads to an algorithm that
can be used to update the posterior of a single cell in the occupancy grid map. In particular,
it updates the estimate logOdds of the binary variable associated with the cell mi, starting
from the previous estimate, and the latest pose xn and sensor reading zn. Algorithm 12
sketches the solution. In the algorithm, ln stores the estimate of logOdds at stage n for the
whole map being built, and lin is the ith component, i.e., the logOdds for mi at time t.

Data: xn = (x, y, ϑ), zn, ln−1,mi

Result: ln
1 if mi in perceptual range of xn, zn then
2 lin ← logOdds(mi|xn, zn) + lin−1 − logOdds(mi);

3 else
4 lin ← lin−1;
5 return ln;

Algorithm 12: Mapping with known poses

The algorithm first determines if the latest sensor reading zn combined with the latest
pose xn can be used to update the posterior for mi (line 1). If that is not the case, then the
logOdds for mi is not updated, and the previous value is simply copied (line 4). If instead
the posterior needs to be updated, in line 2 the value is updated by applying Eq. (8.35).
The update takes the form of the typical recursive formulation, where the new estimate is
obtained by updating the previous estimate.

286 CHAPTER 8. ESTIMATION AND FILTERING

Further Reading

Estimation has a rich history. Classic textbooks on the topic include [3, 7, 52]. A more
recent textbook on the topic is [48]. For a discussion more focused on estimation problems
in robotics, the reader is referred to [11,27,53], and in particular to [53], as it is the leading
reference for this topic. For smoothing, see [1]. The implementation of ekf localization

in ROS is discussed in [40].

Chapter 9

Localization and Mapping

9.1 Introduction

The filtering and estimation techniques introduced in Chapter 8 can be used to solve two
important problems in robotics: localization and mapping. Basic examples illustrating the
role of estimation algorithms in these problems were presented earlier when introducing
the fundamentals. In this chapter, we delve deeper into these two essential problems and
explain how they are addressed in ROS through a set of readily available nodes that can be
easily integrated into new applications. While these nodes can be used as “black boxes,”
understanding the fundamental algorithms discussed in the previous chapter is crucial to
appreciating the strengths and limitations of these nodes and configuring them effectively.

The following quotes from a 1991 paper [15] are often cited to emphasize the practical
importance of localization in mobile robotics applications.

“We believe that position estimation is a primary problem that must be solved
for autonomous vehicles working in structured environments. [...]

Using sensory information to locate the robot in its environment is the most
fundamental problem to providing a mobile robot with autonomous capabilities.”

Although these quotes are more than 30 years old, they remain valid and highly relevant
to this day when developing software for mobile robots.

Localization is the problem of using sensory data to determine the position of a robot
inside a given map. This corresponds to determining the pose of the robot (e.g., x, y, ϑ,
assuming a mobile differential drive robot) with reference to an assigned frame. To this end,
it may be useful to review the standard frames introduced in Section 4.13.5. Conversely,
mapping is the problem of building a map of the environment assuming that the location
of the robot is known. Hence, the two problems are intertwined and often studied together.
However, it is necessary to clarify that the most important problem from a practical stand-
point is the so-called SLAM problem, i.e., simultaneous localization and mapping, where the
robot has to build a map and at the same time localize itself in the map being built. SLAM
algorithms are substantially more complex than localization and mapping alone, and will
not be covered here. However, we will discuss some ready-to-use ROS nodes that implement
SLAM algorithms.

287

288 CHAPTER 9. LOCALIZATION AND MAPPING

There exist numerous variations of the mapping and localization problems. With regard
to localization, three different problems are commonly considered.

Tracking is the problem maintaining (tracking) a posterior about the robot pose given
knowledge about its initial pose.

Global Localization is the problem of determining the robot pose given no prior infor-
mation about the robot pose. After the robot has been successfully localized, then
one could switch to tracking, although as we will see, some algorithms can seamlessly
switch from one mode the other.

Kidnapped Robot Problem is the problem of determining the robot location given a
wrong initial estimate about its pose. This problem is important because it addresses
the ability of recovering from a complete localization failure. This variant is different
from global localization because in the former the robot starts with a prior modeling
lack of knowledge, whereas in the latter the robot starts with a wrong estimate about
its pose.1

With regard to mapping, in addition to the occupancy grids introduced in previous
chapters, several alternative models have been proposed and studied in the literature. The
continued use of different spatial representations highlights that no single model is universally
superior; rather, the choice of model is typically driven by the specific requirements of the
application. The following list outlines some of the most commonly used models.

Occupancy grids: An occupancy grid divides the environment into a regular grid and
assigns to each grid cell the probability that the cell is occupied—hence the name.
The maps shown in Figures 6.1 and 8.9 are examples of occupancy grid maps built by
a mobile robot. Occupancy grid maps are appealing for at least two reasons. First,
they are very easy for humans to interpret because they resemble blueprints we are
familiar with. Second, they are very practical for tasks like robot navigation, as they
encode occupied areas that the robot should avoid to prevent collisions, as outlined
when we discussed Nav2.

Feature based maps: A feature-based map includes the location of landmarks that the
robot can detect. The location of each landmark is often represented probabilistically,
e.g., using a Gaussian distribution. The type of landmarks depends on the sensor(s)
used. For example, in an outdoor scenario, one could map light poles, trees, or similar
features.

Appearance based maps: An appearance-based map consists of a graph where each ver-
tex is associated with an image, and edges are added between similar vertices (i.e.,
images). To determine whether a vertex should be added, a similarity metric is used.
Appearance-based maps can be used to perform tasks like visual navigation, though
this topic will not be discussed further. An example is shown in Figure 9.1.

1The word kidnapped is used do describe this problem because this is what would happen if a correctly
localized robot is lifted (kidnapped) and moved to a different location. In this case, once the robot is “freed,”
its most recent pose estimate would be wrong, but the robot would not be aware of it.

9.2. LOCALIZATION 289

Figure 9.1: An example of an appearance-based map, where images are associated with
vertices and edges are added between vertices whose images are sufficiently similar according
to a given similarity metric. Image taken from [19].

Topological maps: A topological map consists of a graph where vertices are associated
with places, and edges between two vertices are added when it is possible to move
between the associated places.

Occupancy grid maps and feature based maps can also be classified as metric maps
because they include metric information, such as distances between landmarks and other
measurements.

9.2 Localization

Before delving into how localization algorithms are implemented in ROS, we begin with a
deeper discussion of how the EKF can be used to solve the localization problem in a feature
based map.

The EKF is most often used to solve the tracking problem, i.e., to maintain a Gaussian
posterior given a Gaussian prior and a stream of inputs and sensor data. When using a
standard EKF, it is important to remember that a basic implementation relies on a uni-
modal posterior (the Gaussian distribution), and therefore it is not suitable for tracking
multiple hypotheses. During the prediction step, the algorithm integrates the most recent
inputs, while during the correction step, the provided map is used to compute the innovation
and apply corrections. The architecture shown in Figure 9.2 (adapted from [30], page 60)
illustrates how the EKF is used to localize a robot navigating in a feature based map with
landmarks placed at known locations.

The prediction and correction steps have already been discussed in Section 8.7 and are
exactly the same. However, in a feature-based map including multiple landmarks placed at
known locations, there is potentially an additional aspect to consider, i.e., data association or

290 CHAPTER 9. LOCALIZATION AND MAPPING

Prediction

Correction

Map

µ,⌃

µ̄, ⌃̄

u

K

z

h(µ̄) Association/
Matching

input current estimate

Kalman Gain

actual measurements

predicted
 measurements

t t+1

Figure 9.2: EKF localization cycle

matching. After the state has been predicted, by using the map and the sensor model h, it is
possible to predict what the measurements would be if the state of the robot were equal to the
predicted mean, i.e., h(µ). This is necessary to compute the innovation term. For example,
assuming that the sensor could measure the distance between the robot and all the features
in the map (say k features), the sensor would return a vector with k values. However, in a
practical application the actual measurements could include only a subset of these k values,
for example because some of the features are not detected due to distance or occlusions.
Alternatively, the sensor could return the distances to all k features, but the order in which
they are returned may not be known. This could be, for example, the case when the features
are indistinguishable. The association step is needed to match the predicted measurements
(or a suitable subset) to the actual measurements, so that the innovation z − h(µ) can
be properly computed. Association is, in general, a difficult problem to solve. For this
reason, in many cases the environment is pre-conditioned so that all features are uniquely
identifiable, and the association problem is therefore bypassed or simplified. However, in
many circumstances it is not possible to modify the environment to ease this problem, and
one has to deal with the data association challenge.

9.2.1 Pose tracking in a feature map with EKF

We show a concrete example where the EKF is used to solve the tracking problem. In this
case, the robot moves according to the same motion model used in the example provided in
Section 8.7.3, and the robot starts from the pose (0, 0, 0). However, in this case, the robot
is equipped with a sensor that returns the distances from three landmarks placed at known
locations. The landmarks are distinguishable and always detectable, and therefore the data
association problem does not arise. The sensor model is:

9.2. LOCALIZATION 291

zt = ht(xt) +wt =


√

(x1L − xt)2 + (y1L − yt)2√
(x2L − xt)2 + (y2L − yt)2√
(x3L − xt)2 + (y3L − yt)2

+wt

where (xiL, y
i
L) is the known location of the ith landmark. Since the landmarks have been

assumed to be distinguishable, the ith entry in zt is always the distance from (xiL, y
i
L). vt is

a zero mean Gaussian vector with constant covariance matrix

Q =

 0.001 0 0
0 0.001 0
0 0 0.001

 .
In this case the robot is not equipped with any sensor returning direct information about its
heading, as ϑ does not appear in the expression for the sensor function h. The initial pose
of the robot is Gaussian distributed with mean µ0 = [0 0 0] and covariance matrix:

Σ0 =

 0.01 0 0
0 0.01 0
0 0 0.001

 .
We next illustrate the results of the estimation process for two different cases. In the first

setup, inputs and measurements regularly alternate at every cycle, i.e., every prediction step
is followed by a correction step. Figure 9.3 shows the results. On the left, we see the real
path followed by the robot (red path), the estimated pose (yellow dots), and the locations of
the three landmarks (blue stars). Throughout the trajectory, the estimated position remains
fairly close to the ground truth. In the right figure, we plot the ground truth orientation
as well as the estimated orientation. Note the lag between the actual trajectory and the
estimated trajectory.

-4 -2 0 2 4 6

-2

-1

0

1

2

3

4

5

6

7

8

(a) Position Error

0 20 40 60 80 100 120
-3

-2

-1

0

1

2

3

Ground Truth

Estimated Orientation

(b) Orientation Error.

Figure 9.3: Position and orientation error for the case of alternating prediction and correc-
tion. In both charts the red line shows the ground truth.

292 CHAPTER 9. LOCALIZATION AND MAPPING

It is interesting to examine the covariance matrix Σ at the end of the estimation process:

Σ =

 0.000979 −0.000161 0.000119
−0.000161 0.000502 0.000102
0.000119 0.000102 0.013212


The first important observation is that even though the initial covariance matrix Σ0 was
diagonal, i.e., the covariances between all components (off-diagonal values) were 0, at the end
of the estimation process this is no longer the case. That is, although the initial components
of the state were independent Gaussian variables, in the end there is non-zero covariance
between the state components. Hence, it is possible to (indirectly) estimate the orientation,
even if there is no sensor directly measuring it. The other interesting observation pertains
to the elements on the diagonal of Σ, i.e., the variances of the individual components of the
state being estimated. The variances of the first two components (x and y) are significantly
smaller than the variance for the third component (ϑ), indicating greater uncertainty for the
latter.

In the second case, shown in Figure 9.4, observations are instead received sporadically,
i.e., the EKF does not regularly alternate prediction and correction, but rather performs
multiple predictions in a row before applying a correction when a sensor reading is received.
This can be clearly seen by the mismatch between the red curve and the yellow dots in
Figure 9.4. In fact, the linear sequences of yellow dots are obtained in between corrections
(predictions only), while the jumps occur when a sensor reading is received and the correction
step is applied. In Figure 9.4, note the segments where the estimated orientation does not
change (horizontal segments in the blue line). These correspond to cases where the robot
is moving straight in between receiving sensor readings. In that situation, the EKF is
performing prediction only, and according to the motion model, no change in orientation is
made, resulting in constant orientation estimates.

-4 -2 0 2 4 6

-2

-1

0

1

2

3

4

5

6

7

8

(a) Position Error

0 20 40 60 80 100 120
-3

-2

-1

0

1

2

3

Ground Truth

Estimated Orientation

(b) Orientation Error.

Figure 9.4: Position and orientation error for the case with sporadic sensor readings. In both
charts the red line shows the ground truth.

9.3. EXTENDED KALMAN FILTER IN ROS 293

9.3 Extended Kalman Filter in ROS

The package robot localization provides a ready-to-use implementation of the EKF2 in
a node called ekf node. ekf node implements a generic state estimation algorithm that
can integrate an arbitrary number of sensors and inputs and can be applied to robots with
different motion models. The node solves the estimation problem for robots moving in three-
dimensional space and is therefore equally applicable to mobile wheeled robots and drones
alike. The estimation node tracks the pose of a 15-dimensional vector, including position
and orientation, their time derivatives (velocities), and the second derivatives (accelera-
tions) of the position. Indicating with r, p, w the roll, pitch, and yaw orientation angles, the
tracked state vector is x = [x, y, z, r, p, w, ẋ, ẏ, ż, ṙ, ṗ, ẇ, ẍ, ÿ, z̈]T . The EKF implementation
in ekf node follows the nonlinear estimation formulation presented in Section 8.7.2, i.e., it
considers nonlinear models for both motion and sensing. The input vector u is assumed to
be a six dimensional vector including linear and angular accelerations, i.e.,

ut =


ẍt−1

ÿt−1

z̈t−1

r̈t−1

p̈t−1

ẅt−1


while the state transition equation xt = f(xt−1,ut) is

f(xt−1) =



fx(xt−1,ut)
fy(xt−1,ut)
fz(xt−1,ut)

rt−1 + (ṙt−1 + sin rt−1 tan pt−1ṗt−1 + cos rt−1 tan pt−1ẇt−1)∆t
pt−1 + (cos rt−1ṗt−1 − sin rt−1ẇt−1)∆t

wt−1 + (sin rt−1
1

cos pt−1
ṗt−1 + cos rt−1

1
cos pt−1

ẇt−1)∆t

ẋt−1 + ẍt−1∆t
ẏt−1 + ÿt−1∆t
żt−1 + z̈t−1∆t
ṙt−1 + r̈t−1∆t
ṗt−1 + p̈t−1∆t
ẇt−1 + ẅt−1∆t

ẍt−1

ÿt−1

z̈t−1


2To be precise, the package also provides another node implementing a filter called the unscented Kalman

filter. However, we will not discuss it here because we have not covered its theoretical foundations.

294 CHAPTER 9. LOCALIZATION AND MAPPING

and

fx(xt−1,ut) = xt−1+cos yt−1 cos pt−1ẋt−1∆t+

(cos yt−1 sin pt−1 sin rt−1 − sin yt−1 cos rt−1)ẏt−1∆t+

(cos yt−1 sin pt−1 cos rt−1 + sin yt−1 sin rt−1)żt−1∆t+

1

2
(ẋt−1ẍt−1 + ẏt−1ÿt−1 + żt−1z̈t−1)∆t

fy(xt−1,ut) = yt−1+sin yt−1 cos pt−1ẋt−1∆t+

(sin yt−1 sin pt−1 sin rt−1 + cos yt−1 cos rt−1)ẏt−1∆t+

(sin yt−1 sin pt−1 cos rt−1 − cos yt−1 sin rt−1)żt−1∆t+

1

2
(ẋt−1ẍt−1 + ẏt−1ÿt−1 + żt−1z̈t−1)∆t

fz(xt−1,ut) = zt−1− sin pt−1ẋt−1∆t+

cos pt−1 sin rt−1ẏt−1∆t+

cos pt−1 cos rt−1żt−1∆t+

1

2
(ẋt−1ẍt−1 + ẏt−1ÿt−1 + żt−1z̈t−1)∆t

The reader may be taken aback by the complex expressions appearing in the definition
of f(xt−1,ut). Of course, it is not necessary to remember these relationships to use the node,
but the formulas show that the EKF implementation allows the prediction step to work
regardless of the motion model governing the robot. The prediction step considers how the
pose, orientation, and velocity of a rigid body moving in three dimensions evolve over time,
under the assumption that the body is subject to external forces and torques generating
linear and angular accelerations, as per our assumption of u. Derivations for these formulas
can be found in textbooks focusing on robot mechanics, such as [31,49]. The Jacobian matrix
of the nonlinear sensing function (see Eq.(8.24)) is assumed to contain only zeros and ones.
This means that the sensors should directly return the state variables being estimated. For
a sensor returning all 15 variables, H would be the identity matrix. Sensors returning only
a subset of the 15 variables being tracked (say m) can be easily handled by zeroing out the
components associated with the variables not measured, thus yielding an m×15 matrix. For
example, to integrate inputs from a sensor such as odometry providing x, y, w (i.e., the 2D
pose), the matrix H would be

H =

 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0


This structure ensures that only the three components returned by the sensor will be updated.
Likewise, if one has an IMU returning ẋ, ẏ, ż, the metrix would be

H =

 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0



9.3. EXTENDED KALMAN FILTER IN ROS 295

Fortunately, the programmer does not have to deal with updating these matrices, as this can
be easily configured through a text configuration file described later on. Similarly, the same
configuration file can be used to set the values of the covariance matrices for disturbances,
i.e., Q and R. Note that while the general EKF formulation presented in Chapter 8 allows
for time-varying matrices, the ROS implementation instead assumes these are fixed, and
therefore we have dropped the subscript t since there is no time dependency.

The standard way to run the EKF node in ROS is to put all parameters in a YAML
configuration file and then pass the file to the node, e.g.,

ros2 run robot_localization ekf_node --ros-args --params-file ekfnode.yaml

Because the EKF node can be configured in a very complex way, the configuration file can
quickly become quite large. The most practical approach is to start with the template file
ekf.yaml provided as part of the robot localization package and adjust it for the specific
configuration being used. The reader is referred to this file and to the online documentation
for a detailed explanation of the many parameters. A key aspect to consider when setting
up the filter is that it can receive inputs from an arbitrary number of devices providing data
through topics of type:

• geometry msgs::PoseWithCovarianceStamped

• geometry msgs::TwistWithCovarianceStamped

• nav msgs::Odometry

• sensor msgs::Imu.

At this point, it should be clear how the data provided by these sensor streams fit into
the equations shown at the beginning of this section. The output from the filter is published
to a topic of type nav msgs::Odometry and typically called odom/filtered, though note
that this may be part of a namespace and therefore appear with a different fully qualified
name. To see an instance of ekf node in action, you can run the following command:

ros2 launch gazeboenvs husky_orchard.launch.py

With ros2 node info, we see that the ekf node processes data from the odometry sensor
and one IMU. The estimate is published to the topic /a201 0000/platform/odom/filtered

as the launch file defines its own namespace. Echoing the output topic of the EKF, one
can observe that, consistent with EKF theory, the node outputs both the mean and the
covariance of the estimate, and these are updated as the robot is moved around with the
GUI appearing on the right side of the Gazebo window. Importantly, the filter provides the
estimate for the pose of the base link frame relative to the odom. This is consistent with
the conventions mentioned at the end of Chapter 4, when it was stated that poses expressed
in the odom should evolve with continuity. ekf node also provides various services. Among
these, SetPose is used to set the tracked state during the estimation process, toggle is turn
the filter on or off, and reset is to reset it (i.e., forget all past history and restart). ros2

interface show can be used to see how to interact with these services.

296 CHAPTER 9. LOCALIZATION AND MAPPING

Remark 9.1. The ekf node implementation does not allow direct replication of the pose
tracking approach presented in Section 9.2.1 because it cannot integrate sensor readings that
return distances from landmarks located at known positions. To make this information avail-
able to ekf node, one should convert it into a suitable message, e.g., by turning variations
in measured distances from landmarks into estimates of motion encoded in a message of type
nav msgs::Odometry. Approaches known as visual odometry perform this conversion by
estimating a robot’s movement through the analysis of sequences of images from one or more
cameras.

9.4 Particle Filters in ROS

The nav2 amcl package provides a node called amcl that implements an algorithm called
Adaptive Monte Carlo Localization (AMCL from now onwards). As discussed in the previous
chapter, a careful implementation is needed to turn the basic particle filter idea into a robust
localization algorithm. AMCL specializes the basic particle filter described in Section 8.5
with advanced features, such as the ability to adjust, on the fly, the size of the particle set (the
technical details are beyond the scope of these notes). This allows starting with a large set
of particles initially, for example when the robot’s pose is subject to significant uncertainty,
and then adaptively refining (typically reducing) this number as the task progresses and
the estimate becomes more accurate. amcl works only for a robot moving in a planar
environment, i.e., it estimates position and yaw orientation (x, y, ϑ). As of now, the only
sensor used for localization is the laser scanner. To see the amcl particle filter in action, we
can run the following Gazebo simulation

ros2 launch gazeboenvs tb4_simulation.launch.py use_rviz:=True

and in RViz it is possible to enable the visualization of particles3, as shown in Figure 9.5.
amcl solves two types of localization problems. The first is pose tracking, i.e., given an

initial estimate for the pose, it integrates sensor readings and given commands to propagate
a posterior and maintain (track) the pose estimate. When solving the tracking problem,
the initial set of particles is drawn from a Gaussian distribution with a given mean and
covariance. The second problem it solves is the global localization problem, i.e., given no
prior estimate of the robot pose, it attempts to estimate it. In this case, the initial set of
particles is generated and spread across the environment using a uniform distribution.

Its behavior can be configured through a large number of parameters that can be set
either in a YAML configuration file or through the parameter server.

9.4.1 Subscribed topics

To track the pose of the robot, amcl subscribes to /scan to receive sensor readings from
the laser range finder. It also subscribes to /map to obtain the map of the environment
and to /tf to receive the necessary transformations, e.g., the transformation between the
range finder and the base link. The fourth topic it subscribes to is /initialpose, where

3Note that until the robot is not moved the particles are not displayed.

9.4. PARTICLE FILTERS IN ROS 297

Figure 9.5: Particle filter visualization in RViz. The green dots (which are actually arrows)
show possible positions and orientations. As expected, particles are more dense near the
actual location of the robot, indicating that pose tracking is working.

messages of type geometry msgs::PoseWithCovarianceStamped are sent. As the name
suggests, this topic can be used to initialize the initial set of particles by sampling from a
Gaussian distribution with the given mean (pose) and covariance. If no node is publishing
to this topic, amcl attempts to retrieve the initial pose from the parameter server, and if
this also fails, the initial pose is set to (0, 0, 0) with a diagonal covariance matrix containing
fixed values. Particles are then generated by drawing samples from a Gaussian distribution
centered on the initial pose and using the provided covariance matrix. This initialization
step is intended to solve the aforementioned tracking problem, i.e., to create an initial set
of particles drawn from a distribution that models preliminary knowledge about the robot’s
pose.

9.4.2 Published topics

amcl publishes the estimated robot pose to the topic /amcl pose. Messages published to this
topic are of type geometry msgs/PoseWithCovarianceStamped, as each pose is associated
with a covariance matrix and a timestamp. Importantly, the pose returned is referred to the
frame map, indicating that the pose estimation may be discontinuous. To return a single pose
from the current set of particles, amcl pose divides the particles into clusters and assigns a
weight to each cluster. The returned pose is then the mean of the particles in the cluster with
the highest weight, along with its covariance. In addition, amcl also publishes the entire set
of particles to the /particlecloud topic as a message of type geometry msgs/PoseArray.
The topic /initialpose, as the name suggests, can be used to initialize the particle filter
with a message of type geometry msgs/PoseWithCovarianceStamped.

9.4.3 Implemented services

amcl implements numerous services to asynchronously interact with the filter. The service
/reinitialize global localization is used to reset the set of particles and distribute

298 CHAPTER 9. LOCALIZATION AND MAPPING

them uniformly over free space. This service should be called to solve the global localization
problem. Listing 9.1 shows how this service can be called.

Listing 9.1: Resetting amcl for global localization

1 #include <r c l cpp / rc l cpp . hpp>
2 #include <s t d s r v s / srv /empty . hpp>
3 #include <chrono>
4
5 using namespace std : : c h r o n o l i t e r a l s ;
6
7 int main (int argc , char ∗∗ argv) {
8
9 rc l cpp : : i n i t (argc , argv) ;

10 r c l cpp : : Node : : SharedPtr nodeh ;
11 nodeh = rc l cpp : : Node : : make shared (” r e s e t p a r t i c l e s ”) ; // c rea t e node
12
13 rc l cpp : : Cl ient<s t d s r v s : : s rv : : Empty> : : SharedPtr c l i e n t =
14 nodeh−>c r e a t e c l i e n t <s t d s r v s : : s rv : : Empty>
15 (”/ r e i n i t i a l i z e g l o b a l l o c a l i z a t i o n ”) ;
16 // wai t . . .
17 while (! c l i e n t −>w a i t f o r s e r v i c e ())
18 RCLCPP INFO(nodeh−>g e t l o g g e r () , ”Waiting f o r s e r v i c e to be a v a i l a b l e ”) ;
19
20 auto r eque s t = std : : make shared<s t d s r v s : : s rv : : Empty : : Request >() ;
21 auto re sponse = c l i e n t −>a sync s end reque s t (r eques t) ;
22 i f (r c l cpp : : s p i n u n t i l f u t u r e c o m p l e t e (nodeh , re sponse) ==
23 rc l cpp : : FutureReturnCode : : SUCCESS) {
24 RCLCPP INFO(nodeh−>g e t l o g g e r () , ” P a r t i c l e s r e s e t ”) ;
25 }
26 else // Error :
27 RCLCPP ERROR(nodeh−>g e t l o g g e r () , ” Error whi l e r e s e t t i n g p a r t i c l e s ”) ;
28
29 r c l cpp : : shutdown () ;
30 return 0 ;
31 }

If you run this node with the previous simulation environment up and running and
visualize the particles with RViz, you will see that after running the node, the particles are
spread uniformly over the free space in the map. The service /request nomotion update

should be called to force the node to perform an update even when no motion commands
are being sent. The reason is that, to ensure stability, amcl suspends its updates when the
robot is stationary. By invoking this service, it is possible to force the robot to perform a
single update. It is therefore necessary to call this service repeatedly if continuous updates
are desired while the robot is not moving. Both of these services receive requests of type
std srvs::srv::Empty because they do not require any input parameters and return no
results.

9.4.4 Parameters

amcl relies on numerous parameters to define its functioning. These can be either set in
the configuration file, or through a YAML file, similar to the EKF node. Two important

9.5. SLAM IN ROS 299

parameters are the minimum number of particles min particles and maximum number of
particles max particles. If not explicitly set, they default to 500 and 2000, respectively.
When the filter is initialized, it initially creates max particles particles drawn from a Gaus-
sian distribution, as per the above discussion, but they can be resampled from a uniform
distribution over free space, using the /reinitialize global localization service.

9.5 SLAM in ROS

In Chapter 8, we showed how both the mapping and the localization problem can be cast as
estimation problems. However, we also mentioned that, from a practical standpoint, a much
more important problem is the so-called SLAM, where the robot at the same time must
build a map and localize itself within it. SLAM is a much harder problem than localization,
and we will not discuss the algorithmic details. The good news is that ROS provides a
ready-to-use implementation of a 2D SLAM algorithm through the slam toolbox package.
To see the SLAM algorithm in action, you can run the following command:

ros2 launch gazeboenvs tb4_simulation.launch.py slam:=True use_rviz:=True

In this case, RViz starts with an empty map. However, if you move the robot using the
RViz interface, you will see that a map begins to be incrementally built. Figure 9.6 shows
an example.

Figure 9.6: Partially built map obtained by the SLAM algorithm.

The slam toolbox node subscribes to /scan to receive data from the range finder
and to /tf to obtain the location of the sensor on the robot. The node publishes both

300 CHAPTER 9. LOCALIZATION AND MAPPING

the map (of type nav2 msgs::OccupancyGrid) to the topic /map and the pose (of type
geometry msgs::PoseWithCovarianceStamped) to the topic /pose. It also exposes numer-
ous services for tasks such as saving the map, resetting the algorithm, and more. A complete
list can be obtained with ros2 node info /slam toolbox.

Remark 9.2. The examples we have seen illustrate how the algorithms work in practice and
how it is possible to interact with them, e.g., retrieving the pose produced by ekf node or the
map from slam toolbox. These examples relied on having Nav2 properly configured for the
robot being used, either in simulation or in the real world. Configuring Nav2 from scratch
for a new robot can be a time-consuming task, although the Nav2 website provides detailed
tutorials on how to do it. On the positive side, given the widespread adoption of ROS, most
commercial platforms now come with Nav2 already configured, allowing one to skip the setup
process entirely.

Further Reading

An earlier implementation of EKF in ROS is discussed in [39] and it provides informative
examples showing how different sensors perform individually and through fusion. The SLAM
toolbox is described in [34].

Literature in localization, mapping and SLAM is vast and has greatly evolved through
the years, albeit one can say that in numerous settings the SLAM problem can be considered
solved. A classic reference explaining the fundamentals is [53], although much progress has
been made since the book appeared. Another classic introductory tutorial is [5, 18].

Appendix A

Probability

Robots operate in the physical world and are subject to countless sources of uncertainty.
Some uncertain outcomes are due to the laws of physics and unavoidable mechanical limita-
tions. Figure A.1 illustrates this problem. The DuckieBot (shown in Figure A.1a) executed
the maneuver move forward 50 centimeters 100 times, always starting from the position
(0, 0). Figure A.1b shows the distribution of the positions at the end of the maneuver.

(a) The DukieBot

X

-5 0 5 10 15 20 25

Y

0

10

20

30

40

50

60

(b) Endpoints obtained repeating the same
maneuver 100 times.

Figure A.1: The DukieBot and its trajectories. The robot always starts at (0, 0) pointing
upwards. The plotted dots are the position of the mid point between the two wheels.

In this case, the distribution is clearly skewed to the right because one of the two motors
was not working properly. While the figure depicts a case that may appear extreme, such
problems are far from unusual. Similar behaviors are, for example, observed when the
wheels are inflated to different pressures (and thus have different radii), or when the surface
is irregular, etc. This uncertainty cannot be avoided, although it can be limited with careful
(or more expensive) design. However, it can never be completely eliminated. Other events
that can add uncertainty are external, e.g., one of the motors may unexpectedly stop working,
causing the robot to fail to move altogether. Similar phenomena are experienced when

301

302 APPENDIX A. PROBABILITY

considering robot sensors. For example, if we repeatedly query a GPS receiver to determine
our latitude and longitude, even without moving, the returned location typically fluctuates,
and occasionally one can see “jumps” of a few meters.

Consequently, to develop truly robust robot systems capable of successfully completing
their assigned missions despite these uncertainties, it is necessary to develop algorithms that
explicitly account for these sources of unpredictability. The theory of probability provides
the right framework to formulate and solve these problems. In this chapter, we provide a
short recap of the main concepts necessary to develop the contents presented in this book.
The reader is referred to the references at the end of the chapter for more details.

A.1 Sets and Algebras

We assume the reader is familiar with the concepts of set, union, complement, etc.

Definition A.1 (Algebra). Given a set Ω, an algebra on Ω is a collection A of subsets of
Ω satisfying the following conditions:

1. ∅ ∈ A: the empty set is in A.

2. A ∈ A ⇒ Ā ∈ A: A is closed under complement.

3. A,B ∈ A ⇒ A ∪B ∈ A: A is closed under finite union.

From the above properties, we can show that an algebra is also closed under intersection.

Theorem A.1. Let A be an algebra on Ω and let A,B ∈ A. Then, A ∩B ∈ A.
Proof. The theorem can be easily proven using one of De Morgan’s laws, i.e., A ∩B = Ā∪B̄.
We start by observing that

A ∩B = A ∩B = A ∪B
where the last equality follows from De Morgan’s law. Next, since we assumed A,B ∈ A,
then A,B ∈ A by property 2, and A ∪ B ∈ A by property 3. Finally, the complement of
this union is also in A by property 2, and therefore we have shown that A ∩B ∈ A.
Example A.1. Given a set Ω, the collection of subsets A = {∅,Ω} is the simplest algebra
on Ω. It is straightforward to verify that it satisfies all three conditions stated above.

Example A.2. Let Ω = {1, 2, 3, 4, 5, 6}. The following collection of subsets of Ω is an
algebra on Ω:

A = {∅,Ω, {1, 3, 5}, {2, 4, 6}}.
Example A.3. Let Ω be a set with a finite number of elements. Then A = 2Ω is an algebra
on Ω (recall that 2Ω is the power set of Ω).

Definition A.2 (Partition). Let Ω be a set. A collection of sets A1, . . . , An is a partition of
Ω if the following properties hold:

1. Ai ⊆ Ω for 1 ≤ i ≤ n;

2. Ai ∩ Aj = ∅ for all i ̸= j;

3. A1 ∪ A2 ∪ · · · ∪ An = Ω.

A.2. PROBABILITY SPACE 303

A.2 Probability Space

Definition A.3 (Probability Space). A probability space1 is given by (Ω,A, P) where:

• Ω is a set (usually called sample set; its elements are referred to as elementary out-
comes);

• A is an algebra on Ω (usually called event space);

• P : A → R is a function (called probability distribution on Ω) subject to the following
constraints:

1. P (A) ≥ 0 for each A ∈ A;
2. P (Ω) = 1;

3. if A,B ∈ A and A ∩B = ∅, then P (A ∪B) = P (A) + P (B).

P (A) is called the probability of the event A. The above properties also imply that if
A ⊆ B, then P (A) ≤ P (B). An experiment is defined by the sample set Ω, a set of relevant
events A, and the probability distribution P . In the following and in the rest of the book
we often write P (A,B) as a shorthand for P (A∩B) where A and B are two events over the
same probability space.

Example A.4. Let us define the probability space associated with the experiment of tossing
an unfair coin. To this end, we need to define the sample set Ω, its algebra A and the
probability distribution P .

1. Ω = {H,T} (heads, tails)

2. A = {∅,Ω, {H}, {T}}

3. P (Ω) = 1, P ({H}) = 0.25, P ({T}) = 0.75, P (∅) = 0

It is immediate to verify that (Ω,A, P) satisfy the properties specified in the definition of
probability space.

Remark A.1. In the previous example, we described the experiment of tossing an unfair
coin. Normally, when tossing a fair coin, we assume that the probability of obtaining heads
is equal to the probability of obtaining tails, i.e., 0.5. In our case, however, we assumed a
higher probability of getting heads. From the perspective of defining a probability space, both
scenarios are valid, as long as the probability distribution P satisfies the properties outlined
in the definition of a probability space.

Fully defining the probability space by enumerating all events and their probabilities
can be a tedious task when A contains many elements. This is for example the case when
A = 2Ω and Ω has more than a handful of elements. In this case one can define P only for
the elements in Ω (elementary outcomes) subject to the following constraints:

1To be precise this definition is not correct, because we should impose additional properties on A (we
should require it is a so-called σ-algebra).

304 APPENDIX A. PROBABILITY

1. P (ω) ≥ 0 for each ω ∈ Ω;

2.
∑

ωi∈Ω P (ωi) = 1.

It is easy to verify that starting from these two properties one can build a probability
distribution on Ω satisfying the definition of probability space.

Example A.5. Let us define the probability space associated with the experiment of rolling
a fair die. According to the latest observation we define P only for the elements in Ω.

1. Ω = {1, 2, 3, 4, 5, 6}

2. A = 2Ω

3. P ({1}) = P ({2}) = P ({3}) = P ({4}) = P ({5}) = P ({6}) = 1
6

These definitions allow to answer questions regarding any event, i.e., any element in A.
For example, we can determine the probability of rolling the die and getting an odd face.
The associated event is Aodd = {1, 3, 5}. Note that by virtue of our definition of A we have
Aodd ∈ A. Its probability is immediately determined as

P (Aodd) = P ({1, 3, 5}) = P ({1}) + P ({3}) + P ({5}) = 1

6
+

1

6
+

1

6
=

1

2
.

A.3 Basic Probability Facts

From now on, unless otherwise specified, when talking about multiple events we will implicitly
assume they belong to the same probability space.

Definition A.4 (Conditional Probability). Let A,B be two events with P (B) > 0. We
define the conditional probability of A given B as

P (A|B) =
P (A ∩B)

P (B)
. (A.1)

Because we assume P (B) > 0, this quantity is well defined. Moreover, we can equivalently
write

P (A ∩B) = P (A|B)P (B).

Figure A.2 provides the intuition behind this definition.
The probability of an event A can be seen as the ratio between its measure and the

measure of the sample space Ω. Conditioning on an event B amounts to defining a new,
restricted sample space whose measure is P (B). In this new space, the event A “shrinks” to
the part compatible with B, namely A∩B. The ratio between the measure of A∩B and the
measure of B is then the probability of the remaining part of A after conditioning, which is
exactly the formula in Eq. (A.1).

Eq. (A.1) can be extended to cases with more than one conditioning event. If B and C
are two events such that P (B ∩ C) > 0 (compatible events), then we define

P (A|B,C) = P (A ∩B ∩ C)
P (B ∩ C)

.

A.3. BASIC PROBABILITY FACTS 305

A B

Ω

A ∩B

Figure A.2: Interpretation of the definition of conditional probability.

Following the same reasoning, it is possible to define the conditional probability for any finite
number of conditioning events.

Example A.6. Consider again the probability space introduced in Example A.5 for the ex-
periment rolling a fair die. Let us consider the events “the face is 4”, “the face is 1”, and
“the face is even”, denoted respectively by

A = {4}, B = {1}, C = {2, 4, 6}.

From our definition of P , we have P (A) = P (B) = 1
6
, while P (C) = 1

2
.

Applying Eq. (A.1), we get the probability that the face is 4 given that it is even:

P (A|C) = P (A ∩ C)
P (C)

=
P ({4})

1
2

=
1
6
1
2

=
1

3
.

Similarly, the probability that the face is 1 given that it is even is:

P (B|C) = P (B ∩ C)
P (C)

=
P (∅)

1
2

=
0
1
2

= 0.

Two theorems that we will use repeatedly later are the total probability theorem and
Bayes’ theorem.

Theorem A.2 (Total probability theorem). Let B be an event and A1, . . . , An a partition
of Ω. Then we have

P (B) = P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|An)P (An). (A.2)

Proof. The proof follows from elementary set properties:

P (B) = P (B ∩ Ω) = P (B ∩ (A1 ∪ A2 ∪ · · · ∪ An))

= P ((B ∩ A1) ∪ (B ∩ A2) ∪ · · · ∪ (B ∩ An))

= P (B ∩ A1) + P (B ∩ A2) + · · ·+ P (B ∩ An)

= P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|An)P (An).

306 APPENDIX A. PROBABILITY

Note that using Eq. (A.1) we can equivalently rewrite Eq. (A.2) as follows:

P (B) = P (B ∩ A1) + P (B ∩ A2) + · · ·+ P (B ∩ An). (A.3)

Theorem A.3 (Bayes’ theorem). Assume P (B|A) and P (A|B) are well defined (i.e., P (A) >
0 and P (B) > 0). Then we have

P (A|B) =
P (B|A)P (A)

P (B)
. (A.4)

Proof. We just need to apply the definitions and elementary algebra:

P (B|A) = P (A ∩B)

P (A)
⇒ P (A ∩B) = P (B|A)P (A).

Substituting into the definition of P (A|B) we obtain the desired result:

P (A|B) =
P (A ∩B)

P (B)
=
P (B|A)P (A)

P (B)
.

In estimation algorithms, the terms appearing in Eq. (A.4) are usually given specific
names: P (A|B) is called posterior, P (A) is called prior, P (B|A) is called likelihood and
P (B) is called evidence. Bayes’ theorem can also be rewritten using the total probability
theorem to express P (B), i.e.,

P (A|B) =
P (B|A)P (A)

P (B)
=

P (B|A)P (A)
P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|An)P (An)

.

Bayes’ theorem can also be formulated in the so-called Bayes’ theorem with background
knowledge, i.e., conditioning all terms in Eq. (A.4) on a third event (say C):

P (A|B,C) = P (B|A,C)P (A|C)
P (B|C)

(A.5)

Note that the role of the conditioning variables in Eq. (A.5) can be swapped, i.e., from a
formal standpoint one can also write

P (A|B,C) = P (C|A,B)P (A|B)

P (C|B)
.

The same reasoning can be applied when there are n conditioning events B1, B2, . . . , Bn, i.e.,
one can write

P (A|B1, B2, . . . , Bn) =
P (B1|A,B2, . . . , Bn)P (A|B2, . . . , Bn)

P (B1|B2, . . . , Bn)
.

Note that the choice of events to keep as background knowledge is arbitrary, i.e., one could
equally rewrite the same equation by swapping B1 with any of B2, . . . , Bn. All these rela-
tionships will be extremely useful when dealing with Bayes filters (Chapter 8).

A.4. RANDOM VARIABLES 307

Definition A.5 (Independent events). Two events A and B are said to be independent if
P (A ∩B) = P (A)P (B).

An immediate consequence of this definition is that if A is independent from B, then
P (A|B) = P (A), as can be immediately verified from the definition of P (A|B) in Eq. (A.1).
Note that the concept of independent events is purely mathematical. When the probability
space is set up to model a physical experiment, we may be able to determine from domain
knowledge that two events are independent. However, in many robotics algorithms, certain
events will be assumed independent even if this is not apparent from the physical setup.
In those cases, independence is assumed to simplify expressions and derive more efficient
algorithms, and experience shows that this approximation is most often negligible.

Definition A.6 (Conditional Independence). Two events A and B are conditionally inde-
pendent given an event C if

P (A ∩B|C) = P (A|C)P (B|C).

It is important to note that independence and conditional independence are not equiva-
lent. That is, two independent events A and B may no longer be independent when a third
event C is given. Conversely, two events conditionally independent given C may no longer
be independent when C is not the conditioning event.

A.4 Random Variables

Let (Ω,A, P) be a probability space and let X : Ω → R be a function from the sample set
into the real numbers. For k ∈ R we define the set

{X ≤ k} = {ω ∈ Ω : X(ω) ≤ k}.

By definition, for each k ∈ R it follows that {X ≤ k} ⊆ Ω, i.e., it is a set of elementary
outcomes.

Definition A.7 (Random Variable). Let (Ω,A, P) be a probability space. A function X :
Ω→ R is a random variable over (Ω,A, P) if it satisfies the following condition:

• for each k ∈ R, the set {X ≤ k} is an event over Ω, i.e., an element of A.

Example A.7. Consider again the probability space (Ω,A, P) defined in Example A.5. Let
X : Ω→ R be the function defined as follows: X(1) = 4, X(2) = −1, X(3) = 6, X(4) = 0,
X(5) = 10, X(6) = 4. In this case, by inspection we can construct {X ≤ k} for any k ∈ R.
For example, for k = 5

{X ≤ k} = {1, 2, 4, 6}.
More generally, it is immediate to verify that X is a random variable, because for each

k ∈ R the set {X ≤ k} is an event in A. This is trivially true because we defined A = 2Ω,
i.e., A includes all possible subsets of Ω.

Starting from the previous definition, we can introduce the cumulative function of a
random variable.

308 APPENDIX A. PROBABILITY

Definition A.8 (Cumulative Distribution Function). Given a random variable X over
(Ω,A, P), the cumulative distribution function Fx : R→ [0, 1] of X is defined as

Fx(a) = P ({X ≤ a}).

Since we assumed that X is a random variable, we have {X ≤ a} ∈ A, and therefore
P ({X ≤ a}) is well defined because P is defined for each event in A. Moreover, if a < b then
{X ≤ a} ⊆ {X ≤ b}, and therefore Fx(a) ≤ Fx(b), i.e., the cumulative distribution function
is a non-decreasing function. Similarly, we can show that

lim
a→−∞

Fx(a) = 0 lim
a→+∞

Fx(a) = 1.

Example A.8. Let us compute the cumulative distribution function for the random variable
defined in Ex. A.7. The function is piecewise constant and defined as follows:

Fx(a) =



0 for a < −1
1
6

for − 1 ≤ a < 0
1
3

for 0 ≤ a < 4
2
3

for 4 ≤ a < 6
5
6

for 6 ≤ a < 10

1 for a ≥ 10

To see why the function has this expression, we observe that {X ≤ a} changes only when a
assumes the critical values −1, 0, 4, 6, and 10. Applying the definitions: for a < −1, one has
{X ≤ a} = ∅ and therefore Fx(a) = P (∅) = 0. For −1 ≤ a < 0, one has {X ≤ a} = {2},
so Fx(a) = P ({2}) = 1

6
. Following the same reasoning, for 0 ≤ a < 4, {X ≤ a} = {2, 4},

so Fx(a) = P ({2, 4}) = 1
3
, and so on. Finally, for a ≥ 10, {X ≤ a} = Ω and then

Fx(a) = P (Ω) = 1.

Definition A.9 (Continuous Random Variable). A random variable X is continuous if Fx

is a continuous function.

Definition A.10 (Discrete random variable). A random variable X is discrete if Fx is
piecewise constant, i.e., it has a countable number of discontinuities and it is constant in
between discontinuities.

The random variable we considered in Ex. A.7 and Ex. A.8 is therefore discrete. Fig-
ure A.3 shows the cumulative function for a discrete (left) and continuous (right) random
variable.

Definition A.11 (Alphabet of a Discrete Random Variable). Let X be a discrete random
variable. The set of discontinuity points of its cumulative function is called alphabet.

Note that the alphabet can be either finite or infinite.

Example A.9. The random variable defined in Example A.7 is discrete and its alphabet
consists of 5 elements, i.e., {−1, 0, 4, 6, 10}.

A.4. RANDOM VARIABLES 309

Figure A.3: Left: Cumulative function of a discrete variable. Right: Cumulative function of
a continuous variable.

Definition A.12 (Probability Density Function). Let X be a continuous random variable.
Then its probability density function (PDF from now onwards) is2

fx(a) =
dFx(a)

da
.

Since fx(a) is the derivative of Fx and Fx is a non decreasing function, it follows that
fx(a) ≥ 0 for each a ∈ R. It is easy to show that

∫ +∞
−∞ fx(a)da = 1 and moreover

P (a ≤ X(ω) ≤ b) =

∫ b

a

fx(a)da.

Note: in the following (for brevity) we will often write f instead of fx.

Definition A.13 (Probability Mass Function). Let X be a discrete random variable and let
N = {a1, a2, . . . } be its alphabet. The probability mass function (PMF from now onwards)
is a function p : N → [0, 1] defined as

px(ai) = Fx(ai)− lim
a→a−i

Fx(a).

If X is a discrete random variable, then for a ∈ R we will often write

px(X = a) = px(a) = pa = P ({ω ∈ Ω} | X(ω) = a).

From the basic probability properties if follows that px(a) ≥ 0 for each a ∈ N . Using
the above definitions and the properties of probability spaces, it is immediate to show the
normalization constraint: ∑

a∈N

px(a) = 1.

We will often use the following random variables.

2We are implicitly defining the derivative where it exists. Once again, in the interest of space, we simplify
the exposition by omitting some technical details.

310 APPENDIX A. PROBABILITY

Gaussian Random Variable

A random variable X is Gaussian or Normal if its PDF has the form

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 .

Note that the PDF depends on two parameters, µ and σ2. Parameter µ is the expectation
of the random variable (see following) and σ2 is its variance (its positive square root σ is its
standard deviation). Often, we write X ∼ N (µ, σ2) to indicate that X is a Normal random
variable with expectation µ and variance σ2. Figure A.4 shows the PDF and the cumulative
density function for the standardized Gaussian variable X ∼ N (0, 1).

Figure A.4: Left: PDF of the standard random variable N (0, 1). Right: Cumulative density
function of the standard random variable N (0, 1)

Gaussian random variables are extensively used for multiple reasons. First, due to a
result known as central limit theorem, the sum of multiple independent identically distributed
random variables tends to be Gaussian distributed when the number of variables diverges.
This is, for example, the case when multiple independent sensor readings are collected by a
robot to gather information about its environment. Moreover, in numerous situations (e.g.,
the Kalman filter described in Chapter 8), analytic derivations can be simplified when the
underlying distributions are assumed to be Gaussian. Finally, for a given variance value,
Gaussian distributions provide the largest amount of uncertainty. Therefore, in uncertain
scenarios with scarce prior information, choosing a Gaussian distribution is a good option
to model lack of prior knowledge.

Uniform Random Variable

A random variable X is uniform if its PDF has the form

f(x) =


0 if x < a
1

b−a
if a ≤ x ≤ b

0 if x > b

.

A.4. RANDOM VARIABLES 311

We write X ∼ U(a, b) to indicate that X is a uniform random variable whose density is non
zero in the interval (a, b). Figure A.5 shows the PDF of a uniform random variable with
a = 1 and b = 3.

Figure A.5: PDF of a uniform random variable with a = 1 and b = 3.

Exponential Random Variable

A random variable X is exponential if its PDF has the form

f(x) =

{
0 if x < 0

λe−λx if x ≥ 0
.

We write X ∼ E(λ) to indicate that X is an exponential random with parameter λ. Figure
A.6 shows the PDF of an exponential random variable for different values of λ.

Figure A.6: PDF of an exponential random variable for different values of the λ parameter.

From the previous definitions it should be immediately clear that ifX is a random variable
and g is a real-valued function, then Y = g(X(ω)) is also a random variable. This is true

312 APPENDIX A. PROBABILITY

both when X is discrete or continuous. The PMF or PDF of X is in general different from
Y ’s (unless g is the identity function).

Example A.10. Let (Ω,A, P) be a probability space and X be a random variable over Ω.
The real-valued function g : R → R defined as g(x) = b defines a new random variable
Y (ω) = g(X(ω)) for each b ∈ R.

It is immediate to show that Y is a discrete random variable with N = {b}. In fact, for
each k < b by definition we have

{Y ≤ k} = {ω ∈ Ω : Y (ω) ≤ k} = ∅.

Vice versa, for each k ≥ b we have

{Y ≤ k} = {ω ∈ Ω : Y (ω) ≤ k} = Ω.

From these two equations it follows that Fy(a) = 0 for each a < b and Fy(a) = 1 for each
a ≥ b. Consequently, N = {b}, and pY (b) = 1.

The above example shows that any constant real number can be seen as a random variable.
Therefore, in the following we can compute quantities like expectation and variance also for
constants.

A.5 Expectation of a Random Variable

Definition A.14 (Expectation). Let X be a random variable. If the following integral exists,
then the expectation of X is defined as

E[X] =

∫ +∞

−∞
xf(x) dx.

If X is a discrete random variable, then the expression simplifies to

E[X] =
∑
ω∈Ω

X(ω)P ({ω}) =
∑
x∈N

x p(x).

Example A.11. From the definition it is immediate to verify that the expectation of a
constant is equal to the constant itself, i.e., E[b] = b. To see this, recall Example A.10,
showing that a constant can be seen as a discrete random variable:

E[X] =
∑
x∈N

x p(x) =
∑
x∈{b}

x p(x) = b p(b) = b · 1 = b.

For a random variable X, we will usually write µX for its expectation, i.e., µX = E[X].
Since the expectation of a random variable is defined through an integral, and the integral
is a linear operator, it follows that expectation is also a linear operator. In particular, if we
consider a new random variable Y = aX + b, we immediately obtain:

E[Y] = E[aX + b] = aE[X] + E[b] = aµX + b.

A.6. VARIANCE OF A RANDOM VARIABLE 313

If instead we consider a generic transformation Y = g(X), it is possible to show that

E[Y] =

∫ +∞

−∞
g(x)f(x) dx

for the continuous case, and

E[Y] =
∑
x∈N

g(x) p(x)

for the discrete case. This result is also known as the fundamental theorem of expectation.

With some calculations, it is possible to show that:

• If X ∼ N (µ, σ2), then E[X] = µ.

• If X ∼ U(a, b), then E[X] = a+b
2
.

• If X ∼ E(λ), then E[X] = 1
λ
.

A.6 Variance of a Random Variable

Definition A.15 (Variance). Let X be a random variable with expectation µX . If the fol-
lowing integral exists, then the variance of X is defined as

VAR[X] =

∫ +∞

−∞
(x− µX)

2f(x) dx.

Similarly to what we saw for the expectation, for a discrete random variable the expression
simplifies to

VAR[X] =
∑
ω∈Ω

(X(ω)− µX)
2P ({ω}) =

∑
x∈N

(x− µX)
2p(x).

Example A.12. From the definition it is immediate to verify that the variance of a constant
is 0, i.e., VAR[b] = 0.

The variance of a random variable X is also denoted as σ2
X , whereas its positive square

root σX is called the standard deviation.

Theorem A.4.
VAR[X] = E[X2]− E[X]2.

Proof. Just apply the definition and linearity of expectation:

VAR[X] =

∫ +∞

−∞
(x− µX)

2f(x) dx =

∫ +∞

−∞
(x2 − 2xµX + µ2

X)f(x) dx

=

∫ +∞

−∞
x2f(x) dx− 2µX

∫ +∞

−∞
xf(x) dx+ µ2

X

∫ +∞

−∞
f(x) dx

= E[X2]− 2E[X]2 + E[X]2 = E[X2]− E[X]2.

314 APPENDIX A. PROBABILITY

As we have done for the expectation, it is useful to consider the variance of a variable
Y = aX + b.

Theorem A.5. Let X be a random variable and Y = aX + b be a random variable obtained
from X through an affine transformation. Then

VAR[Y] = a2VAR[X].

Proof.

VAR[Y] = VAR[aX + b] = VAR[aX] + VAR[b] = VAR[aX]

=

∫ +∞

−∞
(ax− aµX)

2f(x) dx = a2
∫ +∞

−∞
(x− µX)

2f(x) dx = a2VAR[X].

With some calculations, it is possible to show that:

• If X ∼ N (µ, σ2), then VAR[X] = σ2.

• If X ∼ U(a, b), then VAR[X] = (b−a)2

12
.

• If X ∼ E(λ), then VAR[X] = 1
λ2 .

A.7 Multiple Random Variables

Given a probability space (Ω,A, P), it is possible to define more than one random variable
over it. Assume X and Y are two random variables over (Ω,A, P). Then we can consider
the sets {X ≤ k1} and {Y ≤ k2} for k1, k2 ∈ R. Since both X and Y are random variables,
these sets are elements of the event space A. The joint cumulative function is defined as

Fxy(k1, k2) = P ({X ≤ k1} ∩ {Y ≤ k2}),

where the probability of the intersection is well defined because the intersection of two events
is itself an event and hence part of A.

From this definition, it is possible to define the joint PDF (if both X and Y are contin-
uous) or the joint PMF (if both X and Y are discrete):

fxy(k1, k2) =
∂2Fxy(k1, k2)

∂k1∂k2
.

From these definitions, it is immediate to define the concept of independent random
variables by analogy with independent events.

Definition A.16 (Marginal Density Distribution). Let X and Y be two continuous random
variables with joint PDF fxy. The marginal PDF of X is defined as

fx(a) =

∫
R
fxy(a, b) db.

Similarly, the marginal PDF of Y is

fy(b) =

∫
R
fxy(a, b) da.

A.7. MULTIPLE RANDOM VARIABLES 315

Definition A.17 (Marginal Probability Mass Function). Let X and Y be two discrete ran-
dom variables over the probability space (Ω,A, P) with joint PMF pxy. Let NX be the alphabet
of X and NY be the alphabet of Y . For each a ∈ NX , the marginal probability mass function
of X is defined as

px(X = a) =
∑
b∈NY

pxy(X = a, Y = b).

Similarly, for each b ∈ NY , the marginal PMF of Y is

px(Y = b) =
∑
a∈NX

pxy(X = a, Y = b).

The reader should notice the similarity between the formulas for marginalization and
Eq. (A.3).

Definition A.18 (Independent Random Variables). Let X and Y be two random variables
defined over the same probability space (Ω,A, P). We say that X and Y are independent if
for each k1 ∈ R and k2 ∈ R, the events {X ≤ k1} and {Y ≤ k2} are independent.

From this definition it follows that if X and Y are independent, then

Fxy(a1, a2) = Fx(a1)Fy(a2).

This additionally implies that if X and Y are continuous independent random variables,
then

fxy(a1, a2) = fx(a1)fy(a2),

and if X and Y are discrete random variables, then

pxy(X = a, Y = b) = px(X = a)py(Y = b).

From these relationships, it is easy to show that if two random variables X and Y are
independent, then

E[XY] = E[X]E[Y].

Definition A.19 (Covariance). Let X and Y be two random variables defined over the same
probability space and let µX and µY be their expectations. Their covariance is defined as

COV[X,Y] = σxy = E[(X − µX)(Y − µY)].

Note that by definition COV[X, Y] = COV[Y,X]. If X and Y are two random variables
and COV[X, Y] = 0, we say that X and Y are uncorrelated.

Theorem A.6. Let X and Y be two independent random variables. Then COV[X, Y] = 0.

Proof. The theorem can be proved by applying the definition and recalling that the expecta-
tion of the product of two independent random variables is the product of their expectations:

COV[X,Y] = E[(X − µX)(Y − µY)] = E[XY − µXY − µYX + µXµY]

= E[XY]− µXE[Y]− µYE[X] + µXµY

= E[X]E[Y]− µXµY − µY µX + µXµY

= 0.

316 APPENDIX A. PROBABILITY

If COV[X,Y] ̸= 0, its sign indicates whether the variables tend to vary in the same
direction or not. Specifically, if COV[X, Y] > 0, then in expectation X − µX and Y − µY

have the same sign (either both positive or both negative), meaning the two variables tend
to jointly increase or decrease. If COV[X,Y] < 0, they tend to move in opposite directions,
i.e., when one increases the other decreases, and vice versa.

Remark A.2. The previous theorem states that two independent random variables have 0
covariance. The converse, however, is not generally true: it is possible for two variables to
have 0 covariance but not be independent.

Definition A.20 (Correlation). Let X and Y be two random variables defined over the same
probability space. Their correlation is defined as

rxy = E[XY].

From the definition of covariance and correlation, it follows that

COV[X,Y] = rxy − µXµY .

Definition A.21 (Correlation coefficient). Let X and Y be two random variables defined
over the same probability space. Their correlation coefficient is defined as

ρ[X, Y] = ρXY =
COV[X,Y]√

VAR[X]VAR[Y]
.

It is easy to show that −1 ≤ ρ[X, Y] ≤ 1, and obviously ρ[X, Y] = 0 if X and Y are
independent. The correlation coefficient measures how strong the linear relationship between
the two variables is.

Theorem A.7. ρ[X,Y] = 1 if and only if there exists a positive constant ζ such that
X − µX = ζ(Y − µY).

If ρ[X, Y] = −1, the theorem still holds but for a negative constant. The expectation of
the sum of two random variables is always

E[X + Y] = E[X] + E[Y] = µX + µY .

The variance of the sum of two random variables can be written in this form only if X and
Y are independent:

VAR[X + Y] = VAR[X] + VAR[Y] = σ2
X + σ2

Y .

Definition A.22 (Jointly Gaussian Variables). Two Gaussian random variables X and Y
are jointly Gaussian distributed if their joint PDF is

fxy(a1, a2) =
1

2πσXσY
√
1− ρ2

e

{
− 1

2(1−ρ2)

[
(a1−µX)2

σ2
X

− 2ρ(a1−µX)(a2−µY)

σXσY
+

(a2−µY)2

σ2
Y

]}
.

This PDF depends on five parameters: µX , µY , σ
2
X , σ

2
Y , and ρ. The marginal distributions

of X and Y are Gaussian with means µX and µY and variances σ2
X and σ2

Y , respectively.
The parameter ρ is the correlation between X and Y .

A.8. RANDOM VECTORS 317

A.8 Random Vectors

Let (Ω,A, P) be a probability space and X̄ a function X̄ : Ω → Rn. Similarly to what we
did for random variables, for k = [k1 k2 . . . kn]

T ∈ Rn we define the set

{X̄ ≤ k} = {ω ∈ Ω : X1(ω) ≤ k1 ∧X2(ω) ≤ k2 ∧ · · · ∧Xn(ω) ≤ kn}

where Xi(ω) is the ith component of X̄(ω).

Definition A.23 (Random Vector). Let (Ω,A, P) be a probability space. An n-dimensional
random vector is a function X̄ : Ω → Rn such that for each k ∈ Rn the set {X̄ ≤ k} is an
element of A.

It is possible to show that in an n-dimensional random vector all its components are
random variables, i.e.,

X̄ = [X1 X2 . . . Xn]

where each of the Xi is random variables over (Ω,A, P). Based on this definition, the
cumulative function is defined similarly to the bidimensional case

FX̄(a1, a2, . . . , an) = P ({X1 ≤ a1, X2 ≤ a2, . . . , Xn ≤ an})

As for the case of unidimensional variables, it is possible to define continuous and discrete
random vectors. A random vector is continuous if FX̄ is continuous, and in this case the
joint PDF can be defined as well

fX̄(x1, x2, . . . , xn) =
∂nFX̄(x1, x2, . . . , xn)

∂x1∂x2 . . . ∂xn
.

A random vector is instead discrete if its cumulative function is piecewise constant. As for
the unidimensional case, the alphabet is the set of points in which the cumulative function is
discontinuous. It is easy to show that a random vector is discrete if and only if its components
are discrete random variables.

A.8.1 Expectation and Covariance of Random Vectors

Once the PDF or PMF has been defined for a random vector X̄, it is straightforward to
define its expectation. If X̄ is an n-dimensional continuous random vector, then (provided
the integral exists)

E[X̄] = µX̄ =

∫
Rn

y fX̄(y) dy,

and similarly, if X̄ is a discrete random vector,

E[X̄] = µX̄) =
∑
y∈N

y pX̄(y),

where N is the alphabet of X̄ and pX̄ is its PMF. These formulas are simply the multidi-
mensional generalizations of the corresponding unidimensional definitions.

The situation is slightly more complex for the variance.

318 APPENDIX A. PROBABILITY

Definition A.24 (Covariance matrix). Let X̄ be an n-dimensional random vector with ex-
pectation µX . Its covariance matrix is the n× n matrix

COV[X̄] = ΣX̄ = E
[
(X̄ − µX̄)(X̄ − µX̄)

T
]
. (A.6)

Note that for a random vector X̄ we may write both COV[X̄] and ΣX̄ for its covari-
ance matrix. The covariance matrix has certain structural properties. In particular, it is
symmetric:

ΣX̄ = ΣT
X̄ ,

and positive semidefinite, meaning that for every vector x ∈ Rn, the following inequality
holds:

xTΣX̄x ≥ 0.

Since ΣX̄ is positive semidefinite, we know from linear algebra that all its eigenvalues are
nonnegative. By expanding Eq. (A.6) and performing some algebra, it is possible to see that
the covariance matrix has the following structure:

ΣX̄ =


σ2
X1

σX1X2 . . . σX1Xn

σX2X1 σ2
X2

. . . σX2Xn

.
σXnX1 σXnX2 . . . σ2

Xn



=


σ2
X1

ρX1X2σX1σX2 . . . ρX1XnσX1σXn

ρX1X2σX1σX2 σ2
X2

. . . ρX2XnσX2σXn

.
ρXnX1σXnσX1 ρXnX2σXnσX2 . . . σ2

Xn

 .
That is, the elements on the main diagonal of the covariance matrix are the variances of

the components of the random vector X̄, whereas the off-diagonal elements are the covari-
ances between the components. More precisely, the generic element at position (i, j) with
i ̸= j is COV[Xi, Xj]. A special case occurs when the covariance matrix is diagonal; in this
case, all covariances are zero, and the components of the vector are mutually uncorrelated.
As with unidimensional random variables, it is useful to determine the expectation and co-
variance of a random vector obtained through an affine transformation of another random
vector, e.g.,

Ȳ = AX̄ + b.

Note that X̄ and Ȳ do not need to have the same dimension, so A is not necessarily a square
matrix. With this in mind, the expectation of Ȳ is

µȳ = E[Ȳ] = E[AX̄ + b] = E[AX̄] + b = Aµx̄ + b.

The covariance matrix of ȳ is given by

COV[Ȳ] = COV[AX̄ + b] = COV[AX̄] = AΣX̄A
T .

A.9. PROPERTIES OF GAUSSIAN DISTRIBUTIONS 319

A.9 Properties of Gaussian Distributions

Gaussian distributions play an important role in various robot algorithms and deserve special
treatment. Note, however, that they are mostly used for computational advantages, while
many physical phenomena are not Gaussian. A unidimensional Gaussian distribution is
characterized by its expectation and variance, and we write X ∼ N (µX , σ

2
X).

Definition A.25 (Gaussian Vector). A random vector is said to be a Gaussian vector if
there exist a vector µX̄ and a nonsingular matrix ΣX̄ such that its PDF can be written as

fX̄(x) =
1√

(2π)n|ΣX̄ |
exp

(
−1

2
(x− µX̄)

TΣ−1
X̄
(x− µX̄)

)
, (A.7)

where x ∈ Rn and |ΣX̄ | is the determinant of the covariance matrix.

A Gaussian vector is also called a multivariate Gaussian, and we write X̄ ∼ N (µX̄ ,ΣX̄).
Note that for a multivariate Gaussian distribution the covariance matrixΣX̄ must be positive
definite3. Consequently, all its eigenvalues are positive. Figure A.7 shows the PDF of a
bidimensional Gaussian.

Figure A.7: PDF of a bidimensional Gaussian

The definition of a Gaussian vector allows us to extend the concept of n jointly Gaussian
variables (generalizing the case of two variables, as discussed in Section A.7).

Definition A.26. Let X1, X2, . . . , Xn be n random variables. We say that they are jointly
Gaussian distributed if their joint distribution can be written as in Eq. (A.7) for a suitable
vector µX̄ and a suitable non-singular matrix ΣX̄ .

In many practical scenarios, for a given value δ, it is useful to determine the smallest
region D such that ∫

D
fX̄(x) dx ≥ δ.

3The covariance matrix is in general positive semidefinite for a generic distribution. However, for the
Gaussian case its inverse must exist for the PDF to be defined, and therefore the matrix must be positive
definite.

320 APPENDIX A. PROBABILITY

The set D defines a confidence region, i.e., it specifies a bound on the probability that a
realization of X̄ lies outside D. From the symmetry of the PDF, it follows immediately that
D must be centered at µX̄ and symmetric.

For the special case of a unidimensional random variable X ∼ N (µ, σ2) the following
relationships can be established through numerical integration:∫ µ+σ

µ−σ

fx(ζ) dζ ≈ 0.68,

∫ µ+2σ

µ−2σ

fx(ζ) dζ ≈ 0.95,

∫ µ+3σ

µ−3σ

fx(ζ) dζ ≈ 0.997.

Hence, D is an interval centered at µ, and (unsurprisingly) its length increases with δ.
While one can in principle compute such intervals for any δ, the three values above are the
most widely used. In fact, the interval (µ− 3σ, µ + 3σ) is perhaps the most common when
working with Gaussian distributions, since the probability that a realization lies within this
interval is approximately 0.997. Figure A.8 illustrates these intervals.

Figure A.8: Confidence intervals for the Gaussian N (1, 1). Red lines show the (µ−σ, µ+σ)
interval with area 0.68. Green lines show the (µ−2σ, µ+2σ) interval with area 0.95. Purple
lines show the (µ− 3σ, µ+ 3σ) interval with area 0.997.

The situation is more complex and interesting when considering an n-dimensional Gaus-
sian random vector X̄ ∼ N (µX̄ ,ΣX̄). To determine D for a given δ, we start with the
simpler problem of identifying the set of points where the PDF is equal to a given value
k > 0. This can be immediately obtained by plugging k into Eq. (A.7):

1√
(2π)n|ΣX̄ |

exp

(
−1

2
(x− µX̄)

TΣ−1
X̄
(x− µX̄)

)
= k.

Rearranging this expression, one can write

(x− µX̄)
TΣ−1

X̄
(x− µX̄) = −2 ln

(√
(2π)n|ΣX̄ | k

)
. (A.8)

The term (x − µX̄)
TΣ−1

X̄
(x − µX̄) is called the Mahalanobis distance between x and

µX̄ and has important applications in robotics, in particular for data association problems.

A.9. PROPERTIES OF GAUSSIAN DISTRIBUTIONS 321

Expanding the left-hand side of Eq. (A.8) and recalling basic geometry, one can observe that
Eq. (A.8) describes the contour of an ellipse. The ellipse is centered at µX̄ and has its axes
oriented along the eigenvectors of ΣX̄ . Denoting by (λi, ei) the i-th eigenvalue–eigenvector

pair of the covariance matrix, the axes have length
√
k∗λi, where k

∗ = −2 ln
(√

(2π)n|ΣX̄ | k
)

is the right-hand side of Eq. (A.8).

Example A.13. Consider a 2-dimensional Gaussian vector (also known as a bivariate Gaus-
sian variable) X̄ ∼ N (µX̄ ,ΣX̄) with µX̄ = [2 0.5]T and

ΣX̄ =

[
2 2.5
2.5 4.25

]
.

We want to determine and plot the locus of points for which the PDF is equal to k = 0.1.
We start by determining the eigenvalues and eigenvectors of ΣX̄ . They are λ1 ≊ 0.3835,
λ2 ≊ 5.8665, and the corresponding eigenvectors are e1 = [−0.8398 0.5430]T and e2 =
[0.5430 0.8398]T . The center of the ellipse is given by µX̄ and its axes are determined by
the eigenvalues. To determine the contour, we need

k∗ = −2 ln(
√

(2π)n|ΣX̄ |k) ≊ 0.1185.

Hence the first axis has length
√
k∗λ1 ≊ 0.2132 and the second has length

√
k∗λ2 ≊ 0.8337.

With this information it is then possible to plot the ellipse (see Figure A.9).

Figure A.9: Locus of points for which the PDF is equal to k = 0.1. This is also known as
the density contour for 0.1 (or isocontour curve).

The reader can easily verify that as k grows, e.g., k = 0.2, the value of k∗ becomes
negative and the length of the axes is undefined because

√
k∗λi is no longer a real number

(recall that all eigenvalues of ΣX̄ are strictly positive). This is correct, because for the chosen
expectation and covariance matrix the PDF is always smaller than 0.2, and therefore the
problem of determining the density contour for this value is ill posed. When the covariance
matrix ΣX̄ is diagonal, its eigenvectors are the n vectors of the standard basis for Rn and

322 APPENDIX A. PROBABILITY

therefore the axes of the ellipse are aligned with the axes of Rn. Conversely, when the
covariance matrix is not diagonal, as in the example above, the ellipse is not aligned with
the axes. Having established that the level sets of the PDF are ellipses, we return to the
problem of determining D for a given δ. At this point it should be evident that for a given δ
we need a function defining the length of the semi-axes of the ellipse. It is possible to show
that the length of the ith axis is

√
χ2
n(1− δ)λi, where χ2

n(1− δ) is the (1− δ) percentile of a
χ2 distribution with n degrees of freedom and can be found in appropriate numerical tables.

Example A.14. For the bivariate Gaussian distribution in Example A.13, we determine
the region D associated with δ = 0.975. From the previous discussion it follows that it
is an ellipsoid centered on µX̄ = [2 0.5]T with axes in the directions identified by the
eigenvectors e1 = [−0.8398 0.5430]T and e2 = [0.5430 0.8398]T . The length of the semi-
axes is determined by χ2

2(1−δ) = χ2
2(0.025) = 7.378 (this value can be found in the χ2 tables).

Hence the first semi-axis has length
√
χ2
2(1− δ)λ1 =

√
7.378 · 0.3835, while the second has

length
√
χ2
2(1− δ)λ2 =

√
7.378 · 5.8665.

Another interesting property related to the ellipse associated with a Gaussian distribution
is the following. The volume of an n-dimensional ellipse can be written as K(n)a1a2 . . . an,
where K(n) is a function of the number of dimensions n and a1 . . . an are the lengths of the
semi-axes. For example, for an ellipse in R2 the volume (area) is πa1a2, in R3 the volume is
4
3
πa1a2a3, and so on. From the previous examples it follows that the lengths of these semi-

axes are proportional to the eigenvalues of the covariance matrix ΣX̄ . From linear algebra we
also know that the trace of a square matrix (the sum of the elements on the main diagonal)
is equal to the sum of its eigenvalues. Therefore the elements on the main diagonal of the
covariance matrix of a Gaussian vector can be used to estimate the area of the ellipsoid even
if the covariance matrix is not diagonal. In fact, the trace of a covariance matrix is also
called generalized variance because it is a measure of variability of the associated random
vector.

Random Gaussian variables and random Gaussian vectors are invariant to affine trans-
formations. That is, if X ∼ N (µX , σ

2
X) and Y = aX + b, then Y ∼ N (aµX + b, a2σ2

X).
Similarly, if X̄ ∼ N (µX̄ ,ΣX̄) and Ȳ = AX̄ + b, then Ȳ ∼ N (AµX̄ + b,AΣX̄A

T).

Remark A.3. Let X̄ ∼ N (µx̄,Σx̄) be an n-dimensional Gaussian vector with diagonal
covariance matrix. This means that the covariance between all its components is 0. In the
general case, covariance equal to 0 does not mean independence. However, for the special
case of Gaussian random vectors, it is possible to show that this is true, i.e., the vector is
equivalent to n independent Gaussian variables whose means are given by the components of
µX̄ and whose variances are given by the diagonal elements of ΣX̄ .

A.10 Stochastic Processes

Stochastic processes are models used to describe stochastic phenomena evolving over time
(or, more generally, a family of random variables or random vectors). Their formal definition
is as follows.

A.10. STOCHASTIC PROCESSES 323

Definition A.27 (Stochastic Process). Given a probability space S = (Ω,A, P), let T ⊂ R
be an infinite set. A function X : T × Ω→ R is a stochastic process if for each t′ ∈ T the
function X(t′, ω) is a random variable.

The set T is commonly referred to as time, although it could represent anything. Nor-
mally, one chooses either T = N or T = R. In our case, we will most often consider T = N
to model the discrete-time nature of the algorithms we study. These types of processes
are called discrete-time stochastic processes. If instead T = R, we have a continuous-time
stochastic process.

Stochastic processes can model different phenomena. For example, X(t, ω) can be inter-
preted as a family of random variables indexed by the elements in T . When T = N, we will
accordingly write X0, X1, X2, . . . to indicate these variables. Alternatively, we could write
X(t) when T = R. Another perspective is to fix a specific ω′ ∈ Ω and then consider the
function of time X(t, ω′). For a fixed ω′, X(t, ω′) is deterministic. Hence, X(t, ω) can also
be seen as a map from Ω into the space of deterministic functions.

Once a given n ∈ T is fixed, Xn is a random variable, so we can compute its expectation,
variance, and other statistical properties.4 We denote the expectation of Xn by µX(n). As
n varies over T , the sequence µX(0), µX(1), µX(2), . . . defines a function µX : T → R. For
simplicity, we will write µn instead of µX(n).

For two elements of T , say m and n, we can determine the correlation and covariance
between the associated variables:

r(m,n) = E[XmXn],

COV(m,n) = E[(Xm − µm)(Xn − µn)] = r(m,n)− µmµn.

From these definitions, we can introduce the concept of Gaussian processes.

Definition A.28 (Gaussian Process). A stochastic process X(t, ω) : T ×Ω→ R is called a
Gaussian process if for each n ∈ N and each choice of ti ∈ T (1 ≤ i ≤ n), the n variables
X(t1, ω),X(t2, ω), . . . ,X(tn, ω) are jointly Gaussian.

Definition A.29 (White Noise). A stochastic process X(t, ω) : T × Ω → R is white noise
if

m ̸= n⇒ COV[m,n] = 0.

Note that while some authors require a white-noise process to have zero mean, the defi-
nition we provide is more general and does not impose this requirement. If the process has
zero mean, an equivalent definition is that r(m,n) = 0 for each m ̸= n.

Further Reading

Most of the material presented in this chapter can be found in any probability theory text-
book, like [8]. Some more advanced topics like stochastic processes are found in textbooks
like [44].

4From now onwards, unless otherwise noted, we will consider the case T = N, i.e., we focus on discrete-
time stochastic processes.

324 APPENDIX A. PROBABILITY

Index

Ackerman steer, 129
actions, 53, 206
algebra, 302
alphabet, 308
ament cmake, 61

Bayes’ theorem, 306
Bayesian filter, 251
belief, 252, 256

callback, 67, 71
change of coordinates, 100
CMakeLists.txt, 66
colcon, 61
command line interface

action, 53
interface, 42
launch, 55
node, 35, 46
pkg, 32, 34
ros2, 31
run, 32
service, 49, 50
topic, 36

conditional independence, 307
conditional probability, 304
continuous random variable, 308
controller server, 219
correlation, 316
correlation coefficient, 316
cost to come, 192
cost to go, 196
costmap, 215
covariance, 315
covariance matrix, 318

create publisher, 69
cumulative distribution function, 308

differential drive, 125
discrete random variable, 308
distributed execution, 38
DWB, 220

estimation, 249
evidence, 306
expectation, 312
exponential random variable, 311

feasible navigation function, 205
feature mapping, 289
filtering, 249
frame of reference, 96
fully qualified name, 30, 158
fundamental theory of expectation, 313
futures, 208

Gaussian random variable, 310
Gazebo, 139
geometric representation, 93
graph

definition, 184
path, 185
path cost, 185
weighted, 185

grid world, 184

heuristic
admissible, 197
consistent, 198

homogeneous coordinates, 116

importance sampling, 267

325

326 INDEX

independent events, 307
informed search, 196

kinematics, 93

latched topic, 80
launch files

Python, 175
XML, 55

likelihood, 306
localization, 287

map
appearance based, 288
feature based, 288
occupancy grid, 288
topological, 289

mapping, 281, 287
marginal distribution, 315
message, 28
motion model, 266
multiple random variables, 314

namespaces, 156
Nav2, 212
navigation function, 203
Normal random variable, 310

object oriented programming, 170
orthnormal vectors, 97
orthogonal matrix, 103
overlay, 31

package, 29, 63
package.xml, 65
partition, 302
planner server, 218
planning

belief spaces, 180
deterministic, 179
discrete models, 181
feedback, 180
open loop, 183

planning graph, 184
plotjuggler, 58
pose, 93
posterior, 306

potential function, 205
prediction, 251
prior, 306
probabilistic motion model, 270
probability density function, 309
probability space, 303
publisher, 29

quaternion, 114
unary, 115

random variable, 307
random vector, 317
rclcpp::spin, 71
recursive filtering, 251, 262
remapping, 155
rigid body, 96
ROS client library, 28, 67
ROS distribution, 25
ROS graph, 39
ROS nodes, 26
rotation matrix, 99, 103
rqt, 57
rqt graph, 40
RTK GPS, 244

search algorithms
A∗, 196
breadth first, 186
depth first, 190
Dijkstra, 192
single source shortest path, 195

search problem
directed graph, 185
weighted graph, 185

sensor model, 253, 266
services, 48
skid steer drive, 128
SLAM, 287, 299
smoothing, 251
spinning, 67
state tramsition model, 253
streams, 80
subscriber, 29

topic, 28

INDEX 327

total probability theorem, 305
transformation matrix

definition, 118
inverse, 120

transformation tree, 121
turtlesim, 34

underlay, 31

uniform random variable, 310
use sim time, 167

variance, 313

workspace, 29

YAML configuration files, 163, 176

328 INDEX

Bibliography

[1] B.D.O. Anderson and J.B. Moore. Optimal filtering. Dover Publications, Inc., 1979.

[2] R. Arkin. An introduction to behavior-based robotics. MIT Press, 1998.

[3] K.J. Aström. Introduction to stochastic control theory. Dover Publications, 2006.

[4] K.J. Aström and R.M. Murray. Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press, 2021.

[5] T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (slam): part
ii. IEEE Robotics & Automation Magazine, 13(3):108–117, 2006.

[6] G.A. Bekey. Autonomous Robots. MIT Press, 2005.

[7] D. P. Bertsekas. Dynamic Programming & Optimal Control, volume 1 and 2. Athena
Scientific, 2005.

[8] D.P. Bertsekas and J.N. Tsitsiklis. Introduction to Probability. Athena, 2nd edition,
2008.

[9] J. Borenstein, H.R. Everett, and L. Feng. Navigating mobile robotS: systems and tech-
niques. AK Peters, 1996.

[10] A. Cavalcanti, B. Dongol, R. Hierons, J. Timmins, and J. Woodcock, editors. Software
Engineering for Robotics. Springer, 2021.

[11] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki, and
S. Thrun. Principles of robot motion. MIT Press, 2005.

[12] P. Corke. Robotics, vision and Control. Springer, 2013.

[13] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2009.

[14] N. Correll, B. Hayes, C. Heckman, and A. Roncone. Introduction to Autonomous Robots:
Mechanisms, Sensors, Actuators, and Algorithms. MIT Press, 2022.

[15] I. J. Cox. Blanche-an experiment in guidance and navigation of an autonomous robot
vehicle. IEEE Transactions on Robotics and Automation, 7(2):193–204, 1991.

329

330 BIBLIOGRAPHY

[16] J.J. Craig. Introduction to Robotics: Mechanics and Control. Pearson, 3rd edition, 2004.

[17] G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics. Cambridge
University Press, 2nd edition, 2010.

[18] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part i. IEEE
Robotics & Automation Magazine, 13(2):99–110, 2006.

[19] G. Erinc and S. Carpin. Image-based mapping and navigation with heterogenous robots.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 5807–5814, 2009.

[20] C. Fairchild and T.L. Harman. ROS robotics by example. Packt publishing, 2016.

[21] E. Fernandez, A. Mahtani, L. Sanchez Crespo, and A. Martinez. Learning ROS for
robotics programming. Packt publishing, 2nd edition, 2015.

[22] T. Foote. tf: The transform library. In Technologies for Practical Robot Applications
(TePRA), 2013 IEEE International Conference on, Open-Source Software workshop,
pages 1–6, 2013.

[23] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision avoid-
ance. IEEE Robotics Automation Magazine, 4(1):23–33, 1997.

[24] C. Le Goues, S. Elbaum, D. Anthony, Z.B. Celik, M. Castillo-Effen, N. Correll,
P. Jamshidi, M. Quigley, T. Tabor, and Q. Zhu. Software engineering for robotics:
Future research directions; report from the 2023 workshop on software engineering for
robotics, 2024.

[25] L. Joseph. Mastering ROS for robotics programming. Packt publishing, 2015.

[26] L. Joseph and J. Cacace. Mastering ROS 2 for Robotics Programming: Design, build,
simulate, and prototype complex robots using the Robot Operating System 2+. Packt
Publishing, 2025.

[27] A. Kelly. Mobile Robotics: Mathematics, Models, and Methods. Cambridge University
Press, 2013.

[28] D. Kortenkamp and R. Simmons. Robotic systems architectures and programming. In
Handbook of Robotics, chapter 8, pages 187–206. Springer, 2008.

[29] S.M. LaValle. Planning algorithms. Cambridge academic press, 2006.

[30] J.J. Leonard and H.F. Durrant-Whyte. Directed Sonar Sensing for Mobile Robot Navi-
gation. Boston : Kluwer Academic Publishers, 1992.

[31] K. Lynch and F.C. Park. Modern Robotics: Mechanics, Planning, and Control. Cam-
bridge Univrsity Press, first edition, 2017.

BIBLIOGRAPHY 331

[32] S. Macenski, M. Booker, and J. Wallace. Open-source, cost-aware kinematically feasible
planning for mobile and surface robotics. Arxiv, 2401.13078, 2024.

[33] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall. Robot operating
system 2: Design, architecture, and uses in the wild. Science Robotics, 7(66):eabm6074,
2022.

[34] S. Macenski and I. Jambrecic. Slam toolbox: Slam for the dynamic world. Journal of
Open Source Software, 6(61):2783, 2021.

[35] S. Macenski, T. Moore, D.V Lu, A. Merzlyakov, and M. Ferguson. From the desks
of ROS maintainers: A survey of modern & capable mobile robotics algorithms in the
robot operating system 2. Robotics and Autonomous Systems, 168:104493, 2023.

[36] S. Macenski, S. Singh, F. Martin, and J. Gines. Regulated pure pursuit for robot path
tracking. Autonomous Robots, 47:685–694, 2023.

[37] Steven Macenski, Francisco Martin, Ruffin White, and Jonatan Ginés Clavero. The
marathon 2: A navigation system. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020.

[38] P. Misra and P. Enge. Global Positioning System: Signals, Measurements, and Perfor-
mance. Ganga-Jamuna Press, 2010.

[39] T. Moore and D. Stouch. A generalized extended kalman filter implementation for
the robot operating system. In Proceedings of the 13th International Conference on
Intelligent Autonomous Systems (IAS-13). Springer, July 2014.

[40] T. Moore and D. Stouch. A generalized extended Kalman filter implementation for the
robot operating system. In Proceedings of the 13th International Conference Intelligent
Autonomous Systems, pages 335–348. Springer International Publishing, 2016.

[41] R.R. Murphy. An introduction to AI robotics. MIT Press, 2000.

[42] W.S. Newman. A Systematic Approach to Learning Robot Programming with ROS. CRC
Press, 2018.

[43] J. O’Kane. A Gentle Introduction to ROS. CreateSpace Independent Publishing Plat-
form, 2013.

[44] A. Papoulis and S.U. Pillai. Probability, Random Variables, and Stochastic Processes.
McGraw-Hill, 4th edition, 2002.

[45] E. Renard. ROS 2 from Scratch: Get started with ROS 2 and create robotics applications
with Python and C++. Packt Publishing, first edition, 2024.

[46] F. Mart́ın Rico. A Concise Introduction to Robot programming with ROS2. CRC Press,
first edition, 2022.

332 BIBLIOGRAPHY

[47] S. Russel and P. Norvig. Artificial Intelligence: A modern approach. Pearson, 3rd
edition, 2009.

[48] S. Särkkä. Bayesian filtering and smoothing. Cambridge University Press, 2013.

[49] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics – Modelling, Planning and
Control. Springer, 2009.

[50] R. Siegward, I.R. Nourbaksh, and D. Scaramuzza. Introduction to Autonomous Mobile
Robots. MIT Press, 2nd edition, 2011.

[51] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and control. Wiley,
2005.

[52] R.F. Stengel. Optimal control and estimation. Dover, 1994.

[53] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2006.

[54] S.H. Żak. Systems and Control. Oxford University Press, first edition, 2002.

	Introduction
	Mobile Robots
	Terminology

	Robot Modeling
	Robots and Dynamical Systems
	Robot Software Architectures

	Introduction to ROS
	ROS
	Nodes
	Topics and Messages
	Packages and Workspaces
	The command line tool ros2
	Running distributed ROS applications

	The ROS Graph
	Inspecting topics and messages
	Understanding the recursive structure of a message

	Inspecting nodes
	Services
	Interacting with services
	Actions
	Interacting with actions
	ROS Launch Files
	Interacting with ROS using rqt
	Plotting data with plotjuggler

	Introduction to programming in ROS
	Building a ROS 2 application
	Creating and building a workspace

	Adding a package
	package.xml: the manifest file
	CMakeLists.txt

	Creating ROS Nodes
	The first ROS nodes
	More ROS examples
	Exchanging Elementary Data Types
	Transmitting and Receiving Arrays of Data
	Sending and Receiving a Matrix

	Publishing and subscribing from the same node

	Geometric Representations and Kinematics
	Introduction
	Background and Notation
	Representing a frame
	Change of coordinates
	Rotation matrices
	Elementary Rotation Matrices
	Composite rotations
	Rotations parametrization
	Representing rotations with quaternions

	Homogeneous coordinates
	Transformation matrices
	Transformation matrices represent frames
	Transformation matrices are operators to transform points and directions
	Transformation matrices are operators to change coordinates
	Transformation matrices are operators to transform transformation matrices
	Inverse of a transformation matrix

	Transformation trees
	Kinematic motion models
	Differential Drive
	Skid steer drive
	Ackerman Steer

	Velocity
	Kinematics in ROS
	The geometry_msgs Package
	Pose2D

	Controlling a differential/skid steer robot in ROS
	The transform library
	tf2 classes, messages and functions
	Quaternions and rotations
	Conversions between different representations
	Transform tree
	Standard Frames

	Additional ROS concepts
	Remapping
	Namespaces
	ROS names
	Parameters
	YAML configuration files for ROS
	Runtime parameters changes
	The parameter use_sim_time

	Calling Services
	OOP in ROS
	rviz2
	ros2 bag
	Launch files in Python

	Planning
	Introduction
	Discrete Models
	On Abstractions

	Open Loop Planning
	Common Traits in Graph Search Algorithms
	Breadth First Search
	Depth First Search
	Dijkstra's Algorithm
	A* algorithm
	Examples

	Navigation Functions
	ROS Actions
	Futures
	Goals, Goal Options, Goal Handles and Wrapped Results

	The navigation stack Nav2
	Localization, Maps, and Costmaps

	The Planner Server
	The Controller Server
	The BT Navigator Server
	Interacting with Nav2

	Perception
	Introduction
	Dead Reckoning

	Sensors
	Proprioceptive sensors
	Exteroceptive sensors

	Sensors in ROS
	Sensor messages of common use
	Laser Scan
	Single Range
	Inertial Measurement Unit
	GPS
	Point Clouds
	Odometry
	Images

	Estimation and Filtering
	Introduction
	Math Preliminaries
	Discrete Estimation Algorithms
	Recursive Discrete Bayes Filter
	Particle Filters
	Probabilistic Motion Models
	Kalman Filter
	Linear Case
	Nonlinear Case
	Numerical Example

	Mapping as an Estimation Problem

	Localization and Mapping
	Introduction
	Localization
	Pose tracking in a feature map with EKF

	Extended Kalman Filter in ROS
	Particle Filters in ROS
	Subscribed topics
	Published topics
	Implemented services
	Parameters

	SLAM in ROS

	Probability
	Sets and Algebras
	Probability Space
	Basic Probability Facts
	Random Variables
	Expectation of a Random Variable
	Variance of a Random Variable
	Multiple Random Variables
	Random Vectors
	Expectation and Covariance of Random Vectors

	Properties of Gaussian Distributions
	Stochastic Processes

