
On Parallel RRTs for Multi-robot Systems
Stefano Carpin, Enrico Pagello

Department of Electronics and Informatics
The University of Padova - ITALY

Abstract. Rapidly-exploring Random Trees are planning algorithms recently intro-
duced for a broad class of path planning problems. In this paper we provide three dif-
ferent ways to better the performance of such algorithms. Numerical results obtained
implementing them over a parallel system outline an optimal speed up.

1 Introduction

In the last few years a number of new application fields requiring the solution of problems
involving not only state space constraints but also differential constraints have been intro-
duced. The so called kinodynamic motion planning problem ([6]) has to be solved when
designing digital actors, humanoid robots, virtual prototyping systems, or to study molecular
structures ([14]). Since even the simpler generalized mover’s problem is PSPACE-hard ([17]),
approximated and random techniques have been introduced ([10]). Probabilistic path planners
achieve probabilistic completeness, that is, provided that a solution exists, by allotting more
time to the planner we can improve the chance it will eventually find a solution.They are then
being used to solve kinodynamic problems, characterized by high dimensional configuration
spaces. In this scenario, Rapidly-exploring Random Trees (RRT) ([15, 16]) exhibit good re-
sults and have been applied for solving real world problems about systems involving many
degrees of freedom ([11]). Nevertheless searching a path in a high dimensional configuration
space is still a time consuming task. In this paper we illustrate how it is possible to implement
a parallel version of RRT based motion planners which yields optimal speed up.

2 The RRT algorithm

The problem statement is the following: given a metric spaceX, a starting pointxinit 2 X

and a goal regionXgoal � X or goal statexgoal 2 X, find a continuous path fromxinit to
xgoal which does not intersect the regionXobs � X. In a classical motion planning problem
the metric spaceX is the configuration space of the robot. In a kinodynamic motion planning
problemX is constrained to be a subset of the tangent bundle of the configuration space
(X � T (C)). We briefly review RRT-connect ([12]), one of the basic versions of RRT. As
illustrated in algorithms 1.a and 1.b, two trees are incrementally built, one starting from the
initial configuration and the other starting from the goal configuration. Each tree node is
associated with a configuration satisfying the dynamic constraints of the system. The search
ends when the two trees join each other or when the allotted time expires (this to prevent
infinite search over an unsolvable problem instance). During theEXTEND step a new node
tree is added by integrating the differential constraints of the system (NEW CONFIG) and

1: RRT CONNECT PLANNER(xinit,xgoal)
2: INPUT starting and goal points xinit and xgoal
3: �a:init(xinit)
4: �b:init(xgoal)
5: for k = 1 to K do

6: qrand RANDOM CONFIG
7: if NOT EXTEND(�a; qrand) = Trapped then

8: if EXTEND(�b; qnew) = Reached then

9: RETURN PATH(�a; �b)
10: end if

11: end if

12: SWAP(�a; �b)
13: end for

14: RETURN Failure

(a) Bidirectional RRT

1: EXTEND(�; q)
2: INPUT a tree � and a random con�guration q

3: RETURN Trapped or Reached or Advanced
4: qnear NEAREST NEIGHBOR(q; �)
5: if NEW CONFIG(q; qnear ; qnew) then
6: � .add vertex(qnew)
7: � .add edge(qnear; qnew)
8: if qnew = q then

9: RETURN Reached

10: else

11: RETURN Advanced

12: end if

13: end if

14: RETURN Trapped

(b) Extension of the RRT

Figure 1: Basic RRT

checking its belonging toXfree. The new configuration is created starting from a randomly
generated configuration and the closest configuration in the tree being grown.

The strength of this approach is that with this expansion technique, the tree is biased to
grow towards unexplored regions of the free configuration space (Xfree). Another advantage
is that the path being built satisfies the dynamical constraints of the systems, thus avoiding the
classical two steps approach involving path search and subsequent smoothing. An analysis of
the asymptotic behavior of the RRT algorithm illustrates that the distribution of the samples
converges to the random sampling process used to get the samples. It can also be shown that
the RRT-Connect algorithm is probabilistic complete (see [12] for details). It is clear that the
size of the output produced, i.e. the number of nodes in the solution tree, is a random variable
itself.

3 Parallel formulations of the RRT algorithm

One of the possible ways to improve the performance of the RRT algorithm is to develop a
parallel implementation. Indeedparallel motion planning algorithms have been already stud-
ied and it has been shown that this can be a viable opportunity to speed up paths computation
([8]). In the framework ofrandomized algorithms, two major ways can be undertaken. The
first approach is based on theOR paradigm approach, where a set of processors is engaged
in the solution of the same instance of the search problem. Each processor executes the same
algorithm and the first one which finds a solution sends a message to the others to stop their
computation ([4, 5]). In this way it is not necessary to reformulate the algorithm, but it suf-
fices to just add a few communication steps. In the second approach it is necessary to modify
the algorithm so that every processor contributes to the same solution of the problem. In this
case we will adopt an approach similar to the one proposed in [1].

3.1 OR parallel RRT implementation

In the so calledOR parallel paradigm a set of processors solves the same computational
problem using the same randomized algorithm1. The solution found by the set of processors
is the solution found by the first processor which found a solution for the problem. It is also
possible to let all the processors terminate the computation and then take the best one as the
solution produced by the set according to some quality index (see [2] for an example), but
we will not consider this variant here. In the basic OR parallel computation every processor
then carry out all the computation on its own and communication is performed just when the
first processor finds a solution. Then atermination message is broadcasted to all the other
processors to let them terminate (for this reason this method is also calledbarrier parallel
because the first which finds a solution stops all the others). The goal of this method is to
minimize the time needed to compute a solution. The theoretical explanation ([5]) stems
from the observation that the time required to find a solution to the motion planning problem
using the RRT algorithm is a random variable. Let us suppose thatm processors execute the
RRT algorithm to solve the same problem instance and letT i be the time spent by thei-th
processor (1 � i � m). All the T is are independent and identically distributed. LetPi(t) be
the probability that the time spent by processori to solve the problem will not exceedt, i.e.

Pi(t) = Pr[T i < t] (1)

Thus the probabilityPm
none(t) that none of them processors will find a solution in timet is

Pm
none(t) = (1� P1(t))

m: (2)

Then, by increasing the number of processors it is possible to decrease the probability that
solving an instance of the problem will take more than a fixed amount of timet.
Figure 2.a illustrates the trend ofPm

none(t) for different values ofPi(t) as a function of the
number of processors engaged in the OR computation. It is clear that even for poor (low)
values ofPi(t), good (low) values ofPm

none(t) can be reached as the number of processors
increases.
Algorithm 2.b illustrates how to extend the bidirectional RRT algorithm to get a parallel
search to solve a motion planning problem. It is assumed that when the BROADCAST in-
struction (line 10) is executed by one processor, subsequent evaluations of the test in line 6 by
other processors will return false, so that their execution stops. This implements thebarrier.

3.2 Embarrassingly parallel RRT implementation

The analysis of algorithms 1.a and 1.b outlines that if we allow a set of processors to concur-
rently (and cooperatively) work to build the RRT, most of the operations can be performed in
parallel. Indeed, coordination is required just for the steps 6 and 7 of algorithm 1.b, to deny
concurrent inconsistent modification of the tree being built. Communication is required only
to stop processors’ computation when the solution is found by one of them. Then the parallel
implementation belongs to the class ofembarrassingly parallel algorithms. On the basis of
the former observations, we illustrate the parallel algorithm to solve an instance of the motion

1the use of a deterministic algorithm is inappropriate since all the processors will then execute the same
instructions and then produce the same solution

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of processors

P
ro

ba
bi

lit
y

th
at

 n
on

e
of

 th
e

pr
oc

es
so

rs
 w

ill
 fi

nd
 a

 s
ol

ut
io

n
in

 ti
m

e
t

0.1
0.2
0.05

(a) Trend ofPm
none

(t) as a function of the
number of processors for different values of
Pi(t)

1: OR RRT BIDIRECTIONAL(xinit,xgoal)
2: INPUT starting and goal con�gurations xinit and xgoal
3: �a:init(xinit)
4: �b:init(xgoal)
5: done FALSE
6: while (NOT done) AND

(termination message not yet received) do

7: qrand RANDOM CONFIG
8: if NOT EXTEND(�a; qrand) = Trapped then

9: if EXTEND(�b; qnew) = Reached then

10: BROADCAST termination message

11: RETURN PATH(�a; �b)
12: end if

13: end if

14: SWAP(�a; �b)
15: end while

(b) OR Parallel Bidirectional RRT

Figure 2: Or parallel RRT

planning problem.
As a first step it is necessary to choose the computational model which will execute the paral-
lel algorithm, as this will strongly influence its design and coding. Among the great number
of models introduced in literature we adopt theshared memory model. In this model a number
of processors can execute their own local program and they can communicate by exchanging
data through a shared memory ([9]). We assume aconcurrent read exclusive write (CREW)
memory access policy. This choice stems from the coherence of this model with the sym-
metrical multiprocessor (SMP) machines available in our department, so that we can easily
implement the algorithm to verify its effectiveness.
It is assumed that the tree being built resides in the shared memory, so that each processor
can access and update its nodes. Algorithms 3.a and 3.b show the embarrassingly parallel im-
plementation of a motion planning algorithm based on RRTs. The shared memory contains
three data structures shared among all the processors, namely�a, �b anddone. �a and�a are
initialized as a couple of trees with a single node which holds the starting and goal configura-
tions respectively, whiledone, initially set tofalse, is used to stop the computation on all the
processors when the trees�a and�b meet each other. To prevent concurrency related problems
when updating shared data, binary semaphores are used to guarantee exclusive write access.
We suppose that a semaphore is associated with every shared data and that the LOCK and
UNLOCK operations atomically acquire or release the semaphores. It is assumed that each
processor owns a model ofXfree and starts executing PARALLELRRT BIDIRECTIONAL.
The correctness and convergence of the embarassingly parallel version of the RRT based
motion planner trivially descends from the corresponding properties already proved for the
sequential version. This because parallelism is introduced to just speed up nodes generation,
but the properties of the nodes being generated and added to the tree do not change.

1: PARALLEL RRT BIDIRECTIONAL(�a; �b; done)
2: INPUT �a; �b, RRTs rooted on starting and goal
con�gurations and a boolean shared variable done

3: while NOT done do

4: qrand RANDOM CONFIG
5: if NOT PARALLEL EXTEND(�a; qrand)

= Trapped then

6: if PARALLEL EXTEND(�b; qnew)
= Reached then

7: LOCK(done)
8: done TRUE
9: UNLOCK(done)

10: end if

11: end if

12: SWAP(�a; �b)
13: end while

(a) Parallel RRT based motion planning

1: PARALLEL EXTEND(�; qrand; qgoal)
2: INPUT a tree � , random and goal con�gurations qrand

and qgoal

3: RETURN Trapped, Reached or Advanced
4: qnear NEAREST NEIGHBOR(qrand; �)
5: if NEW CONFIG(qrand; qnear; qnew) then
6: LOCK(�)
7: � .add vertex(qnew)
8: � .add edge(qnear; qnew)
9: UNLOCK(�)

10: if qnew = qgoal then

11: RETURN Reached

12: else

13: RETURN Advanced

14: end if

15: else

16: RETURN Trapped

17: end if

(b) Parallel EXTENSION of the RRT

Figure 3: Basic RRT

3.3 Combining the OR parallel and the Embarrassingly Parallel algorithms

In the previous two subsections two different parallel implementations of the RRT algorithm
were illustrated. The so calledOR Parallel implementation aims to decrease the time spent to
build the solution tree by allowing more computational units to solve the same problem. The
speed up then stems from finding a solution tree which includes a small number of nodes.
As illustrated, the chance of finding such a tree increases with the number of searching pro-
cesses. On the other hand, theembarrassingly parallel algorithm decreases the time spent to
find a solution allowing more processors to cooperatively work to build the same tree.
It is then possible to follow two different ways to obtain the goal of fast solution generation.
Each of the two approaches has its own advantages. It is of course possible to combine the
two approaches to get the best of the two. Given a parallel computer with a shared memory ar-
chitecture, we can divide processors into groups and let every group solve the given problem
using the embarrassingly parallel algorithm. The first group of processors which finds a solu-
tion sends a termination message to other groups as required by the OR parallel approach. We
call embarrassingly OR parallel this hybrid technique. Its implementation trivially descends
the two base algorithms.

4 Numerical results

4.1 Parallel Computer Architecture

All the numerical results illustrated in this section have been obtained by running the paral-
lel algorithms on an IBM SP/R6000 parallel computer based onWinter Hawk nodes ([7]).
The computer is composed of 4 nodes connected by a high speed switch which warrants 500
Mbits of bandwidth. Every node includes 4 processors arranged in an SMP like architecture.
2 Gbytes of memory is shared in every node. Processors on different nodes can communicate
and exchange data using the Message Passage Interface (MPI). The software has been de-

0 1000 2000 3000
0

100

200

300

Number of nodes − 1 processor

F
re

qu
en

cy

0 500 1000 1500 2000
0

100

200

300

Number of nodes − 2 processors

F
re

qu
en

cy

0 500 1000 1500
0

100

200

300

F
re

qu
en

cy

Number of nodes − 4 processors
0 200 400 600 800

0

100

200

300

Number of nodes − 8 processors

F
re

qu
en

cy

0 200 400 600 800 1000
0

100

200

300

Number of nodes − 12 processors

F
re

qu
en

cy

0 200 400 600 800
0

100

200

300
F

re
qu

en
cy

Number of nodes − 16 processors

(a)

0 500 1000 1500 2000 2500 3000 3500
0

2

4

6

8

10

12
x 10

6

Number of nodes

T
im

e
(m

ic
ro

se
co

nd
s)

4 processors
2 processors
1 processor

(b)

Figure 4: OR parallel and Embarrassingly parallel performance

veloped in ANSI C++ and has been compiled using the highly optimized IBM compiler.This
architecture is well suited for implementing the three different parallel strategies previously
illustrated. For the OR parallel algorithm, each of the 16 processors performs its computation
independently and the termination message is sent or received using the MPI primitives. For
the embarrassingly parallel implementation we used the 4 four processors of a single node.
This because processors in different nodes do not share memory. Shared address space access
among the (up to four) processes is obtained using the Pthread API. Finally, the combined
implementation of the OR parallel and embarrassingly parallel algorithms is trivial. Every
node of 4 processors executes the embarrassingly parallel algorithm and the first node which
solves the problem sends a termination message to other nodes.

4.2 The Motion Planning Problems Studied

In this section we compare the performance of the three parallel implementations of the RRT
based motion planner. We set up a framework to solve a multi-robot motion planning problem
involving circular holonomic robots moving adminst polygonal obstacles in a shared planar
environment (see also [3] for an indepth discussion of this framework). Since every robot has
two degrees of freedom (i.e. the coordinates of the center of its bounding cylinder), planning
the motion of a system composed byN robots implies planning a motion in a subset ofR2N .
It should be noticed that even if we are not studing a kinodynamic problem, this does not
affect the speed up we get.
Figure 4.a illustrates the results of the OR parallel version of the RRT run over sets of pro-
cessors of different sizes. Accordingly to the theoretical explanation previously illustrated,
it is evident that increasing the number of processors, the expected size of the solution RRT
decreases. Numerical data refer to 1000 trials of a two robots motion planning problem (i.e.
planning is performed in a subset ofR4).
Figure 4.b compares the performace of the embarrassingly parallel version of the RRT al-
gorithm run over one, two and four processors. The chart plots the time spent to solve the

problem versus the size of the RRT built to solve it. For fairness of comparison, we compare
the results obtained in 5000 trials run over the same motion planning problem.
A way to have a numerical measure of the performance gain is to evaluate thespeed up of the
parallel algorithm ([13]). We compare the trend of the time spent versus the size of the tree for
one, two and four processors. Such comparison however is not straightforward since the func-
tions are not smooth. To eliminate the influence of spikes, when comparing the performances
we interpolated each function with quadratic polynomials fitting the data in a least-square
sense and then compared the three polynomials. The choice of quadratic polynomials stems
from the implementation.

Since we do not adopt particular techniques for

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
P1(x)/P4(x)
P1(x)/P2(x)

Figure 5: Speed up obtained with the embar-
rassingly parallel algorithm run over two and
four processors

nearest neighbor searching, the complexity of the al-
gorithm is quadratic in the number of nodes in the so-
lution tree. LetP1(n),P2(n) andP4(n) the polynomi-
als interpolating the functions obtained with one, two
and four processors respectively. Figure 5 plots the
ratio between such functions to illustrate the speed-
up obtained. It is evident that the speed up gained is
near optimal (we remind that the speed up can not ex-
ceed the number of processors used, i.e. two and four,
respectively).
Finally we run the embarrassingly OR parallel algo-
rithm over the set of 16 processors divided in four

blocks of four processors. As expected, this is the best we can get. The number of nodes gen-
erated to find a solution is smaller when compared with the simple embarrassingly parallel
algorithm run over four processors and on the other hand the trend of the function of time
versus the size of the tree is the same we got with the embarrassingly parallel algorithm. This
is clearly illustrated in figures 6.a and 6.b, respectively.

200 400 600 800 1000 1200 1400
0

50

100

150

200

250

300

Number of nodes − 16 processors

F
re

qu
en

ci
es

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

Number of nodes − 4 processors

F
re

qu
en

ci
es

(a)

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3
x 10

6

Number of nodes

T
im

e
(m

ic
ro

se
co

nd
s)

Embarrassingly OR Parallel
Embarrassingly Parallel

(b)

Figure 6: Performance of the embarassingly OR parallel algorithm

5 Conclusions

In this paper we illustrated how it is possible to improve the performance of RRT based mo-
tion planners using a parallel computer. Two basic techniques can be applied, namely classical
parallel and cooperative embarassingly parallel computation. Finally the two techniques can
be combined to get the best of the two apporaches. All the techniques have been implemented
on an parallel system, and numerical results give evidence of the speed up obtained.

References

[1] N.M. Amato and L.K. Dale. Probabilistic roadmaps are embarrassingly parallel. InProc. of ICRA, pages
688–694, 1999.

[2] S. Carpin and E. Pagello. A distributed algorithm for multi-robot motion planning. InProceedings of
EUROBOT, pages 207–214, 2001.

[3] S. Carpin and E. Pagello. Exploiting multi-robot geometry for efficient randomized motion planning. In
Intelligent Autonomous Systems 7, pages 54–62, 2002.

[4] S. Caselli and M. Reggiani. Erpp: An experience-based randomized path planner. InProc. of ICRA, pages
1002–1008, 2000.

[5] D. Challou, D. Boley, M. Gini, V. Kumar, and C. Olson. Parallel search algorithms for robot motion
planning. In K. Gupta and A.P. del Pobil, editors,Practical Motion Planning, pages 115–132. John Wiley
& Sons, 1998.

[6] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning.Journal of the ACM,
40(5):1048–1066, November 1993.

[7] M.R. Barrios et al.Inside the RS6000/SP. IBM International Support Organization, 1998.

[8] D. Henrich. A review of parallel processing approaches to motion planning. InProc. of ICRA, pages
3289–3294, 1996.

[9] J. JáJá.An Introduction to Parallel Algorithms. Addison Wesley, 1992.

[10] L.E. Kavraki, P.Švestka, J.C. Latombe, and M.H. Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces.IEEE Transactions on Robotics and Automation , 12(4):566–580,
1998.

[11] J. Kufner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion planning for humanoid robots under
obstacle and dynamic balance constraints. InProc. of ICRA, pages 692–698, 2001.

[12] J.J. Kufner and S.M. LaValle. Rrt-connect: An efficient approach to single-query path planning. InProc.
of ICRA, pages 995–1001, 2001.

[13] V. Kumar, A. Grama, A. Gupta, and G. Karypis.Introduction to Parallel Computing. The Ben-
jamin/Cummings Publishing Company, 1994.

[14] J.C. Latombe. Motion planning: A journey of robots, molecules, digital actors, and other artifacts.The
International Journal of Robotics Research - Special Issue on Robotics at the Millennium , 18(11):1119–
1128, 1999.

[15] S.M. LaValle and J.J. Kufner. Randomized kinodynamic planning.International Journal of Robotics
Research, 20(5):378–400, 2001.

[16] S.M. LaValle and J.J. Kufner. Rapidly-exploring random trees: Progress and prospects. In D. Rus B. Don-
ald, K. Lynch, editor,Algorithmic and Computational Robotics: New Directions, pages 45–59. A.K. Pe-
ters, 2001.

[17] J.H. Reif. Complexity of the mover’s problem and generalization. InProceedings of the 20th IEEE
Symposium on Foundations of Computer Science , pages 421–427, 1979.

