
Abstract: This dissertation examines the problem of designing large scale

multi-robot systems for pursuit-evasion tasks, which involves the detection of all

targets initially located in some environment of interest. We consider targets that

are omniscient and have unbounded speed. Robots, however, are very restricted

in their capabilities and have only limited sensing and communication range. We

develop theory to describe the problem and algorithms to coordinate a large team

of robots to solve the pursuit-evasion task.

One main contribution is a rigorous graph model of multi-robot pursuit-

evasion, called Graph-Clear, complementing existing literature on graph-searching.

We determine its complexity and provide algorithms and extensions for a variety

of scenarios. A second contribution is a model for multi-robot pursuit-evasion

in two dimensional environments, called Line-Clear, that abstracts the sensing

capabilities of the robot team to the ability to sense on lines between obstacles

and thereby detect targets. We present terminology and algorithms that enable

the coordination of the movement of such lines while attempting to minimize

the number of robots needed to cover these lines with sensors. To improve the

applicability of the proposed models we also present two automated methods

that extract instances of Graph-Clear and Line-Clear from grid and polygonal

maps. These methods are then combined with the algorithms for Graph-Clear

and Line-Clear to enable the coordination of real and simulated robots for the

detection of all targets within sample environments. We also extend the approach

to an online version that does not require a map of the environment and works

with simple robots, imperfect control, no localization and limited communication

range.

1

University of California

Merced

Multi-Robot Pursuit-Evasion

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering and Computer Science

by

Andreas Kolling

2009

c© Copyright by

Andreas Kolling

2009

The dissertation of Andreas Kolling is approved.

Songhwai Oh

Steven M. LaValle

Alberto Cerpa

Stefano Carpin, Committee Chair

University of California, Merced

2009

ii

Dedicated to my parents,

Angelika and Elmar.

iii

Table of Contents

1 Introduction . 1

1.1 Multi-Robot Pursuit-Evasion . 3

1.2 Goal and Overview of Contributions 4

2 Related Work . 7

2.1 Pursuit-Evasion on Graphs . 9

2.2 Visibility-Based Pursuit-Evasion 13

2.3 Probabilistic Graph Searching . 18

2.4 Direct Pursuit . 20

2.5 Cooperative Multi-Robot Approaches 21

2.6 Coverage and Clearing . 24

2.7 Pursuit-Evasion and Control Theory 24

2.8 Probabilistic Approaches . 28

2.9 Sensor Networks and Tracking . 30

2.10 Real Systems . 33

2.11 Other Related Fields . 37

3 Graph-Clear: Multi-Robot Pursuit-Evasion on Graphs 40

3.1 Motivation . 43

3.2 Problem Formulation . 47

3.2.1 An example of Graph-Clear 52

3.3 The Complexity of Graph-Clear 55

iv

3.4 Recontamination for Optimal Strategies 62

3.4.1 Cuts . 62

3.4.2 Recontamination does not help 64

3.5 Label-Based Strategies on Trees 69

3.6 Optimal Contiguous Strategies on Trees: a Polynomial Algorithm 79

3.6.1 Full cut sequences . 79

3.6.2 Constructing cut sets . 85

3.7 Improved Non-Contiguous Strategies: Hybrid Algorithm 91

3.7.1 Batches . 93

3.7.2 Criteria for optimal partitions 94

3.7.3 The partitioning algorithm 97

3.7.4 Discussion and Conclusion 107

3.8 Probabilistic Graph-Clear . 107

3.8.1 Probabilistic Model . 109

3.8.2 Modeling faulty sensors . 113

3.8.3 Probabilistic Extensions to Graph-Clear 116

3.8.4 Discussion and Conclusion 122

3.9 Modified Graph-Clear: Sweeps Prevent Recontamination 123

3.10 Applying Strategies to Graphs . 126

3.11 Discussion and Conclusion . 128

4 Line-Clear: Multi-Robot Pursuit-Evasion in 2d 131

4.1 Line-Clear: Definitions . 133

v

4.1.1 Covering Sweep Lines with Sensors 139

4.2 Sweep Schedules through Graph-Clear 140

4.2.1 Voronoi Diagrams . 141

4.2.2 Constructing Sweep Schedules from Voronoi Diagrams . . 144

4.2.3 Optimality Considerations 154

4.3 Reduction to a Combinatorial Problem 157

4.4 Finding Optimal Sweep Schedules for Simply-Connected Environ-

ments . 163

4.4.1 Split Points for Sweep Lines 176

4.5 Discussion and Conclusion . 177

5 Extracting Surveillance Graphs From Maps 180

5.1 Voronoi-based Extractions . 180

5.1.1 Blocking . 182

5.1.2 Vertex sweeping . 183

5.1.3 Initial Graph Construction 184

5.1.4 Improving the graph . 187

5.1.5 Implementing blocking and sweeping actions 188

5.1.6 Experimental Results . 189

5.1.7 Discussion and Conclusion 193

5.2 Line-Clear Extractions . 196

5.2.1 Implementation . 197

5.2.2 Experiments . 198

vi

5.2.3 Discussion and Conclusion 204

6 Applications and Experiments . 207

6.1 First Experiments with Simple Sweeps and Two Robots 208

6.1.1 Extracting Surveillance Graphs 208

6.1.2 Implementing Surveillance Graph actions 209

6.1.3 Experiment Design . 214

6.1.4 Results and Discussion . 216

6.1.5 Conclusion . 217

6.2 Line-Clear without Maps . 218

6.2.1 Bootstrapping . 221

6.2.2 Moving a Sweep Line . 223

6.2.3 Splitting a Line . 229

6.2.4 Obstacle Search . 230

6.2.5 Surveillance Graphs and Line Coordination 231

6.2.6 Implementation and Testing 240

6.2.7 Discussion and Conclusion 247

6.3 Discussion and Conclusion . 252

7 Discussion and Conclusion . 254

References . 256

vii

List of Figures

1.1 An overview of the contributions of this dissertation. 6

3.1 An example that illustrates how a graph for Graph-Clear can relate

to an actual environment. The environment is shown in grey with

its graph embedded. All weights in this example are equal to

one. Connections between regions that are connected by edges are

shown in black. The center region is the ”eagle” example redrawn

from [SRL04]. It can be cleared using the algorithm from [SRL04]

with only one robot and a simple gap sensor with sufficiently large

range. During its execution it recontaminates the top part of the

region and hence cannot guarantee that no target enters the vertex

undetected. We hence need blocks on the edges, i.e. to position

sensors on the black regions. Note that the entire environment

can be very large so that the sensor only satisfies the large range

assumption within a vertex. 46

3.2 An example environment and one possibly associated surveillance

graph. Numbers inside vertices are the sweeping costs, and num-

bers on the edges are blocking costs. 53

viii

3.3 A possible strategy to solve the Graph-Clear problem associated

with the graph shown in Fig. 3.2. The first column displays the

status, the second the applied action, and the third the cost. The

reader should note that in the third row an action sweeping two

vertices at the same time is applied, and that a final action remov-

ing all blocks is executed in the end (with 0 cost). The cost of this

strategy is 12, i.e. the maximum value read in the third column.

It is easy to see that such strategy is not optimal. 54

3.4 An example that illustrates the consequences of allowing simulta-

neous moves in weighted edge-searching. Part a) shows a graph

with its weights. Part b) shows the graph with eight robots on

the top vertex and none in the bottom vertices. The arrows in-

dicate two sliding moves with four robots that finish clearing the

graph with eight robots when executed simultaneously. Part c)

shows how to clear the graph with strictly sequential moves with

the same recontamination rules but needing more robots. 56

3.5 The construction of an optimal strategy for a star. Cleared and

contaminated vertices are grey and white respectively. Blocked

edges are marked with as double-stroked line. First all leaves are

cleared, leaving the edge to the leaf blocked. For leaf vi,i = 1, . . . , n

the total cost while clearing it is i+ 1. Finally the center vertex is

cleared with cost n+ 1. 57

ix

3.6 An illustration of the large graph constructed from an instance

of the MCIESS. Part a) shows the constructed surveillance graph

from the MCIESS graph in part b). A star is represented by a

cloud, a bundle of nN or more edges by a double line and 3 edges

by a thick line. Part c) is a close-up of the star C1 and its edges to

other star. In part d) C1 is shown in more detail with its center,

connectors and leaves. 59

3.7 A contiguous strategy on a tree is executed based on the labels on

edges. Blocked edges are crossed through twice, cleared vertices

are gray. A vertex with dashed lines attached represents an entire

subtree rooted at that vertex. A subtree being cleared is marked

with the corresponding root vertex drawn in thick dashed lines.

The label associated to this procedure is shown in a) with the

direction of the robots marked by an arrow. 72

3.8 This is the worst case example for d = 6, smax = 6 leading to a

worst case label cost of 15. Blocking weight w is on the left and

label on the right of the colon for every edge. Each vertex has

its weight in its center. Only labels for the direction towards the

leaves from the vertex marked with a black arrow are shown. . . . 77

3.9 A comparison of the average upper bound across 1000 weighted

trees and actual maximum label values for varying number of ver-

tices. 77

3.10 Given vy we define subtrees Ti as seen in the figure. 80

x

3.11 Illustration of the cut sequences associated to edges and the sub-

trees involved in the construction. There are three possibilities for

S̄vx(e), depending on the costs of the cuts. E.g. if weights on the

tree are s.t. executing {vx, vy} costs as much as executing the full

cut V (Ty) right away, then the first possibility is the full cut se-

quence. Otherwise, if {vx, vy} costs less and has smaller blocking

cost than {vx}, then the second possibility is the full cut sequence,

and so on. 86

3.12 Execution of the hybrid strategy. 91

3.13 The dynamic programming table for the example from table 3.3. . 103

3.14 Possible partitions resulting from the dynamic programming table

for the example from 3.3. A partition is represented by a sequence

of arrows where a diagonal arrow means that the vertex of the row

to which the arrow is pointing is in V2 while a horizontal arrow

indicates that the vertex is in V1. 105

3.15 A grid with a sensor placed in its center as a black circle and with

the cells observed by the sensor in grey. A darker grey tone denotes

a smaller false negative probability. 114

3.16 An illustration of the computation of detection probabilities for

blocks through the worst case path a target can take through a

block. 116

3.17 The basic block in this figure only needs one robot, while the first

reinforcement leading to an improvement in the detection capabil-

ity needs two additional robots. In order to get this fact the reader

should consider that intruders may also move diagonally on the grid.117

xi

3.18 An example of algorithm 7 . 121

3.19 Adding a virtual edge to compute the cost of clearing G starting

from v3. The lambda function on the virtual edge, represented as

a dotted line will represent the probability of clearing everything

beyond that edge. 122

3.20 Results of the experiments with 9 sets of parameters. The upper

lines for each number of vertices is always the cost for the con-

stant cycle blocking strategy and the lower for the dynamic cycle

blocking strategy. 128

4.1 Examples of points that are valid sweep lines a), b) and c). The

remaining lines are invalid and not sweep lines. 135

4.2 Multiple robots covering a sweep line between two obstacles. As

the distance between the obstacles grows another robot is added

at the appropriate location. 140

4.3 An illustration of the definitions of surjective surfaces and equidis-

tant faces. The surjective surfaces are drawn with thin lines and

the equidistant faces, a subset of the surjective surfaces, are drawn

in thick and dashed lines. 142

4.4 The GVG vertices and edges in the environment marked as circles

and dashed lines, respectively. Note that some edges are contin-

uing on the intersection of two obstacle boundaries, but not all

intersections lead to an edge as seen in the corridor to the left.

To form a proper graph an additional vertex at infinity could be

introduced and connected to these edges. 144

xii

4.5 Illustration of the concept of moving and splitting sweep lines.

The arrows indicate the direction of movement of the sweep line

on the left side until it splits into two sweep lines which continue

independently. 145

4.6 Left: A Voronoi Diagram resulting from line segments of multiple

polygonal obstacles by considering each open segment and their

endpoints as independent obstacles. Note vertices and edges inside

the polygons are also drawn and result from the fact that the line

segments are considered obstacles for the purpose of construction

the Voronoi Diagram. Right: Conversion of the Voronoi Diagram

into a surveillance graph. Dashed lines indicate lines that are asso-

ciated to vertices and edges and represent blocks and sweeps. The

movement of lines is represented by their thickness, i.e. thin lines

move towards thicker lines. 146

4.7 A sweep line moving along an edge eij and crossing vertex v. The

grey area is the cleared part R(t) bounded by obstacles and sweep

lines. 147

4.8 Illustrating the forward movement of a sweep line across a vertex

v. Part a) shows lij at time tblock, part b) at time tswap, part c) at

time tsplit and part d) shows the two new moving sweep lines lik

and ljk at time tend. 148

4.9 An example in which the minimum of di on SS ij, marked as a grey

dot on a grey dashed line in a), does not lead to a valid sweep line.

The blocking position is then earlier on SS ij as seen in b). 150

xiii

4.10 Four cases for a vertex with degree three. Current sweep lines

are black while future sweep lines that are to be reached are grey.

Contaminated and cleared sides of current sweep lines are marked.

In a) one sweep line splits into two sweep lines. In b) two sweep

lines merge into one sweep line, the converse of a). In c) all points

are still contaminated and two sweep lines are established to be-

ing clearing. In d) all points outside the figure are cleared and all

sweep lines will disappear, the converse of c). Part a) represents

three cases, one for each choice of direction for the current sweep

line, i.e. either starting between Ci and Cj as seen or between

Ci,Ck or Cj,Ck. Similarly, part b) also represents three cases. For

c) and d) there is only one choice of directions, leading to overall

eight possible sweeps for the Voronoi vertex associated to Ci,Cj,Ck

represented by four weights, since each case has an associated in-

verse at identical cost. 153

4.11 The blocking positions of sweep lines in the environment are marked

as dashed lines each creating an edge between two vertices which

now correspond to a region as partitioned by the blocks. The

Voronoi Diagram of the environment is presented in fig. 4.4. . . . 154

4.12 A six-way intersection constructed around a circle with diameter

d and larger corridors given by parameter d1. Values for d3 and d2

follow from the circles diameter. All center obstacles are aligned

around the circle with the exception of the leftmost obstacle which

is moved towards the center by ε > 0. 155

4.13 An illustration of an optimal sweep schedule for the environment

from fig. 4.12 given that d1 > d2 + d. 156

xiv

4.14 An illustration of the beginning of a sweep schedule created from

the Voronoi Diagram of the environment from fig. 4.12 starting at

v8. Given that v8 is the starting vertex, the next split is necessarily

at v3 as shown in the figure. 157

4.15 A simply connected environment with two sets of two sweep lines

{l1, l2} and {l3, l4}. Sweep lines l1 and l2 together with parts of

obstacles C1, C3 and C4 form the boundary of a cleared region for

a sweep schedule. This boundary can be traversed by following

C1, C3, C4, C1 and hence B(t) = {1, 3, 4}. The same traversal ap-

plies to a possible sweep schedule represented by {l3, l4} and these

represent the set of sweep lines with lowest cost that have this

traversal sequence. 159

4.16 Adding an obstacle index twice to B(t) at different times violates

contiguity of the cleared part. 160

4.17 Three points on Coi
and the sweep lines they form to Cil and Cir . 162

4.18 Example of two sweep schedules. The sweep on the left is subop-

timal while the one on the right is the optimal solution. On the

bottom of each side the evolution of the set B(t) is shown. 163

4.19 An illustration of how a set of choices T ik splits into left and right

sides, depending on which obstacle index in T ik is chosen. A choice

is represented by an edge towards a left and right side with the

chosen index written on the edge. 165

4.20 Part a),b),c) and d) show the environment in four different states

with the respective sets of choice that exist in the respective state. 166

xv

4.21 An example of a choice tree for o1 = 1. The empty set T0 is not

drawn. The recursive construction is given in fig. 4.19 167

4.22 A compressed version of the tree structure from fig. 4.21. Every

unique T ik is drawn exactly once. The number of edges grows as a

polynomial with degree 3 in the number of obstacle indices. 168

4.23 Two different paths in the tree-like structure from fig. 4.22. Note

that if a choice set splits into a left and right we need to follow both

sides. Fig. 4.24 shows how these two paths lead to a surveillance

graph. 170

4.24 The figure shows two surveillance graphs that correspond to the

two paths chosen in fig. 4.23. The cleared vertex at the bottom

represents the choice of o1 as the first obstacle. 171

4.25 This figure shows how a choice set T ik leads to an edge with weight

b(T ik). The next vertex beyond that edge is determined by the

choice made in T ik and all alternatives with their respective weights

are shown. The next choices made in the choice sets for the left

and right side create new vertices. The edges towards these are

marked with dashed lines. 172

4.26 Illustration of the computation of labels λj(e
i
k) and λ(eik) for k =

1, 2, 3. 173

4.27 Computing labels for edges representing choice sets implicitly prunes

all outgoing choices from a choice set to one. The figure shows such

a pruned tree and only the edges for choices are shown that corre-

spond to a vertices that leads to the minimum label. 174

xvi

5.1 Illustrating the advantage of narrow connections between open re-

gions. For robots with a limited sensing range the environment

in part a) can be cleared with 3 robots, while the one on part b)

requires 4. The reader should note that the surface is the same. . 184

5.2 A simple environment with a Voronoi edge in the center as a dotted

line and the clearance function in the graph on top. The minima

on the Voronoi edge are marked by grey circles. 185

5.3 A Voronoi Diagram and its minima. The Voronoi Diagram is

marked with grey dashed lines, the minima with grey circles and

the lines to the closest obstacle points with thin black lines. Ob-

stacle boundaries are thick black lines. Corners in corridors tend

to produce minima, unless a narrow part proceeds it as seen in the

upper left corner of the figure. 186

5.4 An example in which a discrete approximation of the Voronoi Dia-

gram in a grid map leads to introduction of unwanted edges. The

black line in the center is the Voronoi Diagram edge and minima

are marked by grey lines . 187

5.5 A contraction of a vertex with degree two and its neighbor. Part a)

shows the initial graph and part b) the graph after the contraction. 188

5.6 The map created by the P3AT at UC Merced with initial graph

construction. The thick black lines are boundaries between free

and occupied space. The small black circles are vertices placed in

their corresponding region which are separated by thin lines. . . . 190

xvii

5.7 The sdr site b from Radish [HR03] with initial graph construc-

tion.The thick black lines are boundaries between free and occu-

pied space. The small black circles are vertices placed in their

corresponding region which are separated by thin lines. 191

5.8 The map created by the P3AT at UC Merced with initial graph

construction on the left. The thick black lines are boundaries be-

tween free and occupied space. The small black points are vertices

placed in their corresponding region which are separated by thin

lines. On the right is the final graph resulting from contractions. . 195

5.9 The sdr site b from Radish [HR03] with initial graph construction.

The thick black lines are boundaries between free and occupied

space. The small black points are vertices placed in their corre-

sponding region which are separated by thin lines. On the right is

final graph resulting from contractions. 196

5.10 Robots following a sweep line with δ overlap and splitting into two

sweep lines at a critical point. Robots with solid disks are moving

towards future positions marked as robots with dashed disks. Note

that the four robots require additional 4 robots to reach the dashed

positions. 199

5.11 UCM map with borders thickened for illustration purposes. The

graph is embedded with thin lines as edges inside free space. Ver-

tices are small circles. The map is a polygon map obtained from

the original grid map from fig. 5.8 after applying the α-shape and

line simplification with α = 10 and ε = 3. Distances are mea-

sured in pixel. To illustrate scale six horizontal lines of length

5,10,20,40,60 and 100 pixel are added. 200

xviii

5.12 SDR Map with borders thickened for illustration purposes. The

graph is embedded with thin lines as edges inside free space. Ver-

tices are small circles. The map is create from the original grid

map from fig. 5.7 exactly as fig. 5.11. 201

6.1 Map of part of the Science and Engineering building at UC Merced

built with a SICK laser on a Pioneer P3AT and the gmapping soft-

ware [GSB]. The grey thin lines show the discrete approximation

to the Voronoi Diagram, the thicker black lines the boundary of

the environment, and the thick dashed grey lines show the bound-

ary of regions associated to different vertices. Vertices are circles

with edges as black dashed lines. 210

6.2 Guaranteed blocking positions for blocking using a camera with

π/2 opening angle. The small triangle is the sensor, its coverage is

grey and the obstacles associated to the minimum clearance value

on the Voronoi edge (dashed line) are black squares. The other

obstacles are squares with dashed boundaries. The circle shows

the guaranteed obstacle free area. 213

6.3 Example of an improved sweeping implementation. On the left

is the graph representation with cleared parts in grey and blocked

edge with a stroke. The center shows how a robot sweeps, ensuring

that no intruder can enter. Sensor coverage is shown in grey. On

the right we have the status of the graph after the sweep. 213

xix

6.4 A generalization of the vertex sweep implementation to vertices

of degree larger than 3. The tree on the left corresponds to the

environment on the right with the Voronoi Diagram as dashed

lines. Each arrow indicates the movement of one robot. The leaves

si and bi are starting and ending points respectively. 214

6.5 The two Pioneer P3AT equipped with a SICK PLS200 laser. . . . 215

6.6 The paths computed for all vertices in the environment from fig.

6.1. Paths from one robots are shown with a black and the other

with a white arrow. 217

6.7 The paths computed for all vertices in the environment from fig.

6.1. Paths from one robots are shown with a black and the other

with a white arrow. 217

6.8 A diagram showing the high level states of the algorithm. 221

6.9 The maximum reach given 12 robots. 222

6.10 An example of how robots moving on a line cannot find the optimal

way of moving it forward and the left side stops at position a). Yet,

as the right side proceeds the left and right tangents approach the

same values at position b). At this point the left side will move

again and the line will shrink again. The bottom of the figure

shows the local view from the robots of the tangents. 224

xx

6.11 An illustration of the main line moving forwards to extend the

cleared area marked in grey. On the right hand side are possible

configurations for the tangent of the line. A tangent at an endpoint

away from line leads to its length increasing while a tangent in-

wards leads to a decrease. The three cases depicted are one where

1) both sides lead to a decrease, 2) one side leads to a decrease

and one to an increase 3) both sides lead to an increase in length.

On the left figure some robots in the gray area serving as reserve

are shown. 226

6.12 In this example a sweep line hits an obstacle and subsequently

moves the two line-leaders into the direction for which the line

lengths decrease. This reduces the number of robots needed by

two. Then the sweep line splits, needing one additional robot for a

total of seven robots. Robots that are in the reserve are not shown. 229

6.13 Top left: a line runs out of robots and cannot move further (the

arrow indicates how it will move back). Top right: it then moves

back. Bottom left: it then searches for a new obstacle. Bottom

right: the line is split in two and each of them can individually move.233

xxi

6.14 The radii of the circles are multiples of rfollow. The line from

which the search originated is marked as a thick black line with

thick circles representing the left and right line leader. The original

line requires 7 robots and the small black dots show which points

can be reached with a total of rall = 8 robots by separating them

onto the two new line segments into, i.e. for i = 1 there are i + 1

robots on the left segment and 8− i robots on the right segment.

The grey circles indicate the points that could be reached if we

had rall = 9. 234

6.15 In this example a line moving forward runs out of robots and moves

backward. It then initiates a search but cannot reach the third

obstacle. Executing a search from a different line position can,

however, reach it. 235

6.16 This figure shows the three vertices added to a graph when a split

occurs. Three vertices and three edges with their weights are added

and connect to the existing graph. 235

6.17 Example of the construction of a graph as a result of the explo-

ration with lines. The cleared and known vertices are marked

in grey. The lines leading to their creation are marked as thick

dashed lines with the associated number of robots needed. The

robots explore the environment, following the arrows and stop be-

fore discovering the vertex with weight 7. Hence the neighboring

vertex 4 is not considered explored. 238

6.18 A simply-connected environment with the starting point for the

clearing and homebase at a). 242

xxii

6.19 The surveillance graph corresponding to a sweep schedule created

with the methods from Section 5.2. The surveillance graph has

141 vertices resulting in 7 robots for clearing it. 243

6.20 With 8 robots the distributed algorithm fails to clear this environ-

ment starting at the bottom. This is due to the failed obstacle

discovery with 5 robots at the top right while 3 robots block the

edge to the left. In part a) the team runs out of robots and move

back to part b). Once the line shrinks it attempts an obstacle

search in part c) but the reach is too limited and it fails. The

team then backtracks and tries the left side while blocking the

right with 3 robots and fails in an identical manner. 246

6.21 The first split of the line moving with 9 robots that subsequently

clears the environment. 247

6.22 A successful search after the second search step shown in part b).

After the search the line splits and the right side clears the leaf in

part c) and returns in part d) to join the left side. 248

6.23 For the left side the robots have to backtrack extensively. In part a)

they fail with three robots and backtrack to collect 3 more. They

fail again with 6 robots and have to backtrack again to collect the

bottom three. 249

6.24 The last steps of the clearing. In part a) the robots extend far to

follow the boundary and finish with steps b) and c). The graph

resulting from this is shown in d). 250

6.25 Reducing the number of robots to 8 forces an obstacle search which

leads to a different graph than fig. 6.24 as shown in d). 251

xxiii

6.26 The final graph created by 9 robots embedded in the environment. 252

xxiv

List of Tables

3.1 Results of the experiments. Values are averaged across 1000 ran-

dom trees. 78

3.2 A simple example of a set of vertices and their assignment into

batches. 95

3.3 Another example of vertices. 103

3.4 Reduction of the number of robots needed when using dynamic

cycle blocking expressed in terms of the percentage of the number

of agents needed to block all cycles at once. 127

5.1 Summary of the experimental results. 194

5.2 Summary of the experimental results from [KC08a]. 202

5.3 Summary of the experimental results with α = 10, ε = 7. Note

that some MST-edges are degenerate and have 0 weight. 204

5.4 Summary of the experimental results with α = 10,δ = 2, ε = 3.

Note that degenerate MST-edges from table 5.3 do not appear here.205

xxv

Acknowledgments

First, I would like to thank my advisor Stefano Carpin for his ongoing support

and advice throughout the last three years, particularly for letting me follow up

on my ideas and helping to develop them. I am also thankful for the support

of my dissertation committee, Alberto Cerpa, Songhwai Oh and Steven LaValle

whose encouragement and suggestions were always very much appreciated.

A great many thanks also go to my fiancée, Malgorzata Skorek, for mak-

ing this work possible and my time at UC Merced all the more enjoyable. I

could not imagine having done all this without her loving support. Finally, I

am also thankful for the delightful company of my lab-mates, Ben Balaguer and

Gorkem Erinc, and friends at UC Merced, especially Ankur Kamthe and Gayatri

Premshekharan.

xxvi

Vita

1982 Born, Bremen, Germany.

2001–2004 B.S., Mathematics, Jacobs University, Germany.

Summer 2003 Research Intern, Indiana University Bloomington, USA.

2003-2004 Student Lab Assistant, Social Cognition Lab, Jacobs Univer-

sity, Germany.

2004–2006 M.S., Computer Science, Jacobs University, Germany.

2007–2008 Teaching Assistant, University of California, Merced.

2007–2009 Graduate Student Researcher, University of California, Merced.

2008–2009 Teaching Fellow, University of California, Merced.

Publications

A. Kolling, S. Carpin. Pursuit-Evasion on Trees by Robot Teams. IEEE Trans-

actions on Robotics, in press, 2009.

xxvii

A. Kolling, S. Carpin. Cooperative observation of multiple moving targets:

an algorithm and its formalization. International Journal of Robotics Research,

26(9):935-953, 2007.

A. Kolling, S. Carpin. Surveillance strategies for target detection with sweep

lines. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, accepted for publication.

A. Kolling, S. Carpin. Probabilistic Graph-Clear. In Proceedings of the 2009

IEEE International Conference on Robotics and Automation, 3508-3514.

A. Kolling, S. Carpin. Stochastic Analysis of Controller Area Network Message

Latencies with Observable Operator Models. Society of Automotive Engineers

World Congress, Detroit, 2009.

A. Kolling, S. Carpin. Extracting surveillance graphs from robot maps. In

Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pp. 2323-2328.

A. Kolling, S. Carpin. Multi-robot surveillance: an improved algorithm for

the GRAPH-CLEAR problem. In Proceedings of the 2008 IEEE International

Conference on Robotics and Automation, pp. 2360-2365.

A. Kolling, S. Carpin. The GRAPH-CLEAR problem: definition, theoretical

properties and its connections to multirobot aided surveillance. In Proceedings of

the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,

xxviii

pp. 1003-1008.

A. Kolling, S. Carpin. Detecting intruders in complex environments with limited

range mobile sensors. Robot Motion and Control 2007. K. Kozlowski (Ed.),

Lecture Notes in Control and Information Sciences (LNCIS) Vol. 360, Springer,

2007, pp. 417-246.

A. Kolling, S. Carpin. Multirobot Cooperation for Surveillance of Multiple

Moving Targets - A new behavioral approach. In Proceedings of the 2006 IEEE

International Conference on Robotics and Automation, pp. 1311-1316.

H. Jaeger, M. Zhao, A. Kolling. Efficient estimation of OOMs. Advances in

Neural Information Processing Systems 18 (Y. Weiss, B. Schlkopf, J. Platt, eds.),

MIT Press, Cambridge, MA., pp. 555-562, 2005.

H. Jaeger, M. Zhao, K. Kretzschmar, T. Oberstein, D. Popovici, A. Kolling.

Learning observable operator models via the ES algorithm. In S. Haykin, J.

Principe, T. Sejnowski, J. McWhirter (eds.), New Directions in Statistical Signal

Processing: from Systems to Brain, MIT Press, 2005.

xxix

CHAPTER 1

Introduction

Every day a large number of rescue, reconnaissance, security and military per-

sonell expose themselves to tremendous risks in search of some essential piece

of information, such as the location of a victim or hostile forces. Even when

confronted with limited success rates countless volunteers engage in dangerous

missions for the hope that they may save lives, up to a point where more lives are

lost in the effort than are saved by it. Uncertainties and limited information for

many of these missions only worsen the problem and make any risk analysis or

predictions futile. Yet, the necessity to carry them out despite all risks is obvious.

What remains is to empower those involved with tools that reduce risks, improve

success rates and enable more missions to be carried out. Robotic tools promise

to offer these advantages and their usage in search missions has just recently

picked up pace. It is the continuation and acceleration of this trend that we aim

to support with the work in this dissertation.

One of the largest disasters in recent decades, the collapse of the towers of

the World Trade Centers, was also one of the first to see the use of new robotic

rescue technologies in practice. Their mission on this day was rather limited and

they only served to identify ten sets of remains [Mur04]. Yet, their deployment

reinforced the belief in the potential that robotic systems have in freeing personell

resources, reduce risks and improve the overall success rate of difficult search

missions. Today, about eight years later, the number of robotic systems assisting

1

human personell in search and surveillance tasks has risen dramatically. Initial

research efforts primarily and rightfully focused on the challenges of human robot

interaction and robustness of individual robotic components. Autonomy is often

only a marginal part of these systems and tight interaction between a human

operator and a single robot is the norm. Hence, they do reduce risk and improve

the capabilities of the team, but do not significantly reduce the need for human

resources. Furthermore, they require reliable communication between the robot

and a base station which increases the cost of the robotic system as a whole. Also

the actual robots, apart from the base station, tend to be more expensive since

every single robot needs to deliver significant capabilities to warrant the added

expense of a human operator. Despite these shortcomings, rescue or military

personell given the chance to experiment with robots in the field frequently resist

to return them, which is a strong testament to their pivotal role.

Many more robot components, sensors and actuators in addition to computa-

tion and communication devices, now participate in a Moore’s Law like reduction

in cost and space requirements. This reduction is fueled by recently appearing

mass markets for smart-phones, intelligent vehicles, sensor networks and robots

as consumer products. These developments enable the design of robotic systems

comprised of a large number of robots without exploding the cost. Such multi-

robot systems offer different advantages than multiple single robot systems. They

can satisfy the criteria of robustness through redundancy instead of requir-

ing reliability of every component through a costly design. This same property

of cost-reduction also allows the requirements on autonomy to be less stringent.

With an expensive single robot its autonomy has to ensure that the robot remains

functioning. With replaceable robots we can afford to loose one of them on occa-

sion which allows us to require less robust autonomy. But foremost multi-robot

systems deliver scalability through coordination that no single robot system

2

can provide. A single robot is inherently limited in its spatiality. Multi-robot

systems scale to larger and more complex tasks merely through the addition of

more robots. Yet, to enable their widespread usage and take full advantage of

their benefits one has to enable the efficient coordination of robots with limited

capabilities. As a consequence, the study of multi-robot systems is often focused

on the coordination of a larger number of robots, each with limited capabili-

ties, and the scalability of the entire system for the completion of complex tasks.

The design and study of such multi-robot systems for pursuit-evasion, a partic-

ular search task, is the subject of this dissertation. This particular search task

describes the detection of unknown, mobile and possibly hostile targets.

1.1 Multi-Robot Pursuit-Evasion

The term pursuit-evasion generally refers to a worst-case search scenario in

which the search targets are mobile adversaries with unbounded speed and com-

plete knowledge, but bound to move on continuous trajectories. In the context

of graphs this entails that a target can move to any vertex of the graph as long as

its path does not include vertices or edges on which it will be detected. For two

dimensional environments targets are simply bound to move on continuous curves

but also at unbounded speed. Given this worst-case adversary assumption the

task of detecting all targets located in an environment becomes equivalent to the

clearing of all contamination from an initially fully contaminated environment.

A contaminated part of the environment then simply refers to the possibility of

a yet undetected target being located therein. For a cleared part we can then

ensure that no undetected target is located in it. Robots can clear parts of the en-

vironment and can restrict the spreading of contamination by blocking potential

paths for the target. If not blocked, then contamination spreads instantaneously

3

as a consequence of the unbounded speed. A variety of pursuit-evasion problems

have been studied on graphs and in two dimensional environments. We discuss

a few of these in Chapter 2. The worst-case target assumption is useful when

no information about targets is available and when it is critical that no target is

missed. In this sense the approach is conservative and more benign target behav-

ior can only lead to improvements. But it additionally simplifies the theoretical

treatise as we shall see in the chapters that are to follow.

The term multi-robot in this thesis refers to robotic systems in which indi-

vidual robots are only equipped with limited capabilities. In practice this entails

very limited sensing and communication ranges which render each robot useless

for real pursuit-evasion tasks, unless it is part of a large team. Chapter 2 reviews

some related work in this domain.

1.2 Goal and Overview of Contributions

The goal of this dissertation is:

To develop a theoretical foundation and algorithms that enable the

design of scalable and fully autonomous multi-robot systems to solve

pursuit-evasion tasks.

One of the main contributions to this end is a rigorous formalization in form of

a graph model that captures combinatorial aspects which arise when coordinating

large robot teams in large environments. This model is coined Graph-Clear and

presented in Chapter 3. In Graph-Clear the environment is represented by a

graph with vertices associated to regions and edges connecting vertices that are

associated to adjacent regions. The capabilities of the robot team are abstracted

to actions, so called sweeps and blocks, on vertices and edges that, if executed

4

in proper order, can clear a graph. Each action requires a certain number of

robots given by a weight on the vertex or edge. The Graph-Clear problem is

to identify sequences of actions, so called strategies, that clear an initially fully

contaminated graph at lowest cost. It is closely related to previous pursuit-

evasion problems introduced on graphs which we will review in Section 2.1 and as

such also contributes to the graph and game theory literature. While the graph

abstraction is useful to tackle combinatorial and scalability issues in a rather

general manner, there is still a gap between the coordination of real robots and

strategies on graphs. To utilize the strategies of a graph one needs to implement

routines or behaviors for the robots that enable them to execute a sweep or block

action. In principle, these implementations can differ dramatically for different

robotic platforms and sensors and there are only few requirements that they have

to fulfill. Chapter 6 discusses examples of such implementations.

To complement Graph-Clear and gain insights into limited range pursuit-

evasion in two dimensional environments we introduce a second problem coined

Line-Clear in Chapter 4. Therein the capabilities of the robot team are abstracted

to the ability to cover lines that move through the environment. A solution to

Line-Clear entails a schedule for the creation and movement of these lines and the

goal is to compute a schedule that can be executed at lowest cost. Coordinating

these moving lines, covered by chains of robots, involves solutions to the Graph-

Clear problem and we thereby establish a direct relationship between multi-robot

pursuit-evasion in two dimensional environments and graphs. To utilize a Line-

Clear schedule for real robots one only has to implement a line-following behavior

for the robot team. Implementations for this are also discussed in Chapter 6.

Another practical aspect in the utilization of Graph-Clear strategies is the

extraction of a graph from a given robot map. In theory, graphs could be cre-

5

ated manually, but it is desirable to have an automated extraction method which

is discussed in Chapter 5. The presented methods are subsequently applied in

Chapter 6 to create graphs from maps collected by robots from real environ-

ments and then coordinate their movement, closing the loop from the theory and

algorithms to the design of multi-robot systems operating in real or simulated

environments.

Figure 1.1 shows an overview of the above mentioned contributions.

model multi-robot pursuit-evasion with blocks and sweeps on edges and vertices

43

7
3

8

4 4

8

4
4

3
4

4

3

4

8

4
4 4

4

Graph-Clear

Line-Clear

Extracting Graphs

Applications and Experiments

Ci

Cj

Ck

v

implementations of line following
extension of Line-Clear to unknown environments

- environment as a graph with weights
- actions on vertices and edges at cost of the weights clear the graph
- compute least costly sequences of actions to clear graph

- lines split at new obstacles and stop when shortest
- goal: compute schedules of moving lines with lowest cost

application of graph-extraction algorithms
convert strategies to robot paths

- extract instances of Graph-Clear from maps
- extract instances of Line-Clear from maps

model multi-robot pursuit-evasion as moving and splitting lines

automated extraction methods for Graph-Clear and Line-Clear

Figure 1.1: An overview of the contributions of this dissertation.

6

CHAPTER 2

Related Work

Search, surveillance, reconnaissance and target detection problems have a very

long history in computer science. They have been studied in manifold variations

and these often involve challenging combinatorial or geometrical problems. For

these problems computer scientists and mathematicians have contributed a wide

range of results and approaches relating to topics such as game theory, opti-

mization, graph theory, computational geometry and many others. Recently, a

growing interest of the robotics and sensor network research communities on these

topics has reinvigorated their study and added new perspectives. The purpose

of this chapter is to give an overview of this large and varied area of research.

In this endeavor we shall put an emphasis on topics most closely related to our

contributions. Yet we shall also try to give an overview of the following areas of

interest:

1. pursuit-evasion and searching on graphs,

2. visibility-based pursuit-evasion,

3. probabilistic graph searching,

4. direct pursuit,

5. coverage and clearing,

7

6. pursuit-evasion and control theory,

7. cooperative multi-robot approaches,

8. probabilistic approaches,

9. sensor networks and tracking,

10. and real robot systems.

There are many topics that we will not be able to address. These include the

actual process of target detection [SOD02] which can be based on a variety of

sensors such as cameras, lasers, sonars, infrared or microphones, each with their

specific challenges.

One of the first computational problems related to search and surveillance

has been the art gallery problem. Excellent surveys in this field are written by

O’Rourke [OR87] in 1987 and Shermer [She92] in 1992. In short, the art gallery

problem is concerned with finding the minimum number of omnidirectonal cam-

eras needed to surveil an art gallery. It is hence dealing with the deployment

of static sensors with unlimited range. But it was not long after the original

problem was proposed that variants with mobile guards were proposed. One of

the first results with mobile guards patrolling on edges or diagonals in a polygon

were due to O’Rourke who showed that the minimum number of mobile guards

for any polygon of n vertices is bn/4c [OR87]. Continuing along this line a large

body of work in robotics has been developed that is now known as visibility-based

pursuit-evasion. We review this area in detail in Section 2.2. It is concerned with

the detection of omniscient and fast intruders with robots with unlimited range

sensors in a variety of two dimensional environments. Interestingly it also has a

connection to pursuit-evasion problems on graphs, most notably edge-searching,

8

which we review in Section 2.1. Our own contributions presented in this disser-

tations can be seen as a continuation of visibility-based pursuit-evasion towards

sensors with limited range.

Regarding the terminology it is useful to note that in the related literature

across the subjects we are about to address there is obviously no coherent termi-

nology regarding searchers and intruders. Searchers are sometimes also referred

to as pursuers or robots while invaders are also referred to as evaders or targets.

At times the use of a particular term may have a different meaning, but such

usage is too inconsistent to assign such meaning here. Generally, the proper-

ties of searchers and intruders are clear given the context and we use the terms

interchangeably.

2.1 Pursuit-Evasion on Graphs

In this section we review the topic known as graph-searching. One of the first

graph-searching problems, now often called edge-searching, was proposed by Par-

son in [Par76] and [Par78]. In edge-searching searchers traverse edges in a graph

to capture an invader that can move arbitrarily fast. The concept of contami-

nation is used to represent the possibility of an intruder occupying an edge and

a searcher moving along the edge clears this contamination. A search strategy

consists of such moves along edges and placement and removal of searchers on

vertices. While a searcher is on a vertex it is considered guarded and no con-

tamination can spread through it. Conversely, contamination spreads through

all vertices that do not have a searcher placed on them. Eventually a search

strategy has to clear all contamination which implies that all intruders initially

contained on the graph must have been detected, regardless of their speed. The

problem in edge-searching is to find the smallest number of searchers, known as

9

the search number s(G) on a graph G, with which which one can clear the graph.

In [MHG88] Megiddo et al. showed that the decision variant of finding s(G)

is NP-complete. In their proof they reduced edge-searching to the well-known

min-cut into equal sized subsets problem [GJ79]. Meggido et al. also presented

a linear time algorithm for finding the search number in trees and an O(n log n)

algorithm to compute a search strategy for capturing the evader. The proof relies

on an early manuscript from 1982, later published as [LaP93], in which LaPaugh

showed that for a pebbling version of edge-search recontamination can be avoided

without changing the search number. Another proof that recontamination is not

necessary in edge-searching is given by Bienstock and Seymour in [BS91]. The

two papers [MHG88] and [BS91] are particularly relevant for our work since they

relate to the NP-hardness proof in Section 3.3 and recontamination result in

Section 3.4. Also directly relevant is [BFF02] in which a weighted variant of

edge-search is first introduced. It also includes the requirement that strategies

are contiguous, i.e. the cleared parts of the graph form a connected sub-graph.

Consequently, we will discuss these three papers in more detail in Chapter 3.

Apart from edge-searching there are a number of other graph-searching prob-

lems. One variant, called node-search, has been defined by Kirousis and Pa-

padimitriou [KP86]. Therein the invader is caught on an edge when searchers

are located on both adjacent vertices, i.e. searchers can see into edges. They

also show that the node-search number1 is identical to the vertex separation plus

one2. In the domination search game from [FKM03] the searchers can see even

further and detect intruders in adjacent vertices. It is interesting to note that in

the domination search game recontamination can actually help. Other relations

between parameters of graph layouts and variants of graph-searching have been

1analogue to the search number for edge-searching
2The vertex separation simply denotes the minimum number of vertices that if removed

separate the graph into disconnected sets of vertices.

10

studied extensively. A first relation to layout problems has been established by

Makedon and Sudborough in [MS83], [MS89] by showing that s(G) is equal to

the cutwidth of G if the maximum degree of any vertex is 3. Later, Ellis, Sud-

borough and Turner in [EST94] also established a relation between s(G) and the

vertex separation. Another relation of edge-searching to a graph layout problem

is found in [MPS85]. Therein the topological bandwidth is related to the search

number and node-search number. Such relationships between graph-searching

and graph layout problems are particularly interesting since they can lead to the

utilization of efficient graph layout algorithms to efficiently compute search num-

bers or strategies. An optimal layout for the vertex separation problem restricted

to tree can be computed in O(n · log n) while the vertex separation number can

be determined in O(n). Further results for the layout problem for the vertex

separation from Skodinis in [Sko00] show how to compute the optimal layout

in O(n). A survey on graph layout problems is presented by Diaz in [DPS02].

There are even further variants of graph-searching, such as the mixed-search and

inert-search and most of these have also been related to layout problems and sur-

veys. A recent annotated bibliography of graph-searching is available in [FT08].

For our graph-searching problem, coined Graph-Clear, introduced in Chapter 3

it is not known whether interesting relationships to graph layout problems exist

nor whether they can lead to improved algorithms. From a theoretical perspec-

tive such questions may be of interest, yet they are beyond the scope of this

dissertation.

From a robotic perspective the work done in graph-searching is useful to co-

ordinate robots in order to solve pursuit-evasion tasks in environments for which

a robot team has a graph representation. The original sense of intruder also in-

cluded intruders such as in computer systems for network security [FGY00]. In

robotics, however, one usually refers only to physical intruders which are often

11

called targets. Consequently, there have also been developments in robotics to

augment graph-searching and introduce new variants that model robotic prob-

lems more closely or new algorithms that are more suitable when running on a

robot team. One such new variant is our Graph-Clear problem from Chapter 3

which was first introduced in [KC07c] and later refined in [KC09b]. It originated

from earlier work in [KC07b]. One extension to graph-searching that is very

particular to the robotic context is the consideration of a probabilistic failure

model for sensors presented in [KC09a]. But also other graph-searching prob-

lems, such as edge-search and node-search, are being used to coordinate robots.

Most notably, in [KHG09] an edge-searching variant is discussed for which con-

tamination is moved to vertices instead of edges, i.e. intruders are located in

vertices. This problem shares many properties with edge-search and the appli-

cation of edge-search algorithms to this problem is straightforward. In fact, the

problem is equivalent to mixed-search which is a combination of node-search and

edge-search, i.e. intruders are detected by moves along edges and whenever both

endpoints of an edge have a searcher located on them. In [HKS08] Hollinger et al.

address the issue of converting search strategies from trees to a graph. For this

spanning trees are generated at random and strategies are converted similar as

presented in [KC07c] in which only one spanning trees, namely the inverse mini-

mum spanning trees, is considered. We shall see some details on this procedure in

Section 3.10. It is interesting to note that the procedure to try multiple spanning

trees can also directly be applied to Graph-Clear. Adding more robotic-centric

aspects in [HSK09] pursuit-evasion search strategies are combined with improve-

ments to increase the likelihood of early detection given a target motion model.

Also the methods therein can be applied to our Graph-Clear problem in an ana-

logue fashion and greatly increase its utility. Another pursuit-evasion problem is

discussed in [KHS09] in which robots can see into a set of vertices depending on

12

the geometry of the environment from which the graph was constructed. Graphs

are created via partitioning a two dimensional environment into convex cells and

visibility of these cells is given whenever all points from one cell are visible from

all points of the other cell via a straight line of sight. It is hence assumed that

all robots have an unlimited range sensor.

To conclude this section, there is a great amount of work done in graph

searching, some of it with a theoretical focus but also some with the explicit

motivation to apply it to robotic scenarios. But all graph based approaches

require some connection between the graph and the environment in which robots

are placed. This requires the solution of a subproblem, namely the generation

of suitable graphs for the pursuit-evasion problem for given environments. This

problem has not been addressed sufficiently in the robotics literature and our

approach published in [KC08a] and presented in Chapter 5 is so far one of the

few focusing on this problem with the exception of the recent work in [KHS09].

An alternative approach to robotic pursuit-evasion that is directly concerned with

two dimensional environments, namely visibility-based pursuit-evasion. Also here

there is a large amount of work done which we shall present in detail in the next

section.

2.2 Visibility-Based Pursuit-Evasion

One of the earlier visibility-based pursuit-evasion problems was introduced by

Sugihara et al. [SSY90]. Therein they considered rays whose direction can be

changed but the position of the emitter remains stationary. An intruder is de-

tected if the ray hits it. This problem has recently been investigated by Ober-

meyer et al. [OGB07, OGB08]. Obviously the mobility restrictions are rather

severe and lifting these to let the source of the ray move freely brings is to what

13

is commonly referred to as visibility-based pursuit-evasion. It was first intro-

duced for polygonal environments by Suzuki and Yamashita in [SY92] and it

is a natural extension of graph-searching towards a more robot centric setting

with an emphasis on mobility of the searchers. This became the concept of a

k-searcher, which is mobile searcher that has k flashlights that emit beams to

detect intruders. An ∞-searcher, on the other hand, is a point source for which

such beams go into all directions. Sufficient and necessary conditions for exis-

tence of a search schedule with a k-searcher in simple polygons are presented,

but most problems remained open and spurred much further work. In [CSY95]

Crass et al. considered multiple intruders that can enter through an edge and

are not allowed to reach another edge of the polygon. Sufficient conditions for

the polygon to be searchable are presented for a ∞-searcher first, but then also

shown to be valid for the 2-searcher. In [YUS97] Yamashita et al. introduce

upper and lower bounds on the so called search number, analogous to the search

number for graph-searching, of a polygon. They show tightness of these bounds

with worst-case constructions of certain polygons. Some of the upper bounds

are in fact derived from graph-searching. A first complete algorithm to solve the

visibility-based pursuit evasion problem was given by LaValle et al. in [LLG97]

for the∞-searcher. The approach is motivated by information states that change

when critical boundaries are crossed by a searcher. The information states are

associated to gap-edges of the sensors, i.e. those edges of the polygon covered

with the sensor that are adjacent to free space. These critical boundaries parti-

tion the polygon into cells. For simple polygons that can be searched with one

searcher this produces at most O(n3) cells. Combining this decomposition of the

polygon in graph form with the information state produces a new graph which

is the one a solution is sought in. The size of this graph, however, is exponential

and hence does not scale very well to larger or very complex environments. A

14

few pointers on how to extend the algorithm to multiple searchers, losing com-

pleteness, are also presented. In a similar context, in [GLL99] Guibas et al.

established NP-hardness of finding the minimal number of ∞-searchers needed

for any polygon and presents the algorithm also shown in [LLG97]. They also

show that recontamination can sometimes help to find better solutions, contrary

to the result for edge-searching. Finally, in [PLC01] a quadratic algorithm for

solving the visibility-based pursuit-evasion problem in polygons was presented.

They give three necessary and sufficient conditions for searchability. Furthermore,

they prove the conjecture by Suzuki and Yamashita that a polygon searchable

by an ∞-searcher is also searchable by a 2-searcher. Curved environments were

first considered in [LH01]. The approach therein extends the critical boundaries

from [LLG97] to smooth boundaries of the environment (based on inflections and

bitangents on the boundary of the environment). The environment is simply-

connected and the pursuer has omni-directional vision. The development of an

online-version is outlined as a valuable direction for further work. Back to polyg-

onal environments LaValle et al. in [LSS02] presented an algorithm for a pursuer

with only a flashlight (1-searcher). The algorithm solves the problem by Suzuki

and Yamashita for 1-searchability and produces a search strategy if one exists.

Simple polygons with n edges and m concave regions are considered and the algo-

rithm has a complexity of O(m2 +m · log(n) +n). The basis of the algorithm is a

so called visibility obstruction diagram which is a 3-partition of the configuration

space. The configuration space is the Cartesian product of points on the bound-

ary. The 3-partition distinguishes 1) diagonal configurations: points on the same

edge 2) feasible configurations: mutually visible points and 3) all others. In this

diagram certain paths, called winning paths, lead to a strategy of the pursuer in

the polygon. The search space of the diagram is reduced to a skeleton by consid-

ering critical points on the boundary of the polygon. In this structure a path can

15

be found efficiently. A previous version of this algorithm is presented in [SSL00].

While the previous solves most of the problems proposed by [SY92] many other

questions remained open. Hence research naturally continued. In [SLS02] an

algorithm for two 1-searchers in a polygon is presented.

In [GTL04] some of the results from [TLM03] were used to design an online al-

gorithm for pursuit-evasion in an unknown simply connected environments. The

sensor is a simple gap sensor. The motion strategy is based on critical events

regarding gaps, i.e. appearances, disappearances, splits and merges of gaps. The

approach uses sentries that the pursuer can place (and collect again) in the envi-

ronment The number of dropped sentries is bound by O(log m) where m is the

number of bitangents (relating to critical events). The used gap-navigation-graph

is a tree, since the environment is simply-connected. One interesting theorem is

that if one robot can clear the environment, then so can the robot using the

gap-navigation-tree with at most two sentries. A lot of the methods presented

therein are similar to what appears in [SRL04]. More on gap navigation trees is

presented in [TGL04].

A culmination of much of the work in visibility-based pursuit-evasion can

be found in [SRL04]. Therein Sachs et al. present an on-line algorithm for a

point pursuer moving in an unknown, simply-connected, piecewise-smooth pla-

nar environment. The pursuer is only equipped with a sensor that measures

depth-discontinuities. Also the controls are minimalist as only wall-following or

a movement along the measured depth-discontinuities is allowed. Furthermore,

imperfect control is assumed. The approach incrementally builds a navigation

graph based on the motion primitives. The informations state about possible

locations of the invader is superimposed on this graph forming the so called

information graph. It achieves an online version by ’envisioning’ preliminary so-

16

lutions in the information graph. It is a complete algorithm that enables the

limited pursuer to clear the same environments that a pursuer with a complete

map, perfect localization, and perfect control can clear.

Further results regarding multiple robots, i.e. precisely two 1-searchers is done

by Simov et al. in [SSL09]. The environment is restricted to a simple polygon.

This paper extends [SLS02]. They present an O(n2 + nm2 + m4) algorithm to

compute a search strategy in a polygon with n edges and m concave regions, if one

exists. The algorithm is complete. It is also based on an information state graph

using an elaborate geometrical characterization of the polygon. Further work

mentions an extension to an online approach similar to [SRL04], an extension to

360 degree vision or an algorithm for any number of pursuers.

Gerkey et al. in [GTG06] extend visiblity-based pursuit evasion to a limited

field of view. It introduces a more applicable flavor by consider the ψ-searcher

instead of the k-searcher (which are similar concepts), considering a limited field

of view sensor rather than multiple beams. They show that the problem of

finding the minimal number of ψ-searcher is also NP-complete (as for pursuit-

evasion graphs and visibility-based for the ∞-searcher) for a given polygonal

environment. They focus thereon on a complete algorithm for a single ψ-searcher.

One very interesting approach is developed by Tovar et al. [TL06] , who

consider bounded speeds for evader and pursuer. The settings is again a simply-

connected polygonal environment. The evader is assumed to attempt to escape

detection. The further information about speed adds significant ’power’ to the

algorithm, enabling it to compute solutions in cases where previous approaches

failed. It involves the computation of a reachability set (generally an intractable

problem). Modifying the evader and pursuer speed ratio relates the problem to

the infinite evader speed for visibility-based problems or the 0-speed for cover-

17

age problems (see Section 2.6). One key thing is the fact that with bounded

speeds recontamination can be modeled, i.e. previously visible regions are not

instantaneously recontaminated, but depending on the distance to the contam-

inated regions, only recontaminated after a certain time has passed. There are

still quite some open questions in this direction when considering further assump-

tions on the evaders motion. A difficulty of the approach is to describe how the

recontamination regions, so called fans, evolve.

Despite its well-developed theory, the visibility-based approach still has severe

limitations for practical applications. Unlimited range sensors and frequently

revisited areas and only limited applicability for multi-robot teams are its major

weaknesses. Our own contributions aim to introduce models and algorithms that

can fill this gap and be useful when sensing ranges are restricted.

2.3 Probabilistic Graph Searching

Another extension of graph-searching is the consideration of random motion on

the graph. One randomized approach for detection of an intruder on a graph

is presented by Adler et al. in [ARS02]. Two variations of pursuit-evasion are

considered. In the first both a searcher and an intruder can move at most one

node per round while in the second the searcher can move unrestricted, i.e. jump

from any node to another. Note that the worst-case target assumption of an

omniscient target is hence not used in this context. The game ends when searcher

and intruder are at the same node. The measure for a searcher strategy is the

expected time of capturing the intruder, the escape length. The main result they

show is that the escape length is O(n · log(diam(G))) where n is the number of

nodes in the graph. The paper is primarily interesting from a game-theoretic

perspective by considering competing optimal strategies. In [IKK04b] Isler et al.

18

consider another randomized pursuit-evasion on a graph with two searchers. The

information the intruder has about the searchers is considered as visibility (full,

limited or none). Limited visibility means that the intruder can see into nodes

adjacent to the current location. They show that two searcher always suffice and

present a polynomial time algorithm that checks whether one searcher suffices.

The also considers reactive intruders that only move when the searcher is close

(evading it).

Randomized approaches are also presented for visibility-based pursuit-evasion

such as in [IKK04a, IKK05] by Isler et al. Their strategy is based on a triangu-

lation tree of the polygon. At each node its children are picked with certain

probabilities (equally distributed across children) while the searcher moves down

to a leaf of the tree. They show based on a worst-case construction that there is no

better strategy. Then they extend the approach to two searchers and relate it to

the Lion and Man problem [Guy91]. In [IBD04] Isler et al. consider the visibility-

based pursuit-evasion setting in a polygon. It is an extension of a discrete ran-

domized strategy to a continuous dynamic model of the searcher. The polygon

is triangulated and similar strategies than in the graph case from [IKK04b] are

used. Additionally, motions that bring the searcher from triangle to triangle are

presented. Further research is indicated for the multiply connected case. Con-

tinuing along this lines of work in [ISS05] Isler et al. consider a pursuit-evasion

game in which the searcher attempts to collide with the intruder. This is a useful

problem for collision avoidance since one robot can assume the worst-case pursuit

scenario for the motion of another robot and then act accordingly to avoid a col-

lision. Note that this type of pursuit-evasion is in fact a direct pursuit problem

with knowledge about the intruders state which we shall shortly discuss in the

next section.

19

2.4 Direct Pursuit

Most previously discussed pursuit-evasion problems generally assumed an om-

niscient and fast intruder. This type of pursuit-evasion hence uses the concept

of contamination that is to be cleared. Naturally, these problems are not con-

cerned with what happens if a target is detected by sensors nor how to keep it

from escaping again. This later problem, however, has also sometimes referred to

as a pursuit-evasion problem. This seems intuitive since now there is an actual

chase, an active pursuit and an active evasion. In this dissertation, however, we

shall refer to this kind of pursuit-evasion problem, when searcher and intruder

have knowledge about each others position, as direct pursuit. This involves a

whole different set of considerations such as motion planning and target move-

ment prediction. In one approach to this problem LaValle et al. in [LGB97]

use the predicted target trajectory to compute an optimal trajectory for the

pursuer to maintain visibility while being subject to a constraint function (e.g.

total distance travelled or trying to maintain a certain distance). Also the case

for partially-predictable targets is considered. Since the state-space increases to

four dimensions when considering partially predicted targets a new approach is

taken with respect to to the predictable case. A state-feedback strategy is now

presented that chooses the strategy with the smallest worst-case loss. Alterna-

tively, one can choose to minimize the expected loss. Another approach assumes

a probabilistic uncertainty model to predict target’s motion. Experiments with

two real robots were conducted. While the minimization in the state-space is a

critical part for the computation the experiments showed that the approach is

feasible to implement. More results in this area are obtained by Murrieta-Cid

et al. [MMH08, MMS07, MMA05, MTH05, MMH05]. An interesting extension of

direct pursuit from our perspective is the consideration of many searchers and

20

many intruders. This requires a different set of solutions in order to have scalable

algorithms and brings us to the coordination of large multi-robot systems which

we shall discuss in the next section.

2.5 Cooperative Multi-Robot Approaches

Search and surveillance have naturally been of interest to multi-robot researchers

since multi-robot systems have the advantage that they offer scalability to large

environments and provide better coverage by being physically distributed. An

excellent survey in cooperative mobile robotics is given by Cao et al. in [CFK97].

Since then, however, some progress related to robotic surveillance has been made.

In [Par02] Parker defined the problem of Cooperative Multi-robot Observation

of Multiple Moving Targets (CMOMMT) and presented a first solution called

A-CMOMMT. In CMOMMT a large number of targets and robots are randomly

distributed in a large and uncluttered environment. The goal is to maximize

the joint observation time of all targets with robots that can only communicate

and sense locally. The proposed approach, coined A-CMOMMT, is distributed

and based on simple heuristics for the local control of individual robots. It is

compared to baseline approaches in simulation for large numbers of targets and

robots and on real robots for a moderate number of targets and robots. The prob-

lem has further been addressed in [KC07a]. Therein an improved behavior-based

approach is presented and is compared experimentally to A-CMOMMT. It out-

performs A-CMOMMT but also has proven performance bounds that are shown

to be approached in practice as well. The main drawback of the CMOMMT

problem is that it considers a simple scenario, particularly the restriction to un-

cluttered environments without complex obstacles. Another multi-robot centric

approach with a lot of practical heuristics is presented in [JS02]. Therein Jung

21

and Sukhatme are investigating a region based approach for surveillance in com-

plex environments which considers complex obstacles. Previous experimental

results with Player/Stage [BCG05] with a similar approach are found in [JS01].

In [JS02] robots are cooperating in order to control the distribution of robots

across regions. A robot is migrating to another region when it detects that the

ratio of targets to robots is less than a defined threshold. In this case the robots

move to the most urgent region, a measure depending on the distances to the

regions and the robots and targets in the regions. Each robot has to maintain

these variables from the broadcast packages it receives. For the local following

of targets within a region each robot tries to maximize the number of targets

observed by computing the center of gravity of all known targets and positioning

itself a certain distance apart, depending on the field of view of the sensor and

the maximum distance across targets to the center of gravity. Experiments with

Player/Stage [BCG05] and Pioneer DX-2 robots were carried out. The results

show that the redistribution of robots into needy sections gives a significant gain

in performance on the total coverage in environments with corridors. In an empty

environment a strategy with only local following gives better coverage while both

strategies perform equally well in open environments with some occlusions. Fur-

thermore, they investigated static sensors in cooperation with mobile sensors and

showed that in an office-like setting with two sensors the performance increased if

there was one of each kind instead of two of one kind. The approach has a twofold

merit, for one the cooperation of static and mobile sensors is introduced and a

first indication of the benefit of combining both is given via the experiments. The

second is an introduction of a hierarchy of control, within a region robots follow

a different behavior until they are called to another region, i.e. we have local

control within one region and an emulated global control between regions while

still maintaining the variables for the global control on each robot independently

22

(via the broadcast messages about target density). Further details on the density

functions for targets/robots and utilities are given [JS06]. The idea of hierarchi-

cal control is similar to how we envision Graph-Clear can be useful, namely by

providing a global coordination solution for local methods.

In [KHS05] Krishna et al. present an approach that they determine to be

closely related to [Par02] and [JS02]. Their addition is assuming prior knowledge

about the arrival statistics, described by a Poisson distribution, of targets criss-

crossing a known rectangular region. A similar metric than in [Par02] is used,

i.e. the total amount of time that targets are observed. The movements are de-

termined by the expected number of targets surveilled for the next T time steps

of a given sensor. The environment is partitioned into cells for the computation

of the best trajectory. The main coordination between robots is to assign higher

priorities to paths with higher number of detections. Overlaps are avoided by in-

troducing a penalty proportional to the overlap and then recomputing the lower

priority path. This approach is not particularly suited for overlapping sensors

and have only few elements of cooperation and no real communication. Previ-

ously, in [KHP04] Krishna et al. present a priority driven system that decides

when a mobile sensor should remain stationary or follow a target. It also incor-

porates some elements of cooperation between sensors by using a simple set of

rules for the resource allocation. Again a cell modeling is used and no occlu-

sions are present. Another paper by Krishna and Hexmoor [KH05] is on resource

allocation for multi-sensor surveillance.

Overall, these multi-robot approaches for the continued observation of as

many targets as possible show that with a few heuristics one can already assemble

systems that do rather well for this task within a certain context. Theoretical

guarantees for system performance, however, are rarely encountered and hence

23

different approaches have to be compared experimentally. The continued obser-

vation of targets becomes primarily of interest if a pursuit-evasion scenario is

coupled with continuous monitoring. As the robots responsible for the pursuit-

evasion problem extend cleared areas other robots may continue to observer those

targets that are already once detected and now within cleared area.

2.6 Coverage and Clearing

Yet another related area to multi-robot pursuit-evasion is the coverage or clearing

of large environments. This is primarily of interest if one searches for a static or

slow moving target, i.e. one has to relax the assumption that the target is fast

and omniscient. In this case it is more desirable to compute short paths that

visit all parts of an environment. This is similar to attempting to cover all of an

environment, such as in applications in which robots paint, deliver seeds or col-

lect crops in a field. But also security application such as mine countermeasures

are related to this problem. A detailed survey on the field is presented by Choset

in [Cho01]. Cellular decompositions are often used in algorithms for coverage or

clearing. Here approximate, semi-approximate and exact decompositions have

been used. Some experiments suggest that randomized approaches may outper-

form exact approaches with respect to the time to completion. For our purposes,

it is interesting to note that some algorithms for intruders with limited speed

share some ideas and aspects with coverage algorithms.

2.7 Pursuit-Evasion and Control Theory

Pursuit-evasion problems have also received considerable attention from researcher

with an emphasis on control theory. A number of scenarios and approaches have

24

been considered in this context, often with strong theoretical results. But also

other problems that are considered in control theory can be useful for pursuit-

evasion by providing solutions for optimal coverage and rendezvous problems,

particularly when very limited capabilities of the robots are considered. We shall

first discuss a few approaches to these two problems and then discuss control

problems directly related to pursuit-evasion.

In [CMK04] Cortés et al. are concerned with decentralized control laws that

allow a team of robots to coordinate their coverage of the environment in accor-

dance with a utility function that is derived from optimal coverage and sensing

policies. Their approach involves centroidal Voronoi diagrams and a local gradi-

ent descent. This approach is particularly useful if one has access to a density

function that describes the level of importance of parts of the environment. The

robots then distribute themselves more closely and dense around areas of high

interest. An extension of this approach is found in [MB06]. Therein the de-

terminant of the Fischer Information Matrix for range-measurement models is

used as an objective function for the previous approach from [CMK04]. This is

leads to decentralized control laws that produce the desired global behavior of

the sensors arranging in an optimal configuration. The numerical simulations use

an Extended Kalman Filter for the estimation of target locations and for sensor

fusion.

Another related problem is that of rendezvous of multiple robots discussed in

[CMB04]. For robots solving pursuit evasion tasks the ability to find an agreement

over their location is an essential capability. In [CMB04] Cortés et al. present an

algorithm for a network of mobile agents to achieve an agreement over the location

in the network. The communication topology is represented via proximity graphs

that capture the information on which agents can communicate to each other and

25

are closest to each other. Each agent utilizes this information to compute the

circumcenter of all neighbors and itself and moves toward this point. While

moving, agents try to maintain connectivity, i.e. to follow a restricted motion

to avoid losing communication links. A similar problem is discussed in [JLM03]

in which Jadbabaie et al. provide a distributed algorithm for orienting a group

of agents into the same direction. There are several variations of the algorithm,

one with and one without agents that act as leaders. In all forms the standard

agents compute their new orientation according to the average orientation of all

neighbors. This way a common orientation should be reached. This approach

can be helpful for implementing line-following behaviors for Line-Clear which we

introduce in Chapter 4.

Control theoretic approaches that are directly related to our topics have also

become popular recently. Most notably in [GCB06] Ganguli et al. present an

approach to deploy robots, which are called guards in this context, in a polyg-

onal environment starting from particular location. For this the environment is

partitioned into star-shaped polygons and robots are assumed to have an om-

nidirectional and unlimited range sensor. A control algorithm for moving the

sensor with respect to this partitioning is given. The approach is more closely

related to art gallery problem as the final positions of the mobile sensors provide

complete coverage. But it also has the flavor of pursuit-evasion approaches as the

sensors clear parts of the environment as they proceed to reach their final con-

figuration. Communication and coordination aspects are also considered in this

approach and the coordination of the movements to the desired positions is local

and hence distributed. Particularly interesting is how the sensors maintain the

line-of-sight wireless connectivity in this approach. One main assumption, whose

removal is subject to further work, is that the agents are initially collocated.

Even more closely related to pursuit-evasion is [BBH07] in which an interesting

26

approach for capturing intruders in a planar environment is presented. Here the

targets can move with some speed that can potentially be larger than that of the

robots. A team of robots aligns themselves in special configurations, so called

trapping chains. The motivation stems from animals hunting in a pack encircling

their prey. The team is attempting to capture a target by moving according to

the reactive rabbit model (also used in probabilistic pursuit-evasion on graphs

discussed in Section 2.3). Using this model for the movement of the target prob-

abilistic bounds are established. While the assumption of a planar environment

with many robot capturing a reactive rabbit target is not particularly realistic it is

very interesting with regard to its connections to other fields. The trapping chain

is solving a problem that has a game-theoretic pursuit-evasion twist. Namely, try-

ing to constrain the possible movement of the evader making it impossible for it

to escape. But the movement of these trapping chains themselves is similar to

coverage algorithms. Using the approaches from coverage algorithms one could

extend this to more complicated environments. Another very interesting paper

with a more general flavor on distributed motion coordination is [MCB07]. The

focus is on surveying theoretical tools for modeling, analysis, and design of mo-

tion coordination algorithms. They present most of the results shortly mentioned

here.

Another valuable resource is the book [BCM09]. Therein general classes of

distributed control algorithms for a variety of problems are presented. It puts an

emphasis on the analysis of the communication topology and proven guarantees

of performances under certain conditions. It contains a detailed presentation of

rendezvous and connectivity maintenance algorithms and unifies a great deal of

the existing literature into one notation and framework. It also adapts interesting

notions of complexity to robotic networks such as time complexity, space com-

plexity, mean and total communication complexity, and energy complexity. For

27

our purposes, the algorithms for boundary estimation and tracking are especially

interesting since these could be modified to obtain a distributed control algorithm

to have a team of robots follow a one-dimensional boundary, which could be a

line from Line-Clear as discussed in Chapter 4.

2.8 Probabilistic Approaches

There are also a number of approaches that incorporate probabilistic motion

models of targets and work similar to exploration algorithms by trying to visit

locations close to the boundary of cleared space towards locations that have a high

probability of a target being there. One such approach is presented by Moors et

al. in [MRS05]. The contamination in a region is modelled by a Markov process

so that likely positions of targets diffuse. The environment is modelled in a sim-

ple grid and bayesian filters are used to update the probabilities of a target being

located in a grid cell given the diffusion process and sensor observations. The

sensors have only limited range and work against the diffusion process. One in-

teresting aspect of the algorithm from [MRS05] is the fact that a graph is created

that covers the environment so that every point is visible at least from one node.

For this random nodes are placed until the graph is covering the environment.

On the graph an A∗ search with a suitable heuristic is used to search for robot

paths on the graph that reduce contamination. Since this approach is computa-

tionally expensive a partitioning of the environment with yet another heuristic

is presented. The heuristic attempts to split the graph into roughly two equal

parts with a minimal border. Then A-star is run on both parts sequentially while

the border is guarded by some sensors. Simulation experiments are conducted

on realistic environments to illustrate the practicability. In a follow-up in [MS06]

Moors and Schulz present an improved Markov motion model that incorporates

28

so called intended directions (e.g. it may be more likely that a previous direc-

tion is maintained) when modeling the target trajectory. From an algorithmic

perspective, however, and for the coordination of large numbers of robots the

contributions of [MRS05,MS06] fall short. The approach does not scale to large

environments and relies strongly on heuristics, yet it may be useful for smaller

environments and hence as an implementation of the sweep action for vertices in

Graph-Clear.

Another probabilistic approach, this time concerned with stationary targets

is found in [CB07]. Therein Chung and Burdick present an approach that casts

the search for one stationary intruder into a Bayesian decision framework. Their

treatise focuses on the single searcher but they claim that it can be extended to

multiple searchers without much ado. An optimal lookahead search determines

a search trajectory that maximizes the detection probability within a window,

similar to receding horizon control. An alternative strategy to determine a tra-

jectory is presented as saccadic search. Here the trajectory goes from the cell

with the highest maximal belief probability to the next. Yet another strategy to

obtain trajectories is inspired by the Drospohila’s search for food (fruit-fly) on

a surface while being guided by visual sensory feedback. Here the trajectory is

simply a line from a peak probability to the next closest peak reachable within a

time-step. The simulations are done in a simple 10 by 10 grid. The prior belief

for the target distribution is a simple Gaussian centered at a corner cell. The

approach is easy and interesting in as much as its connections to exploration and

Bayesian approaches goes.

Yet another probabilistic approach is found in [GTG05]. Therein the pursuit-

evasion problem is cast into stochastic optimization problem that can be solved

by the PARISH algorithm. Just as the other approaches this is used for a small

29

number of searchers in small environments and requires a considerable amount

of computation and communication between agents.

It is obviously desirable to integrate a Bayesian perspective into robotic

pursuit-evasion, considering that sensors are usually best modelled with a failure

rate. Yet, most such attempts have trouble with scaling to large team sizes and

environments. Our contribution in Section 3.8 attempts to fill this gap by unifying

a probabilistic approach with Graph-Clear. Locally, i.e. within vertices or edges,

one can then apply computationally expensive probabilistic techniques for the

local coordination of robots while Graph-Clear scales the approach to large team

sizes and environments. On another note, there is also an interesting relationship

between exploration and pursuit-evasion that has not often been adressed in the

literature since pursuit-evasion problems generally require a map. One notable

exception is the online approach from [SRL04]. Extending other pursuit-evasion

solutions to work without maps and combine them with exploration is obviously

another desirable direction to pursue. A first attempt to do so for our Line-Clear

problem is given in Chapter 6.

2.9 Sensor Networks and Tracking

Robotics researcher generally focus on motion and planning when dealing with

pursuit-evasion tasks. Yet, there are other components that are relevant for the

detection of targets and some of these, particularly target tracking and data

association when dealing with many unreliable sensors, are discussed within the

context of sensor networks. Sensor networks are a promising tool for surveillance

applications, especially in environments that are controllable and where a lot

of hardware can be deployed statically without malicious targets threatening to

destroy it. Hence much of the research on sensor networks focuses on static

30

nodes. Other issues that are focused on are usually energy and communication

constraints. The literature on sensor networks is too vast to be reviewed in

breadth here, but we shall present a few selected publications that use methods

that relate to ours.

One interesting approach for tracking is presented by Oh and Sastry in [OS05].

In terms of sensor inaccuracy this paper is on the far end of assuming very noisy

sensors, i.e. faulty target detections. A method to integrate many such detections

is presented by solving a hidden state estimation problem, via Hidden Markov

Models (HMMs). Computation, track and storage information are distributed.

It is suitable for indoors applications since it models potential trajectories with

edges on the graph representing passages. The application of HMMs follows

naturally. Some pruning strategies are presented to make the algorithm more

efficient. The multi-object tracking assumes that the sensors can distinguish be-

tween targets which can be a strong assumption for many sensors. The methods

presented in [OS05] can be very useful for merging sensor information from a

sensor network and using the high-level detection for the team of mobile robots,

who supposedly detect targets individually, i.e. often a target is seen by only

one robot. Assumptions about likely target trajectories could improve the per-

formance of the algorithm by reducing the state space. This corresponds to a

dynamic graph structure for each target and may make the algorithm suitable for

outdoor applications which otherwise would lead to a densely connected graph.

Energy consideration play a rolo in [LL07] by Li and Liu which presents an ap-

proach for tracking targets with a mobile sensor network while trying to minimize

energy consumption, i.e. travelled distance. Many more algorithms focused on

tracking can be found in the book [BLK01] by Bar-Shalom et al. which is a

comprehensive collection of target tracking methods.

31

Another paper from the sensor network direction introducing mobility is

[SOS05]. Therein a sensor network is used to coordinate other mobile sensors.

The detections of the sensor network are collected by a central instance which

computes an assignment of pursuers to detected targets. The goal is to minimize

the time to capture the targets, which are considered to be pieces of space de-

bris. Interestingly, the vehicle dynamics are taken into consideration and play an

important role in the calculation of the time to capture. Given the case that the

number of pursuers is larger or equal to the number of evaders the problem can

be solved satisfactory by a reduction to the linear bottleneck problem. Cooper-

ation between static sensor networks and mobile robots is a promising area and

can in practice lead to greatly reduced system cost. Batalin and Sukhatme also

contributed to this idea and investigated task-allocation to a team of robots via

wireless communication networks. They coined the term Distributed In-network

Task Allocation (DINTA) and Multi Field DINTA (MF-DINTA). In [BS03b] they

assumed a pre-deployed sensor network with a shared clock which guides robots

with the help of alarms. Based on these alarms the network creates a naviga-

tion field for the robots to follow. With a similar spirit in [BS03a] Batalin and

Sukhatme develop a coverage algorithm using markers that are dropped off by

the mobile sensors. It explores a dynamic region. The number of markers the

robot can drop is unlimited, which enables them to remove restrictions on lo-

calization capabilities while maintaining a competitive performance to previous

approaches in which the robot could localize itself and the markers and navigate

to markers. In [BSH03] Batalin, Sukhatme and Hattig use a sensor network to

navigate a mobile robot. Experiments with a real network and a robot validate

their approach. In [BS05] the previous work by Batalin and Sukhatme culminates

into the so called LRV algorithm. It tackles the problem of deployment of the

sensor network and exploration of the environment simultaneously. The acronym

32

LRV stands for least-recently-visited directions which illustrates how the robot

moves around the deployed network while deploying further nodes. The deployed

networks is modeled as a graph. Their algorithm is proven to be complete on

graphs and optimal on trees. The cover-time is expressed in terms of the number

of edges visited in order to visit each node at least once. The network, during its

evolution, partitions the environment naturally into a graph which could then be

searched with pursuit-evasion approaches.

The methods used for sensor networks, particularly for tracking and data-

association, can be useful also to robotic pursuit-evasion. Interpreting the robots

as a mobile sensor network these algorithms can disentangle multiple detection

and provide a reliable count on how many targets cross over to the cleared part

and are hence detected. They can be used to make sense of observations from

multiple very noise sensors and, as seen in many of the example presented above,

actual static networks can be used to provide robot teams with valuable infor-

mation.

2.10 Real Systems

We have seen that pursuit-evasion problems are of interest to a number of different

fields within and related to robotics. Naturally, practitioners designing robotic

systems have also taken up the task to design multi-robot systems that excel at

pursuit-evasion tasks.

One example is the Scout robot designed by a team at the University of Min-

nesota [DBC02]. The design is aimed at performing semi-autonomous surveil-

lance, reconnaissance, or search and rescue missions with a clear focus on re-

connaissance capabilities. Other papers of this group include [HER00, MRV05].

33

Another contribution was made in [RSE00] by Rybski et al. It presents a team

of robots consisting of one ranger, a larger platform and smaller scouts. The pa-

per focuses on the deployment of the scouts by the ranger. The scouts are then

used to detect moving objects with a camera. The ranger communicates with

all scouts. Most of the previous research had been done with single and highly

capable platforms and this paper marked a first usage of a larger heterogenous

robot team. In their scenario Rybski et al. use one ranger for deployment and

another one for running the control processes for the scouts. The scouts act inde-

pendently of each other and try to find dark regions from which they observer the

environment. The map is a standard grid and is analyzed to identify doors. Into

each door a scout is launched. This is continued until all scouts are deployed. The

paper presents an interesting approach for a homogeneous robot team. The low

level behavior on the scout to position itself autonomously are neat. It falls short

on many other aspects such as uncontrolled deployment and scouts are deploys

wherever they can, i.e. simply at each door. There is also no explicit coordination

between agents apart from the transportation towards deployment by the ranger.

The effectiveness of the system also suffered from reported noisy control when

robots attempt to circle around to get 360◦ camera views. Additionally noise in

communication lead to some problems for scouts behavior. To summarize, the

system is an impressive starting point and exposed a lot of fundamental problems

that have to be considered when designing practical systems.

Stoeter et al. in [SRE00] and [SRS02] continue from the work by Rybski.

They propose an architecture considering the robots as dynamic resources. The

control is based on a hierarchical behavior tree (on a location-transparent wire-

less network). They rely on a the Common Object Request Brooker Architecture

(CORBA) [HV99] for distributed processing. They consider dynamic resource

allocation. A Resource Controller Manager defines when behaviors can access

34

resources. Priorities are used to negotiated concurrent access. No real high-level

control is proposed therein and the contribution is geared towards abstracted

interfaces that one can use to design high-level controls.

Another real system is presented in [VSK02,VRS01]. Therein Vidal et al. use

a probabilistic framework to cast the pursuit-evasion game and the map building

into one problem, similar to the work discussed in Section 2.8. Their hybrid

system architecture consist of two following layers of abstraction: 1) High-level

pursuit policy computation, map building and inter-agent communication and;

2) Low-level tactical planning, navigation, regulation and sensing. They use the

expected capture time as the performance metric. Computer vision is used to

detect invaders. The probabilistic sensor model is simple and based on false

negatives and false positives. Pursuers have perfect knowledge about their own

location. Two greedy policies for controlling the robots are presented:

1. Local-max: maximize the probability of capturing an evader in the next

time step considering only one-step reachable cells. This strategy is in

general not persistent (i.e. improving).

2. Global-max: same as above, but considering the entire map. It is persistent

on average.

The system architecture computes the pursuit policies centrally in the strategy

planner. The map-builder is also central. All low-level tasks, including trajec-

tory planning, are executed locally on the respective agent. From simulations

they compute mean capture times across trials and show that it is more difficult

to capture fast evasive targets than slow and randomly moving targets. Further-

more, it is shown that global-max outperforms local-max. The key part of this

approach is the high-level probabilistic control. The entire team maintains a cen-

35

tralized map of the environment including the probability distribution of possible

locations of an evader. The control moves the agents into the spots with the high-

est likelihood of an evader being located. Similar to [MRS05] the target motion

model is a simple Markov process. And also here the better policy, global-max,

does not scale well and grows exponential with the problem size. Furthermore,

the key parts of the coordination are centralized.

The paper by Pugh and Martinoli [PM07] sheds some light on the relationship

between high-level abstractions and practical implementation. More precisely,

they pick the example of a simple multi-robot search algorithm and illustrate the

practical problems encountered when implementing the high-level method. They

use Webots [Mic04] for their simulation. The arena is a rectangle with one target

located inside. They present three approaches, one coordinated (i.e. precise)

approach and two random approaches. The perform two sets of experiments, one

with a perfect sensor and one with a probabilistic sensor model. They show that

the benefit of the coordinated (precise) approach is smaller for the second set.

Another set of experiments with positional noise shows that the coordinated ap-

proach suffers the most from this noise when there are only few robots. With more

robots the differences between the random and coordinated approaches diminish.

The main contribution of the paper is to show the importance of incorporating

uncertainty in distributed, coordinated multi-robot algorithms to reflect the chal-

lenges of a real-world application. Indeed most of the high-level approaches do

not incorporate such assumptions. Some of them attempt to be robust to such

problems (noise, individual robot fault) by maintaining a simplistic approach

such as in [Par02]. It is, however, possible to extend precise and coordinated

approaches to incorporate imperfect control, noisy localization and noisy sensors.

The visibility-based approach in [SRL04] is such an example where noisy con-

trol can be dealt with, when within certain bounds and we shall make a similar

36

attempt in Chapter 6.

2.11 Other Related Fields

Apart from the selected areas presented above there are a few other related

areas that warrant mentioning. One such area is known as covert robotics and

refers to research done by Marzouqi and Jarvis in [MJ05]. They consider a

path-planning problem given the requirement that the probability for detection

by given sensors placed at known locations in the map is lowest. The sensor

properties for detection have to be known in advance. They compute a visibility

risk map in which the target can then search for a low-risk path that avoids

visibility by the sensors. Such approaches may be of interested when computing

the worst-case target path for our probabilistic method from 3.8 which needs

access to the worst-case probability of missing a target.

Another very interesting area is that of aerial pursuit. The added complica-

tions relate to the dynamics of the aerial vehicle, usually denoted as an unmanned

aerial vehicle (UAV), which are often severe. Recently in [Fre07], Frew presented

a method to coordinate two aerial vehicles on their flight paths in order to keep a

moving target under surveillance. Another aerial approach, this time with swarms

is contributed by Hexmoor et al. in [HMB05]. Multiple unmanned aerial vehicles

are given the task to scan a set of targets, i.e. cover them a defined period of

time while allowing occasional interruptions. The control is distributed and tar-

get assignment is based on negotiation. Movement is modeled with two degrees

of freedom in a plane, somewhat unusual for aerial approaches. Intervention by a

human operator regarding the target assignment is allowed. They introduce con-

cepts such as user suggestion and intervention, role negotiation, agent personality

and load balancing. User suggestion is defining regions of higher interest that the

37

vehicles can consider moving to. Role negotiation refers to the target assignment

amongst the vehicles. Parameters, called conformity, sociability, commitment,

disposition and target bidding define how a vehicle reacts to user suggestions,

peer-density (avoiding or seeking other vehicles), target loss and how long it will

attempt to re-acquire a target, continue to track a target despite being outbid

and bidding in which the closest first bid wins (i.e. the closest vehicle to its

closest target gets the target). Losing a bid results in wandering around until the

next bidding round. These heuristics are similar to those presented in [KC07a]

which uses help calls and bidding for target assignments. Another system which

focuses on shared control of multiple UAVs by human and automated agents for

search and rescue tasks is presented in [BG08]. All agents are submitting their

request for aerial photographs and the system computes an optimal assignment

of these images to UAVs. Then the photographs are inspected with regard to the

presence of a desired target to allow the agents to update their belief about the

targets location. The search proceeds in multiple round with multiple requests.

Another interesting area is the prediction of target trajectories. This obviously

plays a role for probabilistic approaches that incorporate target motion models

and for direct pursuit. Some results and methods for trajectory prediction for

sensor networks are presented in [YTW05]. The predicted trajectory is used

to conserve energy of the sensor by only activating them when a trajectory of a

target is expected but the methods can potentially be used in other circumstances.

In yet another approach, Gauss-Markov models have been developed in [LH99]

and [LBC98] for special types of sensor networks. Furthermore, interactions on

targets are taken into account in the design of the movement model using a

Markov Chain Monte Carlo based particle filter presented in [KBD03]. Another

interesting and more flexible approach is presented in [EG98]. The goal in [EG98]

is to provide a path planner with possible colliding paths of moving objects. An

38

autoregressive model with parameters estimated with a conditional likelihood

method based on previous observations of the targets motion is used. It even

deals with rotations of non-circular objects, assuming reference points on the

object. In [MS03] further results from this area of research are presented and

integrated into a framework that classifies targets. The classification enables the

algorithm to identify the dynamics from hard-coded records and it then predicts

the movement with this additional information. For the prediction it also uses an

Extended Kalman Filter [Kal60]. Another approach focused on training HMMs

is presented in [VFL09] with an emphasis on human and vehicle motion.

Finally, there is a connection between pursuit-evasion without known maps

and exploration algorithms that is a promising area for further investigations.

Here Burgard et al. [BMF00] made significant contributions that are a good first

pointer for work in this direction.

39

CHAPTER 3

Graph-Clear: Multi-Robot Pursuit-Evasion on

Graphs

In this chapter we introduce a novel pursuit-evasion problem on graphs, called

Graph-Clear, to tackle combinatorial problems that arise in multi-robot pursuit-

evasion. A graph model is particularly suitable since it scales well with larger

environments and we can abstract away from the geometrical features of an en-

vironment by representing its topology as a graph. As presented in Section 2.1

there is a vast amount of literature on graph-based pursuit-evasion and a great

many variants of formulations. Yet, weighted graphs received a rather limited

attention and previous models are not well suited for multi-robot pursuit-evasion.

This is discussed in more detail in Section 3.1.

In Graph-Clear an environment is represented by a weighted graph on which

one can execute sweep actions on vertices and block actions on edges. A sweep

action detects all intruders in a vertex, while a block action detects intruders

that attempt to cross an edge. It is assumed that all edges incident to a ver-

tex are blocked while the sweep operation is executed. These actions represent

routines that the robot team can execute in the actual environment. Because of

the limited sensing hypothesis, more than a single robot is in general necessary

to successfully perform these intruder detection operations. Weights on vertices

and edges therefore associate a cost to each action denoting the number of robots

40

needed to execute it. The goal of Graph-Clear is to find a sequence of these ac-

tions, a so-called strategy, that detects all intruders in the environment using the

least number of robots. Intruders are assumed to be omniscient and capable of

moving at unbounded speed. In particular, they are assumed to have full knowl-

edge of the environment, of the pursuers positions, and even of their strategy. We

represent the possibility of an intruder being located somewhere with the con-

cept of contamination. Initially the entire graph is contaminated and each sweep

and block clears contamination from vertices and edges. The task of finding any

intruder is equivalent to removing all contamination. Since intruders have full

knowledge, recontamination of previously clear vertices or edges occurs whenever

an intruder has a path to that vertex or edge on which it cannot be detected.

To apply Graph-Clear and use strategies for the coordination of a real robot

team one needs to solve two subproblems. First, one has to provide implementa-

tions of sweep and block actions. These can differ widely and depend on the type

of environment, robot platform, and sensors. Hence, they often require commit-

ting to a particular sensing model or hardware. For a vertex, the corresponding

implementation for the sweep action has to guarantee the detection of any in-

truder inside the region that the vertex is associated to, given that no intruder

can enter or leave the region while sweeping takes place. Similarly, an implemen-

tation of a block action on an edge has to guarantee that no intruder can cross it

undetected. The second subproblem is the automatic extraction of graphs from

a given environment. This is not strictly necessary since graphs can be generated

manually, but it is highly desirable for most applications and it opens further

interesting research questions. Some results on extracting graphs and weights

from occupancy grid maps and implementations for sweep and blocking routines

are presented in Chapter 5. Another useful application of Graph-Clear is in

computing solutions to the Line-Clear problem discussed in Chapter 4.

41

The main motivation for Graph-Clear is the design of robot algorithms that

will ultimately run on large robot teams. Yet, this chapter is primarily devoted to

the formalization and analysis of Graph-Clear as a formal pursuit-evasion prob-

lem on a graph. This formalization allows us to address the main computational

challenges resulting from the consideration of large environments and large robot

teams in a formal and deterministic setting. An extension of Graph-Clear to

probabilistic scenarios with faulty sensors and imprecise actuators in presented

in Section 3.8. More precisely, this Chapter presents the following original con-

tributions:

1. Graph-Clear is rigorously formalized. This formalization allows to exploit

a number of formerly developed results in related literature (Section 3.2).

2. We prove that the decision version associated with the Graph-Clear problem

is NP-hard (Section 3.3).

3. For the special case of contiguous strategies which ensure that all intruder-

free vertices are always connected, we prove that recontamination does not

help (Section 3.4).

4. Given that for the general case of graphs the problem is NP-hard, we focus

our attention on trees. In Section 3.5 we start presenting some terminol-

ogy useful for clearing trees and present simple algorithms that compute

strategies.

5. In Section 3.6 we present an algorithm to produce optimal contiguous strate-

gies for trees. The algorithm is shown to use the least number of robots,

and has time complexity quadratic in the number of vertices.

6. A more complicated algorithm for the case when cleared vertices do not

have to be connected is presented in Section 3.7.

42

7. Section 3.8 presents a probabilistic extension of Graph-Clear and algorithms

to compute strategies that guarantee the detection of all targets with a

desired probability.

8. Section 3.9 discusses a modification to Graph-Clear that considers sweep

actions on vertices that also prevent recontamination.

9. The problem of applying the algorithms for trees to graphs with cycles is

shortly addressed in Section 3.10.

The chapter closes with conclusions in Section 3.11. The results presented in this

chapter have been published separately in [KC07b], [KC07c], [KC08b], [KC09a],

[KC09b].

3.1 Motivation

There is a rich literature concerning a variety of pursuit-evasion problems on

graphs, also often referred to as graph-searching. Graph-searching and its varia-

tions also require solutions to the subproblems, mentioned in the previous section,

if one aims to utilize them to coordinate robot teams. The edge-searching prob-

lem [Par76] is perhaps the most prominent and oldest of these problems, and it

is the most closely related to the model we present in this paper. To motivate

the introduction of Graph-Clear, we now describe weighted edge-searching and its

differences to Graph-Clear in more detail than in Section 2.1. The edge-searching

problem asks to determine a sequence of moves detecting all intruders in a graph

using the least number of robots. A move consists of either placing or removing

a robot on a vertex, or sliding it along an edge. A vertex is considered guarded

as long as it has at least one robot on it, and any intruder located therein or

attempting to pass through will be detected. A sliding move detects any intruder

43

on an edge. In the weighted variant weights on vertices denote the number of

robots needed for each vertex to be considered guarded, while weights on edges

denote the number of robots needed for a slide move to detect all targets [BFF02].

Consequently, for each move in a sequence one needs to additionally specify how

many robots are used for it.

The key differences between weighted edge-searching and Graph-Clear are in

the requirements imposed for the implementation of basic operations. To apply

edge-searching one needs to provide implementations for guarding and sliding,

while in Graph-Clear one needs to implement sweeping and blocking. An im-

plementation of guarding has to guarantee that all intruders in the associated

region for the vertex are detected and furthermore that no intruder can enter

or exit the region undetected. Sweeping does not require the latter. Instead, in

Graph-Clear while sweeping a vertex we require a block on each edge to prevent

targets from entering or exiting. The consequence is that some robot algorithms

cannot be used for guarding operations. The example in Fig. 3.1 uses an algo-

rithm for detecting targets inside the region of a vertex that does not satisfy the

guarding requirements and is hence not directly suitable for edge-searching. To

satisfy the guarding requirements one would have to augment the algorithm by

additionally positioning robots at the entrances. Then the cost of this combined

routine becomes a weight in weighted edge-searching which represents the num-

ber of the robots needed to search the region and to keep entrances covered. But,

once the robots searched the region and hence cleared the vertex we still have

to guard the vertex to prevent recontamination of its neighbors. In practice this

continued guarding after the actual search does not need to involve any of the

robots that performed the search, but only those covering the entrances. But in

weighted-edge searching we still pay the full cost for the guarding operation. This

is because in edge-searching guarding of a vertex performs two basic functions,

44

namely the prevention of spreading of contamination from and to its neighbors,

and additionally the detection of all intruders in the vertex. One could try to

overcome this problem by having weights on edges represent the cost of entering

a vertex, searching and covering the entrances while the weight on the vertex only

represent the cost of covering the entrances. But then sliding along an edge costs

more than guarding the vertex. Not only is this unintuitive, but the formulation

of weighted edge-searching from [BFF02] does not allow edge weights larger than

the weight of the adjacent vertex.

Even if the above problem was remedied there is yet another problem. Sup-

pose we clear the center vertex and then one of its neighbors. At this point the

entrance to the neighboring vertex does not need to be blocked any further and

the weight for guarding the center vertex should change to reflect this. Since

weights are fixed this cannot be captured. There is no immediate remedy for this

since in edge-searching the spreading of contamination is avoided only by actions

on vertices and never on edges. In Graph-Clear, on the other hand, the search

of a region and the prevention of recontamination from neighboring regions are

separated and the latter occurs on edges. In colloquial terms, in edge-searching

the intruder movement is restricted by robots in vertices while in Graph-Clear

we move this capability to the edges, effectively disentangling detection in a ver-

tex from the prevention of recontamination. Evidently, this is useful for vertices

that represent complex regions and edges that are simple connections between

these regions. On the other hand, edge-searching is useful for simple vertices

and complex connections between these, such as the network of tunnels example

often mentioned as a motivation for edge-searching. Another important distinc-

tion between weighted edge-searching and Graph-Clear is discussed in detail after

the definitions for Graph-Clear in Section 3.2.1. It relates to unintuitive conse-

quence that the addition of weights to the traditional edge-searching problem has.

45

Namely, that allowing simultaneous moves can improve solutions to the weighted

edge-searching problem.

Figure 3.1: An example that illustrates how a graph for Graph-Clear can relate

to an actual environment. The environment is shown in grey with its graph

embedded. All weights in this example are equal to one. Connections between

regions that are connected by edges are shown in black. The center region is the

”eagle” example redrawn from [SRL04]. It can be cleared using the algorithm

from [SRL04] with only one robot and a simple gap sensor with sufficiently large

range. During its execution it recontaminates the top part of the region and

hence cannot guarantee that no target enters the vertex undetected. We hence

need blocks on the edges, i.e. to position sensors on the black regions. Note that

the entire environment can be very large so that the sensor only satisfies the large

range assumption within a vertex.

46

3.2 Problem Formulation

A formal definition of Graph-Clear is presented in this section. It is assumed

that the reader is familiar with graphs and trees, and is referred to [CLR01] for

the basic notation and terminology we use. The first part presents a formulation

in terms of graph theory concepts, and the language is chosen accordingly. The

connection between Graph-Clear and real world problems is presented in Section

3.2.1.

Definition 1 (Surveillance graph) A surveillance graph is a triple G = (V,E,w),

where (V,E) is an undirected graph with vertex set V , edge set E, and w : V ∪E →
N+ as a weight function1. Vertices and edges in a surveillance graph have a state.

The state of a vertex can be clear, or contaminated, while the state of an edge

can be clear, contaminated or blocked. If x is a vertex or an edge, its state is

indicated as ν(x).

Notation: Depending on the context, edges will be indicated either as e or as

(vi, vj), with vi, vj ∈ V . Throughout the paper the notation (u,w) indicates an

undirected edge between vertices u and w. If v is a vertex, edges(v) is the set

of all edges having v as end point. The degree of a vertex v is the number of

edges having v as end point, i.e. degree(v) = |edges(v)|. If G is a graph, V (G)

is its set of vertices and E(G) the set of edges. Also, possible state values will be

abbreviated using the letters R for clear, C for contaminated, and B for blocked.

Assumption: from here onwards unless otherwise stated we shall assume that

|V | = n and |E| = m.

1In this manuscript N+ indicates the set of positive natural numbers, while N indicates the
set of natural numbers (i.e. including 0).

47

Definition 2 (State space and state of a surveillance graph) The state space

of a surveillance graph G is the set

V(G) = {R, C}n × {R, C,B}m.

The state of the surveillance graph G is an element ν = {ν1, . . . νn+m} ∈ V(G)

such that νi = ν(vi) for i = 1 . . . n, and νn+j = ν(ej) for j = 1 . . .m.

The state of a graph is a string of symbols from the alphabet {R, C,B} indi-

cating the state of every vertex and edge. The first n symbols indicate the state

of vertices, and the last m the state of edges.

Definition 3 (Recontamination Path) Let G be surveillance graph with state

ν, and let x, y ∈ V ∪ E. A recontamination path between x and y is a path of

edges and vertices on which no edge is blocked, i.e. for all edges ei of the path we

have ν(ei) 6= B.

The reader should note that while defining the concept of recontamination

path we generalize the usual definition of path in a graph. Rather than defining

paths only between a couple of vertices we also consider paths between edges,

and between a vertex or an edge, or vice versa. In every situation we impose

that the edges along the path should not be blocked. Two types of actions can

be applied to a surveillance graph, namely blocking on edges and sweeping on

vertices. The goal of these actions is to change the state of vertices and edges so

that no contaminated edges or vertices remain. While blocking can be applied

to any edge, sweeping can be applied to a vertex v only if all edges originating

from v are blocked.

Definition 4 (Action set and actions) The action set of a surveillance graph

G is the subset of {0, 1}n+m where each element a = {a1, . . . , an+m} (called action)

satisfies the following constraint:

48

• if ai = 1 with 1 ≤ i ≤ n, then an+j = 1 for each edge ej ∈ edges(vi)

If ai = 1 with 1 ≤ i ≤ n, we say that the action a sweeps vertex vi, and if

an+j = 1 with 1 ≤ j ≤ m we say that action a blocks edge ej. The action set of

G is indicated as A(G).

The constraint imposed in the above definition ensures that all edges are

blocked while a vertex is being swept. Instead of imposing this as a constraint

one could also show that it follows from the definition of recontamination. For

the sake of brevity and clarity we choose to impose it.

Definition 5 (Sweeping and blocking cost) Let G be a surveillance graph.

The sweeping cost of a vertex v ∈ V is w(v), while the blocking cost of an edge

e ∈ E is w(e).

Definition 6 (Cost of an action) Let G be a surveillance graph and let a ∈
A(G) be an action. The cost of action a is:

c(a) =
n∑
i=1

aiw(vi) +
m∑
j=1

an+jw(ej)

The former definition states that the cost of a is the sum of the blocking and

sweeping costs for the edges blocked and vertices swept by a. It follows that the

total cost of sweeping a single vertex v is the following

s(v) = w(v) +
∑

ej∈edges(v)

w(ej) (3.1)

because in order to sweep a vertex it is necessary to block all its edges.

49

Definition 7 (Transition function) Let G, V(G) and A(G) be defined as above.

The transition function ζ maps a state and an action into a new state:

ζ : V(G)×A(G)→ V(G).

Given a ∈ A(G) and ν ∈ V(G), the new state ν ′ is defined as follows:

1. if an+j = 1, 1 ≤ j ≤ m, then ν ′(ej) = B

2. if ai = 1, 1 ≤ i ≤ n, then ν ′(vi) = R

3. if νn+j = B, an+j = 0, 1 ≤ j ≤ m, and no recontamination path between ej

and x ∈ V ∪ E with ν(x) = C exists, then ν ′n+j = R

4. if there exists a recontamination path between x ∈ V ∪ E and y ∈ V ∪ E
with ν(y) = C, then ν ′(x) = C

5. ν ′i = νi otherwise.

The transition function establishes how the state of G changes when an action

is applied. The five cases can be described in words as follows:

1. edges where a block action is applied become blocked;

2. vertices where a sweep action is applied become clear;

3. blocked edges where a block action is not applied anymore become clear if

there is no recontamination path involving them;

4. vertices or edges for which a recontamination path towards a contaminated

vertex or edge exists become contaminated;

5. vertices or edges maintain their previous state if none of the former cases

apply.

50

Definition 8 (Strategy) Given a graph state ν ∈ V(G), a strategy S for ν is a

sequence of actions a1, a2, . . . , ak that when applied in sequence clears all elements

in G, i.e.:

ζ . . . ζ(ζ︸ ︷︷ ︸
k times

(ν, a1), a2) . . . , ak) = {R,R, . . . ,R}︸ ︷︷ ︸
m+n times

Definition 9 (Cost of a strategy) Let S = {a1, . . . , ak} be a strategy. The

cost of strategy S is

ag(S) = max
i=1...k

c(ai) (3.2)

We now can formally define the Graph-Clear problem.

Definition 10 (Graph-Clear problem) Let G be a surveillance graph whose

state is ν = {C, C, . . . , C}. Determine a strategy S for ν of minimal cost.

From now onwards, before a strategy is applied to a surveillance graph we

assume that the state of all its elements is C, unless stated otherwise. We dis-

tinguish between two types of strategies using the concept of contiguity adapted

from [BFF02].

Definition 11 (Contiguous and non-contiguous strategies) Let G be a surveil-

lance graph in state ν = {C, C, . . . , C}. A strategy S for G is contiguous if the

subset of cleared vertices and cleared or blocked edges always forms a connected

subgraph of G. Otherwise, a strategy is said to be non-contiguous.

This distinction is useful, since contiguous strategies on trees turn out to be

easier to compute, as presented in Section 3.6. Another type of strategy is the

following.

Definition 12 (Progressive strategy) A progressive strategy is a strategy for

a surveillance graph G in state ν = {C, C, . . . , C} preventing recontamination.

51

In particular, we will later on concentrate our study on progressive contiguous

strategies.

Definition 13 (Cost of a graph) Let G be a surveillance graph and let S be a

strategy of minimal cost for G. We define the cost of graph G as ag(G) = ag(S).

Similarly for a graph G in any state ν we write ag(G, ν) = ag(S), where S is a

strategy with minimal cost for G in state ν. For a subset of vertices U ⊆ V let

a1, . . . , ak be a sequence of actions that clears all vertices of U starting from state

ν with minimal cost maxi=1...k c(ai).
2 We write ag(U, ν) for this minimal cost.

The cost of a strategy is the number of robots needed to clear the environment

according to the sequence of actions defined by the strategy. Since we seek

strategies with the least number of robots, we will consider only strategies for

which at most one vertex at the time is swept. This approach is justified by the

following lemma whose simple proof is omitted.

Lemma 1 Let S = {a1, . . . , ak} be a strategy for G. Then there exists a strategy

S ′ with cost ag(S ′) ≤ ag(S) that sweeps no more than a vertex at a time.

3.2.1 An example of Graph-Clear

We now work out a simple example outlining the connection between Graph-

Clear and practical surveillance scenarios. A surveillance graph is used to model

complex environments. For our illustration we choose to intuitively associate

vertices with rooms, and edges with connections between rooms (i.e. doors or

corridors). Fig. 3.2 shows a simple indoor environment and one possible surveil-

lance graph. A contaminated vertex is a room that may hide an intruder, while

2Such sequences are not necessarily strategies, unless U = V , but they can be thought of as
partial strategies.

52

v5
����
������������

.

1

141 2

32

2 3

2

e3 e4

v1 v2 v3

e1 e2

e5

v4
����

Figure 3.2: An example environment and one possibly associated surveillance

graph. Numbers inside vertices are the sweeping costs, and numbers on the

edges are blocking costs.

a clear vertex is known to be intruder free. Intruders may also hide in connec-

tions between rooms, therefore edges can also be clear or contaminated. Robots

equipped with sensors are used to detect intruders 3. In our problem formula-

tion, an intruder disappears as soon as it is detected by a robot (i.e. it falls

within its sensing range). A blocking operation applied to an edge ensures no

intruder can pass through that connection without being detected by the robots

blocking it. Since our focus is on scenarios involving robots with limited sensing

capabilities, more than one robot may be necessary to block large connections

(see the values displayed in Fig. 3.2). To detect all possible intruders inside a

room a sweeping operation is performed. Once again, since robots have limited

capabilities, multiple robots are requested to make sure one room is free of in-

truders. Since a room may have multiple entrances, it is necessary to block all of

them to prevent intruders from entering parts of the room that have been swept

already (recontamination). The recontamination path concept adds significant

challenges and asymmetries to the problem. In fact, while we assume that robots

are capable of detecting intruders only when they fall within a limited sensing

3The physical sensor used can vary widely across applications and depends on what the
target of interest is. Often cameras, lasers and sonars are used for actual experiments with
robots, but also acoustic or infrared sensors can be useful.

53

range, our definition of recontamination implies that as soon as recontamination

is possible, it immediately occurs. We therefore suppose intruders have complete

knowledge of the environment and of the robots’ positions, and they may move

with unbounded speed on continuous paths to take instantaneous advantage of

the existence of recontamination paths. The Graph-Clear problem asks how to

schedule sweeping and blocking operations so that eventually the environment is

completely cleared using the least number of robots. Fig. 3.3 shows a possible

strategy to solve the Graph-Clear problem on the environment depicted in Fig.

3.2.

ν(G) a c(a)

CCCCC CCCCC 10000 10100 5

RCCCC BCBCC 00010 10101 6

RCCRC BCBCB 01100 11011 12

RRRRC BBRBB 00001 00011 7

RRRRR RRRBB 00000 00000 0

RRRRR RRRRR

Figure 3.3: A possible strategy to solve the Graph-Clear problem associated with

the graph shown in Fig. 3.2. The first column displays the status, the second the

applied action, and the third the cost. The reader should note that in the third

row an action sweeping two vertices at the same time is applied, and that a final

action removing all blocks is executed in the end (with 0 cost). The cost of this

strategy is 12, i.e. the maximum value read in the third column. It is easy to see

that such strategy is not optimal.

Before Graph-Clear can be of practical relevance in a robotic scenario, it re-

quires a method to partition an environment into regions which then become

vertices in the surveillance graph as well as implementations for the sweeping

54

and blocking actions. Some solution for extracting surveillance graphs from oc-

cupancy grid maps are presented in Chapter 5. One of these methods is based

on detecting narrow parts of the environment using its Voronoi Diagram. It not

only extracts the graph, but it also assigns appropriate weights based on given

sensing abilities of the robots, and a predetermined clearing method for vertices.

From now onwards we assume that for a given sensor model the corresponding

surveillance graph is available.

Before proceeding it is worth to consider a fundamental difference between

weighted edge-searching and Graph-Clear, apart from the motivation presented

in Section 3.1 and Fig. 3.1. This difference results from the addition of weights.

Recall that in edge-searching a single move is either 1) moving along an edge, 2)

placing a robot on a vertex or 3) removing a robot from a vertex. In weighted

edge-searching these moves additionally receive an integer representing the num-

ber of robots participating in the move. The weight on the edge or vertex deter-

mines how many robots are needed so that the move clears the edge and guards

the vertex. This seems like a straightforward extension of the previous model,

but it has unintuitive consequences. Consider the example in Fig. 3.4. Therein,

allowing simultaneous moves can improve the number of robots needed. This

results from the fact that the guarding operation on one vertex can need more

than the sum of the slide and guarding operations towards all neighbors.

3.3 The Complexity of Graph-Clear

The theorem claiming NP-hardness of the Graph-Clear problem was first pre-

sented [KC07c], but the full proof was omitted due to space constraints. We here

offer the complete proof based on the new notation developed in Section 3.2. The

proof is mainly an adaption of the proof of NP-completeness of edge-search on

55

8

4 4

44

12

4

8

4000

8

0

4 4
4

4

0

0

4 4
4

4

a) b)

c)

Figure 3.4: An example that illustrates the consequences of allowing simultane-

ous moves in weighted edge-searching. Part a) shows a graph with its weights.

Part b) shows the graph with eight robots on the top vertex and none in the

bottom vertices. The arrows indicate two sliding moves with four robots that

finish clearing the graph with eight robots when executed simultaneously. Part

c) shows how to clear the graph with strictly sequential moves with the same

recontamination rules but needing more robots.

a graph presented in [MHG88]. The key idea is to substitute complete graphs

used in [MHG88] with stars defined in the following. The method constructs a

surveillance graph with all weights equal to one and the statement hence also

holds for the simpler case of unweighted surveillance graphs. Throughout this

section all weights are assumed to be equal to 1.

We first define the concept of stars and prove a bound on the clearing cost.

Definition 14 (Stars) A star of order n, written Gn, is a surveillance graph

that is a tree with n+ 1 vertices v0, . . . , vn and n leaves. The vertex vs that is not

a leaf shall be called center.

56

Lemma 2 Let Gn be a star of order n. Then ag(Gn) = n+ 1.

Proof: Let v0 be the center of Gn. According to Eq. 3.1 the cost to clear v0 is

n+ 1. To clear Gn with cost n+ 1, clear v0 first and block all its n edges. Then

use the n+ 1-th robot to clear each leaf, (see Fig. 3.5).2

a) b) c)

d) e) f)

vn

v1

vs

v2

vn

v1

vs

v2

vn

v1

vs

v2

vn

v1

vs

v2

vn

v1

vs

v2

vn

v1

vs

v2

Figure 3.5: The construction of an optimal strategy for a star. Cleared and

contaminated vertices are grey and white respectively. Blocked edges are marked

with as double-stroked line. First all leaves are cleared, leaving the edge to the

leaf blocked. For leaf vi,i = 1, . . . , n the total cost while clearing it is i+1. Finally

the center vertex is cleared with cost n+ 1.

Let us consider the following decision version of the Graph-Clear problem:

INSTANCE: G = (V,E,w), a surveillance graph with w(x) = 1 ∀x ∈ V ∪ E,

and a natural number P

QUESTION: is ag(G) ≤ P?

Proving that this problem is NP-hard relies on a polynomial reduction to

the min-cut into equal sized subset problem (MCIESS from now on), a problem

known to be NP-complete [GJ79]. MCIESS is posed as follows.

INSTANCE: An undirected graphG = (V,E) with an even number of vertices,

57

and a natural number K.

QUESTION: is there a partition of V into two subsets V1 and V2 with |V1| =
|V2| = 1

2
|V | such that |{(u, v) ∈ E : u ∈ V1, v ∈ V2}| ≤ K?

Theorem 1 The decision version of Graph-Clear is NP-hard.

Proof: Let G = (V,E) and K > 0 be an instance of the MCIESS problem.

Let n = |V |, d = maxvi∈V {degree(vi)}, N = 6(d + K) and M = nN(n + 2). An

instance H = (U, F,w), P of the Graph-Clear problem is built in polynomial time

as follows:

1. for each vi ∈ V create a star of order M called Ci (i.e. Ci = GM , with

i = 1 . . . n)

2. let CA be an additional star of order M (i.e. CA = GM)

3. add edges between leaves of the star with at most one edge for each leaf:

(a) add nN edges for each pair Ci, Cj, i 6= j, note that i, j ∈ {1, . . . , n, A}

(b) add N more edges between each Ci and CA

(c) add 3 more edges between Ci and Cj if (vi, vj) ∈ E

4. w(x) = 1 ∀x ∈ U ∪ F

5.

P = (M + 1) +
(n

2

)2

nN + 3K

Note that it is possible to give each leaf v of a Ci at most one edge since we

have M such leaves and never add more than M − 1 edges in total to any Ci.

Fig. 3.6 visualizes the construction. All vertices that received an edge during the

construction will be called connectors, and all that did not remain leaves. There

58

is at least one leaf remaining for each Ci. We now show that the Graph-Clear

instance H,P admits a positive answer if and only if the MCIESS instance G,K

does.

C1

C2

C3

CA

Cn

3 nN

v1

v2

v3

vn

vm
vs

vnN

vnN+1

vnN+2

vnN+3

vnN+4

v2nN+3

a)
b)

c)

d)

C1

v1

nN

nN

3

3

3

3

3

3
nN + N

nN + N

nN + N
nN + N

nN + N

nN

nN

nN

nN
nN

nN nN

nN

Figure 3.6: An illustration of the large graph constructed from an instance of the

MCIESS. Part a) shows the constructed surveillance graph from the MCIESS

graph in part b). A star is represented by a cloud, a bundle of nN or more edges

by a double line and 3 edges by a thick line. Part c) is a close-up of the star C1

and its edges to other star. In part d) C1 is shown in more detail with its center,

connectors and leaves.

Assume the instance G,K admits a positive answer, i.e. we have a partition

of V into V1 and V2 s.t. K ′ ≤ K edges connect V1 = {v1, . . . , vn/2} and V2 =

{vn/2+1, . . . , vn}. Let us then consider the following strategy S for H: clear

C1, . . . , Cn/2, CA, Cn/2+1, . . . , Cn in this order. Being more specific, according to

lemma 2, the cost to clear the leaves and center of C1 is M + 1. The number of

59

edges from C1 to other Cis is at most n2N + N + 3d < M and hence there is

at least one vertex in C1 with degree one. We start clearing C1 by clearing each

degree-one vertex. Then we clear the center and keep all its edges blocked. This

procedure costs M+1. After having cleared the center we remove all blocks from

edges to leaves while retaining those to connectors, which are still contaminated.

The number of remaining blocks is at most n2N+N+3d. Consider a path between

the clear center of C1 and another Ci. This path is not a recontamination path

because the edge to C1 is blocked. An additional cost of 2 is incurred to move

this block to the edge ending on the center of Ci. Doing this for all connectors of

C1 costs at most n2N +N + 3d+ 2. Hence with cost M + 1 we can clear C1, and

leave at most n2N +N + 3d blocks in edges in other Cis, effectively reducing the

cost needed to clear them.

Clearing C2 now has cost no higher than (M−nN)+1, since it is equivalent to

clearing a connected GM−nN as nN edges to C2’s center have been cleared after

clearing C1. Additionally we still have the cost of blocking edges from the first

step. So the total maximum cost is (M −nN)+1+n2N +N +3d. After clearing

C2 the total number of blocks that have to remain is 2 · (n2N + N + 3d) − nN ,

since we do not have to block the nN edges between C1 and C2 anymore, but all

those between C2 and all contaminated Cis. Generalizing this formula, the cost

of each step 2 ≤ i ≤ n/2 is:

[M − (i− 1)nN] + 1 + (i− 1)(n2N +N + 3d− (i− 2)nN) (3.3)

which gives us at the worst step n/2:

M + 1 + (
n

2
− 1)(

n

2
+ 1)nN + (

n

2
− 1)(N + 3d) < P

60

For CA we need at most:

M + 1 +
(n

2

)2

nN + 3K ′ ≤ P

For Ci with n/2 + 1 ≤ i ≤ n an upper bound analogue to formula 3.3 applies.

Hence there exists a strategy for H of cost at most P . By definition this means

ag(H) ≤ P , so the answer to the instance H,P is positive as well.

For the converse suppose that ag(H) ≤ P . This means there exists a strategy

for H of cost not higher than P . By Lemma 1 while clearing H using the optimal

strategy there has to be a step at which n/2 + 1 centers of the Cis are cleared

and n/2 are not. Consider the step of clearing the n/2 + 1-th center, and let Cj

be the star it belongs to. Let us assume that Cj 6= CA. The least possible cost

at this point is:

(M + 1) +
(n

2

)2

· nN +
n

2
N.

This bound is derived as follows: M + 1 is the cost to clear the center of Cj

(3.1), (n
2
)2nN is the cost to block paths between clear centers and contaminated

centers different from Cj and n
2
N is the cost to block paths between clear centers

and CA. But (M + 1) +
(
n
2

)2 · nN + n
2
N > P , which is a contradiction since the

strategy has cost not higher than P . So Cj = CA. Clearing CA costs M + 1 and

blocking the cleared centers from the contaminated centers costs at least
(
n
2

)2
nN ,

resulting from the nN edges added in construction step 3a between the
(
n
2

)2
pairs

of stars. The additional edges from step 3c between cleared and contaminated

centers result from the original instance of MCIESS, but there can be at most

3K such edges between these centers since P = (M + 1) +
(
n
2

)2
nN + 3K. Hence

there are at most K edges between vertices in the original MCIESS instance that

correspond to cleared and contaminated stars. Hence, we can define V1 = {vi :

Ci has clear center} and V2 = {vj : Cj has contaminated center} and get a cut

between V1 and V2 with at most b(3K + 2)/3c ≤ K edges. 2

61

3.4 Recontamination for Optimal Strategies

This section shows that recontamination is not necessary for optimal contiguous

strategies on trees. This result is essential for the construction of such strategies

in polynomial time described in Section 3.6. The proof is based on the concept

of cuts which we will introduce first.

3.4.1 Cuts

Definition 15 (Cut) Let T be a surveillance tree. A cut of T is a subset of

V (T) whose induced subgraph is connected. We will indicate cuts with the letter

γ, and the cut γ = V (T) is called full cut. Γ is the set of all cuts of T .

Cuts can be thought of as describing all cleared vertices of a tree T . Hence,

it is useful to describe the cost of blocking its boundary so that recontamination

does not occur.

Notation: Let G be a surveillance graph and X ⊂ V (G). Then:

δX = {(x, y) ∈ E(T) | x ∈ X ∧ y /∈ X}.

δX is the subset of edges connecting vertices in X to vertices not in X.

Definition 16 (Cut blocking costs) Let γ be a cut of T . Its cut blocking

costs is

b(γ) =
∑

e∈δV (γ)

w(e). (3.4)

In colloquial terms b is the cost to prevent recontamination of γ once it is

fully cleared. By definition, a cut γ can be cleared by executing a sequence of

actions with cost ag(γ, ν), given that T is in state ν. As a shorthand we say that

62

we execute a cut γ at cost ag(γ, ν). Consequently, executing γ modifies the state

of T . Let us formalize the notion of sequential execution of cuts and define its

cost4.

Definition 17 (Cut sequence and its cost) Let Γ be the set of all cuts for a

surveillance tree T , and let T be in state ν1. We define a cut sequence S as a

sequence of r cuts γ1, . . . , γr from Γ where γr is a full cut. At step l = 1, . . . , r

cut γl is executed modifying the state νl to νl+1. The cost of S at step l is

cl = ag(γl, νl), and the cost of S is:

c(S) = max
1≤l≤r

(cl).

If all cuts in a cut sequence S are executed, T is eventually cleared because

the last cut is a full cut by definition. It is immediate to see that such a sequential

execution of cuts leads to a strategy for T , hence the use of the letter S for both

strategies and cut sequences. The two different terms are introduced because

they focus on different perspectives. A strategy is a sequence of actions and

hence specifies exactly which sweep and block actions are taken at every step.

In contrast, a step in a cut sequence only describes which vertices have to be

in clear state, namely those belonging to the cut. How vertices of a cut are

cleared depends on the strategy that executes it and is not specified by the cut.

For example γ1 = V (T) is the simplest cut sequence, but executing γ1 involves

finding a strategy for all of T at once. On the other hand, cut sequences that

add at most one vertex from one cut to the next can be immediately converted

into a strategy.

4In the sequel, when talking about multiple cuts we will use the term sequence when the
order matters, as opposed to sets.

63

3.4.2 Recontamination does not help

Results presented in this subsection are similar to the work by Bienstock and Sey-

mour [BS91] for edge-search, and their definitions are herein adapted for Graph-

Clear. In particular they introduced the concept of crusades that we borrow and

call simple cut sequence. An analogous crusade-based construction was also used

in [BFF02]. Although the basic ideas are similar, many mathematical technical-

ities are different, and details are therefore fully worked out in this dissertation.

Definition 18 (Simple cut sequence) Let T be a surveillance tree. A simple

cut sequence in T is a cut sequence S = γ1, . . . , γr such that |γ1| = 1 and

|γi \ γi−1| ≤ 1 for all 2 ≤ i ≤ r. For simple cut sequences, with a slight abuse of

notation we write vi for γi \ γi−1 6= ∅. If γi is a cut in a simple cut sequence, its

frontier f(γi) is defined as follows:

s(v1) if i = 1

b(γi) + s(vi)−
∑

e∈δvi∩δγi

w(e) if i > 1, γi \ γi−1 6= ∅

b(γi) if i > 1, γi \ γi−1 = ∅ (3.5)

The frontier of a simple cut sequence S is:

f(S) = max
1≤i≤r

{
f(γi)

}
. (3.6)

The definition of simple cut sequences allows steps where |γi\γi−1| = 0 . This

situation may arise in the uninteresting case γi = γi−1, or when |γi−1 \ γi| > 0.

This latter case corresponds to recontamination of all vertices in γi−1 \ γi. Let

us now define progressiveness for cut sequences.

64

Definition 19 (Progressive cut sequence) A cut sequence is a progressive

cut sequence if γ1 ⊆ γ2 ⊆ . . . ⊆ γr.

Note that progressiveness of a cut sequence is conceptually different from

progressiveness of strategies. A progressive cut sequence can be executed by

a strategy that is not progressive (consider for example the progressive cut se-

quence γ1 = V (T)). Given a surveillance tree T we will now show that an optimal

contiguous strategy implies the existence of an optimal contiguous strategy that

is also progressive. This is done in three steps by first considering simple cut

sequences, then cut sequences that are both simple and progressive and finally

connecting these to existence of an optimal contiguous strategies that is progres-

sive. These three steps are formalized with the following claims.

Lemma 3 Let T be a surveillance tree, and let Sc be an optimal contiguous

strategy for T of cost ag(Sc) ≤ k. Then there exists a simple cut sequence S for

T such that f(S) ≤ k.

Proof: Let Sc = {a1, a2, . . . , ar}, and let γ1, . . . , γr be the subsets of vertices

cleared by Sc during the execution of its r steps. By lemma 1 we can assume

that at most one vertex is cleared at each step of Sc, and by hypothesis Sc is

contiguous. Therefore S = γ1, . . . , γr is a simple cut sequence in T . Compare now

3.2 with 3.6, and 3.1 with 3.5. By substitution one can verify that c(ai) = f(γi)

(1 ≤ i ≤ r), and then f(S) ≤ k. 2

The following lemma is needed in order to prove theorem 2. Its simple proof

can be found in [BFF02].

Lemma 4 Let γ1 and γ2 be two cuts of a surveillance tree T = (V,E,w). Then

b(γ1 ∪ γ2) + b(γ1 ∩ γ2) ≤ b(γ1) + b(γ2)

65

Next, it is possible to show that for any simple cut sequence of bounded

frontier, there is a simple progressive cut sequence whose frontier is not greater.

Theorem 2 If there exists a simple cut sequence S in T with f(S) ≤ k, then

there exists a simple progressive cut sequence in T with frontier not greater than

k.

Proof: Out of all simple cut sequences with frontier not greater than k choose

S = γ1, . . . , γr satisfying the following properties:

1.
∑

j f(γj) is minimal

2.
∑

j |γj| is minimal, subject to the previous constraint.

We will now show that such S is a progressive simple cut sequence. This means:

a) |γi \ γi−1| = 1 for all 2 ≤ i ≤ r.

b) γ1 ⊆ γ2 ⊆ . . . ⊆ γr.

It is immediate to show that the property a) holds for S. In fact, it cannot be

the case that |γi \ γi−1| = 0, because otherwise the simple cut sequence obtained

from S by excluding γi would invalidate property 1. Therefore |γi \ γi−1| = 1.

We now show that property b) holds for S as well. First, for an arbi-

trary index i let us consider γ∗ = γi−1 ∪ γi. If f(γ∗) < f(γi), then S∗ =

γ1, . . . , γi−1, γ∗, γi+1, . . . , γr would be a simple cut sequence violating property

1. Therefore

f(γ∗) ≥ f(γi).

With some work we can now derive a similar relationship involving b(γ∗) and

b(γi). Since property a) holds, vi = γi \ γi−1 is always well defined, i.e. vi 6= ∅.

66

Let v∗ = γ∗ \ γi−1, and rewrite the previous inequality using 3.5 explicitly:

b(γ∗) + s(v∗)−
∑

e∈δv∗∩δγ∗
w(e) ≥

b(γ) + s(vi)−
∑

e∈δvi∩δγi

w(e).

By construction v∗ = vi, so the inequality simplifies to:

b(γ∗)−
∑

e∈δv∗∩δγ∗
w(e) ≥ b(γi)−

∑
e∈δvi∩δγi

w(e). (3.7)

In order to further simplify the expression let us observe that there is exactly

one edge between γi−1 and vi. If this was not the case there would be a cycle in

the tree T . Let e′ be this unique edge. By construction γi ⊆ ({vi} ∪ γi−1), and

therefore e′ is the only edge in edges(vi) with both extremes in γi. The exact

same reasoning applies to γ∗ and hence we get (remember v∗ = vi):∑
e∈δv∗∩δγ∗

w(e) =
∑

e∈δvi∩δγi

w(e).

Inequality 3.7 then reduces to b(γ∗) ≥ b(γi), i.e. what we wanted. Let us turn

our attention to vi−1 = γi−1 \ γi−2. If vi−1 /∈ γi, then γ1, . . . , γi−2, γi, . . . , γr is a

simple cut sequence, violating property 1. Therefore vi−1 ∈ γi. Now consider the

set γ∗∗ = γi−1 ∩ γi. Since vi−1 belongs to both γi−1 and γi, then γ∗∗ 6= ∅, and

γ∗∗ is connected. Then, using inequality 3.7 while applying lemma 4 we can then

conclude that b(γ∗∗) ≤ b(γi−1). Now consider the cut sequence:

S∗∗ = γ1, . . . , γi−2, γ∗∗, γi, . . . , γr.

S∗∗ is a simple cut sequence. Moreover, it is easy to show that f(γ∗∗) ≤ f(γi−1).

Start with:

f(γ∗∗) = b(γ∗∗) + s(vi−1)−
∑

e∈δvi−1∩δγ∗∗
w(e)

≤ b(γi−1) + s(vi−1)−
∑

e∈δvi−1∩δγ∗∗
w(e).

67

By simple set relations it follows that δvi−1 ∩ δγi−1 ⊆ δvi−1 ∩ δγ∗∗ and then we

get:

f(γ∗∗) ≤ b(γi−1) + s(vi−1)−
∑

e∈δvi−1∩δγi−1

w(e).

The right side of this inequality is f(γi−1), then

f(γ∗∗) ≤ f(γi−1) ≤ k.

Therefore S∗∗ is a simple cut sequence with frontier smaller or equal than k.

Moreover, it must be that |γi−1∩γi| ≥ |γi−1|, otherwise we would violate property

2 with S∗∗. But |γi−1 ∩ γi| ≥ |γi−1| implies that γi−1 ⊆ γi, and then we have

proven property b) as well, thus completing the proof.2

Finally, by connecting simple progressive cut sequences to strategies we can

show the main result of this section.

Theorem 3 Let T be a surveillance tree, and let Sc be an optimal contiguous

strategy for T of cost ag(Sc). Then there exists a progressive contiguous strategy

of cost ag(Sc).

Proof: By the previous lemma and theorem the existence of a progressive sim-

ple cut sequence with frontier not greater than ag(Sc) is guaranteed. Let S =

γ1, . . . , γr be this progressive cut sequence. For 2 ≤ i ≤ r let vi = γi \ γi−1,

and let v1 be the only element in γ1. S leads directly to a contiguous pro-

gressive strategy by clearing the vertices vi in order. First, consider v1. By

simple substitution f(γ1) = s(v1). Assume that γi is cleared with cost f(γi).

At the end of the step a cost b(γi) is required to avoid recontamination of

γi. Adding vi+1 to γi has cost s(vi+1) −
∑

e∈δvi+1∩δγi w(e) which leads to cost

b(γi) + s(vi+1) −
∑

e∈δvi+1∩δγi w(e) = b(γi+1) − ∑e∈δvi+1∩δγi+1 w(e) = f(γi+1).

Therefore a progressive contiguous clearing strategy of cost not greater than

68

ag(Sc) exists. Since we started assuming Sc is optimal, then so is ag(Sc) which

concludes the proof. 2

The main message of this section is that it is possible to construct optimal con-

tiguous strategies on trees even when imposing that no recontamination should

occur. It should be noted that the same theorem is desirable to be proven for

graphs and the only use the fact that T is a tree once. Yet the proof is expected

to be slightly more complicated. Such a proof for graphs, however, which also

considers non-contiguous strategies would turns the NP-hardness proof of Section

3.3 into an NP-completeness proof, since strategies without recontamination are

in NP. For all practical purposes the result on trees suffices since the algorithm

in the next section is restricted to trees.

3.5 Label-Based Strategies on Trees

The result presented in Section 3.3 leaves little hope of finding optimal strategies

for all instances of Graph-Clear with polynomial time complexity. This stimu-

lates research to study more constrained versions of the problem. In particular

we will show that if one restricts the attention to contiguous strategies on trees

rather than graphs, then optimal solutions can be found with time complexity

polynomial in the number of vertices. Alternatively, one can seek for approxi-

mated solutions for graphs, along the spirit of the algorithms presented in [Vaz01].

Approximate algorithms for Graph-Clear are an interesting direction for future

research, but will not pursued any further in this dissertation.

From now onwards, for this section, we assume to operate on trees (i.e. con-

nected acyclic graphs), and will therefore use the letter T rather than G. The

problem of converting a surveillance graph into a tree is discussed in Section 3.10.

69

The algorithm presented herein was first published in [KC07c]. It does not always

produce optimal strategies, thus motivating the extension presented in Section

3.6. This simpler algorithm also serves to introduce concepts needed also for the

optimal algorithm presented later. In fact the new algorithm presented in Sec-

tion 3.6 can be seen as a generalization of the one illustrated in this section. We

will first focus on the contiguous case and then show how to compute analogue

non-contiguous functions. We shall return to non-contiguous strategies in more

detail in Section 3.7.

The algorithm computing contiguous strategies from [KC07c] is as follows.

Numeric labels associated with edges are computed as described below, and then

a strategy is produced based on the labels’ values. Let T = (V,E,w) be a

surveillance tree. For each edge (vx, vy) two labels λvx and λvy are defined as

follows:

• λvx is the cost of clearing the contaminated subtree rooted in vy after clear-

ing vx.

• λvy is the cost of clearing the contaminated subtree rooted in vx after clear-

ing vy.

Labels are computed bottom-up starting from edges incident on leaves. Due

to the symmetry in the definitions of λvx and λvy , we discuss only the computation

of λvx . Consider an edge e = (vx, vy). If vy is a leaf node, i.e. degree(vy) = 1,

then

λvx(e) = w(vy) + w(e) = s(vy)

since in order to clear vy it is necessary to block the only edge it has. Next, let us

assume vy is an internal node, i.e. degree(vy) > 1. Let us indicate the k neighbor

70

vertices different from vx as v1, . . . , vk, k = degree(vy) − 1. Let ei = (vy, vi),

i = 1 . . . k, and let us define

ρi = λvy(ei)− w(ei). (3.8)

Reorder vertices so that ρi ≥ ρi+1. The subtree rooted at vy will be cleared

according to the following strategy. First block all edges e1, . . . , ek and clear vy.

Then fully clear the subtree rooted at vk. After clearing the subtree rooted at

vk no block on ek is necessary anymore, and then remove it. Next, clear the

contaminated subtree rooted at vk−1 and then remove the block from ek−1. Next,

clear the subtree rooted at vk−2, and so on. Accordingly, in this strategy the

total cost when clearing the contaminated subtree rooted at vi is composed of all

blocks at the other neighbors and the costs to clear the subtree itself, represented

by the label λvy(ei). This becomes:

c(vi) = λvy(ei) +
i−1∑
l=1

w(el). (3.9)

The value for λvx(e) is then computed as follows:

λvx(e) = max{s(vy), max
i=1,...,k

{c(vi)}}. (3.10)

Fig. 3.7 illustrates this approach graphically. Having ordered all neighboring

vertices so that ρi ≥ ρi+1 ensures that λvx is minimized5. Once all labels are

computed, a strategy Sv that starts clearing the tree T from a vertex v is defined

as follows. Let v1 . . . vk be all k vertices neighbors of v. First, block all edges to v

and clear v. Then, recursively clear the contaminated subtree rooted at vi, with

5To show this assume there was an optimal ordering s.t. ρi < ρi+1 and show that you can
then swap vi and vi+1.

71

λvx(e)

e1e2e3e4e5

e
a) b)

c) d)

vx

v1v2v3v4v5

vy

vx

v1v2v3v4v5

vy

vx

v1v2v3v4v5

vy

vx

v1v2v3v4v5

vy

Figure 3.7: A contiguous strategy on a tree is executed based on the labels on

edges. Blocked edges are crossed through twice, cleared vertices are gray. A

vertex with dashed lines attached represents an entire subtree rooted at that

vertex. A subtree being cleared is marked with the corresponding root vertex

drawn in thick dashed lines. The label associated to this procedure is shown in

a) with the direction of the robots marked by an arrow.

i from k to 1, using strategy Svi
while blocking all edges e1, . . . , ei−1. The cost of

Sv is the following:

ag(Sv) = max

{
s(v), max

i=1,...,k
{c(vi)}

}
. (3.11)

Once all labels have been computed it is possible to find the vertex v for

which the quantity defined in Eq. 3.11 is minimized. Such vertex is the starting

point to clear the tree. Given a surveillance tree, labels λv can be computed in

72

O(n log d) where n is the number of vertices and d the maximum degree across

all vertices. However, it is possible to produce specific instances of Graph-Clear

where the depicted algorithm does not yield an optimal contiguous strategy. This

limitation motivates the formalism and ideas presented in Section 3.6.

In Algorithm 1 details of the above procedure are given. For the complexity

analysis let us start considering the inner of the while loop. Its most costly step

is the sorting in line 10. Let us define d = maxv∈V degree(v) and di = degree(vi).

The complexity of the while loop body can be bound by O(d log d). Each vertex

vi is added to the queue at most degree(vi) times and at least degree(vi) − 1.

Considering that
∑n

i=1 di = 2m and that m = n − 1 because we are dealing

with a tree, it turns out that the the outer loop is executed at most 2(n − 1)

times. Combining these results we get that an overall complexity of O(nd log d)

for a naive implementation6. But, clearly a smart implementation would sort

degree(v) − 1 neighbors once for the first incoming label and reuse it. The

computation for every other incoming label at the same vertex differs by only

one vertex in the set of neighbors and we can hence compute subsequent sorted

neighbor lists in O(log d) instead of O(d log d). Similarly, computing the maxi-

mum would at first sight take O(d), but using results from Section in 3.7.1 on

so called batches which describe the insertion and removal of vertices from the

set of neighbors we can find the maximum in O(1). Putting all this together

gives
∑n

i=1 degree(vi) log d ≤ 2m · log d as a bound for the initial sorting and∑n
i=1 degree(vi) · log d ≤ 2m · log d for the computation of all labels other than

the first incoming label. This leads to an overall complexity of O(n log d).

We can also produce a simple bound for the labels that are used to finally

compute ag(Sv).
6The complexity of the for loop starting at line 18 is clearly dominated by the previous one,

so it does not contribute to the asymptotic bound

73

1: Set all labels to 0 and initialize empty queue O

2: O.enqueue(leaves(T))

3: while not O.empty() do

4: vy ← O.dequeue()

5: if degree(vy) = 1 then

6: vx ← neighbors(vy)

7: λvx([vx, vy])← w(vy) + w([vx, vy])

8: else if ∃vx s.t. λvx([vy, vx]) = 0 then

9: k ← degree(vy)− 1

10: Let v1, . . . , vk, vx be neighbors s.t. λvy([vy, vi]) > 0, λvx([vy, vx]) = 0 and

vi ordered by ρi, i = 1, . . . k.

11: λvx([vx, vy])← max{s(vy),maxi=1,...,k{c(vi)}}
12: a← number of neighbors of vx s.t. λvx([vx, v]) > 0

13: if a = degree(vx)− 1 then

14: O.enqueue(vx)

15: else if a = degree(vx) then

16: for all v ∈ neighbors(vx) s.t. λv([v, vx]) = 0 do

17: O.enqueue(vx)

18: for all v ∈ V ertices(T) do

19: Let V be all k neighbors of v

20: ag(v)← max{s(v),maxi=1,...,k{c(vi)}}
21: return minv∈V ertices(T)(ag(v))

Algorithm 1: Contiguous strategy(T)

74

Theorem 4 Let smax := max∀v∈V ertices(T){s(v)} > 2. Let d be the length of the

longest simple path7 in the tree T and d∗ = dd/2e. The label of any edge is bound

as follows:

max
vx∈V ertices(T),e=(vx,vy)

{λvx(e)} ≤ smax + d∗ · (smax − 3) (3.12)

Proof: We start by identifying the worst case for a label λvx((vx, vy)) first at a

leaf, then at the first non-leaf vertex and further up the tree. For edges to a leaf vy

we trivially have λvx(e) = s(vy) ≤ smax and the worst-case is hence λvx(e) = smax

for all leaves. So let us assume vy is not a leaf. Consider the subtrees Ti generated

for each vi by removing all edges of vy except for ei and rooting Ti in vy (see fig.

3.10 in Section 3.6.1 for an illustration). For the first induction step let all

subtrees Ti have a maximum depth of 1, i.e. all vi are leaves. Recall equation

3.10, particularly the part maxi=1,...,k{c(vi)}. For every i = 1, . . . , k we have

c(vi) = λvy(ei) +
∑i−1

l=1 w(el) ≤ smax + smax − 3 since
∑k−1

l=1 w(el) ≤ smax − 3

because w(vy) ≥ 1, w(e) ≥ 1 and w(ek) ≥ 1. Clearly, the worst case occurs

if some vertex vj is being cleared with c(vj) = 2 · smax − 3, i.e. the worst case

occurs exactly when λvv(ej) = smax and
∑j−1

l=1 w(el) = smax−3. This implies that

j = k, w(vy) = 1, w(e) = 1, w(ek) = 1. Recall that ρk = λvv(ek) − w(ek) ≤ ρi.

Hence all w(ei) = 1 which implies that k = smax − 2. Using the same argument

and continuing the induction with increasing allowed depth of all subtrees Ti until

it is limited to depth d∗ leads to:

max
vx∈V ertices(T),e=(vx,vy)

{λvx(e)} ≤ smax + d∗ · (smax − 3) (3.13)

Evidently, we cannot continue the induction further than d∗ since no two subtrees

Ti and Tj with j 6= i can have depth larger than d∗ since that violates the

assumption that d is the maximum length of a simple path in T . But to make

7Path length is counted in terms of edges.

75

the argument sound we have to discuss the maximum label cost for the case when

one subtree has depth larger than d∗. So let us assume that one Tj for some j

has a depth dj which is larger than d∗. This implies that all Ti with i 6= j have

depth at most d − dj and hence worst-case labels smax + (d − dj) · (smax − 3).

Since (d − dj) < dj and
∑i−1

l=1 w(ei) < smax for all i = . . . 1, . . . k the worst case

for label λvx(e) is smax + dj · (smax − 3) = λvy(ei) and is hence not getting worse.

Therefore, eq. 3.13 holds and smax + d∗ · (smax− 3) is the worst case label on any

edge. 2

Fig. 3.8 shows how the construction of the worst-case example works for given

parameters. The bound of the theorem is obviously tight, i.e. it can be achieved

by examples for any set of parameters. Yet, the construction is very strict and

in practice we expect to be far below the bound in particular for large trees.

To show this numerically we ran the algorithm on randomly generated weighted

trees. Trees with 20, 40, 60, 80 and 100 vertices, random edges, a random weight

for a vertex between 1 and 12 and a random weight for edges between 1 and 6

were generated. For each number of vertices a forest of 1000 trees was created.

The average values for the labels, d∗ and smax are presented in table 3.5. Figure

3.9 compares the upper bound computed from d∗ and smax with the average

maximum value of all labels.

We can modify the presented algorithm to compute non-contiguous strate-

gies. This modification is rather straight-forward. The ordering of the vertices vi

remains the same, but the order of clearing them changes. We first clear the sub-

tree at v1, then proceed until vk and clear vy last. Historically the non-contiguous

label algorithm has been introduced first, hence the indices of the vertices vi cor-

respond to the order in which they are cleared for the non-contiguous variant.

The equations, however, remain the same. This is simple to notice by checking

76

1

1

1 5

55

5

1:9
1:9

1:9

1:12

1:6

1:6 1:6

1:6

1:9

1:15

1:12
1:12

1:12

1

Figure 3.8: This is the worst case ex-

ample for d = 6, smax = 6 leading to

a worst case label cost of 15. Block-

ing weight w is on the left and label

on the right of the colon for every edge.

Each vertex has its weight in its center.

Only labels for the direction towards the

leaves from the vertex marked with a

black arrow are shown.

20 40 60 80 100

0
10

0
20

0
30

0
40

0

Number of vertices

A
ve

ra
ge

 m
ax

im
um

 o
f p

● ● ● ● ●

●

●

●

●

●

Actual values
Upper bound

Figure 3.9: A comparison of the aver-

age upper bound across 1000 weighted

trees and actual maximum label values

for varying number of vertices.

77

n vertices max(λvx(e)) d* smax

20 24.865 5.325 25.176

40 28.300 7.784 27.949

60 30.299 9.638 29.607

80 31.781 11.077 31.039

100 32.885 12.306 31.909

Table 3.1: Results of the experiments. Values are averaged across 1000 random

trees.

the edges that have to be blocked after each clearing step. After v1 is cleared only

the edge between vy and v1 has to be blocked when starting to clear v2. This is

identical to the step in the contiguous variant, when v2 is being cleared only the

edge to v1 has to be blocked. The key is to notice that for the non-contiguous

variant vy remains contaminated until all its subtrees are clear while for the con-

tiguous variant it is cleared first. In Section 3.7 we shall discuss how to combine

these two sequences for clearing the subtrees into an improved algorithm and

explore what happens if we allow the clearing of vy somewhere in between the

clearing of the subtrees at the vi’s.

Finally, even though we will introduce an improved and optimal algorithm for

contiguous strategies in Section 3.6 the algorithm presented here has one major

advantage, which is also the reason why it is not optimal. The clearing procedure

clears the entire subtree before it considers neighboring subtrees. This depth-

first search behavior ensures that the robot team only enters each subtree once

which puts a bound on the number of edges that are traversed. For the optimal

algorithm subtrees will have to be entered multiple times and one edge can be

traversed many more times. In practice, it usually matters how many edges the

78

robot team traverses and in these cases the presented algorithm remains useful.

3.6 Optimal Contiguous Strategies on Trees: a Polyno-

mial Algorithm

Given that we established the existence of at least one optimal contiguous strategy

that is progressive, our goal is now to devise an algorithm that computes one

efficiently. To do so, we first introduce a final class of cut sequences, called full

cut sequences, and identify some notable properties. Based on these findings, we

next develop an O(n2) algorithm to compute an optimal contiguous strategy.

3.6.1 Full cut sequences

Let T be a fully contaminated surveillance tree and let vy be the first vertex

cleared by an optimal contiguous progressive strategy. Since vy will never be

recontaminated we can consider the subtrees at each neighbor v1, . . . , vk of vy

separately. More precisely, for each i = 1, . . . , k we will write Ti for the subtree

of T rooted at vy with all edges of vy removed except the edge to vi (see Fig.

3.10). Each of the Tis can be thought of as a surveillance tree with the same

weights induced by the w function defined on T and its own state. Given that a

cut sequence alters the state of T , we will indicate with νli the state of Ti before

γl is executed on T .

We want to construct an optimal cut sequence Svy which starts clearing vy

first, and then removes all contamination from T . Its first cut is γ1 = {vy},
which we can execute with cost ag(γ1, ν1) leading to a new state ν2. Note that,

accordingly to the notation introduced above, ν2 induces a state ν2
i for each Ti.

The goal is now to find optimal cut sequences for each Ti starting at state ν2
i that

79

v3v2v1

vy

v3v2v1

vy vy vy

e1 e2 e3

e′
2e′

1

v′
2v′

1

e1 e2
e3

e′
2e′

1

v′
2v′

1

T2T1 T3

Figure 3.10: Given vy we define subtrees Ti as seen in the figure.

we can use to continue Svy and turn it into an optimal cut sequence for the whole

tree T . The building blocks for these sequences are identified by the following

definition.

Definition 20 (Full cut sequence) Let T be a surveillance tree in state ν1 =

{C, . . . , C}, vy ∈ V [T], and Γvy the set of all cuts containing vy. A full cut

sequence for vy, indicated as S̄, is built as follows. Sort all cuts of Γvy s.t.

ag(γ, ν1) is increasing. All cuts with identical ag(γ, ν1) are additionally sorted

with b(γ) increasing. First, add γ1 = {vy} to S̄. Next, add the first cut of Γvy

with b(γ) < b(γ1). Then, add every next cut γ from Γvy with the next larger

ag(γ, ν2) such that b(γ) is smaller than for the previously added cut. Repeat this

process until the full cut is added to S̄.

The reader should observe that since by definition the full cut has b(γ) = 0

this definition is well posed for every T and terminates after a finite number of

steps. Note that we did not require that a full cut sequence be either progressive

or simple. A full cut sequence S̄ for vy has a useful property that ag(γl, νl) =

ag(γl, ν2) for all 2 ≤ l ≤ r. This is formalized by the following more general

lemma.

80

Lemma 5 Let S = γ1, . . . , γr be a cut sequence such that ag(γl, νl) is mono-

tonically increasing for all indexes l within the range b ≤ l ≤ r.8 Then for all

b ≤ l ≤ r:

ag(γl, νb) = ag(γl, νl).

Proof of Lemma 5. The claim is true for l = b by substitution. Let us now assume

that ag(γl, νl) = ag(γl, νb) for a certain value of l in the range b ≤ l < r and

prove that ag(γl+1, νl+1) = ag(γl+1, νb). By definition ag(γl+1, νb) is the cost of

the optimal strategy removing all contamination from γl+1 in state νb. Consider

the following strategy. Start with T in state νb and execute γl. This will change

the state of the tree to νl+1. Then execute γl+1 starting from the current state

νl+1. The cost of this strategy is

ag(γl+1, νb) = max((ag(γl, νb), ag(γl+1, νl+1)).

This maximum cannot be ag(γl, νb) since by assumption ag(γl, νb) = ag(γl, νl) <

ag(γl+1, νl+1). Therefore ag(γl+1, νb) = ag(γl+1, νl+1). 2

Next, for each Ti let S̄i be a full cut sequence for vy. It is worth observing

that by definition vy ∈ Ti for each Ti, so a full cut sequence for vy in Ti is well

defined. For each i, let us indicate cuts in S̄i as γji . To each cut γji ∈ S̄i with

j ≥ 2, i.e. excluding the first cut {vy}, associate a value ρji defined as follows:

ρji = ag(γji , ν
j
i)− b(γj−1

i) for j ≥ 2 (3.14)

The reader should notice the similarity between 3.14 and 3.8, and in fact the

8This is the case for full cut sequences picking b = 2. For b = 1 the lemma does not
necessarily hold for full cut sequences since the cost for executing γ1 = {vy} is allowed to be
greater than subsequent costs.

81

latter generalizes the former. Let

Γ̄ =
⋃

i=1,...,k

S̄i \ {vy}

and order them with ρ increasing. This ordering is consistent with the ordering

of each subsequence by construction of full cut sequences. Notice that γ1
i = {vy}

for all i and hence for each the first cut is removed, which is also the cut for

which ρji is not defined and for which the prerequisites for lemma 5 do not hold.

Ties between cuts coming from different Ti can be arbitrarily resolved. Write the

ordered sequence Γ̄ as {γ̄2, . . . , γ̄r}. Finally, create a cut sequence Svy = γ1, . . . , γr

for T from Γ̄ as follows:

γl =


{vy} l = 1

(γl−1 \ Ti) ∪ γ̄l l = 2, . . . , r ∧ γ̄l ⊆ Ti

(3.15)

In colloquial terms, at each step l we execute the cut γ̄l in a subtree Ti, while

maintaining clear all vertices from all other subtrees from the previous step l−1.

Note that it is necessary to remove Ti from γl−1 to keep only cleared vertices

in other subtrees and have cleared vertices in Ti to be exactly γ̄l (second case

in the definition above). This is due to the fact that we have not ruled out

recontamination yet. We can now introduce the main results of this subsection,

namely that Svy is optimal.

Theorem 5 Svy is an optimal cut sequence for T .

Proof: We started assuming that vy is the first vertex cleared by an optimal

progressive contiguous strategy for T , so starting with γ1 = {vy} does not com-

promise the possibility to get an optimal strategy. Let us consider l ≥ 2. By

construction, every cut γl has an associated cut γ̄l (see Eq. 3.15). Such γ̄l was

82

constructed from a certain γji ∈ S̄i. We can therefore associate each cut γl with

l ≥ 2 with a couple of indexes i and j such that γl originated from γji .

Let us now describe the costs of Svy and relate it to the costs in the full cut

sequences for each Ti. b(γ
l) is the blocking cost in T after executing γl. The part

of this blocking cost in Ti is given by bli = b(γl ∩ Ti) and is equal to b(γji) by

construction. The cost of executing γl is given by cl = ag(γl, νl). We can relate

cl to the costs inside each subtree Ti with the following relationship:

cl = bl−1 − bl−1
i + ag(γji , ν

j
i). (3.16)

Notice that νji of the cut sequence S̄i is identical to the state that νl of the cut

sequence Svy induces on Ti. Eq. 3.16 follows simply by construction. It results

from keeping (γl−1 \ Ti) blocked which costs bl−1 − bl−1
i , and executing γji in Ti

with cost ag(γji , ν
j
i). By lemma 5 and the observation that bl−1

i = b(γj−1
i), i.e.

the blocking cost from the cut in S̄i right before γji , we get (see Eq. 3.14):

cl = bl−1 − bl−1
i + ag(γji , ν

2
i) = bl−1 + ρji (3.17)

Here the significance of ρ values formerly defined becomes apparent. Notice the

similarity to ordering subtrees in Section 3.5. In colloquial terms, the ordering

with ρ increasing asks for the next cut that can reduce the blocking cost while

not costing much to execute.

Now, let Ŝ be an optimal contiguous strategy that is progressive and starts

at vy. We will adopt a similar notation as for Svy but adding ˆ to all terms.

Due to lemma 1 we can assume that Ŝ clears exactly one new vertex per step.

Therefore, it can be written as a simple progressive cut sequence γ̂1, . . . , γ̂n with

exactly n cuts. It follows that for every l = 2, . . . , n we have one and only one i

s.t. γ̂l \ γ̂l−1 ⊂ Ti. This allows us to consider, for each Ti, a cut sequence given by

all non-empty γ̂l ∩ Ti for all l s.t. γ̂l \ γ̂l−1 ⊂ Ti. To identify these cut sequences

83

restricted to each Ti we use γ̂ji = γ̂l ∩ Ti, again associating each step l in Ŝ with

an γ̂ji . Hence, a similar analysis as above for Svy applies and we get:

ĉl = b̂l−1 − b̂l−1
i + ag(γ̂ji , ν̂

l
i) (3.18)

where now ν̂li is simply the state of Ti induced by ν̂l and equal to ν̂ji , which is

the state of Ti after execution of γ̂1
i , . . . , γ̂

j−1
i in Ti. Now that we can describe Svy

and Ŝ let us compare the two and their costs. We will do so by replacing cuts

in the cut sequences γ̂ji with cuts from the full cut sequences used to construct

Svy . In colloquial terms, we will show that cuts from the full cut sequences are

not more costly than the optimal ones. For each i consider the cut sequence γ̂ji

in Ti with associated clearing cost ag(γ̂ji , ν̂
j
i) and blocking cost b(γ̂ji). First, we

want to remove all cuts γ̂ji which do not reduce bl, i.e. have b(γ̂ji) ≥ b(γ̂j−1
i). It is

evident from Eq. 3.18 that this removal does not increase bl at any step. Hence,

removal of such a cut γ̂ji can only lead to larger costs if it increases the cost for

a subsequent cut, i.e. ag(γ̂pi , ν̂
p
i), for some p > j. But if after removal of γ̂ji we

have ag(γ̂pi , ν̂
p
i) larger than before, then (through a similar argument as for the

proof of lemma 5) we have ag(γ̂pi , ν̂
p
i) ≤ ag(γ̂ji , ν̂

j
i) and hence no overall larger

cost. Therefore, we can remove all such cuts without increasing the overall cost,

which leads to bl becoming a strictly decreasing sequence.

With a similar argument we can modify the sequence γ̂ji to have ag(γ̂ji , ν̂
j
i)

strictly increasing. Notice that if ag(γ̂ji , ν̂
j
i) ≥ ag(γ̂j+1

i , ν̂j+1
i), then removal of γ̂ji

and executing γ̂j+1
i instead will not increase costs cl, since b(γ̂ji) > b(γ̂j+1

i) and

ag(γ̂j+1
i , ν̂ji) ≤ ag(γ̂ji , ν̂

j
i).

After these removals we are in a condition that satisfies the hypothesis of

lemma 5 and obtain:

ĉl = b̂l−1 − b̂l−1
i + ag(γ̂ji , ν̂

2
i) = b̂l−1 − ρ̂ji (3.19)

84

It is now clear to see (looking at ρ) that replacing every cut γ̂ji with a cut from

the full cut sequence with equal or smaller ag and adding all remaining full cuts,

ordered by ρ, leads to no increased cost. Hence we can turn Ŝ into Svy without

incurring larger cost and hence Svy is optimal. 2

3.6.2 Constructing cut sets

Theorem 5 provides the basis for a recursive construction of optimal cut sequences

starting at the leaves and associating them to edges, much like labels defined in

Section 3.5. Similarly to the label-based algorithm, for each starting vertex the

algorithm computes the best contiguous progressive strategy and its cost starting

from that vertex. Then, looking at the costs of these these n strategies the

optimal one can be retrieved. It is immediate to see that if all full cut sequences

are progressive, then so is Svy .

A brute force approach is not viable because we need to consider the set of

all cuts for finding full cut sequences and this set grows exponentially in the

number of vertices. However, we can construct full cut sequences more efficiently

according to a bottom up paradigm. We first show how to start the recursive

construction at the leaves and then show how to find full cut sequences efficiently.

We adopt the same perspective as in Section 3.5, i.e. let vx and vy neighbors,

e = [vx, vy], and v1, . . . , vk with k = degree(vy)−1 are all neighbors of vy different

from vx (see Fig. 3.7 and Fig. 3.11). We now associate a full cut sequence S̄vx(e)

to e coming from direction vx, similar to the label λvx(e). Note that S̄vx(e) is a

full cut sequence for vx in the tree Ty given by removing all edges from vx except

e (see Fig. 3.11). If vy is a leaf, then k = 0, i.e. its only neighbor is vx. In this

case it is immediate to compute the right cut sequence:

S̄vx(e) = {vx}, {vx, vy}.

85

v2v1

vy

e1 e2

vx

e

S̄vy (e1) S̄vy (e2)

S̄vx(e)

v2v1

vy

vx

v2v1

vy

Ty

T [vy]

v2

vy

v1

vy

T1 T2

S̄vy (e1) = {vy}, {vy, v1} S̄vy (e2) = {vy}, {vy, v2}
Svy = {vy}, {vy, v2}, {vy, v2, v1}

S̄vx
(e) = {vx}, V (Ty) = {vx, vy, v2, v1}

S̄vx
(e) = {vx}, {vx, vy}, {vx, vy, v2}, V (Ty)

S̄vx
(e) = {vx}, {vx, vy}, V (Ty)

1)
2)
3)

Possibilities for S̄vx
(e)

Figure 3.11: Illustration of the cut sequences associated to edges and the subtrees

involved in the construction. There are three possibilities for S̄vx(e), depending

on the costs of the cuts. E.g. if weights on the tree are s.t. executing {vx, vy}
costs as much as executing the full cut V (Ty) right away, then the first possibility

is the full cut sequence. Otherwise, if {vx, vy} costs less and has smaller blocking

cost than {vx}, then the second possibility is the full cut sequence, and so on.

Otherwise, if k > 0 we consider v1, . . . , vk with edges ei = [vy, vi], i = 1, . . . , k.

Let S̄vy(ei) be the full cut sequence on edge ei coming from direction vy. By

virtue of theorem 5 we can construct an optimal cut sequence Svy , as defined by

Eq. 3.15, which clears the subtree T [vy] rooted at vy after removing e (see Fig.

3.11). If all vi are leaves this corresponds to exactly the same local strategy that

the algorithm from Section 3.5 produces. This is evident if one compares 3.8 and

3.14 and keeps in mind that cuts are sorted with ρ increasing.

We now need to find a full cut sequence for Ty, where Ty is the analogue

of the trees Ti but from the perspective of vx towards vy instead of vy towards

86

vi (see Fig. 3.11). This full cut sequence can be associated to e and written

as S̄vx(e) to be able to continue the recursion. The first cut is trivially {vx}.
Next, we can obtain the remaining cuts from the already available Svy instead

of looking at all possible cuts. One observation is crucial to this construction,

namely that only cuts that correspond to a step in the execution of Svy need to

be in S̄vx(e). Clearly, one needs to add vx to all cuts of Svy , since vx /∈ T [vy]. For

the example with all v1, . . . , vk leaves this leads to cuts {vx, vy}, {vx, vy, vk}, . . . ,
{vx, vy, vk, . . . , v1} (assuming that indices are ordered by ρ as in Section 3.5). We

can now obtain a full cut sequence by selecting all cuts from this set that satisfy

the criteria outlined in definition 20. The following argument validates this claim.

Theorem 6 Let S̄vx be a full cut sequence for vx in Ty and Svy = γ1, . . . , γr

constructed as before. If γ ∈ S̄vx and γ 6= {vx}, then ∃l ∈ {1, . . . , r} s.t. γl ∈ Svy

has ag(γl ∪ {vx}, ν1) ≤ ag(γ, ν1) and b(γl ∪ {vx}) ≤ b(γ).

Proof of Theorem 6. Let γ ∈ S̄vx . By definition vx ∈ γ. If γ = {vx, vy} the claim

is trivially true by noting that l = 1 with γ1 = {vy} and then ag({vy}∪{vx}, ν1) =

ag(γ, ν1).

Otherwise, γ has one or more vertices in some Ti, i = 1, . . . , k. We can hence

write the execution of γ as a new sequence of cuts starting at γ̂1 = {vx}, γ̂2 =

{vx, vy} and continuing with cuts separated into Ti similar as for the proof of

theorem 5. Write γ̂3, . . . , γ̂t = γ for these cuts. Note that this is not a cut

sequence for Ty, but a only a sequence of cuts because the full cut is missing.

Again, as for theorem 5, γ̂3, . . . , γ̂t induces sequences of cuts in the subtrees Ti,

written γ̂ji . The only difference to the proof for theorem 5 is that we had two

steps γ̂1 and γ̂2 prior to considering the cuts in subtrees Ti, which means that vx

and vy are both not going to be recontaminated. Therefore, we can also apply

87

the same replacement method as for theorem 5 and all cuts γ̂ji can be replaced

with cuts from full cut sequences of Ti without incurring larger costs.

Now, all γ̂ji are cuts that also appear in the full cut sequences for Ti. The

only significant difference to the proof of theorem 5 is that after this replacement

there is a last cut in each sequence γ̂ji which is not necessarily a full cut for Ti,

so the sequence is still not a cut sequence. Now, the last cut γ̂t is associated

to a last cut of some sequence γ̂ji in some Ti written γ̂pi . Since γ̂pi ∈ S̄i due to

the replacement method we have a cut γl in Svy associated to it as well. By

construction and from Eq. 3.17, Svy incurs no higher cost up until γl than the

sequence γ̂3, . . . , γ̂t. This is due to the fact that Svy is based on all cuts from the

full cut sequences S̄i for each Ti while γ̂3, . . . , γ̂t may have some cuts omitted.

From Eq. 3.17 it is clear that adding additional cuts from the full cut sequences

S̄i can only improve the costs since those cuts with ρ lowest are executed first

and after being executed can only decrease the overall blocking cost. It follows

that ag(γl ∪ {vx}, ν1) ≤ ag(γ, ν1) and b(γl ∪ vx) = b(γl) ≤ b(γ). 2

Theorem 6 implies that we can get a full cut sequence S̄vx to associate to e

by only considering the cuts arising from Svy . Algorithm 2 shows how to use the

results from theorems 5 and 6 to compute an optimal strategy. Just like we did

with labels before, the algorithm recursively builds cut sequences on the edges of

a surveillance tree T with two directions for each edge. To finally obtain ag(T)

we construct Svy on T for each vertex vy ∈ V (T), and then the vertex with the

lowest cost is selected as the starting vertex. This is similar to the procedure in

Section 3.5. Algorithm 2 presents this in pseudo-code and returns ag(T). Once

the best vertex vy is found, translating the cut sequence Svy into a strategy is

straightforward. In fact, by following the edges and using the associated cut

sequences one can write Svy as a simple cut sequence which can be immediately

88

converted into a strategy.

The complexity of algorithm 2 is O(n2) and can be computed as follows.

Throughout the analysis it is important to note that since we are dealing with a

tree the number of edges is m = n− 1, so eventually we compute the complexity

as a function of the number of vertices only. Clearly, line 11 is the most costly

part in which we have to sort cuts when constructing Svy on T [vy]. However,

the number of cuts to be sorted is bounded by n due to the linear construction

which leads to a contribution of at most one cut for a vertex in the tree. This

is obvious from the fact that |S̄vx| ≤ 1 + |Svy | = 2 +
∑k

i=1 |S̄i| − 1. But even

better, each S̄i is already sorted by ρ, so for constructing Svy we have to merge

degree(vy)− 1 sequences which altogether are at most of length n which can be

done in O(log (degree(vy)) · n). Line 11 is executed twice for each edge once in

each direction, or in other words degree(vy) times for each vertex vy. But, the

only difference between two executions of line 11 at vertex vy is that the full

cut sequence from one edge ei is replaced by the full cut sequence on another

edge. More precisely, the edge e from vx to vy of a previous execution of line

11 becomes one of the edges ei towards vi in a subsequent execution while one

of the previous ei becomes e. Hence, we can reuse the sorted Svy of the first

execution of line 11 for subsequent executions by just removing one of the cut

sequences in a Ti and adding one. This can be done linearly in n. Therefore we

only need to merge degree(vy) sorted sequences once for each vertex which leads

to
∑

vy∈V (T) log (degree(vy)) · n ≤ 2m · n and then reuse it for the degree(vy)− 1

remaining executions which can be done in
∑

vy∈V (T)(degree(vy)−1) ·n ≤ 2m ·n.

Hence the overall complexity is O(n2).

89

1: Set all S̄v(e) to ∅ and initialize empty queue Q

2: Q.enqueue(leaves(T))

3: while not Q.empty() do

4: vy ← Q.dequeue()

5: if degree(vy) = 1 then

6: vx ← neighbors(vy)

7: S̄vx([vx, vy])← {{vx}, {vx, vy}}
8: else if ∃ neighbor vx s.t. S̄vx([vx, vy]) = ∅ then

9: k ← degree(vy)− 1

10: Let v1, . . . , vk be neighbors s.t. S̄vy([vy, vi]) 6= ∅
11: Construct Svy on T [vy]

12: Construct S̄vx on Ty from Svy

13: S̄vx([vx, vy])← S̄vx

14: a← number of neighbors of vx s.t. S̄vx([vx, v]) 6= ∅
15: if a = degree(vx)− 1 then

16: Q.enqueue(vx)

17: else if a = degree(vx) then

18: for all v ∈ neighbors(vx) s.t. S̄v([v, vx]) = ∅ do

19: Q.enqueue(vx)

20: for all v ∈ V (T) do

21: Construct Sv on T

22: ag(v)← c(Sv)
23: return minv∈V (T)(ag(v))

Algorithm 2: Cut strategy(T)

90

3.7 Improved Non-Contiguous Strategies: Hybrid Algo-

rithm

In [KC07c] it was proposed to combine the two variants, contiguous and non-

contiguous, of the label-based algorithm from Section 3.5 by separating the neigh-

boring vertices into two sets and clearing one using the contiguous and one with

the non-contiguous variant. More precisely, for vy, coming from vx, we seek to

partition the neighbors V := {v2, . . . , vm} into two sets of vertices V1 and V2. The

first set V1 will be cleared with the non-contiguous procedure. Once all elements

of V1 are cleared the team clears vy and then proceeds to clear V2 with the con-

tiguous procedure. We thereby divide the weight of the term
∑

2≤l<iw(el) from

equation 3.9 onto two sets. This can greatly reduce the total cost. Figure 3.12

illustrates how such a hybrid strategy would be executed.

vx

vy

v3 v2

1)
vx

vy

v3 v2

2)
vx

vy

v3 v2

3)
vx

vy

v3 v2

4)

Figure 3.12: Execution of the hybrid strategy.

From fig. 3.12 one complication becomes apparent. Let V x
1 and V x

2 be the

partitioning of the neighbors of vx when coming from yet another vertex vz. If

vy ∈ V x
1 , then e is not blocked when the team enters vy, as seen in fig. 3.12.

Once we clear vy we have to add a block on e which increases the total cost while

clearing V2, as seen in steps 3 to 5 in fig. 3.12. If vy ∈ V x
2 , then the situation

91

is reversed and we have to add a block on w(e) only while we clear V1 and not

while clearing V2.

Let us denote the case when v ∈ V x
1 as case 1 and v ∈ V x

2 as case 2. We can

compute a label for both cases, using the superscripts 1 and 2. So the labels on

edge e become:

h1
u(V1, V2) = max

{
max
vi∈V1

{c1(vi)},max
vi∈V2

{c2(vi) + w(e)}
}

h2
u(V1, V2) = max

{
max
vi∈V1

{c1(vi) + w(e)},max
vi∈V2

{c2(vi)}
}

λ1
vx

(e) = max
{
s(vy),minV1,V2{h1

u(V1, V2)}
}

(3.20)

λ2
vx

(e) = max
{
s(vy),minV1,V2{h2

u(V1, V2)}
}

(3.21)

where c(vi)
j = λjvy

(ei) +
∑

vl∈Vj ,2≤l<iw(el) for j = 1, 2. It is easy to see,

however, that h1
u(V1, V2) = h2

u(V2, V1) given that λ1
vy

(ei) = λ2
vy

(ei), which is the

case since we compute the labels from the leaves upward and these equations

are identical. It is however, important to note that the partition still has take

into account the penalty term w(e), i.e. only to which side it is assigned is not

relevant. Hence, to simplify notation, we will drop superscripts 1 and 2. The

problem now states as follows:

Definition 21 (Hybrid algorithm: optimal partition) Given vx, vy and neigh-

bors V = {v2, . . . , vm} as before find a partition of V into V1 and V2 s.t. hu(V1, V2)

is minimal.

The proposed algorithm to find partitions will be based on theoretical frame-

work of the next two subsections. First we introduce the concept of batches which

cluster vertices and then proceed by developing criteria for optimal partitions into

92

V1 and V2 in Section 3.7.2. On the basis of this we will develop an algorithm in

Section 3.7.3.

3.7.1 Batches

The following will be useful to describe at which vertex within a set V the cost

is maximal. We shall call a set of all vertices with ρi = a − p a batch Bp,

where a := max{λvy(ei)}. The set V can have at most a − 1 batches, i.e.

B1, B2, . . . , Ba−1. During the execution of a strategy S in the non-contiguous

variant we clear the batches in sequence B1, B2, . . . , Ba−1 and then clear v. For

the contiguous variant the order of clearing is reversed. Define the weight of a

batch as w(Bp) :=
∑

vi∈Bp
w(ei) and write w(Bp<k) :=

∑
p<k w(Bp). Define the

maximum cost within V to be h := max2≤i≤m{c(vi)} and let vq be a vertex that

assumes this maximum, i.e. h = c(vq), s.t. vq ∈ Bk with k being the largest such

possible batch index. Using this notation we can rewrite the maximum cost to

be:

h = w(Bi<k) + w(Bk)− w(eq) + λ(eq)

= w(Bi≤k) + ρq = w(Bi≤k) + a− k. (3.22)

Furthermore, we can define the maximum cost within a batch:

hj :=

 w(Bi≤j) + a− j ifBj 6= ∅
0 otherwise

(3.23)

Clearly h = max1≤j≤a−1{hj}. The following lemma will be relevant for our further

results.

Lemma 6 Let vq and Bk be as before. Consider any non-empty Bk′ s.t. k 6= k′.

If k > k′, then k−k′ ≤ w(Bk′<i≤k). Otherwise if k < k′, then w(Bk<i≤k′) ≤ k′−k.

93

Proof: First assume k > k′. Given h as above, consider the last vertex vr of

another batch Bk′ , i.e. vr = vek′ and define h′ := c(vr) = w(Bi≤k′) + ρr. Recall

that ρq = a− k and ρr = a− k′. By assumption h′ ≤ h. This implies

w(Bi≤k′) + ρr ≤ w(Bi≤k) + ρq

w(Bi≤k′) + ρr − ρq ≤ w(Bi≤k)

k − k′ ≤ w(Bi≤k)− w(Bi≤k′)

k − k′ ≤ w(Bk′<i≤k) (3.24)

which concludes the proof for k > k′. The result for k < k′ is analogue. 2

All classes of vertices in a batch Bp can be listed as:

ρi a− p a− p . . . a− p
λ(ei) a− p+ 1 a− p+ 2 . . . a

w(ei) 1 2 . . . p

Using this we can write down all batches and their possible edge types as:

Batch B1 B2 . . . Ba−1

ρi a− 1 a− 2 a− 2 . . . 1 1 . . . 1

λ(ei) a a− 1 a . . . 2 3 . . . a

w(ei) 1 1 2 . . . 1 2 . . . a− 1

Table 3.2 shows a set of vertices V = {v2, v3, . . . , v10} with a = 10 and vq = v9

with maximum cost c(vq) = 19.

3.7.2 Criteria for optimal partitions

All vertices in batches Bi, for i > k, do not contribute to the maximum, i.e.

a removal of these vertices does not change the maximum cost. We shall call

94

Bp B2 B3 B5 B6 B7 B9

vi v2 v3 v4 v5 v6 v7 v8 v9 v10

ρi 8 7 7 7 5 4 3 3 1

λ(ei) 10 8 8 10 7 7 5 5 2

w(ei) 2 1 1 3 2 3 2 2 1

c(vi) 10 10 11 14 14 16 17 19 18

Table 3.2: A simple example of a set of vertices and their assignment into batches.

such vertices the tail T :=
⋃
i>k Bi of V . Their joint weight shall be denoted by

w(T) =
∑

vi∈T w(ei). As a consequence of lemma 6 we have w(Tt) < a− k.

When partitioning V into V1 and V2 we shall write Bi,1, Bi,2 for the batches

of V1 and V2, k1, k2 for k, vq,1, vq,2 for vq, hV1 , hV2 for h and T1 and T2 for T . For

notational simplicity we will ignore the penalty term in this section and discuss

it thereafter when presenting the partitioning algorithm. Finally, for a partition

V1 and V2 we define a maximization criterion as:

c(V1, V2) := k1 + k2 + w(T1) + w(T2)− |h1 − h2|. (3.25)

Definition 22 (Balanced and full partitions) Let V be a set of vertices as

before. A partitioning of V into V1 and V2 is called

• full if k = k1 = k2,

• balanced if w(Bi≤k1,1)− k1 = w(Bi≤k2,2)− k2,

• maximal if for any other partition V ′1 , V
′
2 we get that c(V1, V2) ≥ c(V ′1 , V

′
2).

It is easy to see that a partition that is full and balanced will minimize hu

and is therefore optimal. Also any full and balanced partition will be maximal.

95

To show that any maximal partition is optimal we need the following lemma to

show that hb := w(Bi≤k)/2 + a− k is a lower bound on hu.

Lemma 7 Given V , with a and k as before and any partition V1 and V2 we have

that:

hu ≥ w(Bi≤k)/2 + a− k = hb. (3.26)

Proof: W.l.o.g. assume that hV1 ≥ hV2 , i.e. w(Bi≤k1,1) + a − k1 ≥ w(Bi≤k2,2) +

a − k2. So hu = hV1 . Since V has no tail we have that w(T1) ≤ k − k1 and

w(T2) ≤ k − k2. Assume that hV1 < w(Bi≤k)/2 + a− k which leads to:

2 · hV1 < w(Bi≤k1,1) + w(Bi≤k2,2) (3.27)

w(T1) + w(T2) + 2a− 2k

2 · hV1 < w(Bi≤k1,1) + w(Bi≤k2,2) (3.28)

a− k1 + a− k2

hV1 < hV2 (3.29)

Which is a contradiction to hV1 ≥ hV2 and concludes the proof.2

For full and balanced partitions we have hu = hb. But a full and balanced

partition may not exist and hence we have to consider maximal partitions.

Lemma 8 If V1, V2 is a maximal partition of V , then hu is minimal, i.e. the

partition is optimal.

Proof: W.l.o.g. assume that k2 ≤ k1. As before we have w(Bi≤k) = w(Bi≤k1,1)+

w(T1) +w(Bi≤k2,2) +w(T2) and |h1−h2| = |(w(Bi≤k1,1) +k1)− (w(Bi≤k2,2) +k2)|.
This leads to the following cases:

Case 1: assume hu = h1 > h2 and we get

h2 − h1 + k2 − k1 = w(Bi≤k2,2)− w(Bi≤k1,1). (3.30)

96

Now:

hb − hu = w(Bi≤k)/2− w(Bi≤k1,1) + k1 − k

=
1

2
(h2 − h1 + k2 + k1 + w(T2) + w(T1))− k (3.31)

By the maximal property we get that hb − h1 is maximal and the partition is

therefore optimal.

Case 2: assume hu = h2 > h1 and analogue to the previous case this results in:

hb − h2 =
1

2
(h1 − h2 + k2 + k1 + w(T2) + w(T2))− k (3.32)

which is again maximal by the maximal property of the partition. Hence a

maximal partition is optimal.2

In colloquial terms, we have to find a partition with the largest k1, k2 and

large tails T1, T2 and with w(Bi≤k1,1) roughly equal to w(Bi≤k2,2).

3.7.3 The partitioning algorithm

The algorithm is based on a dynamic programming approach motivated by the

relation of the maximization criterion to the subset sum problem, one of the early

NP-complete problems [GJ79]. In short, the subset sum problem is to determine

whether a set of integer values contains a subset whose values sum up to some

given integer z. A dynamic programming algorithm to solve it runs in pseudo-

polynomial time O(Cn) where C is the sum of all members of the set and n is

the number of elements. Translated to our case this becomes the problem to

determine whether V contains a set of vertices V2 s.t. the sum of the weight of

their respective edges w(V2) sums up to z = dw(V)/2 − w(e)/2e. Here w(e) is

the penalty term from equation 3.20. A solution V2 would minimize hu given

that V1 = V \ V2, V2 is a full partition, i.e. it satisfies k1 = k2 = k. Obviously,

97

using the dynamic programming approach for solving the subset sum problem

gives no guarantee that k1 = k2 = k. In fact, such a partition may not even exist.

The following will be concerned with an algorithm that guarantees to find a full

partition if one exists.

Let A be a table with m− 1 rows and z = dw(V)/2− w(e)/2e columns. Set

A(0, j) := 0,∀j and A(i, 0) := 0,∀i. Each row represents a vertex and they shall

be ordered as vm, . . . , v2, i.e. vm corresponds to row one, vm−1 to row two and so

on. Write ci for w(em−i+1), i.e. the cost added to V2 by adding the vertex in row

i. If ci > j, then A(i, j) = A(i− 1, j), otherwise A(i, j) = max{A(i− 1, j), A(i−
1, j − ci) + ci)}. An entry A(i, j) in the table is then the maximal weight for V2

achievable using vertices vm, . . . , vm−i+1. The table is filled as usual for the subset

sum problem. If an entry in A exists s.t. A(i, j) = dw(V)/2− w(e)/2e, then we

have a partition that is optimal with respect to to the distribution of the edge

weights onto V1 and V2. This is, however, only one part in the optimization. An

entry in A represents possibly multiple partitions, some of which do not satisfy

that k1 = k2 = k. A particular partition can be thought of as a path within the

table. Finding an optimal partition is hence the problem of finding an entry with

A(i, j) = dw(V)/2−w(e)/2e for which we have a path that represents a maximal

partition. We will show how to compute whether such a path exists for the case

of full partitions.

Since we ordered the vertices in reverse order we can view the problem from

the perspective of adding vertex by vertex with decreasing index to V2 as we

proceed through the rows of A. For V1 we can view it as if we are removing

vertices with decreasing index from V1. The main question is what happens to

k1 for V1 and k2 for V2 as we remove and add vertices. When we add a vertex

v ∈ Bu,1 from V1 to V2 we know that all other vertices in V2 are in batches Bj≥u,2.

98

Write V ′1 = V1 \ {v} and V ′2 = V2 ∪ {v}. Define S(V2) :=
∑

1≤i≤k2 w(Bi, 2) to be

the support of V2. Now if k2− u > S(V2), then v = v′q will be the new maximum

for V ′2 . Otherwise, if k2 − u ≤ S(V2), then vq = v′q. To illustrate this with our

example set of vertices simply choose V2 = {v9}. Clearly vq,2 = v9 and S(V2) = 2

and adding v5 will lead to v′q,2 = v5. Similarly for V ′1 , when removing v with

associated edge ev, the support will be reduced to S(V ′1) = S(V1) − w(ev). Now

the maximum v′q,1 may shift to a vertex of a lower batch if ∃Bb s.t. k1−b > S(V1),

otherwise it will remain at it former vertex s.t. v′q,1 = vq,1.

As long as k1 = k2 = k we know that S(V1) = w(V1), S(V2) = w(V2), w(T1) =

w(T2) = 0 and we do not need to keep track of these values. Once we add a vertex

v ∈ Bu,1 from V1 to V2 with k2−u > S(V2) we will have k′2 < k and the path will

not be a valid solution. Let us define two further tables K1(i, j) and K2(i, j) in

which we will keep track of k1 and k2. For our case the computation of K1(i, j)

and K2(i, j) involves only a simple check, whether upon addition/removal of the

vertex the current K1 and K2 can be maintained. If this is not the case we discard

the solution path by setting K1(i, j) = 0 or K2(i, j) = 0. The pseudo code in 3

shows how to compute A,K1 and K2. Initially we set K1(0, j) = K2(0, j) = k.

It is obvious that k1, k2 are monotonically decreasing with respect to to growing

i, j, except for the special case for V1 if we remove the first vertex v2 in the last

row of the table and at this point have vq,1 = v2 and Bb1,1 = {v2}, i.e. there is

no other vertex in its batch. Dealing with this special case merely complicates

notation without changing the methodology and we will therefore ignore it. Now,

an entry A(i, j) = z with K1(i, j) = K2(i, j) = k has a path that represents a full

and balanced partition which is therefore optimal. If no such entry exists, then

neither does a full and balanced partition. The algorithm for this case of full and

balanced partitions illustrates how to use the theoretical results of this paper to

obtain an improved algorithm for the Graph-Clear problem on trees.

99

if ci > j then

A(i, j)← A(i− 1, j)

K1(i, j)← K1(i− 1, j)

K2(i, j)← K2(i− 1, j)

else

A(i, j) = max{A(i− 1, j), A(i− 1, j − ci) + ci)}
if A(i, j) = A(i− 1, j − ci) + ci then

if ρ2 < K1(i− 1, j − ci)− (w(V)− A(i, j)) then

K1(i, j)← 0

else

K1(i, j)← K1(i− 1, j − ci)
if a− ρm−i < K2(i− 1, j − ci)− A(i− 1, j − ci) then

K2(i, j)← 0

else

K2(i, j)← K2(i− 1, j − ci)
if A(i, j) = A(i− 1, j) then

if K2(i− 1, j) ≥ K2(i, j) and K1(i− 1, j) ≥ K1(i, j) then

K1(i, j)← K1(i− 1, j)

K2(i, j)← K2(i− 1, j)

Algorithm 3: Compute table entry(i, j)

100

Trying to obtain an algorithm for the general case entails more complica-

tions. In essence, a compromise between obtaining balanced edge weight and

large k1, k2 has to be sought. More precisely, we have to consider all parts of

the maximization criteria c(V1, V2) to identify optimal partitions. Extending the

previous dynamic programming approach with brute force would mean to eval-

uate all possible paths in the table leading to any entry A(i, j) and choosing

one for which the maximization criteria is largest. Obviously, this is not effi-

cient. To see how we could arrive at a more efficient method let us define C(i, j)

to be the largest value of c(V1, V2) across all partitions that lead to a path to

A(i, j). More precisely, C(i, j) is the largest c(V1, V2) for all partitions V1, V2 s.t.

V2 ⊂ {vm, . . . , vm−i+1} with w(V2) = A(i, j). Computing C involves keeping track

not only of k1 and k2 in tables K1, K2, but also of the tails T1 and T2 for whose

weight we also need tables T1(i, j) and T2(i, j) and requires therefore some more

bookkeeping. Using equation 3.25 for c(V1, V2) we get that:

C(i, j) = K1(i, j) +K2(i, j) + T1(i, j) + T2(i, j) (3.33)

− |H1(i, j)−H2(i, j)− w(e)| (3.34)

H1(i, j) = w(V)− A(i, j)− T1(i, j)−K1(i, j), (3.35)

H2(i, j) = A(i, j)− T2(i, j)−K2(i, j). (3.36)

where K1, K2, T2, T1 now describe a partition that minimizes C(i, j). Since the

support of a set V1 is s.t. w(V1) = S(V1) + w(T1) we also know about the size of

the support of V1 and analogue for V2.

The key problem for finding maximal partitions efficiently is to find a way to

compute C(i, j) from the entries for A,K1, K2, T1, T2 at (i−1, j) and (i−1, j−ci).
We do already know how K1, K2, T1 and T2 evolve when adding a vertex vm−i+1.

Hence we can identify whether the path from (i−1, j) or from (i−1, j− ci) leads

to a better partition w.r.t to C(i, j). One problem, however, is that it not known

101

whether it is possible that a partition at (i − 1, j) or (i − 1, j − ci) leads to an

optimal partition at (i, j) while not being optimal for C(i−1, j) or C(i−1, j−ci)
respectively.

To see this more clearly consider a partition for A(i, j) that maximizes C(i, j).

Now the vertex for row i, i.e. vm−i+1, is either in V2 or V1. Now if vm−i+1 ∈ V2 for

this partition, then the partition V ′2 = V2 \ {vm−i+1}, V ′1 = V \ V ′2 is a partition

that leads to a path to A(i− 1, j − ci). There is no proof yet that this partition

V ′2 , V
′
1 maximizes C(i − 1, j − ci). If this is not the case, then a path leading

to a maximal partition for (i, j) passing through (i − 1, j − ci) can be different

from the optimal path to entry (i − 1, j − ci). This has dramatic consequences,

as we cannot build our solution path row by row but would have to reconsider

all possible paths to an entry. Let us illustrate this with an example in table 3.3

and 3.13. Table 3.14 shows some partitions represented by paths that lead to

entry A(5, 4). These three partitions from 3.14 V ′2 = {v3, v6}, V ′′2 = {v3, v4, v5}
and V ′′′3 = {v3, v4, v7}. If we assume that the penalty term w(e) = 1, then the

minimum hu for these partitions is

hu(V \ V ′2 , V ′2) = max

{
max

vi∈V \V ′2
{c(vi)},max

vi∈V ′2
{c(vi) + w(e)}

}
= 7 (3.37)

for V ′2 , while V ′′2 and V ′′′2 have hu(V \ V ′′2 , V ′′2) = hu(V \ V ′′′2 , V
′′′
2) = 8. Evidently

V ′2 is also a maximal partition and hence a solution for the example. The key

problem, however, is to distinguish the partition V ′2 already at entry A(4, 3) as the

number of possible partitions grows exponentially and we seek a way to compute

C(i, j) efficiently. At entry A(4, 3) we have already three possible partitions, i.e.

V ′2 \ v3, V
′′
2 \ v3 and V ′′′2 \ v3. At this point we should already be able to make

a choice which partition can lead to maximal partitions at later entries such as

A(5, 4). Currently, we only have the maximization criteria C(i, j) to evaluate

partitions which does not necessarily lead to future optimal partitions as we add

102

V v2 v3 v4 v5 v6 v7

ρi 6 5 4 3 2 1

λ(ei) 7 6 6 4 5 2

w(ei) 1 1 2 1 3 1

c(vi) 7 7 8 8 10 10

Table 3.3: Another example of vertices.

vertices. For the case in the example, using the maximization criteria also leads

to V ′2 \ v3 being the optimal partition for A(4, 3), but this need not be the case

in general.

Figure 3.13: The dynamic programming table for the example from table 3.3.

Assuming we solve the previously mentioned issue, i.e. we can compute the

best partition based on the previous partitions efficiently, the results on how k1, k2

change upon addition or removal of vertices can be used for an attempt to find

general solutions. For a set of vertices V1 we have that w(V1) = w(T1) + S(V1)

and hence we can chose to either keep track of the support S1(i, j) or the tail

T1(i, j) as each can be computed from A(i, j) and the other. For the following

we choose to compute S1(i, j) explicitly. The entries for table C(i, j) are also

implicitly known through A(i, j), w(V), S1(i, j), S2(i, j), K1(i, j) and K2(i, j).

It is clearly visible in the pseudo-code from 4 at which point we assume that we

have a criteria for the evaluation of partitions at (i− 1, j) and (i, j) which allows

103

if ci > j then

[K1(i, j), S1(i, j)]← [K1(i− 1, j), S1(i− 1, j)]

[K2(i, j), S2(i, j)]← [K2(i− 1, j), S2(i− 1, j)]

else

if A(i− 1, j − ci) + ci = A(i, j) then

if a− ρ2 < K1(i− 1, j − ci)− S(i− 1, j − ci) + ci then

K1(i, j)← max{kqi |kqi < K1(i− 1, j − ci)− S(i− 1, j − ci)}
S1(i, j)← w(Bi≤K1(i,j))

else

K1(i, j)← K1(i− 1, j − ci)
S1(i, j)← S1(i− 1, j − ci)− ci

if a− ρi < K2(i− 1, j − ci)− S(i− 1, j − ci) then

K2(i, j)← a− ρi
S2(i, j)← ci

else

K2(i, j)← K2(i− 1, j − ci)
S2(i, j)← S2(i− 1, j − ci) + ci

if A(i−1, j) = A(i, j) and partition at (i−1, j) better than at (i, j) then

[K1(i, j), S1(i, j)]← [K1(i− 1, j), S1(i− 1, j)]

[K2(i, j), S2(i, j)]← [K2(i− 1, j), S2(i− 1, j)]

else

[K1(i, j), S1(i, j)]← [K1(i− 1, j), S1(i− 1, j)]

[K2(i, j), S2(i, j)]← [K2(i− 1, j), S2(i− 1, j)]

return K2(i, j)

Algorithm 4: Compute table entries at(i, j)

104

Figure 3.14: Possible partitions resulting from the dynamic programming table

for the example from 3.3. A partition is represented by a sequence of arrows

where a diagonal arrow means that the vertex of the row to which the arrow is

pointing is in V2 while a horizontal arrow indicates that the vertex is in V1.

us to compute future partitions maximizing C(i, j). One could use the current

value of the maximization C(i, j) as a heuristic. It is not clear whether C(i, j)

actually satisfies the aforementioned assumptions, so it is not guaranteed that a

maximal partition is found. Another minor detail in the algorithm is that the

assignment of the vertex in the last row v2 may lead to K2 increasing and needs

to be dealt with separately in practical implementations. One way around this,

however, is to adopt a different perspective on the problem than before. It was

useful to consider vertices to be added to V2 and removed from V1 when searching

for full and balanced partitions, but for the general case another variant seems

more elegant. Instead of V we consider a subset of vertices V i = {vm, . . . , vm−i+1}
to be partitioned into V i

1 , V
i
2 at entry A(i, j). The pseudo-code from 5 shows how

the formulas change when we take this approach that consider V i := {vm, . . . , vi}
to be partitioned into V i

1 , V
i
2 at entry A(i, j). This means when going to A(i+1, j)

we either add vi to V i
1 or to V i

2 which leads to similar formulas for both of these

sets and resolves the details for assigning v2. A solution to the problem can now

be found only in the last row m− 1 of the dynamic programming table, namely

in column j with C(m− 1, j) maximal.

105

if ci > j then

[K1(i, j), S1(i, j)]← [K1(i− 1, j), S1(i− 1, j)]

[K2(i, j), S2(i, j)]← [K2(i− 1, j), S2(i− 1, j)]

else

if A(i− 1, j − ci) + ci = A(i, j) then

if a− ρi < K2(i− 1, j − ci)− S(i− 1, j − ci) then

K2(i, j)← a− ρi, S2(i, j)← ci

else

K2(i, j)← K2(i− 1, j − ci)
S2(i, j)← S2(i− 1, j − ci) + ci

[K1(i, j), S1(i, j)]← [K1(i− 1, j − ci), S1(i− 1, j − ci)]
if A(i− 1, j) = A(i, j) then

Compare partitions when coming from A(i− 1, j) with A(i− 1, j − ci)
if A(i− 1, j) leads to a better partition then

if a− ρi < K1(i− 1, j)− S(i− 1, j) then

K1(i, j)← a− ρi, S1(i, j)← ci

else

K1(i, j)← K1(i− 1, j), S1(i, j)← S1(i− 1, j) + ci

[K2(i, j), S2(i, j)]← [K2(i− 1, j), S2(i− 1, j)]

else

if a− ρi < K1(i− 1, j)− S(i− 1, j) then

K1(i, j)← a− ρi, S1(i, j)← ci

else

K1(i, j)← K1(i− 1, j − ci), S1(i, j)← S1(i− 1, j − ci) + ci

[K2(i, j), S2(i, j)]← [K2(i− 1, j), S2(i− 1, j)]

return K2(i, j)

Algorithm 5: Compute table entries at(i, j)

106

3.7.4 Discussion and Conclusion

We presented a new approach for finding strategies for Graph-Clear in a tree

which requires solving a partitioning problem. We presented criteria for optimal

partitions and based on these we presented an algorithm that computes optimal

partitions given that a full and balanced partition exist. We also presented an ap-

proach that can compute maximal partitions, but whose complexity depends on

whether one can find a method to evaluate partitions at an entry (i, j) for their

potential to maximize later entries in the dynamic programming table. Even

without resolving this problem the algorithm always returns better strategies on

trees than the algorithm from Section 3.5 since in the worst case it degrades to

either the contiguous or non-contiguous variant. On the other hand, in a realis-

tic applications of Graph-Clear a reduction by a few robots is already significant

decrease in costs and therefore an optimal solution for the partitioning is of inter-

est. Furthermore, from a graph-theoretical perspective the investigation whether

optimal solutions for general strategies on trees exist motivates further analysis

of the hybrid method in combination with the optimal contiguous algorithm from

Section 3.6. For all practical purposes, however, we believe the current progress

for finding Graph-Clear strategies already gives a good basis for using it in appli-

cations. Therefore, we shall conclude the investigation of deterministic strategies

and extend Graph-Clear to accommodate probabilistic sensor failure models in

the next section.

3.8 Probabilistic Graph-Clear

This section introduces a probabilistic extension for Graph-Clear to accommodate

uncertainty in sensing. Sensors are described with a footprint and a false negative

107

probability, i.e. the probability of failing to report a target within their sensing

range. This extension leads to a new algorithm that allows to answer new design

and performance questions, namely 1) how many robots are needed to obtain a

certain confidence that the environment is free from intruders, and 2) given a

certain number of robots, how should they coordinate their actions to minimize

their failure rate.

One of the limits of our previous study has been the deterministic assumption.

To be precise, in the previous sections we have assumed an error-free sensing

process. In fact, it was hypothesized that whenever an intruder was within the

sensing range of a robot its presence was always reported. In practice, however,

no sensor is error-free. Hence, we extend our previous deterministic formulation

to include possibly faulty sensors. In particular, we here account for sensors that

may give false negatives, i.e. with a certain known probability they may report

that no intruder is within their sensing range even if there is one or more. The

use of robots equipped with these faulty sensors naturally leads to a number of

design and performance questions, like for example the following:

• if after having cleared an environment the robot team reports that no in-

truders were found, what is the probability that instead n intruders (with

n being a positive natural number) successfully managed to remain unde-

tected due to errors in the sensing process?

• given r robots, what is the clearing strategy that minimizes the probability

that one or more intruders remain undetected?

• given a certain environment and a target probability p, how many robots

are needed in order to be sure that if the team reports no detection, then

with probability at least p there are indeed no intruders in the environment?

108

The main contribution of this section is twofold. First, the deterministic

model is extended into a probabilistic one in order to account for faulty sensors.

This modification entails a number of updates in the model components that

are fully worked out in this dissertation. Moreover, an appropriate model for

faulty sensors is presented. Secondly, in the light of the new model, one of the

algorithms we formerly developed for the deterministic case is extended in order

to answer the above questions.

3.8.1 Probabilistic Model

In order to extend the Graph-Clear formalism from a deterministic to a proba-

bilistic scenario, various concepts need to be accordingly updated or introduced.

Before getting into the details we clarify one important point concerning the re-

mainder of the discussion. From now on we concentrate on the case of robots not

reporting intruders. We hereby assume that when a robot reports an intruder

this event is separately handled, e.g. a human operator is dispatched, a tracking

behavior is triggered or the like. Also, while we assumed the possibility of false

negatives, we do not assume false positives, i.e. an intruder is detected only when

it is really present. For this reason the event intruder detected never occurs in the

discussion. Our interest in this paper is in drawing conclusions upon a sequence

of negative observations reported by the robots.

3.8.1.1 Worst case adversary

As previously mentioned, the deterministic Graph-Clear framework has been for-

mulated under a worst case scenario. More precisely, in the deterministic scenario

this hypothesis implies targets moving with unbounded speed and with complete

knowledge of the environment and of the actions of all robots. Hence, when-

109

ever a strategy leaves room for recontamination, it will certainly happen. To

maintain this idea, the worst case adversary has to be differently defined when

faulty sensors are used. In the probabilistic scenario the worst case adversary

still has complete knowledge of the robots’ positions, as well as of their sensors

error rates. Each of the intruders will try to maintain their undiscovered status

by crossing blocks or sweeps where the highest error rate occurs. As anticipated,

these crossing events must occur, since ultimately all elements in the graph will

be swept or blocked. This concept will be clearer after the probabilistic sensor

model will be formally specified.

3.8.1.2 Environment

A probabilistic surveillance graph is similar to a deterministic surveillance graph,

with the important difference that instead of w : V ∪ E → N+ we introduce

w : V ∪ E → F , where the set F is defined as follows:

F := { f | f : N→ [0, 1], f(0) = 1,∀r, r′ ∈ N r ≥ r′

⇒ f(r) ≤ f(r′)}.

That is, in the probabilistic case each graph element is not associated with a

constant cost, but rather with a monotonically decreasing function mapping the

natural numbers to the interval [0, 1]. Throughout the paper, with a slight abuse

of notation, we will write wx(r) for w(x)(r) for some x ∈ V ∪ E and r ∈ N.

Also, in order to ease the discussion, whenever we write x we mean either a

vertex or an edge. What was previously understood as the weight, namely the

number of robots needed for a block or sweep, now becomes a function defining

the probability of a false negative (i.e. no intruder reported even if there was at

least one passing through the sensor footprint during the block or sweep) while

110

executing a block or a sweep using a certain number of robots. According to the

intuition, for every x, wx(0) = 1, i.e. if no robot is used then the probability

of not reporting any intruder is always 1. Using more robots hence leads to an

improvement in the detection capabilities.

3.8.1.3 Probabilistic Actions and Probabilistic Strategies

As a consequence of the new definition of w, the notion of a strategy also needs

to be extended. While it was formerly defined as a sequence of actions which

essentially determines which block and sweep operations are executed at which

time step, a probabilistic strategy now describes the number of robots allocated

to a each sweep or block of an action.

Definition 23 (Probabilistic action) The probabilistic action set of a prob-

abilistic surveillance graph G is Nn+m where each element a = {a1, . . . , an+m}
(called probabilistic action) has an associated cost c(a) =

∑n+m
i=1 ai.

The reader should observe the fundamental difference with the deterministic case,

where actions are elements of {0, 1}n+m. In the deterministic scenario a block or

a sweep is either executed or not. In the probabilistic case these operations are

instead executed using a certain number of robots. Also, due to the way the set

F was defined, we relax the explicit requirement that edge blocks are executed

concurrently to vertex sweeps. With the new definition of probabilistic action, if

these blocks are not executed than the corresponding function yields a probability

of non detection equal to 1, rendering such a strategy useless. The functions wx

are the essential probabilistic element in the graph G.

111

3.8.1.4 Undetected intruders and false negatives

We describe the number of undetected intruders in the environment with the

discrete random variable T , and we write p(T = i), i ∈ N, for its mass distri-

bution. For each edge or vertex x we will write px(N |t, r) for wx(r), i.e. the

probability of a false negative. A negative observation is written as N and the

event of a target crossing is written as t. The number of robots that are executing

the corresponding sweep or block operation on x is given by r. For notational

convenience we will drop the r and write px(N |t) assuming that there is a set

number of robots. Keeping in mind that each x is blocked or swept once during

the execution of a fixed strategy S, let N̄ denote a sequence consisting of only

negative observations during the execution of S. We are interested in studying

the following probability, that is here written using Bayes rule:

p(T = i|N̄) =
p(N̄ |T = i) · p(T = i)

p(N̄)
(3.38)

where for a fixed strategy p(N̄) is a normalization constant. Now, p(T = i)

is simply the prior target distribution of the number of targets, and the most

important part is p(N̄ |T = i) which we intend to relate to wx. It is in this term

that the smart target assumptions has significant consequences. We restrict the

collection of observations to robots engaged in a sweep or a block. Recall that an

undetected target after the entire strategy is executed must have crossed either

through a block or been in a vertex during a sweep. The undetected target then

crosses from the contaminated part to the cleared part at some x. An individual

smart target will choose its crossing point x so that px(N |t) is largest. A smart

group of i targets acting in a cooperative way will each choose an x s.t. p(N̄ |T = i)

is maximized. This is an important distinction since the probability for detections

may be different for sensors that are more sensitive when multiple targets cross

at once. In the general case, for each x we should then specify px(N |Tc = i),

112

i.e. the probability of a negative observation given that i targets cross x during

its block or sweep. Notice that Tc is not T but a random variable associated

to x describing the number of targets crossing. However, it is not practical to

specify px(N |Tc = i) for all i and doing so also leads to more complications. It

may be the case that i targets in the environment achieve the lowest likelihood

of detection if split into i1 + i2 = i with some crossing on x1 ∈ G and some on

x2 6= x1 ∈ G if px(N |Tc = i) < px1(N |Tc = i1) · px2(N |Tc = i2),∀x ∈ G. For

simplicity we prefer to describe the sensing in terms of px(N |t) = px(N |Tc =

1). Therefore we assume that all targets crossing an element x are detected

independently. This assumption leads to px(N |Tc = i) = px(N |t)i. In this case

a group of smart targets would all choose to cross at the same x with px(N |t)
largest, but not necessarily at the same time. Alternatively, we could have chosen

e.g. px(N |Tc = i) = px(N |t),∀i, then a group of smart targets will all choose to

cross at x with px(N |t) = px(N |Tc = 1) largest and they will choose to cross at

once. This choice has different implications and the choice should ideally coincide

with the actual sensor properties. To summarize, all this taken together we now

get that p(N̄ |T = i) = pxmax(N |t)i where xmax = argmaxx∈G{px(N |t)} from

the assumption that targets are detected independently, choose the worst case

path and have complete knowledge about actions of the robot team. Before we

proceed with an algorithm that computes probabilistic strategies let us shortly

discuss how to obtain px, or equivalently wx, from basic sensing on the grid.

3.8.2 Modeling faulty sensors

The actual sensors of the robot team are described by their footprint, i.e. their

coverage of part of the grid g representing the environment, and their probability

for misses which may differ for each cell the sensor covers. They produce obser-

113

vations in discrete time intervals and may at any given interval either return a

positive observation, i.e. a flagged target detection or a negative observation, i.e.

no target detection. Fig. 3.15 shows an example of a sensor placed in a grid and

shows its coverage. In general, the sensor may have any number of cells covered

and any probability associated with any cell, so there is no restriction on the type

of sensor except that its covered area is discretized on a grid.

Figure 3.15: A grid with a sensor placed in its center as a black circle and with

the cells observed by the sensor in grey. A darker grey tone denotes a smaller

false negative probability.

From the sensing probabilities on individual cells, we need to obtain proba-

bilities for the blocks and sweeps. The details on how to execute these actions,

however, are only given when they are actually implemented in a specific appli-

cation. In the deterministic model the requirement for the implementations on a

block are that it has to guarantee that an intruder attempting to cross the block

will be detected. In the probabilistic scenario we can modify this into having

the intruder cross through at least one grid cell covered by a sensor so that the

probability of detecting it is non-zero. The main difference, however, is that we

can increase the probability of detecting the intruder if we utilize more robots

than the minimum necessary, hence the monotonically decreasing trend for the

function wx for x ∈ G. Given that we assumed worst case targets, we assume

114

that a target chooses the path with the smallest probability of being detected.

The probability for a miss on the edge will then become the probability of a miss

of a target on this path. Fig. 3.16 shows two robots blocking a hallway and the

worst case target path as well as four robots blocking and leading to a higher

probability of detecting the target.

For an edge e let Ct = {g1, . . . , gnp} be a set of grid cells that are covered by

the sensors of the block on e and that are traversed by the target on its worst case

path through the block. Now the probability of a miss on the block of e becomes

pe(N |t) = Π
np

i=1pgi
(N |t), where pgi

(N |t) is the probability of a miss on grid cell gi.

Hence a target can only pass undetected if it is undetected on each cell. Note that

the equation assumes independence in the detections. Here pgi
(N |t) is given by

pgi
(N |t) = Π

ngi
j=1psj

where {s1, . . . , sngi
} are the ngi

sensors covering cell gi. One

may increase the probability of detecting the target by increasing the number

of robots for the block action. This may not always be possible, depending on

the constraints of the environment. We may e.g. not be able to add additional

robots to a block due lack of space or we may need many more robots to yield

an improvement. The latter case is seen in fig. 3.17. This is the motivation

for having wx as a general function that is only required to be monotonically

decreasing and starting at wx(0) = 1 and otherwise unrestricted, since it can

then also capture the above cases.

An analogue case can be made for a sweeping routine, even though its deriva-

tion is slightly more tedious to describe and hereby omitted. Either way, we

assume a sweep routine also gives a final wx, i.e. in this case the probability that

a negative observation is made when targets are present in the corresponding

vertex vi and r robots are used.

115

Figure 3.16: An illustration of the computation of detection probabilities for

blocks through the worst case path a target can take through a block.

3.8.3 Probabilistic Extensions to Graph-Clear

In this part the label-based algorithm from Section 3.5 is extended to a variant

that considers the probabilistic nature of the sensors. We focus on the conser-

vative scenario with worst case adversarial targets and the model introduced in

the previous section. Recall that for each edge and vertex we are given a mono-

tonically decreasing function wx : N → [0, 1], which gives us a miss probability

px(N |t, r) when using r robots for the block or sweep on x. In the light of the

model just developed, the last two questions raised in the introduction can then

be reformulated as follows:

1. Given a desired p(T = 0|N̄) ∈ [0, 1] how many robots are needed?

2. Given r robots what is the strategy producing the highest p(T = 0|N̄)?

Recall the computation in the deterministic algorithm for Graph-Clear of a

label λvx(e) on an edge e = [vx, vy]. The label λvx(e) is the number of robots

needed to clear all vertices beyond e when coming from vx towards vy. At this

point we are considering the neighboring vertices v1, . . . , vm of vy different from

vx and compute λvx(e) = max{s(vy),maxi=1,...,m{c(vi)}}.

116

Figure 3.17: The basic block in this figure only needs one robot, while the first

reinforcement leading to an improvement in the detection capability needs two

additional robots. In order to get this fact the reader should consider that in-

truders may also move diagonally on the grid.

For the probabilistic variant we can employ a similar reasoning, except that

we now need to get a function λevx
(r) instead of just a label, analogue to having

a function wx instead of just a constant weight on a vertex or edge. λevx
(r) will

return the probability of failing to report one or more targets for all clearing

steps when moving from vx towards vy and clearing all neighboring subtrees with

r robots. Due to the assumption about target movement the overall probability

for a miss will be the maximum of all probabilities of misses during any of the

steps. Let us illustrate how to construct λevx
(r). For each wx we have a minimum

number of robots required to get a miss probability of less than 1. Formally we

have for each x ∈ G a rmin,wx with

rmin,wx = min{r ∈ N | wx(r) < 1}.

Using this rmin,wx as the deterministic weight w(x) on each x ∈ G for the deter-

ministic Graph-Clear algorithm we can compute λvx(e) as before using equation

3.10. Now, obviously λevx
(r) = 1,∀r < λvx(e), i.e. if we use less robots than

117

λvx(e) we have at least one block or sweep that does not have sufficiently many

robots, and the miss probability will be 1.

Let us now describe the procedure that computes λevx
(r). We will consider

Fvx,e := {λe1vy
, . . . , λem

vy
, we1 , . . . , wem , wvy}

a set of functions instead of fixed weights and labels, the key difference to the

deterministic case. For each of these f ∈ F we will have an auxiliary term

rf which denotes the current argument for f , i.e. how many robots are allo-

cated to the respective edge for blocking the subtree or for clearing it. Also,

let deterministic contiguous label(G, vx, e) be a function that computes the de-

terministic label λvx(e) on G using the current rf . Hence, it computes λvx(e)

according to equation 3.10 but with w(ei) = rwei
and similarly for λvy(ei) = rλei

vy
.

Intuitively, this computes the current cost for clearing the subtree rooted at vy

given a certain cost assignment for each f .

Algorithms 6 and 7 shows the entire procedure to compute λevx
(r). Algorithm

6 can be used to compute all label functions by first considering all leaves and

then moving upwards through the tree and process all non-leaves that have all

neighbors but one with label functions already computed. This part of the pro-

cedure identical to the computation of deterministic labels on a tree. Algorithm

7 shows this in detail. Its complexity is O(e · B · d2 · log(d)). Here e = |E|, B
is a bound given as input and d is the maximum vertex degree. The complexity

results from line 14 in algorithm 7 which is itself O(d log(d)) and executed within

the while loop O(d · B) times. Finally, algorithm 7 is called O(e) times in the

queuing in algorithm 7.

To illustrate the algorithm let us consider two examples. First, let vy be a leaf.

In this case Fvx,e = {wvy} and λevx
(r) = wvy(r). Secondly, consider the slightly

more complicated example in fig. 3.18. All λei
vy

are available since v1, v2, v3 are

118

1: Set all label functions to 0 and initialize empty queue O

2: O.enqueue(leaves(G))

3: while not O.empty() do

4: vy ← O.dequeue()

5: Compute lambda function(vx, vy, B)

6: a← number of neighbors of vx s.t. λ
[vx,v]
vx is computed

7: if a = degree(vx)− 1 then

8: O.enqueue(vx)

9: else if a = degree(vx) then

10: for all v ∈ neighbors(vx) s.t. λ
[v,vx]
v not computed do

11: O.enqueue(vx)

Algorithm 6: Compute all lambda functions(T,B)

just leaves. The algorithm then computes λevx
(r) by first trying the smallest

possible values rf,min for each function involved and then allocates additional

robots to those functions that determine the overall maximum to reduce the

probability that a target can cross undetected until the overall cost is larger than

allowed. The necessity for checking whether we can improve the functions that

determine the maximum is that the maximum cost during the clearing may occur

when clearing v1, v2, v3 or vy, since each vertex is cleared at a different step in

the strategy. Let us assume the maximum cost that determines the deterministic

label occurs when clearing vertex v2. The function that determines the maximum

for the probability of letting a target through may, however, be wv3 . If we use

less robots than the maximum cost at v2 while clearing v3 then we could try to

use more to decrease wv3(rwv3
) without increasing the overall number of robots

needed as long as it is still below what we need during the clearing step for v2.

119

1: if degree(vy) == 1 then

2: λevx
← wvy

3: else

4: Locate all neighbors v1, . . . , vm and create Fvx,e.

5: Initialize rf to rf,min for all f ∈ F
6: deterministic contiguous label(vx, e)

7: Set λevx
(r) = 1,∀r < λvx(e)

8: for r ← λvx(e) to B do

9: repeatable← true

10: while repeatable do

11: fmax ← argmaxf∈Fvx,ef(rf)

12: addbots← argmini∈N(fmax(rfmax + i) < fmax(rfmax))

13: rfmax ← rfmax + addbots

14: deterministic contiguous label(vx, e)

15: if λvx(e) > r then

16: rfmax ← rfmax − addbots
17: repeatable← false

18: λevx
(r)← fmax(rfmax)

Algorithm 7: Compute lambda function(vx, vy, B)

120

vx

vy

v3 v1v2

wvy
we1

λv1

we2
λv2

we3
λv3 r

we1(r)

1

1 2 3 ...

λv1(r)

rmin,e1 rmin,e1

ey ey ey

ey

Figure 3.18: An example of algorithm 7

Once all lambda functions are computed up to using B robots, both questions

we formulated can be answered. For each possible starting vertex v ∈ G we

can compute a probabilistic strategy by only considering the lambda functions

computed for the neighbors. To determine the number of robots needed for a

certain p(T = 0) we set all auxiliary terms rf for the lambda functions, wv

and all wx on the edges of v s.t. each function achieves a value small enough

s.t. we get the desired P (T = 0) from equation 3.38 by having the appropriate

P (N̄ |T = i). Note that we may not obtain p(T = 0) exactly since the lambda

functions are discrete, but we get the next possible value smaller or equal. Finally,

to obtain the strategy we proceed exactly as for the deterministic variant utilizing

equation 3.11 to obtain the final cost for a strategy starting at v. Now we do this

for every starting vertex and select the best as a desired starting point and return

the needed number of robots. To determine the best p(T = 0) reachable with

a certain number of robots we simply compute the lambda function of a virtual

edge from a new vertex v to a vertex vi ∈ G. Fig. 3.19 illustrates this graphically.

This lambda function can now be read and the value for the available number

of robots can be determined. Doing this for every vi ∈ G and selecting the best

121

starting vertex yields the answer to our the last question.

v7 v6

v5 v4

v3

v1 v2

G

v

Figure 3.19: Adding a virtual edge to compute the cost of clearing G starting

from v3. The lambda function on the virtual edge, represented as a dotted line

will represent the probability of clearing everything beyond that edge.

3.8.4 Discussion and Conclusion

In this section we presented a probabilistic extension to the Graph-Clear formal-

ism we formerly introduced under deterministic assumptions. The probabilistic

extension allows to model faulty sensors that may return false negatives, i.e.

they may fail to detect an intruder crossing their sensing range. This failure rate

is characterized by a probability distribution that can be easily computed once

specific sensors are considered. The introduction of this function is the main

change to the deterministic model and entails a different concept of a solution

strategy for the problem at hand. Building upon this change in the model, a

formerly developed algorithm for the deterministic case has been extended to

answer performance and design questions introduced in the introduction. It is

worth outlining that while extending the formalism towards the probabilistic sce-

nario we have retained the hypothesis of worse case adversaries, i.e. intruders

122

that have complete knowledge of the environment, of the position of the robots

and of their error rates. The results presented in this dissertation have to be in-

terpreted accordingly, namely they describe the system performance when facing

the smartest possible set of intruders. The benefit of the probabilistic extension

is a more accurate reasoning about the inherent uncertainty in sensing and re-

flects the reality of robotic applications more accurately than the deterministic

approach. More work in this direction is envisioned and we could also consider

uncertainty in the robots motion when computing the miss rates for blocks and

sweeps, e.g. robots may with a small probability not execute a block accurately

due to faulty information about their location and give a target the opportunity

to pass through undetected.

3.9 Modified Graph-Clear: Sweeps Prevent Recontami-

nation

There is another extension that can be added to Graph-Clear, this time with

slightly less modifications than in Section 3.8. This modification presented here

mainly arises from consideration on Line-Clear in Chapter 4 and it will be used

therein.

Recall the discussion in Section 3.1 in which we compared weighted edge-

searching with Graph-Clear. One of the main differences highlighted was that

we relaxed the requirement for a vertex action, our vertex sweeps, so that it does

not need to prevent recontamination paths through the vertex. The reasoning

for this is to enable a broader range of algorithms to become implementations for

vertex sweeps. But in some applications it may well be that the sweeping imple-

mentation can additionally guarantee that no intruder crosses through the actual

123

vertex. This alleviates the need for the edge blocks of a vertex while the sweep

action is applied, since the vertex sweep would prevent recontamination. At first

sight this modification seems to lead to a problem more similar to edge-searching.

Yet, this is not the case since after the sweep it is still more economical to block

the edges instead of leaving all robots inside the vertex. And surprisingly, it

does not change the core ideas of the algorithms to compute strategies. Let us

now outline the proposed modification in more detail and show how the contigu-

ous label-based algorithm from Section 3.5 can be modified to accomodate the

modification.

First, it is useful to extend the weight function to have directional weights.

More precisely, if vertex sweeps prevent recontamination it can matter from which

direction the vertex is being swept since it can lead to different costs for avoiding

contamination during the sweep. We shall see examples of this in Chapter 4.

Notice that in a contiguous strategy on a tree all vertices, except the first, are

always entered from exactly one blocked edge while no other edges are blocked.

After the sweep all other edges are blocked while the first edge is not anymore.

Hence, we extend the weight function to describe a directional weight. Let us

redefine w : (V ×E)∪E → N and write w(vy, e) for the cost of clearing vy entering

from edge e. We also drop the requirement for the blocking while sweeping, but

instead assume that w(vy, e) ≥ w(e). Now for all vy that are leaves the label

definition changes to:

λvx(e) := w(vy, e) (3.39)

Once the labels towards leaves are computed we can consider vertices which are

not leaves but for which all edges, except one, have an outgoing label. More

precisely let vx, vy be neighbors and m = degree(vy) − 1. Write neighbors of vy

different from vx as v1, . . . , vm. When coming from vx the first step is always to

124

clear vy, since the strategy has to be contiguous and vx is assumed cleared. Then

vertices of the contaminated subtrees rooted at the neighbors v1, . . . , vm can be

cleared. To simplify matters we assume that once a subtree vi, i = 1, . . . ,m is

entered the robot team clears all its vertices, comes back and then clears another

subtree. Following this simple procedure the goal is now to clear the subtrees

in an order that is least costly. Write ei := [vy, vi]. It turns out that ordering

v1, . . . , vm s.t. ρi = λvy(ei) − w(ei) is descending and then clearing vm, . . . , v1 in

this order has minimum overall cost. The cost at step i is given by the cost of

clearing subtree vi and blocking all ei towards subtrees that are still contaminated.

Assuming that we order indices by ρi we can write this as:

c(vi) := λvy(ei) +
i−1∑
l=1

w(el). (3.40)

The new label for vx then becomes the maximum of clearing vy itself and the

maximum cost occurred while clearing any one of the subtrees.

λvx(e) = max{w(vy, e), max
i=1,...,m

{c(vi)}}. (3.41)

Given these definitions, computing all labels in a tree is straightforward. Once

these are computed the overall cost of clearing the tree when starting at vertex

v is determined by:

ag(v) = max{w(v), max
1≤i≤m

{λvei +
i∑
l=1

w(ei)}}, (3.42)

where now v1, . . . , vm are all neighbors of v, i.e. m = degree(v) and

w(v) := min
e∈Edges(v)

{w(v, e) + w(e)}. (3.43)

Since we redefined w we need this to denote the cost of clearing v coming from

no edge. It emulates blocking e and then clearing v from there while keeping it

blocked. Finding the best starting vertex leads to the best possible strategy that

125

clears each subtree in a depth-first manner. The key parts of the algorithm are

very similar to the one in Section 3.5. The other algorithms are expected to be

extendable in a similar manner. The only key difference to note is that when

clearing a vertex is a tree, one enters it exactly from one previously blocked edge,

apart from the very first vertex, and leaves blocks at all other edges after clearing

it. We shall see in Chapter 4 that this modification has practical relevance for

two dimensional pursuit-evasion scenarios.

3.10 Applying Strategies to Graphs

For most environments a surveillance graph of an environment in a realistic ap-

plication is usually a graph. Since the general problem on graphs is NP-hard, we

need to develop heuristics or approximations in order to obtain practical solu-

tions. One convenient method is to calculate the minimum spanning tree (MST)

on a graph and then block all edges s.t. only MST edges remain. Let us denote

all edges not belonging to the MST as cycle edges. The cycle edges would be

blocked throughout the execution of the strategy for the MST. Clearly, we can

do a lot better. Once the MST is computed we only need to block cycle edges

that connect a contaminated and a cleared vertex during the clearing process.

We shall call this approach dynamic cycle blocking and the former constant cy-

cle blocking. To quantify the improvement we carried out the following simple

experiments.

Random graphs with a given number of vertices and edges are created with

random weights in the range 1 to 12 for vertices and 1 to 6 for edges. Once the

graph is constructed we compute the MST and pick the root in the center of

the longest path in the tree and compute all labels into the direction of the root

vertex. The labels and the total weight of all cycle edges give the cost for the

126

Table 3.4: Reduction of the number of robots needed when using dynamic cycle

blocking expressed in terms of the percentage of the number of agents needed to

block all cycles at once.

Edges per vertex 1 1.5 3

20 Vertices 47.74% 41.69% 40.40%

30 Vertices 55.49% 45.09% 42.85%

40 Vertices 62.24% 47.00% 45.32%

constant cycle blocking. To determine the costs for the dynamic cycle blocking we

execute the strategy and add and remove cycle blocks as necessary. We defined 9

sets of parameters, 3 sets with 20 vertices with 20, 30 and 40 edges, 3 sets with 30

vertices with 30, 45, and 60 edges and 3 sets 40 vertices with 40, 60 and 80 edges.

For the experiments we constructed 1000 graphs for each set of parameters.

Figure 3.20 shows the number of robots needed for clearing the graph for each

set of parameters. It is apparent that the costs for constant cycle blocking are

considerably higher and that the difference between constant and dynamic cycle

blocking becomes greater when more edges are present. Table 3.10 shows what

percentage of the total costs for all cycle blocks we are saving when blocking cycles

dynamically. While these experiments are very limited in scope and validity they

still serve as a strong indicator that the dynamic cycle blocking can lead to a

significant improvement, in particular as the number of vertices grows.

Another approach for computing better strategies for graphs is found in

[HSK09] and [HKS08]. Therein an anytime algorithm that iteratively tries out

new spanning trees is given. In practice the algorithm will be terminate when

a strategy is required by the robot to start clearing. Their particular algorithm

127

1.0 1.2 1.4 1.6 1.8 2.0

40
60

80
10

0
12

0
14

0

Edges per vertex

A
ve

ra
ge

 n
um

be
r

of
 r

ob
ot

s
ne

ed
ed

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 vertices
30 vertices
40 vertices

Figure 3.20: Results of the experiments with 9 sets of parameters. The upper

lines for each number of vertices is always the cost for the constant cycle blocking

strategy and the lower for the dynamic cycle blocking strategy.

is concerned with edge-searching, but the idea of trying multiple spanning trees

extends trivially to Graph-Clear.

3.11 Discussion and Conclusion

In this paper we presented a novel theoretical framework to model surveillance

tasks performed by multiple robots with limited sensing capabilities. The ap-

proach we presented has two major advantages. First, it produces coordination

128

plans, called strategies, that abstract from low level sensing details. Limited

sensing capabilities of robots in the team are accounted for by assuming that

multiple robots are needed in order to perform the basic operations, i.e. blocking

a connection between two areas, or sweeping an area. Secondly, by formalizing it

into a well characterized graph optimization problem we were able to leverage a

significant amount of former graph-related literature and gain significant insights

into its computational structure. After having established the formal framework

and determined its computational complexity, we turned our attention to the

tractable case of trees. To make these algorithms useful in practice a conversion

of surveillance graphs into surveillance trees is discussed as well. We presented an

algorithm for the special case of trees and contiguous strategies that is optimal.

Contiguous strategies are more restricted, so in general one can expect strategies

that are not required to be contiguous to need less robots. The existence of a poly-

nomial algorithm capable of producing an optimal non-contiguous strategy for

trees is an open question. As progress towards this question we presented a hybrid

method in Section 3.7 that combines previous contiguous and non-contiguous la-

beling methods and produces non-contiguous strategies that in certain situations

can outperform contiguous strategies. This hybrid method, however, is based

on a dynamic programming approach and its complexity is pseudopolynomial

and it is not complete. This tradeoff therefore justifies the use of the optimal

algorithm for contiguous strategies presented in this paper with polynomial com-

plexity. Contiguous strategies are not only interesting from a mere theoretical

point of view. For example, in certain situations recontamination of a cleared

room should be avoided because it could be used to deploy infrastructures that

would be negatively impacted by intruders. Yet, it may be an interesting venue

for future work to consider a combination of the hybrid algorithm that uses the

optimal contiguous algorithm instead of the simpler label-based algorithm as a

129

basis. This may lead to the development of a pseudopolynomial but optimal

algorithm for non-contiguous strategies on trees.

We have defined Graph-Clear with the objective of minimizing the number

of robots needed to detect all intruders, but one could aim for the optimization

of different parameters. For example, if one considers the motion model of the

robots being used, then one could look for strategies that are fast to execute,

or minimize energy consumption, etc. Finally, one issue is the detailed imple-

mentation of sweep operations for a given class of robots and sensors and the

automated extraction of graphs from robot maps. We shall turn to both of these

problems in the remaining chapters of this dissertation.

130

CHAPTER 4

Line-Clear: Multi-Robot Pursuit-Evasion in 2d

In this chapter we introduce a novel multi-robot pursuit-evasion problem for two

dimensional environments. This problem can be seen as the natural extension of

visibility-based pursuit-evasion to sensors with limited range, since for both prob-

lems the environment, targets and robots are otherwise the same. Yet, to make

sense of the limited range our formalization differs quite significantly and the

algorithms bear little to no resemblance. This is expected, however, since our in-

terpretation of limited range, particularly by associating a cost to sensing on large

distances, changes the problem drastically. From another perspective, the Line-

Clear problem can be considered an analogue to Graph-Clear for two dimensional

environments. In fact, there is a practical relationship between Graph-Clear and

Line-Clear in as much as the former can be used to find solutions to the latter.

The development of Line-Clear started when carrying out the first experiments

with Graph-Clear on real robots, presented in Section 6.1. Therein only two

robots were available and it was desirable to have a frontier moving forward to

avoid having to block edges. This frontier became the concept of a sweep line.

Recall that in pursuit-evasion scenarios targets are generally assumed to be

worst-case adversaries and hence capable to exploit any weakness the robot team

may exhibit. Hence the robot team needs to restrict all possible target movements

until targets cannot possibly escape, which then guarantees a detection. In two

dimensional environments the fundamental ability a robot team needs for this is

131

to restrict target movement between obstacles. Hence, the key idea for Line-Clear

is to abstract the capabilities of the robot team to sensing on a line. This sensing

on a line presupposes that the robot team is capable of coordinating in order to

completely cover a line in the environment with its sensors. The actual footprint

of the sensors is not directly relevant. Only the cost in terms of the number of

robots needed to cover a line of a given length is needed.

It is important to note that the sensing on a line abstraction has serious

implications with respect to applicability and usefulness of the algorithm pre-

sented in this manuscript. In particular, it is suitable for limited sensing ranges,

i.e. when the range is shorter than most distances between disjoint obstacles.

With large sensing ranges a single robot could potentially cover the area of two

separate sweep lines, which our model does not take into consideration and it

would then compute a cost of at least two robots. But given a scenario in which

a single robot is generally not capable of covering multiple lines simultaneously,

the presented approach is viable.

We shall first proceed with the basic definitions of Line-Clear and then show

how to compute so called sweep schedules using Voronoi Diagrams and Graph-

Clear strategies. These sweep schedules are, however, not optimal in all cases

and hence not, in the strict sense, solutions to the Line-Clear problem. Yet,

it is a practical method to compute sweep schedule that in some cases will not

perform worse. It also serves as a good introduction to the problem of comput-

ing optimal sweep schedules for simply connected environment which we shall

address in Section 4.3 and Section 4.4. The question whether it is possible to

compute optimal sweep schedules is still open and we present an approach that

clearly shows at what part one could either prove NP-hardness or a property

that will guarantee polynomial complexity. For this we also focus on contiguous

132

and progressive sweep schedules. Many more open questions arise when consid-

ering non-contiguous or non-progressive sweep schedules. Another open question

is also whether recontamination can improve sweep schedules. Future work on

these questions may well use the relationship between Graph-Clear and Line-

Clear that we will encounter within this chapter. We shall also revisit Line-Clear

in Chapter 5 as a method to obtain surveillance graphs from an environment.

4.1 Line-Clear: Definitions

We assume that free space of the environment is given as a bounded and connected

set E ⊂ R2, endowed with the Euclidean metric ‖ · ‖. Obstacles are given as a

finite collection of convex sets C1, . . . , Cno ⊂ R2. We write C =
⋃no

i=1Ci for all

obstacles. Let δA be the boundary of set A. We further assume that δE ⊂ δC and

interior(E) ∩ interior(C) = ∅, i.e. E is bounded by obstacles. The environment

E is possibly multiply connected from a topological point of view.

It should be noted that many non-convex sets can be represented as the

union of multiple convex sets, therefore our assumptions about the shape of the

obstacles are not too demanding. Only obstacles with a boundary that is a non-

convex and non-linear curve cannot be represented in this manner. In this case a

finite union of convex obstacles can only be an approximation. Fig. 4.1 illustrates

a typical environment considered in this paper, where free space is white and

obstacles are gray. Nonetheless, the convexity requirement is consistent with

the literature on Voronoi Diagrams and the Generalized Voronoi Graph [CB94]

and causes no problems in practice, in particular since robot generated maps

are themselves often discretized approximations. We now introduce a formal

definition of sweep lines and further definitions to compose them to sweep E .

133

Definition 24 (Sweep line) A sweep line l is an ordered set of n > 1 points

in R2 written l = [x1, . . . , xn] with x1 ∈ δCi and xn ∈ δCj for some j 6= i.

Furthermore none of the line segments [xk, xk+1], 1 ≤ k < n intersects interior(C)

nor with each other within interior(E)1. S(n) denotes the set of all sweep lines

with n points. Additionally let a simple sweep line be a sweep line that satisfies

xk ∈ interior(E), 1 < k < n.

The above definition is both formal and operative, i.e. a sweep line is in-

troduced as a finite collection of concatenated segments, and therefore it can be

easily represented by the sets of its endpoints. The reader should note that it is

convenient to allow (non simple) sweep lines to have middle points on obstacles

in order to have a sweep line that can then be split into two sweep lines (see for

example sweep line a in Fig. 4.1). A sweep line [x1, x2, x3] can then be split into

two sweep lines [x1, x2] and [x2, x3] if x2 is on an obstacle. The latter two sweep

lines cover the same points as the first. Hence, for the purpose of removing con-

tamination these can be considered identical. To make this precise we now define

point sets for a set of sweep lines which follow naturally from the interpretation

of sweep lines as chains of line segments. This is then used to define equivalence

of sweep lines.

Definition 25 (Sets of sweep lines and point sets) Define S =
⋃∞
i=2 S(i)

to be the set of all sweep lines, and let S ⊂ S be a set of sweep lines. For

l ∈ S, let n(l) be the number of points of l ∈ S. Then we define,

P̄ (S) =
⋃
l∈S

n(l)−1⋃
i=1

[xi, xi+1]

as the point set of S.

1Intersections of line segments are allowed only on δC.

134

a b

invalid

invalid

invalid

c

Figure 4.1: Examples of points that are valid sweep lines a), b) and c). The

remaining lines are invalid and not sweep lines.

In plain words, P̄ (S) is the set of points covered by sweep lines in S. This

simple definition is needed in order to establish equivalence between sweep lines

and sets of sweep lines.

Definition 26 (Equivalent sweep lines) Two sweep lines l1, l2 ∈ S are equiv-

alent if P̄ ({l1}) = P̄ ({l2}). Similarly, two sets of sweep lines S, S ′ are equivalent

if P̄ (S) = P̄ (S ′).

From now on we consider two equivalent sweep lines equal. The next definition

introduces the concept of time by moving the points of a sweep line continuously.

Such moving sweep lines will become the basis of sweep schedules.

Definition 27 (Moving sweep line) A moving sweep line is a function l :

R+ → S(n), i.e. l(t) = [x1(t), . . . , xn(t)] such that xi(t) is continuous ∀i ∈
{1, . . . , n}.

Next, we introduce the concept of sweep schedule, i.e. a set of moving sweep

lines whose cardinality can grow or shrink at given points in time.

135

Definition 28 (Sweep schedule) A sweep schedule is a function τ : [0, T] →
P(S), where P(S) is the power set of S, T ∈ R+ and |τ(t)| is finite ∀t ∈ [0, T].

Additionally, we require that at time t:

1. τ(t) = {l1(t), . . . , ls(t)(t)}, where s(t) ∈ N+ and each li(t) is a moving sweep

line.

2. for every li(t) there ∃ ts, te with ts ≤ t < te s.t.

(a) li(t
′) ∈ τ(t′), ∀t′ ∈ [ts, te)

(b) ∃ δ > 0 s.t. li(t
′) /∈ τ(t′), ∀t′ ∈ [ts − δ, ts) ∪ [te, te + δ]

The second part of the definition of a sweep schedule may not seem necessary

at first. It essentially requires a sweep schedule to be a set of moving sweep lines

with each moving sweep line first appearing at time ts and not being present

anymore at te. Without this addition it would be possible to construct a sweep

schedule τ such that at some time t1 we have τ(t1) = {l1} and τ(t1 + ε) =

{l1, l2}, ∀ε ∈ R+\{0}. This means that l2 does not appear at any time t but in the

limit of ε→ 0, which is not desirable nor useful for clearing contamination. The

additional requirement also allows us to immediately describe an sweep schedule

as moving sweep lines and let it be continuous. The alternative would be to

use continuity and optimality, as defined below, to show that there always exists

an optimal sweep schedule that is continuous and then show that all continuous

sweep schedules can be written in terms of appearing and disappearing moving

sweep lines. This may be desirable from a theoretical standpoint and leads to

a cleaner definition of sweep schedules, but it serves no practical purpose for

the robotic application. Hence we impose the restriction rather than deriving

it and can directly create sweep schedules from sets of moving sweep lines by

simply stating when a new sweep line is added and when existing sweep lines are

136

removed. Next, we define continuity of a sweep schedule from a topological point

of view.

Definition 29 (Continuity of sweep schedules) A sweep schedule τ : [0, T]→
P(S) is continuous if the composite map P ◦ τ : [0, T]→ P(E)2 satisfies the fol-

lowing condition: ∀t ∈ [0, T] and any neighborhood3 N of P̄ (τ(t)) in E, there

exists a neighborhood U of t such that ∀t′ ∈ U P̄ (τ(t′)) ⊆ N .

Having formally defined sweep lines and sweep schedules, we can now connect

back to our original problem setting. Given that we are interested in robots with

restricted sensing capabilities, it is evident that if a sweep line represents a moving

sensor arrangement, a certain number of robots will be needed to implement it.

The next definition models this number as the cost to implement a sweep line.

Definition 30 (Cost of sweep lines) To each sweep line l = [x1, . . . , xn] ∈
S we associate a cost c(l) defined as

∑n−1
i=1 R(‖xi − xi+1‖). Here R is a non-

decreasing function R : R+
0 → N+ with R(0) = 0 which determines the number of

robots needed to cover a segment of a particular length. For a finite set of sweep

lines S we define the cost c(S) as the sum of the costs of all sweep lines in S.

For a sweep schedule τ define the cost c(τ) = maxt∈[0,T]{c(τ(t))}.

The definition of c(τ) outlines that the cost of a sweep schedule is defined

in a worst case scenario, i.e. it is the minimum number of robots needed in

order to implement it. An alternative definition for the cost could be calt(l) =

R(
∑n−1

i=1 ‖xi − xi+1‖) which can generally lead to a lower cost for sweep lines

that have midpoints. In colloquial terms, the definition of cost for calt makes

2Notice that the power set of E is much larger than the range of P ◦ τ since |τ(t)| is finite
and is chosen for notational convenience.

3neighborhoods are open sets

137

sense only if sensors can sense across multiple straight line segments up until

a certain distance, such as omnidirectional sensors or generally sensors with a

large field of view. In contrast, a sensor that can only sense on a straight line,

such as a single laser, cannot cover any two adjacent line segments if they are

not collinear. Even though the difference seems small at first, the choice of

cost function has some implications which we will point out whenever they are

relevant. Before concluding this section with the precise problem definition, we

formalize the concept of recontamination path formerly introduced in colloquial

terms.

Definition 31 (Path) A path between two points x1, x2 ∈ E is a continuous

curve between x1 and x2 not intersecting C.

Definition 32 (Cleared and contaminated points) A point x is cleared at

time t if x ∈ P̄ (τ(t)). Furthermore, a point x cleared at time t is also cleared at

time t′ > t if @ a path from x to a contaminated point y in E at any time t′′ ∈ [t, t′]

that does not intersect P̄ (τ(t′′)). If x is not clear it is called contaminated. At

t = 0 all points in E \ (P̄ (τ(0))) are contaminated. Write R(t) for all cleared

points and C(t) for all contaminated points at time t.

We can now distinguish a special type of sweep schedule with the additional

requirement that the set of cleared points is connected at all times. Such sweep

schedules are denoted as contiguous, analogue to the formulation of contiguity

for graphs in Graph-Clear but extended to point sets. Similarly, it is also useful

to define progressiveness for sweep schedules.

Definition 33 (Contiguous Environment Sweeps) Let τ be a sweep sched-

ule. If R(t) is a connected set ∀t ∈ [0, T], then τ is contiguous.

138

Definition 34 (Progressive Sweep Schedules) Let τ be a sweep schedule. If

R(t) ⊆ R(t′)↔ t ≤ t′, then τ is progressive.

Finally, for Line-Clear the goal of a sweep schedule is to remove all contami-

nation from an initially fully contaminated environment at minimal cost.

Definition 35 (The (contiguous) Line-Clear problem) Given a contaminated

E with C1, . . . , Cno as above, the Line-Clear problem is to find a sweep schedule

τopt with minimal cost c(τopt) that removes all contamination. We shall call τopt an

optimal sweep schedule. The contiguous Line-Clear problem additionally requires

τopt to be contiguous.

4.1.1 Covering Sweep Lines with Sensors

Let us go through an example for the function R and assume that we have robots

that can sense on a line of length r, e.g. r could be the diameter of a disk if the

robot senses with an omnidirectional limited range sensor. Given that we may

have noise in the control or localization of a robots we would like to have the

sweep line covered with overlapping sensors. Let the parameter δ describe the

extent of the overlap. The function R now becomes:

R(d) =

⌈
d

r − δ
⌉

If we have a sensor footprint that is a disk we can also consider using calt(l)

instead of c(l) as a cost function. Fig. 4.2 shows how multiple robots cover a

sweep line being oriented towards the left obstacle site, i.e. robots are placed

uniformly on a sweep line starting from the left site and placed at distance r− δ
from each other with the first robot having distance r−δ

2
from the left site. As

the distance between the obstacles grows another robot will have to be added.

139

Due to the left bias this is rather easy. If the robots can localize themselves

and are synchronized they could plan their paths independently and then simply

follow them as seen in fig. 4.2. Here errors in the synchronization of the paths

can also be compensated by δ. But we shall also see approaches in which robots

cannot localize themselves nor plan their paths ahead of time in Chapter 6 when

presenting applications of Line-Clear.

r − δ

r − δ

Figure 4.2: Multiple robots covering a sweep line between two obstacles. As the

distance between the obstacles grows another robot is added at the appropriate

location.

4.2 Sweep Schedules through Graph-Clear

In this section we explore the connection between Line-Clear, Voronoi Diagrams

and Graph-Clear and show how to construct sweep schedules. Voronoi Diagrams

are useful to detect narrow parts of an environment. Such narrow parts are

intuitively good positions for blocks in Graph-Clear and hence they also play a

role in extracting surveillance graphs to create Graph-Clear instances from a grid

140

map as we shall see in Chapter 5. We proceed by introducing the generalized

definitions for Voronoi Diagrams from [CB95] and then show how these relate to

Line-Clear and Graph-Clear.

4.2.1 Voronoi Diagrams

A rigorous formalization and generalization of Voronoi Diagrams to Generalized

Voronoi Graphs (GVG) is found in [CB95] and we here shortly review its notation

for two dimensions. Recall the definitions for the environment as given in Section

4.1. The following functions define a distance function towards obstacles which

is the basis for the GVG:

di(x) = minc0∈Ci
‖x− c0‖

∇di(x) =
x− c0
‖x− c0‖ .

With these one can construct equidistant surfaces and 2-equidistance surjective

surfaces via respectively:

Sij = {x ∈ R2 : di(x)− dj(x) = 0}
SS ij = {x ∈ Sij : ∇di(x) 6= ∇dj(x)}

Subsets of these then make up 2-equidistant faces which are further restricted to

3-equidistance faces :

Fij = {x ∈ SS ij : di(x) ≤ dk(x) ∀k 6= i, j}
Fijk = Fij ∩ Fik

Fig. 4.3 illustrates what these definitions.

The 2-equidistant faces and 3-equidistant faces become the edges and vertices

of the GVG, respectively. More precisely the GVG for two dimension is Ggvg :=

141

Ci

Cj
Ck

SSij

SSjk

SSik

Fijk

Fij

Fjk

Fik

Figure 4.3: An illustration of the definitions of surjective surfaces and equidistant

faces. The surjective surfaces are drawn with thin lines and the equidistant faces,

a subset of the surjective surfaces, are drawn in thick and dashed lines.

(F3,F2) where:

F2 =
no−1⋃
i=1

no⋃
j=i+1

Fij

F3 =
no−2⋃
i=1

no−1⋃
j=i+1

no⋃
k=j+1

Fijk

We will also make use of the function

qi(x) := argminc0∈Ci
‖x− c0‖

which returns the closest point to x from obstacle Ci.

There are some complications with the GVG that arise when there exists a

non-empty 4-equidistant surface. This corresponds to four points lying on the

142

circumference of a circle. To avoid this we shall also assume, as in [CB94], that no

four obstacle points are co-circular. From a practical standpoint this assumption

is not too demanding, since the case of four or more co-circular points can be

dealt with by adding a small random perturbation, a technique often used in

computational geometry (see for example [BKO00]). Another complication is that

there may be multiple points in any Fijk. Each of these points is then a vertex

in the GVG, which will cause complications in our construction in Section 4.2.2.

We can, however, simply partition one of the obstacles into multiple parts s.t.

each will be responsible for one vertex. This simplifies the notation without losing

generality. From now on we can hence assume that there is at most one vertex for

distinct Ci, Cj, Ck. Finally, it has to be noted that Ggvg is not strictly speaking

a graph, unless one introduces an additional vertex at infinity. This is due to the

fact that there are edges that go from a vertex to the intersection between two

obstacles and continue unbounded, as seen in fig. 4.4. This will however not be

a problem since we can ignore these edges in the construction presented in the

following section. Note that this does not occur for all intersections since SS ij
has the additional constraint that ∇di(x) 6= ∇dj(x).

Since in two dimensions the GVG is a Voronoi Diagram, we shall use the

term Voronoi Diagram throughout this dissertation. The definitions for surjec-

tive surfaces that the GVG uses will be useful later on. Another advantage of

the GVG notation is a potential generalization to higher dimensions, although

within the scope of this dissertation we shall remain focused on the two dimen-

sional case. The Voronoi Diagram computed from a set of convex obstacles has

useful properties to detect parts of the environment with small clearance and nat-

urally provides a topological map. This fact has often been exploited for robot

navigation [Thr98]. Also Graph-Clear benefits from surveillance graphs with

small edge weights and hence areas with small clearance provide good candidates

143

Figure 4.4: The GVG vertices and edges in the environment marked as circles and

dashed lines, respectively. Note that some edges are continuing on the intersection

of two obstacle boundaries, but not all intersections lead to an edge as seen in

the corridor to the left. To form a proper graph an additional vertex at infinity

could be introduced and connected to these edges.

for borders between regions leading to edges with small weights. For this reason

we will revisit Voronoi Diagrams in Chapter 5 for the extraction of surveillance

graphs from robot maps.

In practice, when considering a map given by polygonal obstacles it is often

useful to consider each line segment of the polygons and each of their endpoints

to be a separate obstacle. This automatically satisfies convexity without hav-

ing to partition obstacles into convex sets, but it does increase the size of the

Voronoi Diagram. Figure 4.6 shows a Voronoi Diagram that would be generated

by considering each segment and its endpoints as separate obstacles.

4.2.2 Constructing Sweep Schedules from Voronoi Diagrams

We now outline a construction that creates a surveillance graph from a Voronoi

Diagram and then associates moving sweep lines to its vertices and edges in order

to compute their weights. A strategy on this graph can then be converted to a

sweep schedule. The main idea is easily illustrated in fig. 4.5 in which a moving

144

sweep line clears the environment by moving between two obstacles and then

splits into two new moving sweep lines at a new obstacle. The purpose of the

surveillance graph is to capture the cost of such movement and subsequent splits.

Figure 4.5: Illustration of the concept of moving and splitting sweep lines. The

arrows indicate the direction of movement of the sweep line on the left side until

it splits into two sweep lines which continue independently.

Given an environment E we first compute the Voronoi Diagram given by

(F2,F3). For each vertex in F3 which is in free space interior(E) we create

a vertex for a surveillance graph Gsg = (V,E,w) and add all edges from F2

between these vertices that are also entirely in free space to E. Recall that we

can assume that any vertex of F3 has degree 3 and hence no vertex of Gsg will

have degree larger than 3. The main part of the construction is now to associate

weights and moving sweep lines to every vertex and edge of Gsg. We shall use

the modified variant of Graph-Clear from Section 3.9 to allow directional vertex

weights. Figure 4.6 shows an example of Gsg and a few lines we will associate to

its vertices. With this figure in mind let us make the construction more precise.

Every vertex v ∈ V has exactly three defining obstacles, which we shall call

sites. Write Ci, Cj and Ck for the sites of v. Notice that v hence originated from

145

Figure 4.6: Left: A Voronoi Diagram resulting from line segments of multiple

polygonal obstacles by considering each open segment and their endpoints as

independent obstacles. Note vertices and edges inside the polygons are also drawn

and result from the fact that the line segments are considered obstacles for the

purpose of construction the Voronoi Diagram. Right: Conversion of the Voronoi

Diagram into a surveillance graph. Dashed lines indicate lines that are associated

to vertices and edges and represent blocks and sweeps. The movement of lines is

represented by their thickness, i.e. thin lines move towards thicker lines.

Fijk and with a slight abuse of notation we can write v ∈ Fijk. We now create

a moving sweep line that we associate to v to obtain its weights. Note that we

need a weight for every direction that the vertex can be entered from, i.e. for

each of its edges. For each pair of its sites there can be an edge for v, depending

on whether the neighboring vertex from F3 is in free space. Let eij be one of

the edges of v, namely the one that originated from Fij and is hence between Ci

and Cj. Consider the scenario in which we approach v with a sweep line spanned

between Ci and Cj written lij. Call lij(tblock) the sweep line at blocking position

for eij at some time tblock. Now, sweeping v from direction eij means to move

lij(t) of eij onto the third site Ck. Fig. 4.7 illustrates this graphically. From this

point onwards the sweep line can split into two sweep lines between Ci, Ck and

146

Cj, Ck. The cost of this split, i.e. the joint cost of the two sweep lines right after

splitting becomes the weight of v.

Ci

Cj

Ck

v

Figure 4.7: A sweep line moving along an edge eij and crossing vertex v. The

grey area is the cleared part R(t) bounded by obstacles and sweep lines.

To determine the cost of the split we need to find the point on Ck that allows

us to split the sweep line at lowest cost. For this purpose we define the split point

p ∈ Ck as follows. First, we need to define a set of points on Ck which lead to valid

sweep lines from Ci and Cj to Ck. Given an x ∈ δCk write li,k(x) = [qi(x), x] for

a sweep line between Ci and Ck and lj,k(x) = [qj(x), x] for a sweep line between

Cj and Ck.

X := { x ∈ δCk | ∃l1, l2 ∈ S, l1 = li,k(x), l2 = lj,k(x)}. (4.1)

The split point p is now any point satisfying:

p = argminx∈X{c(li,k(x)) + c(lj,k(x))}. (4.2)

Now that we have p we can describe the moving sweep line lij(t) in more

detail, in particular how it moves from its initial blocking position towards its

split on Ck. Formally, let lij : R+ → S(3) so that it has three points4. Write

4At the blocking position we only need two points, the two endpoints on the obstacles, but

147

lij(tblock) for the initial blocking sweep line at time tblock and lij(tsplit) for the final

split sweep line. It is convenient to describe the movement of lij in reverse, i.e.

from tsplit to tblock. Fig. 4.8 illustrates the construction that follows.

a) b)

c)

v

Ci

Cj
Ck

ci(pk)

cj(pk)

li,j(2)

pk

ei,j

d)

SSij SSjk SSik

Figure 4.8: Illustrating the forward movement of a sweep line across a vertex v.

Part a) shows lij at time tblock, part b) at time tswap, part c) at time tsplit and

part d) shows the two new moving sweep lines lik and ljk at time tend.

We set lij(tsplit) := [qi(p), p, qj(p)]. Clearly, c(lij(tsplit)) ≤ c(li,k(p))+ c(lj,k(p)).

We then move backwards to time tswap < tsplit and sweep line lij(tswap) =

[qi(p), xmid, qj(p)] where xmid ∈ [qi(p), qj(p)] is chosen s.t. c([qi(p), xmid]) ≤
c([qi(p), p]) and c([xmid, qj(p)]) ≤ c([p, qj(p)]) which is clearly possible due to

the triangle inequality (see fig. 4.8). At this point we could remove lij and in-

stead add an equivalent sweep line that has only two points, since xmid is on the

straight line segment between the two endpoints. But to simplify the notation we

it is more convenient for the notation to already require three points since at the split we need
at least three points. Note that a change in the number of points of a moving sweep lines is
formally always a removal of the old sweep line and the addition of a new moving sweep line
to τ .

148

will instead choose xmid so that c(lij) = R(|lij|), in other words so that the cost

is identical to the cost of the sweep line with only two endpoints. Note that this

consideration is only necessary when using the cost function c(l) and not for calt(l)

since additional midpoints in a sweep line cannot change the cost for calt. This

slight technicality allows us to continue to use the same notation for the moving

moving sweep line lij and move it further backwards towards tblock < tswap. This

last movement to the blocking position to moves from lij(tswap) towards the direc-

tion into which the distance between the obstacles is shrinking until the minimum

distance is reached. Here it is worth noting that the function di(x) = dj(x) with

x ∈ SSij has exactly one minimum [Sie99]. This does not, however, mean that

lij(tblock) finally reaches that minimum as seen in fig. 4.9, but it does mean that

it eventually stops at the position with lowest possible cost. To complete the con-

struction we now do the same with the sweep lines after the split. At time tsplit

remove lij(tsplit) from τ and add two new sweep lines lik(tsplit) = [qi(p), ymid, p]

and ljk(tsplit) = [qi(p), zmid, p] where ymid and zmid are chosen just as xmid before

to emulate a sweep line with only two endpoints. Both lines ljk and lik continue

to move into the direction of decreasing length until a minimum is reached, just

as lij moved backwards. The position reached is then the blocking position for

edges ejk and eik. Let us denote the time at which both sweep lines reach this

point by tend > tsplit.

Finally, the movement of the sweep line lij from tblock to tsplit and subsequently

the movement of lik and ljk to tend is a sweep for vertex v from direction eij. The

maximum cost occurring during this process occurs right after the split and hence

w(v) = c(lik(tsplit))+c(ljk(tsplit)). The weights for the edges eij, eik and ejk simply

become the cost of the respective sweep line at the blocking position.

Now let us expand our perspective from v and eij to the entire graph. Due to

149

b)a)

Ci

Cj

Ck

SSij

Figure 4.9: An example in which the minimum of di on SS ij, marked as a grey

dot on a grey dashed line in a), does not lead to a valid sweep line. The blocking

position is then earlier on SS ij as seen in b).

the fact that we only have one minimum of di(x) on x ∈ SS ij for all i, j it is clear

that we can reach the blocking position of lik and ljk from which the sweep of

the neighboring vertex starts without incurring larger cost. Hence we can apply

this procedure to get weights for every vertex v for the sweeps from an incoming

edge and we can concatenate these neighboring vertex sweeps. After a vertex is

swept, the new sweep lines after the split simply become the blocking positions of

the edges for the neighboring vertices. So for every vertex with degree three we

now have weights w(v, e1), w(v, e2),w(v, e3) for all its three edges e1, e2, e3. Note

that we have not yet clarified how to arrive at the blocking position for the first

vertex when concatenating these sweeps.

Let us now consider vertices with degree two or one. Note that the originat-

ing vertices from the Voronoi Diagram, i.e. in F3, all have degree 3. Hence the

missing edges from for degree two and one vertices in Gsg are the result of either

Ci, Cj or Ck being adjacent to each other such that the edge in F2 for the origi-

nating vertex goes towards the intersection of two obstacles and possibly towards

the infinity vertex. This observation simplifies the consideration of vertices with

degree two and one. One can simply think of them as degree three vertices by

150

adding virtual edges with weight zero to Gsg. These virtual edges coincide with

edges in F3 that are on going towards intersections of adjacent obstacles. We

cannot directly add these edges to Gsg because we only allowed non-zero and

positive integer weights. This simplifies the treatise significantly if we consider

all vertices principally of degree three, since the number of cases to discuss is

reduced significantly. Computing the weight w(v, e1) for a degree two vertex v

with edges e1, e2 in Gsg is then simply a split from the blocking position of e1 into

two sweep lines, one with length 0 and one that moves to the blocking position

for e2. Computing w(v, e2) is symmetric. For a vertex v with only one edge e

computing w(v, e1) is then again just a split into two sweep lines that approach

length 0.

So now we can compute weights for all vertices v ∈ V for every direction.

Note that for the modified variant of Graph-Clear from Section 3.9 these weights

already suffice if we consider only trees. Furthermore, we have additional sweeps

when entering a degree two or one vertex from a virtual edge which is essentially

a sweep starting at a sweep line with length 0. Such a sweep from a virtual edge

is only possible if the vertex is the first to be cleared. So let us now clarify the

process of clearing the first vertex in Gsg, which obviously has no edge from Gsg to

enter from (recall eq. 3.43 in Section 3.9 where this problem is shortly mentioned).

This simply works by setting up two sweep lines at one edge (including virtual

edges with length zero sweep lines) at the blocking position and then moving of

them to sweep the vertex. There are three choices of edges to start from and

we simply chose the one that has the lowest overall cost. The cost is simply

w(v, ei) + w(ei) for every edge ei of v, i.e. cost of the blocking position for

the chosen edge and the sweep cost from that direction. This overall cost then

becomes the weight w(v), i.e. the weight for sweeping v without a given direction.

151

To consider graphs or non-contiguous sweep schedules, we also have to de-

scribe a sweep procedure for the case when a vertex is cleared starting from two

edges and three edges. These cases do not occur in a tree that is cleared contigu-

ously. But fortunately, they are analogue to the case when one edge is blocked

before the sweep. Fig. 4.10 shows these different cases that are best illustrated

in a figure. To see the connection between them let us look at how to sweep a

vertex when starting at edges eik and ejk and sweeping v to finally arrive at a

blocking position on eij. For this we can use the same sweep lines constructed

previously, but moving them backwards. Hence the cost for this procedure is

the same as given by w(v, eij) and this weight represents the cost of two sweeps.

Similarly, the cost of clearing by starting from all three edges blocked is identical

to clearing with no edge blocked. Therefore, the weight function w(v, e) suffices

to represent all costs, even when considering cyclic graphs.

Fig. 4.11 shows an example of a surveillance graph created from a Voronoi

Diagram and blocking positions for edges. Let us now shortly describe how to

construct a sweeping schedule τ from a strategy S represented by a sequence of

vertices written v1, . . . , vn. Start with two identical sweep lines l1, l2 at one of the

edges in the Voronoi Diagram of v1, namely the one with 0 or lowest cost. Add

l1, l2 to τ at time t = 0. If degree(v) = 3 there is no edge in the Voronoi Diagram

with a sweep line with cost 0 and all edges for the same vertex in vvoronoi ∈ F3

are also edges in Gsg. If degree(v) < 3, then at least one of the edges in F2 for

vvoronoi is not in Gsg and hence has a blocking sweep line with length and cost

0. Now, l1(t) remains at its blocking position while we move l2(t) from t = 0 to

t = tsplit following the sweeping procedure for vertex v coming from the respective

edge that we chose previously. Then we remove l2 from τ at time tsplit and add

the new sweep lines resulting from the split to τ and move them towards their

blocking position at time tend. Note that there is at least one such new blocking

152

clear

Ci

Cj
Ck

clear

cl
ea

r

contaminated

Ci

Cj
Ck

cl
ea

r

contaminated

Ci

Cj
Ck

cl
ea

r

contaminated cl
ea

r

co
n
ta

m
in

a
te

d Ci

Cj
Ck

contaminated

a) b)

c) d)

Figure 4.10: Four cases for a vertex with degree three. Current sweep lines are

black while future sweep lines that are to be reached are grey. Contaminated and

cleared sides of current sweep lines are marked. In a) one sweep line splits into

two sweep lines. In b) two sweep lines merge into one sweep line, the converse of

a). In c) all points are still contaminated and two sweep lines are established to

being clearing. In d) all points outside the figure are cleared and all sweep lines

will disappear, the converse of c). Part a) represents three cases, one for each

choice of direction for the current sweep line, i.e. either starting between Ci and

Cj as seen or between Ci,Ck or Cj,Ck. Similarly, part b) also represents three

cases. For c) and d) there is only one choice of directions, leading to overall eight

possible sweeps for the Voronoi vertex associated to Ci,Cj,Ck represented by four

weights, since each case has an associated inverse at identical cost.

line. Then we choose one of these blocking lines, namely the one leading to vertex

v2 and start sweeping vertex v2 as described before. Continuing this leads to an

sweep schedule τ that clears the entire environment. It is slightly more difficult

to assess whether such a sweep schedule can be optimal and hence a solution to

Line-Clear. This we will discuss in the next subsection. In Chapters 6 and 5

we shall revisit this procedure and see how it works in practice and compares to

other approaches.

153

Figure 4.11: The blocking positions of sweep lines in the environment are marked

as dashed lines each creating an edge between two vertices which now correspond

to a region as partitioned by the blocks. The Voronoi Diagram of the environment

is presented in fig. 4.4.

4.2.3 Optimality Considerations

The construction of an sweep schedule from a Voronoi Diagram via a strategy on

its dual surveillance graph gives a convenient way to construct sweep schedules.

In colloquial terms the strategy computed on the surveillance graph tells us in

which sequence we should consider the obstacles Ci to become an endpoint of

a sweep line. The Voronoi Diagram in turn restricts the number of obstacles

we have to consider locally to those that are sites for a common vertex. This

restriction of which obstacles to consider for a split, which is the process by which

new obstacles become endpoints of sweep lines, is significant for the optimality

considerations. In fact, it leads to the construction of a counterexample in which

we can show that this restriction of choice leads to a suboptimal sweep schedule.

Consider the simple star-like environment as seen on the left side in fig.

4.12. Its six-way intersection would lead to a Voronoi vertex with degree six,

but through a slight perturbation this is resolved into four vertices, each of de-

154

v1

v2

v3

v4

v5

v6

v7
v8

v9

v10

d1

d2

d3

Figure 4.12: A six-way intersection constructed around a circle with diameter

d and larger corridors given by parameter d1. Values for d3 and d2 follow from

the circles diameter. All center obstacles are aligned around the circle with the

exception of the leftmost obstacle which is moved towards the center by ε > 0.

gree three. All six obstacles in the center are placed around a circle with diameter

d shown in fig. 4.12 up to an arbitrary small perturbation by some ε > 0. In

fig. 4.12 this is done by moving the leftmost obstacle by ε, closer to the center

of the circle than other obstacles. We shall now show that for an appropriate

choice of d and d1 this leads to a surveillance graph whose strategies produce

sweep schedules that are not optimal. Each corridor of the six-way intersection

in the example is either of constant width d2 or grows in width from d2 to d1. A

constant width corridor can be swept at the same cost as its block, while for a

growing corridor the cost increases as it becomes wider. If the growing corridors

are very costly relative to the blocks towards corridors, i.e. d1 is much larger

than d2, more precisely d1 > d2 + d, then an optimal sweep schedule will have

to clear these growing corridors when no other sweep lines are at their blocking

positions, i.e at the beginning and end of the sweep schedule. This is shown in

155

fig. 4.13 as the optimal sweep schedule which can clear the environment with

cost d1 given that we choose d1 > d2 + d. Let us now focus on the surveillance

graph that results from the Voronoi Diagram. Consider a strategy on the graph

that sweeps both of the growing corridors, represented vertex v3 and v4, at a

time when no other blocks are active in the environment, i.e. at the beginning

and at the end of the strategy. From the surveillance graph it follows that such

a strategy necessarily has a split on v8 (or v9 due to the symmetry) right after

clearing v3 (or v4). This split has a cost of d − ε + d3 shown in fig. 4.14. If we

now choose d and d1 so that we have d− ε+ d3 > d1 > d2 + d the sweep schedule

from any strategy will never be able to clear the environment at cost d1 or lower

and can hence not be optimal. This choice is clearly possible by simply choosing

any d which automatically determines d3 and d2 since they are dependent on the

circle and then choosing ε < (d3 − d2)/2 and d1 = d2 + d+ ε.

Figure 4.13: An illustration of an optimal sweep schedule for the environment

from fig. 4.12 given that d1 > d2 + d.

156

Figure 4.14: An illustration of the beginning of a sweep schedule created from

the Voronoi Diagram of the environment from fig. 4.12 starting at v8. Given that

v8 is the starting vertex, the next split is necessarily at v3 as shown in the figure.

From the counterexample it becomes clear that the reduction for the choices

for obstacles onto which to split is the reason for losing optimality. This motivates

the investigations in the following sections in which we seek to represent all

choices and their respective cost. It may well be that under certain conditions the

restriction of choices through the Voronoi Diagram can lead to optimal solutions.

For example when no fourth obstacle is close to a Voronoi vertex v ∈ Fijk it is

unlikely that any other split than the one onto CK should be considered. Further

work into this direction may lead to strict criteria, but to attempt this we first

need to understand the cost structure of choosing obstacles for splits.

4.3 Reduction to a Combinatorial Problem

Given that the construction of sweep schedules from Voronoi Diagrams is not op-

timal we now investigate the construction of optimal progressive sweep schedules

at least for simply-connected environments. Ideally this would be done in poly-

nomial time, although the question whether this is possible still remains open.

The previous construction would not have been able to compute optimal strate-

157

gies on graphs in polynomial time since Graph-Clear is NP-hard on graphs. As

a consequence, it would also not have been able to tackle multiply-connected

environments in polynomial time. In this section we are explicitly focusing on

progressive sweep schedules for this section and thereby rule out recontamination.

It is not yet proven that recontamination does not matter for Line-Clear. But

considering its relationship with Graph-Clear which we shall continue to elaborate

on throughout this section make this a reasonable conjecture. In what follows we

develop an alternative perspective for the construction of sweep schedules that

does not rely on the Voronoi Diagram for choosing which obstacle to initiate a

split for.

For this we look at the boundary of R(t) and shall show that in simply

connected environments Line-Clear is in fact a combinatorial problem. So let

us restrict the environment to be simply-connected. For convenience we shall

assume that the indices of all obstacles are ordered clockwise on the boundary

of E and that in a full traversal of this boundary no index appears twice. Note

that this does not impose any further restrictions on the environment but, as we

shall see, simplifies the notation. The basis for the combinatorial perspective is

to describe R(t) by means of a sequence of obstacle indices defined as follows:

Definition 36 (Boundary State) Given a sweep schedule τ(t) at time t and a

resulting R(t) let the state of its boundary be the sequence of obstacle indices on

the boundary of R(t) starting at the lowest index in clockwise order. Write B(t)

for this sequence5.

Since R(t) is connected this is well defined. Fig. 4.15 shows a simply con-

5Formally, a sequence B(t) is a function B(t) : N → {1, . . . , no} where N = {1, . . . , b} ⊂ N
if B(t) has b elements. Note that B(t) is not simply an ordered set since the same in-
dex can appear multiple times. But for notational convenience we shall still write B(t) =
{B(t)(1), B(t)(2), . . . , B(t)(b)}.

158

nected environment with a few examples for R(t). It immediately follows that

at the end of a sweep schedule we have B(t) = {1, . . . , no}, i.e. a full traversal of

obstacles on the boundary of E .

C1

C2

C3

C4

C5

C6

l1

l2

l3

l4

Figure 4.15: A simply connected environment with two sets of two sweep lines

{l1, l2} and {l3, l4}. Sweep lines l1 and l2 together with parts of obstacles C1, C3

and C4 form the boundary of a cleared region for a sweep schedule. This boundary

can be traversed by following C1, C3, C4, C1 and hence B(t) = {1, 3, 4}. The same

traversal applies to a possible sweep schedule represented by {l3, l4} and these

represent the set of sweep lines with lowest cost that have this traversal sequence.

It is now straightforward to describe the evolution of B(t) in terms of the

obstacle indices that are added and removed at the appropriate location in B(t)

as τ proceeds to clear the entire environment until finally B(t) = {1, . . . , no}, for

some time t at the end of the execution of the schedule. In fact, we can show

that obstacle indices are only added and never removed from B(t).

Lemma 9 (Obstacle indices added exactly once) For any progressive sweep

schedule τ each obstacle index is added exactly once to B(t).

Proof: Let us assume that during the execution of a sweep schedule τ(t) we

have an obstacle index o ∈ {1, . . . , no} that is added to B(t) twice. First note,

159

that the removal of an obstacle index from B(t) implies recontamination if it is

unique in B(t). Hence, at the time tadd when o is added to B(t) for the second

time we already have o in B(t) and it occurs twice in B(t). Now we have at least

one obstacle index j s.t. B(t) = {. . . , o, . . . , j, . . . , o, . . .}. Fig. 4.16 illustrates

this. Therefore, while traversing the boundary of R(t) from the first occurrence

of o to the second occurrence of o we move along at least two sweep lines. The

first sweep line encountered on this traversal necessarily starts at some point

x1 ∈ Co while the last sweep line encountered before reaching Co again ends at

some point x2 ∈ Ci. Clearly, the segment of Co between points x1 and x2 is

contaminated. Hence the first sweep line has R(t) to its right side, with respect

to to the direction of the traversal, while the last sweep line has it to its right

side. This implies that R(t) is not connected, violating contiguity of τ . Hence

no index can be added more than once. 2

Ci

l1 l2

Cj

Figure 4.16: Adding an obstacle index twice to B(t) at different times violates

contiguity of the cleared part.

As a consequence of lemma 9 the evolution of B(t) is simply the addition of all

obstacle indices in some sequence. Furthermore, all indices in B(t) are ordered,

i.e. if B = {. . . , i, j, . . .} then i < j. Suppose that we had a procedure that

can construct the lowest cost sweep schedule from a sequence of obstacle indices

o1, o2, . . . , ono . Then we can find the optimal sweep schedule by considering all

160

sequences of which we have no! many. Obviously, we want to further reduce the

number of sequences we have to consider.

Our goal is two-fold. First we seek to find a procedure that constructs the

lowest cost sweep given a sequence of obstacle indices, and second, in the next

section, we investigate how to compute a sequence of obstacle indices that leads

to an optimal sweep schedule.

4.3.0.1 Constructing Minimal Cost Sweep Schedules

Let us begin with the construction of a minimum cost sweep schedule for a given

sequence of indices. This construction is the basis of the reduction of the geomet-

ric Line-Clear problem to a combinatorial problem. We write o1, o2, . . . , ono for the

sequence in which obstacle indices are added to B(t) and ti when the i-th obstacle

index is added to B. We may for example have B(t1) = {o1} = {4}, B(t2) =

{o2, o1} = {2, 4} and B(tno) = {o5, o2, o3, o1, . . . , o4} = {1, 2, 3, 4 · · · , no}. For

each i ∈ {1, . . . , no}, at ti when oi is added we can compute a lower bound on

the cost for any sweep schedule that satisfies the sequence o1, . . . , ons .

First notice that the addition of index oi with i > 2 always involves moving the

sweep line between the two indices il, ir ∈ B(ti) where il = maxo∈B(ti){o < oi} is

to the left of oi and ir = mino∈B(ti){o > oi} is to the right of oi. Since the boundary

is circular we need to clarify that if oi ≥ o,∀o ∈ B(ti), then ir = mino∈B(ti){o}
and similarly if oi ≤ o,∀o ∈ B(ti), then il = maxo∈B(ti){o}. The cost of going

from B(ti−1) to B(ti) can be determined by the cost of extending the sweep line

between Cir and Cil towards Coi
and splitting it. It boils down to finding the

point on p ∈ Coi
so that the joint cost of a sweep line from p to Cil and a sweep

line from p to Coi
is lowest. This is similar to the construction in Section 4.2.2

with the only exception that we consider splits to any obstacle instead of only

161

one close obstacle. The definition of the minimum split point p ensures that the

cost of adding oi to B is in fact minimal. Fig. 4.17 shows examples of sweep lines

starting at some point on Coi
.

Coi

Cil
Cir

Figure 4.17: Three points on Coi
and the sweep lines they form to Cil and Cir .

Once such a point p on Coi
is found the sweep line between Cil and Cir is

moved towards p and then splits into two sweep lines between Cil , Coi
and Cir , Coi

.

These then continue to move until they reach a local minimum for their cost. Fig.

4.18 shows examples of obstacle index sequences and how they relate to sweep

schedules. We are going to discuss some details on the split point p in Section

4.4.1. For now, we assume access to an oracle that provides p.

Given p we can determine the cost of adding oi to B(t). It is simply the cost

of all sweep lines that maintain B(ti−1), before addition of oi, and the additional

cost of moving the sweep line between Cil and Cir towards p and splitting it. Just

as in Section 4.2.2 the maximum cost is occurs right after the split. Once the

sweep line is split, the cost of maintaining B(ti) can be computed by moving the

two new sweep lines towards the next minimum length between its two obstacle

endpoints (recall the the movement towards blocking positions in Section 4.2.2).

Initially the cost of maintaining B(t1) is zero which bootstraps the recursion.

Adding o1 costs 0 by adding a sweep line starting and ending at a point on Co1 .

162

C1

C2

C3

C4

C5

C6

C1

C2

C3

C4

C5

C6

{1, 4} {1, 3, 4}
{1, 3, 4, 5} {1, 2, 3, 4, 5}
{1, 2, 3, 4, 5, 6}

{1} 4 3

5 2
6

{1, 2, 3, 4, 5}
{1, 2, 3, 4, 5, 6}

{1}
4

3

5

2

6

{1, 2} {1, 2, 3}
{1, 2, 3, 4}

Figure 4.18: Example of two sweep schedules. The sweep on the left is suboptimal

while the one on the right is the optimal solution. On the bottom of each side

the evolution of the set B(t) is shown.

Now, adding o2 can cost 0 if Co1 and Co2 are adjacent or it will cost as much as

the split from the first zero length sweep line from Co1 to Co2 and so on.

4.4 Finding Optimal Sweep Schedules for Simply-Connected

Environments

We now turn to the problem of determining a sequence o1, . . . , ono that will cor-

respond to an optimal sweep schedule. To gain an understanding of the problem

we first go through a representation of the available choices. At first one may

choose any of the obstacle indices for o1. In the example in fig. 4.21 that will be

discussed later on we set o1 = 1. From there we can build a tree-like structure

that represents all further choices, i.e. the remaining {1, . . . , no} \ {o1} indices

which can be chosen for o2. Every choice for o2 will lead to a separation of the

remaining choices {1, . . . , no} \ {o1, o2} into two sides. On the left are all indices

o ∈ Lo1,o2 s.t. o1 < o < o2 and right are all indices o ∈ Ro1,o2 s.t. o2 < o < o1.

163

Note that this is again a circular ordering, i.e. 5 < o < 2 can mean indices

o = 6, 7, 1. The left and right choices correspond to two disconnected contam-

inated parts in E that are separated by the cleared part. Each further choice,

first continuing with o3, separates either the left or the right indices further. Let

us write T ik = {i, i + 1, . . . , i + k − 1} for a set of k consecutive obstacle indices

starting at i and call it a choice set. To represent the circular order we identify

indices i + no with i. We also write T i0 = T0 = ∅. We can use this notation to

represent the remaining choices on left and right, since all indices on each side

are consecutive. Fig. 4.19 shows this recursion. Note that the purpose of every

set of choices T ik is to represent a connected contaminated area in E bounded

by exactly one sweep line and obstacles Ci−1, Ci, . . . , Ci+k. This is shown in fig.

4.20.

After choosing the first index o1 we can write all further choices as T o1+1
no−1 which

contains all remaining indices o1 + 1, . . . , o1 +n0− 1. Then the choice of the j-th

element, which is an index in T o1+1
no−1 for index o2 = o1 +j will lead to choices T o1+1

j−1

on the left side and choices T o1+j+1
no−1−j on the right side. A further choice of obstacle

index for o3 will then do the same for one of the sides and so on. Fig. 4.21 shows

an example with six indices that follows this recursive construction. Each choice is

represented by an edge with the obstacle index written on it. It is straightforward

to see that this recursive construction leads to a structure that has a very large

number of edges. More precisely the number of edges in the tree starting at T ik is

given recursively through Edges(T ik) := k +
∑k

j=1(Edges(T
i
k−j) + Edges(T ij−1))

with Edges(T i1) := 1 and Edges(T i0) := 0. But this is only because we rewrite

multiple occurrences of the same choice sets T ik for identical k and i as marked in

fig. 4.21 with a dashed circle. If o1 is chosen, then for every k ∈ {1, . . . , no − 1}
we have no − k distinct T ik, i.e. i ∈ {o1 + 1, . . . , o1 + no − k}. This leads to a

164

T i
2

T i
1

T0

T i+1
1

T0

i + 1

i

T i
3

T i+1
2

T0

i + 1

i

i + 2

T i
1

T i+2
1

T0

T i
2

i + k − 1

T0

T0

T i+1
k−1

T i
k

i

i + 1

T i
k−1

T i+2
k−2

T i
1

T i+3
k−3

i + 2
T i

2

Figure 4.19: An illustration of how a set of choices T ik splits into left and right

sides, depending on which obstacle index in T ik is chosen. A choice is represented

by an edge towards a left and right side with the chosen index written on the

edge.

total of
∑no−1

k=1 no−k = n2
o

2
− n0

2
distinct choice sets. Every choice set T ik itself has

exactly k edges and hence the total number of distinct edges leaving all sets is:

no−1∑
k=1

(no − k) · k =
n3
o − no

6
. (4.3)

Fig. 4.22 shows this compressed polynomial size tree-like structure which now

represents all choices.

Now that we can describe how a choice of an obstacle index influences further

choices we can start describing the cost of each choice. One key observation is that

the costs of all splits occurring on a left side are independent of the choices made

on the right side and vice versa. Given a set of choices T ik = {i, i+1, . . . , i+k−1}
let us consider the j-th element of T ik, i.e. obstacle index o = i+j−1 and compute

165

C1

C2

C3

C4

C5

C6

C1

C2

C3

C4

C5

C6

T 2
1

T 5
2

T 2
2

T 5
2

C1

C2

C3

C4

C5

C6

C1

C2

C3

C4

C5

C6

T 3
4

T 4
3

a) b)

c) d)

Figure 4.20: Part a),b),c) and d) show the environment in four different states

with the respective sets of choice that exist in the respective state.

the cost of a split towards obstacle Co. Since we are considering the set T ik we

know that the sweep line that is being split at Co is li−1,i+k. Consulting our

oracle to obtain the lowest cost split point p ∈ Co we can compute the cost of

extending li−1,i+k to split on Co. We can compute this cost for every outgoing

edge of a choice set. Write c(o|T ik) for this cost (the cost of choosing o out of T ik).

If the oracle returns p in polynomial time, then all edges can get a cost also in

polynomial time since the number of edges is O(n3
o) due to Eq. 4.3.

Up until now we have ignored another fundamental aspect of this representa-

166

T 2
5

6

2

3

4

5

T 3
4

3

4

5

T 3
3

T 4
3

6

3

4

5

T 4
3

T 2
1

T 3
2

T 3
1

T 5
2

T 6
1

6

4

5

T 4
2

T 4
1

T 6
1

T 5
2

6

5

T 5
1

T 6
1

5

T 5
1

4

T 4
1

6

3

4 T 3
1

T 5
1

5
T 6

1

T 4
1

T 3
2

3

4
T 3

1

T 4
1

T 4
2

5

T 5
1

4

T 4
1T 3

1

T 5
1

T 2
2

T 5
2

T 3
1

2

3
T 2

1

6

5

T 5
1

T 6
1

Figure 4.21: An example of a choice tree for o1 = 1. The empty set T0 is not

drawn. The recursive construction is given in fig. 4.19

tion of choices. If we separate the choices into left and right sides the split costs

are independent of each other, but we have not considered the cost for the sweep

lines at their blocking positions, i.e. the cost of all sweep lines that are not being

moved with the next choice. Let us write the cost of the blocking sweep line for

167

T 2
1 T 5

1 T 6
1T 4

1T 3
1

T 5
2T 3

2 T 4
2T 2

2

T 3
4

T 4
3T 3

3T 2
3

T 2
4

T 2
5

Figure 4.22: A compressed version of the tree structure from fig. 4.21. Every

unique T ik is drawn exactly once. The number of edges grows as a polynomial

with degree 3 in the number of obstacle indices.

choice set T ik as b(T ik) = c(li−1,i+k). More precisely the problem is that once the

choices are split left and right we have to decide in which set to make the next

choice. This is equivalent to the problem of deciding which vertex to clear next

in a surveillance graph, since the other choice set still has a blocking sweep line

that can add to the total cost, just like a block in Graph-Clear. In fact, we will

now cast this problem into a surveillance graph.

A sequence of choices starting with choice set T ik is essentially a special subtree

in the tree-like structure from fig. 4.22. In fig. 4.23 we show two sequences of

choices. Such subtrees are trivial to create by starting at the first choice set and

setting it as a root vertex and then just following exactly one outgoing edge for

168

each choice set. Notice that an outgoing edge from a choice set can that split

into two new choice sets in which case both sides have to be followed. One can

think of these subtrees as paths that can bifurcate at every choice. This is best

understood visually with the example from fig. 4.23 which shows two special

subtrees. Note that since there is a separation into left and right sides a sequence

of choices in this tree-like structure does not directly correspond to a sequence of

all obstacle indices. For example, the choices leading to one of the subtrees in fig.

4.23 can correspond to obstacle index sequences 4, 2, 3, 5, 6 and 4, 2, 5, 3, 6 and

4, 5, 2, 6, 3 and so on. It merely determines that 4 is first, 2 is before 3 and 5 is

before 6. Clearly, these different obstacle index sequences can have different cost.

To find out which one has lower cost we construct a surveillance graph from this

subtree. This surveillance graph is actually quite simple. We already know that

every choice out of a set T ik has a cost to reach the split. Hence every outgoing

edge of a choice set can become a vertex of the surveillance graph. In fig. 4.25

we show all the each vertices for every possible choices in T ik. The chosen vertex

will receive one edge for each non-empty new choice set, the left and the right

side. The weight of the vertex is c(o|T ik), the cost of choosing obstacle index o

from T ik. Let o be the j-th index in T ik, then the weight of the edge to the left is

simply b(T ij−1) and for the edge to the right the weight is b(T i+jk−j). These edges

go to vertices that receive a cost depending on the next choice made on the left

or right. This leads to a recursive construction in which the leaves are vertices

with weight w(i|T i1). Fig. 4.24 shows two surveillance graphs created from two

subtrees. A strategy on this surveillance graph (which is itself a tree), starting

at the root, now uniquely determines an obstacle sequence. An optimal strategy

determines the lowest cost obstacle sequence given the choices made from the

choice sets.

Unfortunately, the number of subtrees is still very large and grows at least ex-

169

T 2
1 T 5

1 T 6
1T 4

1T 3
1

T 5
2T 3

2 T 4
2T 2

2

T 3
4

T 4
3T 3

3T 2
3

T 2
4

T 2
5

4

2

3

5

64

5

6

2

3

Figure 4.23: Two different paths in the tree-like structure from fig. 4.22. Note

that if a choice set splits into a left and right we need to follow both sides. Fig.

4.24 shows how these two paths lead to a surveillance graph.

ponentially, as given by the recursive formula Subtrees(T ik) =
∑k

j=1 Subtrees(T
i
k−j)·

Subtrees(T ij−1) ≥ 2 · · ·T ik−1 with Subtrees(T i0) := 1 and for k > 2. Every such

subtree corresponds to a surveillance tree on which we compute an optimal strat-

egy which determines a unique sequence of obstacle indices, the best possible

sequence of the given subtree. Doing this for all such subtrees we can find the

optimal sweep schedule, but this is obviously not very practical. Since the sub-

trees overlap we can attempt to adapt the Graph-Clear algorithms and assign

labels to edges in the entire compressed choice tree.

Adapting the label-based algorithm from Section 3.5 is rather straight-forward

170

c(2|T 2
1)

b(T 2
1)

b(T 4
2)

c(5|T 4
2)

c(4|T 4
1)

c(3|T 2
4)

c(6|T 2
5)

b(T 2
4)

b(T 2
5)

b(T 2
2) b(T 5

2)

c(5|T 5
2)c(2|T 2

2)

b(T 3
1) b(T 6

1)

c(6|T 6
1)

b(T 2
5)

c(4|T 2
5)

c(3|T 3
1)

Figure 4.24: The figure shows two surveillance graphs that correspond to the two

paths chosen in fig. 4.23. The cleared vertex at the bottom represents the choice

of o1 as the first obstacle.

and we can actually achieve polynomial time complexity. Recall that making a

choice in a set T ik also chooses which vertex to be added to the surveillance

graph (see fig. 4.25). The edge is always given by T ik with weight b(T ik), but for

the next vertex we have k choices and we would like to pick the one that will

lead to a lower cost to clear it and further vertices behind it. Let us write eik

for the edge associated to T ik. We can now compute labels for edge eik, one for

each of the choices in T ik. This works recursively by starting at the leaves. A

171

T0

i + k − 1

T0

T i+1
k−1

T i
k

i

i + 1

T i
k−1

T i+2
k−2

T i
1

T i+3
k−3

i + 2
T i

2

b(T i
k)

c(i|T i
k)

c(i + 1|T i
k)

b(T i
k)

b(T i
k)

c(i + 2|T i
k)

b(T i
k)

c(i + k − 1|T i
k)

T i+3
k−3

T i
2

T i+2
k−2

T i
1

T i+1
k−1

T i
k−1

Figure 4.25: This figure shows how a choice set T ik leads to an edge with weight

b(T ik). The next vertex beyond that edge is determined by the choice made in

T ik and all alternatives with their respective weights are shown. The next choices

made in the choice sets for the left and right side create new vertices. The edges

towards these are marked with dashed lines.

leaf vertex is always a vertex given by a weight w(i|T i1) and edge towards that

vertex with weight b(T i1). The label that will be given to the edge ei1 is then

λ(ei1) = c(i|T i1). For T ik with any k = 2, . . . , no − 1 we first compute a label for

each choice. Let j be the j-th index in T ik, then λj(e
i
k) is the cost of clearing the

entire subtree given that we chose the j-th index in T ik. It is computed like the

labels for Graph-Clear, except that we only have two deal with two neighbors,

left and right. Let ρleft = λ(eij−1) − b(T ij−1) and ρright = λ(ei+jk−j) − b(T i+jk−j).

The side with smaller ρ has to be cleared first. So if ρright < ρleft, then c =

max{λ(ei+jk−j) + b(T ij−1), λ(eij−1)}, otherwise c = max{λ(eij−1) + b(T i+jk−j), λ(ei+jk−j)}.
Now, the maximum cost occurring while clearing both sides and the center vertex

172

with weight w(o|T ik), with o = i+ j − 1, becomes:

λj(e
i
k) = max{w(o|T ik), c} (4.4)

Finally, we only consider the choice with the lowest cost label which then

becomes the label for eik, i.e. λ(eik) given by:

λ(eik) = min
j=1,...,k

{λj(eik)}, (4.5)

Fig 4.26 labels λj(e
i
k) attached to edges for k = 1, 2, 3. Only the label λ(eik)

will be used in subsequent label computations for choices higher up in the tree.

This implicitly prunes all choices at a T ik but one. Fig. 4.27 shows the choice

tree from 4.22 pruned by computing minimum labels. Notice that we will always

have exactly one subtree now which is already the subtree with the lowest label

cost.

c(i|T i
1)

λ(ei
1) = c(i|T i

1)

c(i|T i
2)

c(i + 1|T i
2)

λ(ei+1
1)

λ(ei
1)

k = 1,∀i

k = 2,∀i

k = 3,∀i
c(i|T i

3)

c(i + 1|T i
3)

c(i + 2|T i
3)

λ(ei
2)

λ(ei+1
2)

λ(ei+2
1)

λ(ei
1)

λ1(ei
2)

λ2(ei
2)

λ(ei
2) = min

j=1,2
{λj(ei

2)}

λ(ei
3) = min

j=1,2,3
{λj(ei

3)}

λ1(ei
3)

λ2(ei
3)

λ3(ei
3)

λ(ei
1)

Figure 4.26: Illustration of the computation of labels λj(e
i
k) and λ(eik) for

k = 1, 2, 3.

But the label-based algorithm and hence the minimum label cost is not opti-

mal for Graph-Clear. The optimal algorithm for Graph-Clear on trees, presented

173

T 2
1 T 5

1 T 6
1T 4

1T 3
1

T 5
2T 3

2 T 4
2T 2

2

T 3
4

T 4
3T 3

3T 2
3

T 2
4

T 2
5

Figure 4.27: Computing labels for edges representing choice sets implicitly prunes

all outgoing choices from a choice set to one. The figure shows such a pruned

tree and only the edges for choices are shown that correspond to a vertices that

leads to the minimum label.

in Section 3.6, is slightly more complicated. Recall the main difference between

the two algorithm. The optimal algorithm with cut sets allows entering a sub-

tree of the surveillance tree, clearing it partially and returning to another subtree.

The label-based approach on the other hand resembles a depth-first strategy since

174

once it enters a subtree it clears it entirely before it clears a neighboring subtree.

Instead of labels the optimal algorithm has cut-set that represent the different

states of a subtree behind an edge and the associated clearing and blocking costs.

This improvement makes the algorithm optimal. But unfortunately, it also in-

troduces a complication that makes it difficult to adapt it to a choice tree in

polynomial time. The reason for this is as follows. The label computation above

allows us to prune all choices but one, namely the one with minimum label cost.

This is possible since once a side is chosen it will be cleared and hence the lowest

cost subtree is the best alternative. Now, for cut sets this is not necessarily true.

We may have two choices of vertices (and hence subtrees) out of which one has

a higher total clearing cost, but also has intermediate cuts with low cost and low

blocking weight while the second choice leads to a subtree with lower overall cost,

but no intermediate cuts (recall Section 3.6). Clearly, if one is presented with

these two choices at the root of the choice tree one would pick the one with the

lower cost. But deeper within the tree it is not clear which choice will ultimately

lead to a lower overall cost at the root, since the subtrees will be combined with

other subtrees through a new vertex closer to the root of the choice tree. This

combination may make the choice with the cut set that has an intermediate cut

a better choice by reducing the blocking cost and then allowing to clear the other

subtree at lower overall cost. The conclusion is that we need to keep track of all

choices and their associated cut sequences that can have a potential advantage

further up in the choice tree and cannot prune these choices. In the worst case

we may have to keep track of all choices, which cannot be done in polynomial

time. Unless one can prove a lemma that guarantees that choices can be pruned

from T ik on the basis of their cut sequences the cut set algorithm cannot be ap-

plied in polynomial time to yield optimal sweep schedules. Hence, the problem

of determining optimal sweep schedules in polynomial time remains subject to

175

further investigation.

4.4.1 Split Points for Sweep Lines

There are a few technical considerations for the existence and computation of

the lowest cost split point p. We discuss these here since they offer a promising

direction for further work towards finding conditions or a complete algorithm

for optimal sweep schedules. Recall that we seek a split point p ∈ δCk that

minimizes the joint cost of a sweep line from p to Ci and a sweep line from p to

Cj. Previously, in Section 4.2.2 we encountered a similar problem, but with three

obstacles that shared a Voronoi vertex. In this case we can guarantee that there

is a straight line connecting Ck with both Ci and Cj, which makes the problem

much simpler. To generalize this to obstacles that are not necessarily close to

each other we have to consider the following. Write li(x) and lj(x), x ∈ Ck for a

lowest cost sweep line from x to Ci and Cj respectively. Note that li and lj must

not intersect nor can they intersect with the boundary of any obstacle other than

Ck, Cj, Ci. The goal is now to minimize the function csplit(x) := c(li(x))+c(lj(x))

defined on x ∈ δCk, which can be solved as an optimization problem. The

problem lies more with finding li(x) and lj(x). Consider the cost function calt

instead of c. With this cost function the lowest cost split line is always the shortest

path from x to Ci or Cj respectively. Finding this path in our simply-connected

environment would involve some elements of path planning. But such paths, if

they are not straight lines, will be very close to other obstacles. Now, if one can

move a midpoint of one of these two sweep lines li(x) and lj(x) onto one of these

close obstacles, denoted by o′ at no larger cost, then this obstacle can be added

to B prior to o at no additional cost. This means that choosing o′ before o has

lower or equal cost than choosing o before o′. Intuitively, this means that we can

176

ignore far away obstacles as the next choice. Working out this relationship may

well lead to conditions under which we can reduce the number of choices that

have to be considered. This directions seems most promising for further work on

this topic and towards improving the construction of sweep schedules by giving

precise conditions for pruning choices for the obstacle index sequences.

4.5 Discussion and Conclusion

In this chapter we presented a novel pursuit-evasion problem for complex two

dimensional environments that captures the limited range assumption by model-

ing the sensing capabilities as lines that have a cost. The problem is a suitable

model for environments in which the distance between non-adjacent obstacles is

larger than one robot’s sensing range. Solutions to the problem are formulated

as moving sweep lines which represent the movement of robots as they follow the

lines and cover them with sensors. We developed a heuristic approach to compute

sweep schedules from Voronoi Diagrams using Graph-Clear strategies and showed

that there are instance when it is suboptimal. We then developed a combinatorial

perspective that allows us to consider less restricted sweep schedules than those

created from a Voronoi Diagram. This perspective relies on the ability to compute

lowest cost obstacle index sequences. We can compute these with Graph-Clear

algorithms, but it turns out that we cannot, as of now, guarantee that the opti-

mal Graph-Clear algorithm based on cut sets can be adapted to this problem in

polynomial time. Here there is probably the best starting point for further work

on the topic, by either attempting to show that Line-Clear is already NP-hard

in simply-connected environments or finding a constraint on the number of cut

sets that have to be considered that lets the algorithm run in polynomial time.

Once this is achieved a more rigorous formal treatise is then justified to support

177

the proof of the respective conjectures. Overall, it can be said that Line-Clear is

already a hard problem even in simply-connected environments.

Despite the difficulties in finding optimal solutions the Line-Clear approach

has a practical benefit. In practice, even the sub-optimal label-based algorithm

performs sufficiently well and has the advantage that it reduces the travel dis-

tance of the robot team justifies its use. Every edge in the graph is traversed

at most twice in the depth-first approach. The cut-set algorithm, however, can

require leaving and entering the same subtree multiple times and can have much

longer travel distances. Hence, even for Line-Clear the label-based polynomial

time adaption is useful given that travel time is a constraint for the clearing

process. In Chapter 5 we shall see the ideas for Line-Clear being used as a prac-

tical method to extract graphs via the Voronoi Diagram. Furthermore, we can

attempt to apply the Line-Clear ideas even when no map is given, as we shall see

in Chapter 6. Therein robots simply form sweep lines between obstacles and dis-

cover the environment by moving these around until they encounter new obstacles

on which they split. Removing the assumption that a map is given is obviously

a great step towards broadening the types of applications that Line-Clear can

be useful for. This allows the deployment of robots to occur in a partially or

completely unknown environment or when part of the environment is dynamic

and unpredictable. In such cases a strategy can only be planned for the part of

the environment which is already known. A robot team may for example have

to check whether a door is locked or after a in a disaster whether a corridor

is obstructed by debris. In a completely unknown environment the exploration

starts from scratch without any initial knowledge and preliminary strategies have

to be adapted to new information that is collected about the environment. In

summary, there are a number of open questions regarding Line-Clear that en-

courage further work, but its core ideas and concepts can already be useful for

178

applications, as we shall see in the next chapters.

179

CHAPTER 5

Extracting Surveillance Graphs From Maps

In this chapter we present automated methods for the extraction of surveillance

graphs from maps. The relationship of a graph to its maps is obviously affected

by the type of implementation for sweep and block actions. But there are also

general principles that can be exploited, such as that good positions for blocks

are at narrow parts of the environment. Section 5.1 exploits this principle using

the Voronoi Diagram introduced in Section 4.2.1 to partition maps by finding

minima on Voronoi edges on which it sets up blocks. Following this in Section

5.2 we present an extraction method based on ideas from Line-Clear and Chapter

4 which leads to some improvements from the previous extraction method.

5.1 Voronoi-based Extractions

In this section we provide a first step to close the loop between the graph-based

theoretical formulations of Graph-Clear and practical scenarios. Preliminary re-

sults from this section also appeared in [KC08a]. We show how it is possible to

algorithmically extract suitable surveillance graphs from occupancy grid maps.

We also identify local graph modification operators, called contractions, that al-

ter the graph being extracted so that the Graph-Clear problem can be solved

using less robots. The algorithm we present is based on Voronoi Diagrams from

Section 4.2.1. Voronoi Diagrams and approximations thereof can be computed in

180

a variety of ways, such as watershed like algorithms or directly from sensor read-

ings. Our algorithm is evaluated by processing maps produced by mobile robots

exploring indoor environments. It turns out that the proposed algorithm is fast,

robust to noise, and opportunistically modifies the graph so that less expensive

strategies can be computed.

One of the main aspects of Graph-Clear is its conceptual mechanism that

allows to model and study different search and clear strategies by abstracting

from the underlying robotic platforms used. Graph-Clear in particular aims to

model surveillance tasks where multiple robots with limited sensing capabilities

cooperate to detect intruders in complex environments. Theoretical properties

of Graph-Clear, as well as solving algorithms have been extensively studied in

Chapter 3. Here we rather focus on the practical deployment of robot teams that

clear complex environments by using the Graph-Clear formalism. In particular

we address the problem of automatic extraction of surveillance graphs from occu-

pancy grid maps. Informally speaking, this task entails allocating graph vertices

on rooms and graph edges on corridors or connections between rooms. The reader

will realize that this step is similar to creating topological maps from occupancy

grid maps. In order to enable the Graph-Clear framework it is also necessary to

determine weights associated with edges and vertices and then partition the en-

vironment to yield a graph with good strategies. These weights measure the cost,

i.e. the number of robots, needed to enforce relevant properties on the graph, like

for example preventing intruders from passing through a door, or from hiding in

a room. The method to assign weights presented in this section is parametric

with regard to the sensing capabilities of the robots used to implement the strate-

gies, and has therefore general applicability. In addition, while extracting graphs

from occupancy grid maps we have identified certain operations that modify the

graph so that the algorithm generating strategies produces solutions requiring

181

less robots.

While most ideas herein generalize to varying implementations of the basic

Graph-Clear actions, i.e. blocking edges and sweeping vertices, we will present

experimental results for particular implementations of these actions on two real-

istic robot maps, one created from a laser range finder on a P3AT at UCMerced

and one generated from the Radish online robotics data repository [HR03] called

”sdr site b”.

Our proposed approach is based on a Voronoi Diagram for the given environ-

ment. Voronoi Diagrams can readily be constructed from sensor data, occupancy

grid maps or vectorized maps. For our purposes we will assume a two dimensional

grid map. Let us first discuss how blocking on edges and sweeping on vertices

can be implemented.

5.1.1 Blocking

The requirement from Graph-Clear is that a block detects intruders as they at-

tempt to pass through the edge. This can be fulfilled by continuously covering

the area corresponding to the edge with sensors. In practice no sensor can give

a 100% guarantee that an intruder will be detected and one may wish to cover

the area with multiple sensors, or if speed constraints apply to intruders then

one might just need one robot patrolling fast enough along the edge while not

covering it all at once. The actual choice of implementation can differ widely

depending on the application. Our basic assumption is that any implementation

will benefit from edges placed at narrow section of the environment.

182

5.1.2 Vertex sweeping

For implementations of vertex sweeping the choices are even more manifold.

In open uncluttered regions one could use the sweep-pursuit-capture strategy

presented in [BBH07]. In cluttered but not too large regions the approach

from [MRS05] could be applied. For vertices in which the sensor range is larger

than the diameter of the region one could use the approach from [SRL04]. These

methods are shortly presented in Chapter 2. A good choice for an implemen-

tation of the sweeping action is heavily dependent on the type of robot used

and the shape of region that the vertex represents. That being said, however,

one of the advantages of Graph-Clear is not only that it can scale local clearing

methods to very large environments, but that it allows us to use simple clearing

methods for the vertices which could be implemented by very simple robots, even

those just roaming around a vertex randomly in which case the time they are

allowed to spend in a vertex determines a likelihood of detection. Obviously such

vertex sweeps do not assume a worst case adversary. In Section 5.1.6 we will

demonstrate the graph construction with a very simple bounding box sweeping.

Our approach for the graph construction proceeds in two stages. The initial

construction places edges at every possibly beneficial position, i.e. every narrow

section of the environment. But already in a simple cases such as in fig. 5.1 we

can see that too many edges are created. We would like to reduced the number

of edges and vertices to improve the graph taking into consideration the vertex

sweeping and edge block implementation. Hence the construction proceeds with

contracting (i.e. merging) vertices from the initial construction when an edge

between two vertices is not beneficial. The next two sections present this two-

staged construction.

183

a) b)

Figure 5.1: Illustrating the advantage of narrow connections between open re-

gions. For robots with a limited sensing range the environment in part a) can

be cleared with 3 robots, while the one on part b) requires 4. The reader should

note that the surface is the same.

5.1.3 Initial Graph Construction

Given a map, we first compute the Voronoi Diagram. Similar to [Thr98], in which

the graph was used for fast path planning, we use the minima of the local clearance

function defined on the edges of the Voronoi Diagram to create the surveillance

graph. The local clearance function on the edges of the Voronoi Diagram is simply

the distance from the point on the edge to the nearest obstacle point. A minima is

considered any point for which ∃ε > 0 s.t. within its ε-neighborhood there are no

other points with strictly smaller clearance and ∀δ > 0 there is at least one point

within its δ-neighborhood with strictly larger clearance. In colloquial terms, one

very close neighbor should be larger and within any small neighborhood none of

the neighbors should be smaller. Here we differ from the construction in [Thr98]

which considers all points for which all points within an ε-neighborhood are not

smaller, which would also include entire plateaus and also those of maxima. With

our definition, if a minimum value is achieved on a compact subset of the edge

we select the two end points of the set. Fig. 5.2 shows a Voronoi edge and two

184

minima

clearance function defined on the Voronoi edge

0

1

0 1

environment with Voronoi edge

0 1

Figure 5.2: A simple environment with a Voronoi edge in the center as a dotted

line and the clearance function in the graph on top. The minima on the Voronoi

edge are marked by grey circles.

minima on it.

It is worth to note that minima cannot lie on vertices of the Voronoi Diagram,

so by only considering edges we do not miss any minimum. For each minimum

we consider the lines from the minimum to the two nearest obstacle points, which

since we are on a Voronoi edge lie in two different obstacles. These lines will be

represented by an edge in the surveillance graph, i.e. we are partitioning free

space into regions based on these lines and each region becomes a vertex in the

surveillance graph. Given an accurate Voronoi Diagram this construction yields

a valid partitioning and hence a valid graph. Fig. 5.3 shows such a construction.

Once the edges and vertices of the surveillance graph are constructed we use

the implementation of the edge block and the vertex sweeping actions to compute

the weights for the surveillance graph. This concludes the initial construction.

185

Obstacle 1

Obstacle 2

O
bs

ta
cle

 3

Obstacle 4

O
bs

ta
cle

 5

Figure 5.3: A Voronoi Diagram and its minima. The Voronoi Diagram is marked

with grey dashed lines, the minima with grey circles and the lines to the closest

obstacle points with thin black lines. Obstacle boundaries are thick black lines.

Corners in corridors tend to produce minima, unless a narrow part proceeds it as

seen in the upper left corner of the figure.

The resulting surveillance graph will be the starting point to find a graph with

better strategies. In most environments the presented construction will introduce

many more edges than would be beneficial, as seen in fig. 5.1 in which an edge

between the two regions is only of advantage when it is sufficiently narrow. Since

this depends on the implementations of the actions and the type of robot, we will

have to introduce a method that considers this when improving the surveillance

graph. Gladly, we can use a general approach that merely calls the weight compu-

tation of the implementations which is discussed in the next section. Thereafter

we will demonstrate the method with two realistic examples.

186

5.1.4 Improving the graph

The initial construction does not guarantee the existence of good strategies for the

Graph-Clear problem. Hence, the next step is to contract vertices wherever this

may lead to a better strategy. This will also remove spurious minima that may

be introduced by noise in the map or approximations of the Voronoi Diagram, as

seen in fig. 5.4.

Figure 5.4: An example in which a discrete approximation of the Voronoi Diagram

in a grid map leads to introduction of unwanted edges. The black line in the center

is the Voronoi Diagram edge and minima are marked by grey lines

The simplest type of contraction is between a leaf vertex l and its sole neighbor

v. Let e be the edge connecting them and v′ be l and v merged. Contracting l and

v cannot make the strategies for the surveillance graph worse if w(v′) − w(v) ≤
w(e). It is easy to verify from Eq. 3.10 in Section 3.5 that under these conditions

none of the labels in the graph can get larger. Furthermore, from Section 3.7.2 it

follows that if e is not in the tail of another a label on an edge coming from the

neighbors v2, . . . , vm of v, then this label necessarily improves due to the removal

of the edge. Recall that the tail of a label, in colloquial terms, is the set of edges

whose ending vertices are cleared before sweeping the one with the highest cost

c(ei).

The second contraction is for vertices of degree two. Let c be such a vertex,

vy, v
′
y its neighbors and e, e′ the respective edges. If w(e) ≥ w(e′) and w(vcy) ≤

187

w(vy) + w(e) − w(e′) then a contraction of vy and c into a single vertex vcy is of

advantage. Fig. 5.5 shows this contraction.

c

v2

vy

vm

e

e2

em

v'2

v'y

v'm

e'2

e'm

e'

v2

vcy

vm

e2

em

v'2

v'y

v'm

e'2

e'm

e'

a) b)

Figure 5.5: A contraction of a vertex with degree two and its neighbor. Part a)

shows the initial graph and part b) the graph after the contraction.

If either of these two conditions is satisfied then a contraction is guaranteed

not to lead to worse strategies on the surveillance graph, regardless of the value

of the labels on the edges. Analyzing general contractions is beyond the scope of

this paper and involves a careful and formal consideration of the recursive nature

of the label computation, occurrences of the maxima in batches and the role of

the tails as it is done in [KC08b]. We will, however, demonstrate the potency of

already the simple types of contractions in our experimental section.

5.1.5 Implementing blocking and sweeping actions

As previously indicated, blocking and sweeping actions of a strategy for the

surveillance graph can be implemented in manifold variations depending on the

particular needs of the application. The requirements for the implementation is

merely that the computation of the weights on vertices and edges is possible and

that the action can be executed. When using vertex sweeping strategies that

have strict assumptions, such as the region of the vertex being simply connected,

these assumptions has to be considered when building the graph. In this case one

188

needs to detect vertices in which this is not given and subdivide them into further

vertices. Issues with particular types of sensors, their range and error rates are all

aspects that come into play when designing the implementation details. Once the

implementation gives satisfactory guarantees for the detection of intruders, then

Graph-Clear can be applied. At this point one could also consider the probabilis-

tic variant of Graph-Clear and instead of providing weights, the implementation

would provide a function describing its performance dependent on the number of

robots used (see Section 3.8).

5.1.6 Experimental Results

To demonstrate some the presented ideas in an application we constructed a

robot grid map of part of the UC Merced Science and Engineering building with

a Pioneer P3AT mobile platform equipped with a SICK PLS200 laser range

finder. The map is built using the GMapping software [GSB]. Figure 5.8 shows

this map, which we will further denote as UCM map. As a second map we used

the sdr site b data set from the Radish online robotics data repository [HR03].

This latter set will be denoted as SDR map, and the correspondingly generated

map is seen in figure 5.9.

To both maps a low-pass filter was preliminary applied to remove noise and get

smoother boundaries. Both maps have a complicated structure, many occlusions,

loops and noisy artifacts. The resolution of the grid map for the UCM map is

690x790 pixels while the SDR map is 645x573. The free space in the UCM map

and SDR is approx. 35.8% and approx. 46.4% respectively, which corresponds

to 4422 pixels for the UCM map and 4142 pixels for the SDR map. In the

SDR map there are two small pockets at the bottom of the map which were

included in the open space calculation but are not accessible and hence not part

189

Figure 5.6: The map created by the P3AT at UC Merced with initial graph

construction. The thick black lines are boundaries between free and occupied

space. The small black circles are vertices placed in their corresponding region

which are separated by thin lines.

of the graph construction. Since the maps are both grid maps a simple wave

propagation algorithm to compute an approximation of the Voronoi Diagram has

been used. The algorithm implicitly assumes that points on a straight line belong

to the same obstacle and a diagonal marks a new obstacle. Diagonal collisions

are permitted, complicating implementation slightly. Since our focus is on the

graph construction we will spare the remaining details of the Voronoi Diagram

construction noting that good algorithms have been developed in the vast body

of literature on the topic.

Based on the crude approximation of the Voronoi Diagram we construct the

surveillance graph by detecting the minima on the Voronoi Diagram edges. We

mark every point on the Voronoi Diagram as a minima which has several neigh-

190

Figure 5.7: The sdr site b from Radish [HR03] with initial graph construc-

tion.The thick black lines are boundaries between free and occupied space. The

small black circles are vertices placed in their corresponding region which are

separated by thin lines.

bors in at least one direction being larger and no other point on the Voronoi edge

within 3 steps in any direction being smaller. To avoid too many minima on the

initial graph, we set a minimum distance between initial minima to 10 steps on

the diagram. The selection of minima can be application dependent, e.g. for

some applications it may be desirable to have minima that are guaranteed to be

further apart. Whilst very close edges are likely to be merged in the contraction

stage, it is still more convenient not to clutter the initial graph with many spu-

rious edges when those are easy to avoid. The resulting graphs for the two maps

are displayed in figures 5.8 and 5.9.

Once the surveillance graph is constructed we compute the weights on edges by

computing the distance d between the two closest obstacle points of the minimum.

The weight on the edge becomes w(e) =
⌈
d
r

⌉
whereby r is the maximum the

sensor can cover between any two points. For example, for an omnidirectional

191

sensor this will be the diameter of its disk, while and for a 45 degree laser range

scanner it will be the maximum range of one beam. For vertices we assume a

simple bounding box sweeping method, i.e. we compute a rectangular bounding

box around region of the vertex. Let s be the length of the shorter side of

the bounding box, then the vertex weight becomes w(v) =
⌈
s
r

⌉
where r is as

before. We assume only horizontal and vertical lines for the bounding box. This

simple vertex sweep implementation should lead to less contractions in the given

environments as it penalizes merging vertices that lead to complicated regions in

which such a bounding box is a poor sweep method.

Once the initial graph is given we compute Graph-Clear strategies on it. First

we convert the graph into a tree by computing the Minimum Spanning Tree

(MST) with respect to to the inverse of the edge weight to yield those edges

in the MST with the highest weight. Edges that are not in the MST will be

blocked continuously to reduce the graph to a tree. In Section 3.10 details of this

method are presented and it is shown that not all of the non-MST edges have to

be blocked simultaneously, i.e. the total cost of clearing the environment can be

further reduced. We then used the hybrid strategy algorithm from Section 3.7 on

the tree. The partitioning problem for the hybrid algorithm mentioned in [KC08b]

was solved with brute force, albeit not hindering computational performance as

the solutions were computed in the order of milliseconds. Labels in all directions

were computed and the vertex with the best cost was chosen as the starting

vertex.

Finally, we start the contraction process which proceeds in loops, contracting

all vertices satisfying the criteria from Section 5.1.4 at each iteration until no

more such contractions are found. The resulting graph can be seen in fig. 5.8

and 5.9. On this graph we compute new Graph-Clear strategies.

192

The graph construction has been carried out for varying sensing range. A

summary of the results is found in table 5.1, where r denotes the sensing range,

n0 the initial number of vertices, n the number of vertices in the final graph.

The number of robots needed to execute the computed strategies are ag0 for the

initial graph and ag for the final graph. The number of non-MST edges, each

corresponding to a cycle in the graph, as well as their total weight, is also given

as b and bc respectively. In the random graphs from Section 3.10 it turned out

that to successfully apply the strategy from the tree to the graph we required

about 0.5 · bc additional robots to what the tree strategy requires. Furthermore,

we included the total area one can cover with the robots assuming they have an

omnidirectional sensor. As c1 we denote the area all robots needed to executed

the tree strategy could cover as a percentage of the total area of the free space

of the given map. For c2 we also include all robots needed to block all non-MST

edges continuously. These percentages would be reduced if we assumed a 180

degree sensor as we only need sensor coverage to maintain sweep lines, i.e. in

theory even a single beam would already suffice, albeit in practice a 180 degree or

omnidirectional sensor can give repeated observations of the same target which

is more robust considering the erroneous nature of the sensors and the need to

integrate the observations to obtain robust target detections.

5.1.7 Discussion and Conclusion

The experiments demonstrate a successful construction of a surveillance graph

for two complicated environments. The number of robots needed is significantly

reduced for the contracted variant of the graph. Furthermore, we can see that

we can detect all intruders in the environment for just a minor fraction of the

total area of the environment. More importantly, the approach scales well to

193

Map r n0 n ag0 ag b bc c1 c2

UCM 5 108 40 68 58 3 15 0.6% 0.7%

UCM 10 108 25 37 28 3 9 1.1% 1.5%

UCM 20 108 22 18 14 3 6 2.3% 3.2%

UCM 40 108 13 10 8 3 3 5.1% 7.1%

UCM 60 108 19 9 6 3 3 8.7% 13.0%

UCM 100 108 13 6 4 3 3 16.1% 28.1%

SDR 5 172 79 42 36 8 31 0.4% 0.8%

SDR 10 172 72 22 19 7 17 0.9% 1.6%

SDR 20 172 60 12 9 7 10 1.7% 3.5%

SDR 40 172 42 7 6 8 8 4.4% 10.3%

SDR 60 172 32 6 5 6 6 8.3% 18.1%

SDR 100 172 14 6 4 6 6 18.3% 45.8%

Table 5.1: Summary of the experimental results.

large teams with each robot having only limited capabilities. The number of

robots needed increases linearly with respect to their sensing range. Another

minor observation is that the number of non-MST edges in the SDR map varies,

which is a result of the different contractions applied to the initial graph due to

the different weights. Some of the cycles are then contained within a vertex and

hence do not appear in the surveillance graph. We have hence demonstrated the

applicability of Graph-Clear and provided a valuable method for the construction

of surveillance graphs from grid maps which already works well in practice, despite

leaving open many more directions for further improvements. Particularly, we will

next look at vertex sweeps and edge blocks based on Line-Clear implementations

which more accurately reflect the sweeping costs of a vertex with limited range

sensors. Furthermore, we showed that already simple criteria for contractions

194

Figure 5.8: The map created by the P3AT at UC Merced with initial graph

construction on the left. The thick black lines are boundaries between free and

occupied space. The small black points are vertices placed in their corresponding

region which are separated by thin lines. On the right is the final graph resulting

from contractions.

lead to significant improvements of strategies. Also, the construction process is

robust against errors in the approximation of the Voronoi Diagram as we did

not use a state of the art algorithm for this purpose. Yet, contractions are by

no means exhaustive and ideally a comprehensive theory of these contractions

should be put into place. For all practical purposes, however, current contraction

methods seem to suffice.

There are open questions with respect to to an incremental construction of

surveillance graphs and strategies based on an incremental construction of a

Voronoi Diagram and local optimization techniques. We shall discuss an approach

for the incremental construction of a Graph-Clear as a robot team explores an

195

Figure 5.9: The sdr site b from Radish [HR03] with initial graph construction.

The thick black lines are boundaries between free and occupied space. The small

black points are vertices placed in their corresponding region which are separated

by thin lines. On the right is final graph resulting from contractions.

environment in Chapter 6.

5.2 Line-Clear Extractions

In this section we present a method to extract surveillance graphs from occu-

pancy grid maps by using the ideas from Line-Clear. Preliminary results from

this section also appeared in [KC09c]. The extracted graphs model the complex-

ities of any given planar environment accurately, and are constructed as duals

of the Voronoi Diagram. This gives a natural geometric embedding for blocking

and sweeping actions of the graph into the environment by directly associating

them to sweep lines that robots have to cover with sensors. With this method

we solve two problems at once, namely the generation of surveillance graphs and

the implementation of actions on a robot team. Sweep lines can then be directly

196

translated into control inputs to the robot team. The new method is superior to

previous heuristics for the extraction of graphs not only through its direct geo-

metric relationship to the environment, but also due to its increased performance

in direct experimental comparisons.

The theoretical aspects of the approach applied here are discussed in Chapter

4. In this section we are primarily concerned with practical ramifications to

model the sensing capabilities of a robot team as lines between obstacles. For

this we consider a sweep line as a line covered by the sensors of multiple robots

which ensure that no intruder can pass through. As the line moves through the

environment, robots continue to cover it with their sensors. In particular, we

shall apply the ideas from Section 4.2 and use them to obtain surveillance graphs

of the environment.

5.2.1 Implementation

The actual implementation to use the line clearing approach to construct a

surveillance graph from an occupancy grid map proceeds in several stages. First,

to smoothen the map we convert it to a polygon by computing its α shape us-

ing the CGAL library [Da08]. These shapes are frequently used to reconstruct

the shape of a dense set of points. Once we get the polygon boundary from the

occupied grip points we apply the Ramer-Douglas-Peucker line-simplification al-

gorithm [Ram72] to get a polygon boundary with less line segments. A parameter

specifying the degree of simplification is required which we shall denote as ε. We

will discuss the sensitivity to these parameters in Section 5.2.2. After these two

steps the polygon segments provide convex obstacles sets that can be processed

to compute the Voronoi Diagram.

Once the Voronoi Diagram is computed we proceed by computing the split

197

points for each vertex and thereby its directional weights. We also associate the

endpoints of a minimum length blocking line to edges and the length of this line

becomes the block weights. Given the weights we apply the contiguous algorithm

for trees described in Section 3.5 as well as the minimum spanning tree based

cycle blocking. This gives us a strategy in form of a sequence of vertices. We

compute the overall cost of the strategy as well as the cost of clearing the tree

without considering the cycle edges.

From here on it is but a small step towards the actual motion of the robots.

Given the sequence of vertices we can construct a sequence of moving lines. The

first vertex is cleared by blocking one edges and clearing it coming with a new

sweep line starting from that edge, leading to blocks on all its edges. From there

on every next vertex is a movement of one blocking line towards the critical point

for the direction the line is coming from. These continuously moving lines can be

followed by a team of robots as seen in Section 4.1.1. To account for localization

and navigation errors robots can be spaced with sensors overlapping as seen in

figure 5.10. The δ parameter also helps to offset possible approximation errors

during the conversion of the grid map into a polygon.

5.2.2 Experiments

To validate the implementation of the algorithm from Section 5.2.1 we ran it

in a variety of configurations on the grid maps from Section 5.1.6. Figure 5.11

shows the map after it was processed by computing its α-shape and simplifying

the polygon boundary. We shall call this map UCM map. The second map is

obtained from the Radish online robotics data repository [HR03] sdr site b data

set. We will denote it as SDR map. It is shown after processing in figure 5.12.

We compare our algorithm to the one used in Section 5.1.6 which also extracts

198

Figure 5.10: Robots following a sweep line with δ overlap and splitting into two

sweep lines at a critical point. Robots with solid disks are moving towards future

positions marked as robots with dashed disks. Note that the four robots require

additional 4 robots to reach the dashed positions.

surveillance graphs. Therein the very crude sweeping routine does not acknowl-

edge complexities in the environment within a vertex. Recall that therein the

strategies are computed with the hybrid algorithm. These generally have lower

cost than contiguous strategies, but they do not satisfy contiguity and can hence

not be used for a Line-Clear approach in which a contiguous sweep schedule is

being constructed. Although one could attempt to extend the approach from

Section 4.2 and also use it to compute non-contiguous sweep schedules, but this

remains subject to further work.

The evaluation of the algorithm from Section 5.1 included the cost for strate-

gies on the generated tree denoted by ag. Let agr denote the cost of strategies

extended to the entire graph. Since all non minimum spanning tree were as-

sumed blocked in Section 5.1 we set agr to ag + bc, where bc is the cost for all

199

Figure 5.11: UCM map with borders thickened for illustration purposes. The

graph is embedded with thin lines as edges inside free space. Vertices are small

circles. The map is a polygon map obtained from the original grid map from fig.

5.8 after applying the α-shape and line simplification with α = 10 and ε = 3.

Distances are measured in pixel. To illustrate scale six horizontal lines of length

5,10,20,40,60 and 100 pixel are added.

cycle edges. Let b denote the number of cycles. In our case, agr denotes the

cost for only blocking cycle edges when needed and corresponds to the actual

200

Figure 5.12: SDR Map with borders thickened for illustration purposes. The

graph is embedded with thin lines as edges inside free space. Vertices are small

circles. The map is create from the original grid map from fig. 5.7 exactly as fig.

5.11.

number of robots needed to clear the environment by following the sweep lines

associated to vertices and edges. Write r for the sensing range in pixels and δ for

the parameter adjusting for errors.

An accompanying video shows a sequence of block and split lines in the UCM

map (ε = 3, α = 10, δ = 2, r = 40) as red and green, respectively. Associated

201

cost for lines is show in red for blocks, green for split lines and blue for block

lines due to cycle edges. At each step part of the robot team is moving from a

red block line to a green split line. Counters on the top left show the clearing

step, current cost and maximum encountered cost.

Table 5.2 summarizes the results from Section 5.1 for comparison purposes. Of

importance are primarily agr and ag as a function of r. Tables 5.3 and 5.4 present

UCM map SDR map

r agr ag b bc agr ag b bc

5 73 58 3 15 67 36 8 31

10 37 28 3 9 36 19 7 17

20 20 14 3 6 19 9 7 10

40 11 8 3 3 14 6 8 8

60 9 6 3 3 11 5 6 6

100 7 4 3 3 10 4 6 6

Table 5.2: Summary of the experimental results from [KC08a].

results from executing the algorithm from Section 5.2.1 on the UCM and SDR

maps. Table 5.3 can be compared to table 5.2 since δ = 0. Despite the additional

constraint to require contiguous strategies the new approach outperforms the

one from Section 5.1 on the UCM map for sensing ranges from 5 to 60. Also on

the SDR map the new approach produces better strategies on the tree (ag) for

sensing ranges 5 to 60. The similar performance for sensing ranges at 100 may

result from the fact that the method from Section 5.1 ignores the complexities

of the environments when merging it into a graph with 13 to 14 vertices each of

which is swept with the rectangular sweep.

It is also interesting to note that the new approach removes the problem en-

202

countered in Section 5.1 in which two vertices are merged leading to the removal

of a cycle edge. The cycle in the environment is then inside the vertex and effec-

tively ignored. The new approach continues to capture the geometric complexity

without such heuristics and the number of cycle edges remains relatively con-

stant. There is, however, a slight variation resulting from the processing of the

grid map. The produced alpha shapes are not deterministic and slightly different

alpha shapes may lead to a different surveillance graph which can also lead to a

slight variation in the number of cycles, as well as slight variations in the tree

and hence the strategy cost. Usually these cycles are degenerate1, resulting from

the particular computation of the Voronoi Diagram as the dual of the Delaunay

Graph. These, however, do not pose a problem neither for computation nor for

the execution of the strategy.

As expected, increasing δ leads to slightly more costly strategies as seen in

table 5.3. Obviously, robots with small sensing ranges are affected more than

those with large sensing range since the ratio of δ to r matters. But already a

relatively small δ of 2 leads to cost increases across all sensing ranges.

Table 5.4 shows the effect of varying the degree of simplification for the Ramer-

Douglas-Peucker algorithm. Setting ε from previously 7 (in table 5.3) to 3 leads

to no significant differences in ag. The differences in agr can be explained by an

unfortunate selection of cycle edges due to a different selection via the minimum

spanning tree. Also note that degenerate cycle edges disappeared for the SDR

map.

All in all the experiments show that the algorithm is simple to implement and

robust while maintaining consideration for the geometric complexities. The only

approximations are made during the polygon creation and simplification which

1Degenerative in this context means that two Voronoi vertices are at exactly the same point
in the environment.

203

δ = 0 δ = 2

Map r agr ag b bc agr ag b bc

UCM 5 56 46 3 15 90 75 3 24

UCM 10 32 24 3 9 36 30 3 10

UCM 20 18 13 3 6 20 14 3 6

UCM 40 9 7 3 3 10 8 3 3

UCM 60 9 6 3 3 8 6 3 3

UCM 100 7 5 3 3 6 4 3 3

SDR 5 45 31 14 48 72 47 14 73

SDR 10 26 16 14 27 30 18 15 31

SDR 20 14 8 14 17 15 9 15 18

SDR 40 11 6 14 11 10 6 14 11

SDR 60 10 5 14 10 8 5 14 10

SDR 100 9 5 14 10 7 4 15 10

Table 5.3: Summary of the experimental results with α = 10, ε = 7. Note that

some MST-edges are degenerate and have 0 weight.

are marginal in comparison to the heuristics employed in Section 5.1.

5.2.3 Discussion and Conclusion

This section provided an improved method to relate surveillance graphs to the

planar environment they represent by using the methods discussed in Section

4.2. This leads to an efficient extraction of surveillance graphs from any robotic

grid map or polygonal environments. Regarding the computation of Graph-Clear

strategies it is apparent that the reduction to a tree is not entirely satisfactory and

motivates the study of approximation algorithms to the problem on the graph.

204

UCM map SDR map

r agr ag b bc agr ag b bc

5 97 76 3 24 73 50 10 69

10 38 30 3 9 30 19 10 28

20 18 14 3 6 15 9 10 15

40 10 8 3 3 10 6 10 10

60 8 6 3 3 7 5 10 10

100 7 5 3 3 11 5 10 10

Table 5.4: Summary of the experimental results with α = 10,δ = 2, ε = 3. Note

that degenerate MST-edges from table 5.3 do not appear here.

From a practical point of view the presented vertex sweeps and edge blocks

can be executed by a robot team which follows the lines that are associated with

the sweeps and stops at the blocks. Here a wide body of literature is available

and a control theoretic approach in the spirit of [BCM09] is a viable direction to

pursue. Robots have to follow a moving boundary which can be achieved with an

event-driven asynchronous robotic network as described in Chapter 6 of [BCM09].

Therein issues such as communication are also addressed. Furthermore, the robot

team requires some coordination to assign paths that result from following the

lines to individual robots. Here performance parameters such as time and trav-

elled distance can start to play a role. A robot which is not needed for a few

vertex sweeps could already travel to the vertex where it is needed next, speeding

up the overall execution. Also an interesting question is whether a minimalist

approach such as in [SRL04] can be employed for following sweep lines and we

shall investigate this direction in Chapter 6. Another important direction is the

consideration of probabilistic sensing and errors in control. In Section 3.8 Graph-

Clear is extended to a probabilistic sensing model. The algorithm therein can be

205

combined with the δ parameter and together give a probabilistic guarantee that

no intruder passes through a sweep line. Failure to detect may result from the

sensor or an errors in following a sweep line which can open up a gap. Increasing

δ and using more robots reduces this probability.

206

CHAPTER 6

Applications and Experiments

In previous chapters we presented the pursuit-evasion problems Graph-Clear,

(Chapter 3) and Line-Clear (Chapter 4). The purpose of this chapter is to discuss

how to apply these ideas and methods for the control and coordination of a robot

team. The notion of clearing a vertex, blocking an edge or covering a sweep line

are rather abstract and we are going to show how to interpret and implement

them with examples. In general, the specifics of the given hardware will determine

what problems will have to be solved in order to apply Graph-Clear or Line-Clear.

Yet, there are a few elements that can be useful for a variety of scenarios such

as the methods presented in Chapter 5 that automatically generate surveillance

graphs given a sweep and block routine.

In Section 6.1 we discuss experiments with two PioneerP3AT that are intended

as a proof of concept. They demonstrate an approach to convert Graph-Clear

strategies into robot paths which can then be followed by robots in proper order

as determined by a Graph-Clear strategy. These exploratory experiments were

carried out prior to the development of Line-Clear and inspired the basic idea of

allowing movement of a frontier forward which also lead to the modified variant

of Graph-Clear described in Section 3.9. A more significant contribution and

starting point for further work is presented in Section 6.2. Therein we extend

the principles of Line-Clear to a scenario in which no map is available. We de-

sign a hybrid algorithm that clears an environment with robots that can only

207

communicate and sense target locally, follow obstacle boundaries, and sense their

neighbors positions. The robots do not have to build a metric map of the en-

vironment, but they do build a topological map represented by the surveillance

graph. Such a map, however, is only useful to the team and not to an individual

robot since it describes the movement of the lines. We conclude with Section 6.3

and outline further work.

6.1 First Experiments with Simple Sweeps and Two Robots

In this section we describe the first application of Graph-Clear to experiments

carried out with two Pioneer P3AT robots. These experiments are primarily

intended as an illustration and proof of concept to demonstrate particular im-

plementations for sweeping and provide a first application of Graph-Clear. They

were carried out prior to the development of Line-Clear and it is interesting to

note that the resource limitation of the two robots lead to the consideration of

modifications for Graph-Clear, such as the relaxation of having to block all edges

of a vertex while it is being swept (see Section 3.9). Furthermore, the concept of

pushing forward the frontier between contaminated and cleared regions sparked

the development of Line-Clear.

6.1.1 Extracting Surveillance Graphs

In Section 5.1 we introduced a method to automatically extract surveillance

graphs from an occupancy grid map by using its Voronoi Diagram. The ex-

traction is based on the Generalized Voronoi Diagram [CB95], which we shall

denote as Voronoi Diagram. Once the Voronoi Diagram is computed the method

selects minima of the clearance function defined on the edges of the Voronoi Di-

208

agram. In our case, the selection of minima proceeds by choosing a point on the

Voronoi Diagram with the smallest clearance and then choosing each next point

with smaller clearance that is at least a certain distance away when moving on

the Voronoi Diagram. At a resolution of 0.032m per grid point this distance was

chosen to be 3.2m, i.e. in the grid map no minima can be closer than 100 grid

points. This value determines the size of the vertices that will be extracted in

the first step. For each minimum an edge for the surveillance graph is created.

More precisely, we use the line connecting the two closest obstacles to the mini-

mum on the Voronoi Diagram edge to represent the border between two vertices

of the surveillance graph. To improve the surveillance graph adjacent vertices

are merged under the criteria given in Section 5.1. Fig. 6.1 shows the Voronoi

Diagram and the selected minima after merging for the environment used in the

robot experiment in Section 6.1.3. To obtain a strategy, we use the contiguous

algorithm from Section 3.5. Being a sequence of block and sweep actions to be ex-

ecuted on a graph that is embedded in a plane, the strategy implicitly determines

which paths the robots follow as presented in Section 6.1.3.

6.1.2 Implementing Surveillance Graph actions

The abstractions of the sweeping and blocking actions in a surveillance graph

obviously require an implementation to enable a real application. The choice of

implementation is dependent on the mobility of the robotic platform, the type

of sensor, and properties of the environment. Here, we will present particular

sweeping and blocking implementations and discuss their limitations. In general,

the sweeping and blocking implementations should also influence the extraction

of graphs from the map, i.e. if the implementations requires certain assumptions

to be satisfied, then the extraction has to ensure that no vertex or edge is created

209

v7
v6

v5

v4

v3

v1

v2

Figure 6.1: Map of part of the Science and Engineering building at UC Merced

built with a SICK laser on a Pioneer P3AT and the gmapping software [GSB].

The grey thin lines show the discrete approximation to the Voronoi Diagram, the

thicker black lines the boundary of the environment, and the thick dashed grey

lines show the boundary of regions associated to different vertices. Vertices are

circles with edges as black dashed lines.

which cannot be cleared or blocked by the respective implementation.

For the blocking actions, the extraction method from Section 5.1 associates

straight lines between two obstacle points with an edge of the surveillance graph.

To block the edge the robot needs to be positioned such that the associated line

is covered by the sensor. With omnidirectional sensors this is rather simple as

one can position the robot in the center of the line or when multiple robots are

needed one can position them all along the line. With a restricted field of view

210

such as with off-the-shelf webcams, one has to compute positions such that the

edge line is within the area covered by the camera and make sure such positions

are feasible, i.e. in free space with line of sight of the appropriate region. Due

to the construction of the surveillance graph based on a Voronoi Diagram, one

can ensure that such feasible positions exists. This is the case when the field

of view of the camera is larger than π/2. Recall that the two obstacle points

that define the line are the closest two such obstacles. Hence in a circle with a

radius equal to the clearance at the minimum point on the Voronoi edge we have

no other obstacle points (see figure 6.2) that could obstruct the sensor. For our

experiments we will position robots on the line.

Sweeping is significantly more complicated than blocking. In general a sweep-

ing action is executed on a vertex while all its edges are blocked. This require-

ment arises naturally to prevent recontamination before, during, and right after

the clearing. This allows the use of any implementation for a sweeping action

that simply ensures that any intruder present in the region for the vertex will be

detected supposing none leave or enter (which would be detected by the block-

ing). There is, however, an alternative approach to this procedure which would

impose additional requirements on the sweeping implementation, but potentially

lead to a reduction in the total number of robots needed for the clearing. We will

first illustrate the basic idea that gave rise to the modified Graph-Clear variant

presented in Section 3.9 and then describe our particular implementation.

Consider the clearing of any vertex in a contiguous strategy. If the vertex is

not the first, then at least one edge will be blocked before the clearing, and if

the vertex is not the last, then at least one edge will have to be blocked right

after the clearing. In fig. 6.3 we show this idea for the simple case in which

exactly one edge is blocked before, and one after the clearing. It is easy to see

211

that for such a sweep one does not have to require that all edges are blocked

during the sweep. To compute paths for such sweeps automatically we consider

a surveillance graph created by the Voronoi Diagram-based method from Section

5.1. We will use the Voronoi Diagram to compute paths from the blocked edges,

denoted as starting edges, to edges that will have to be blocked after the sweep,

denoted as stopping edges. The strategy computed by the contiguous algorithm

determines which edges are the starting and stopping edges. For vertices with

degree two this approach is trivial, since we simply move the robots along the

Voronoi Diagram from the starting edge towards the stopping edge. For vertices

with degree three we can have either one starting edge and two ending edges or

vice versa. In either case, at least two robots are required for the sweep and

they will meet at a Voronoi edge. To avoid collisions we compute paths along

the Voronoi Diagram with an offset. Fig. 6.6 shows these paths for the vertices

of the environment from fig. 6.1 for two robots with a simple offset either left or

right with respect to the direction of the movement.

For the purpose of our experiments we only need to consider vertices up to

degree three. It is, however, possible to generalize this procedure and consider a

vertex v with degree larger than 3. Let s be the number of starting edges and

e = degree(v) − s the number of stopping edges. We can now construct a tree

using the starting and stopping edges as leaves and Voronoi edges as internal

nodes representing the possible paths between the starting and stopping edges as

seen in fig. 6.4. The problem then reduces to finding an appropriate path in the

tree. The primary assumption made is that there are no cycles in the Voronoi

Diagram within one vertex which can be ensured during the partitioning. Another

assumption is that there are no branches of the Voronoi Diagram within a vertex

that do not lead to another vertex, i.e. small pockets are ignored as seen in fig.

6.6.

212

Figure 6.2: Guaranteed blocking po-

sitions for blocking using a camera

with π/2 opening angle. The small

triangle is the sensor, its coverage

is grey and the obstacles associated

to the minimum clearance value on

the Voronoi edge (dashed line) are

black squares. The other obstacles

are squares with dashed boundaries.

The circle shows the guaranteed ob-

stacle free area.

Figure 6.3: Example of an improved

sweeping implementation. On the

left is the graph representation with

cleared parts in grey and blocked

edge with a stroke. The center shows

how a robot sweeps, ensuring that

no intruder can enter. Sensor cov-

erage is shown in grey. On the right

we have the status of the graph after

the sweep.

For the coordination we have to make sure that the robot team executes

the blocking and sweeping actions with proper timing. The coordination that

is required is relatively simple. If a robot is at a starting edge of a sweep task,

then it is by default assigned to the sweep for the vertex. For sweeps with both

robots they both are placed at the first pose of the sweep and once both robots

arrive they follow the path until they reach the Voronoi edge where their paths

either split or merge. They wait in the respective position until both robots signal

that they are ready and then proceed with the second part of the sweep until

they reach the stopping edges. A robot not participating in a sweep is blocking

an edge and waits until a next sweep with two robots is executed. This simple

213

s1 b1 b2 b3 s2 s1
b1 b2 b3

s2

Figure 6.4: A generalization of the vertex sweep implementation to vertices of

degree larger than 3. The tree on the left corresponds to the environment on

the right with the Voronoi Diagram as dashed lines. Each arrow indicates the

movement of one robot. The leaves si and bi are starting and ending points

respectively.

coordination scheme already suffices for our particular application since most of

the coordination is implicitly contained in the strategy.

6.1.3 Experiment Design

Real robot experiments with two Pioneer P3AT with a SICK PLS200 laser as

seen in fig. 6.5 were carried out to demonstrate applicability of the surveillance

graph framework using the implementations discussed in the previous section.

Prior to the experiments the grid map was created using one of the robots and

the Gmapping software [GSB]. The resulting map was threshold to give a bi-

nary occupancy map as done in [KC08a] and then the surveillance graph was

extracted as described in Section 6.1.1. On this graph each robot computed

the contiguous strategy using the algorithm described in Section 3.5. Then the

robots computed the sweeping paths for each vertex. To control the robots we

used Player 2.1.0 [BCG05] using a wavefront algorithm for path planning and a

vector field histogram for local navigation. For localization we used an adaptation

of the Monte Carlo localization algorithm from [FBD99]. As a map we used the

214

Figure 6.5: The two Pioneer P3AT equipped with a SICK PLS200 laser.

thresholded 700 by 700 map which was also used to construct the graph and is

hence an imprecise approximation. Navigation algorithms were used off-the-shelf

with very little configuration, i.e. only the thresholds for the safety distance were

changed to enable the robots to navigate through narrow door openings. The

communication uses an ad-hoc wireless network with the robots broadcasting

their status. The status message are straightforward and contain the robot id,

the current sweeping step and whether they completed their assigned path. Both

robots are starting at vertex v1 (see fig. 6.1) at a known location and robot one

is assigned the sweep of the starting vertex. Given that we have only two robots

we did not incorporate advanced coordination to avoid collisions and we can do

with a simple assignment of goal poses by discretizing the paths from the sweeps.

These then serve as input into the path planner.

The main goal of the experiments is to demonstrate that the presented meth-

ods suffice to control a robot team which will then clear the environment according

to the computed surveillance graph strategy with readily available and accessible

methods for localization, navigation, and communication. Sensors for the actual

detection of targets were not used, but a robot following the strategy could detect

a target with an omnidirectional sensor with a sensing range of around 8m, i.e. on

the computed paths they would detect a target, if present. When trying to detect

people in the building this could be achieved by mounting multiple cheap web-

215

cams on the robot and attempting to detect people in the images. Alternatively,

a remote operator may wish to view the video feed and mark targets.

6.1.4 Results and Discussion

We conducted three batches of experiments. One initial set of 4 experiments was

performed to observe the robots and record unanticipated problems. A second

batch, consisting of a single experiment, was carried out with a different surveil-

lance graph extracted from the map. The third batch was the final batch to test

robustness of the approach to repeated execution and contained three successful

experiments in which the robots followed their paths as required. The first batch

revealed that the localization performed sufficiently well throughout the experi-

ments and enabled the robots to follow their trajectories without colliding with

the walls. Problems with the planner were encountered when navigating through

narrow openings due to the default security distance. Decreasing it lead to both

robots getting very close when paths were close, but still enabled satisfactory

overall performance. For the second batch a slightly different map was used with

the door between vertex v3 and v6 opened further. This led to a different graph as

different minima were selected the vertices were merged differently. Fig. 6.7 shows

the resulting graph which could in principle be cleared with two robots, but in this

case the contiguous algorithm computed a strategy which required three robots.

This is due to the fact that it does not consider the improved sweeping strategy.

The two robots in the experiments attempted to execute the strategy and followed

the paths in fig. 6.7 leading to recontamination when the robot blocking the bot-

tom edge abandons its position. The third batch consisted of three consecutive

experiments in which the robots followed the computed path satisfactory without

recontamination. A video of the robots moving through the environment is avail-

216

Figure 6.6: The paths computed for

all vertices in the environment from

fig. 6.1. Paths from one robots are

shown with a black and the other

with a white arrow.

Figure 6.7: The paths computed for

all vertices in the environment from

fig. 6.1. Paths from one robots are

shown with a black and the other

with a white arrow.

able at https://robosrv.ucmerced.edu/public/videos/experiment1.mov. Please

note that the video is mirrored due to the recording software.

6.1.5 Conclusion

The implementations of sweeping and blocking actions and the real robot ex-

periments demonstrate that Graph-Clear can provide a practical benefit for the

distributed coordination of a team of robots for target detection in realistic en-

vironments. The implementations are rather simple and worked with currently

available mapping, localization and path planning algorithms. Furthermore, ad-

ditional improvements for collision avoidance and local path coordination can

readily be incorporated. The current limitations of the experiments are that the

actual detection of targets with a low cost sensor was not considered and that scal-

ability with respect to the environment and the team could not be demonstrated

217

due to limited resources. The main purpose of these experiments, however, was

an early proof of concept implementation which due to the resource constraints

at the time led to the development of Line-Clear.

6.2 Line-Clear without Maps

In this section we revisit the ideas for Line-Clear from Chapter 4 and design a

distributed algorithm that moves robots on lines to clear an environment without

knowing its map. An application of Line-Clear with a known map is now straight-

forward given the results of the previous sections. Without a map, however, we

need to resort to a truly distributed algorithm that explores the environment as

it is cleared. For this we shall assume minimal requirements for the robots and

not impose that they are able to build a map. We will first present the algorithm

and then present results from an implementation that clears simply-connected

environments.

For this section we assume that robots are holonomic, can detect targets

within a range rdetect, and communicate with other robots within a range rcomm >

2 · rdetect. Furthermore, they can sense obstacles and follow the boundary of an

obstacle at distance robstacle by sensing the tangent of the boundary. Finally, they

can detect robot neighbors within a range rdetect, and determine their relative

position. The desired distance between a pair of robots on a line is denoted by

rfollow ≤ 2 · rdetect. The free space of the environment is denoted by E ⊂ R2

and is bounded. Each of the n robots is assigned a unique identifier, i.e. an

integer in the range 1, . . . , n. In the following, robot with id 1 is referred to as

the first robot, and robot with id n is the last. All n robots are initially deployed

together, i.e. their communication graph is connected 1. Given that robots closer

1Bullo et al. in [BCM09] define this concept rigorously for robotic networks. For our

218

than rfollow < rcomm can communicate, we assume that robots forming a line

can maintain a set of shared variables while operating. In the following we will

describe the main steps involved in the algorithm. These center around the ability

of the robot team to move forward on a sweep line, to split a sweep line into two

new sweep lines, to search for new obstacles, and to backtrack to previous states

and choose to move a different sweep line forward. An additional step to create

the first sweep line may be necessary and this is shortly discussed in Section 6.2.1.

Once a sweep line and some cleared space exist the robot team can choose a

line to move it forward into contaminated space by following the obstacle bound-

aries. A sweep line is followed by a reserve of robots that are not needed to cover

the sweep line. These jump in when the length of the sweep line increases and

drop out when it decreases. These two events are recorded with a surveillance

graph to account for the cost of the movement. If the robots hit an obstacle

they will split the sweep line into two new sweep lines and choose one of them

to continue with. This event is also recorded in the surveillance graph. If the

line grows too long and no more robots are available it moves backwards to have

some robots drop out into the reserve and then initiate a search procedure that

attempts to find new obstacles close by. If this procedure fails the line moves

further backwards and backtracks in the surveillance graph to find a vertex that

is associated to a sweep line that has not yet been moved forward. We shall

denote such vertices as unexplored since they can receive new edges as their as-

sociated sweep line moves forward. Hence, unexplored vertices are all vertices for

which the robot team does not know the cost of extending a sweep line further.

Sweep lines dissolve when the two robots on each end of the line meet. In our

implementation two robots meet if their distance is less than the desired following

purposes each robot is simply a node in a graph and if two robots are within communication
range their nodes receive an edge.

219

distance rfollow, but in general any small threshold suffices. One example of this

happening is when the line is moving through a corridor orthogonal to the wall

on the left and right. Once it hits a wall at the end of the corridor the robots

at the left and right end of the line will follow this wall towards the center of

the line and meet. Fig. 6.8 shows these steps and their transitions in a diagram.

The basic principles of this procedure are similar to Line-Clear since it clears

an environment by moving lines forward. But there are three key differences

which are as follows. First, instead of computing low cost split positions on a

third obstacle the approach has to rely on the third obstacle that is encountered

while moving the line forward. This can lead to higher costs. Second, moving

a line forward cannot rely on the well defined movement between blocking and

splitting positions as done for Line-Clear since new block and splitting positions

are not known in advance. Hence, they have to move heuristically attempting to

go as far as possible. Third, since the graph is not known in advance we cannot

compute Graph-Clear strategies for the entire environment. This is unavoidable

when exploring and clearing simultaneously. As a consequence the robots may

have to recontaminate parts of the graph to get it into a state from which better

strategies can be executed. Note that in the worst case the discovery of the last

vertex will require a recontamination of the entire environment. This happens

exactly when all Graph-Clear strategies that require the given number of robots

or less have to start at that last vertex. Such recontamination can be avoided by

adding more robots than strictly necessary and this represents a tradeoff between

finding the lowest number of robots needed and avoiding recontamination during

the exploration. We shall now discuss the details of the algorithm and present

the routines it is based upon.

220

Setup cleared space
and first sweep lines

Move an unexplored line
forward Ran out of robots

Hit a new obstacle

Move l backwards until more
robots are available

Split line into two
unexplored lines

Line approached 0 length
and is explored

Search for obstacles

failure

success

new robot available

searches failed

Backtrack: Move line to last
vertex with unexplored line

unexplored line exists and is reachable

Clearing failed

unexplored lines
exist

Clearing succeeded

all lines explored no unexplored line exists or is reachable

Figure 6.8: A diagram showing the high level states of the algorithm.

6.2.1 Bootstrapping

Before the Line-Clear components of the algorithm can proceed the robots need to

arrange themselves into a line formation. Depending on the scenario the robots

may already be in a line formation at a home base that is considered clear in

which case the bootstrapping is already done. Otherwise the robots will have to

find two obstacle boundaries between which to span a line. There are a multitude

of ways of achieving this and we will shortly present one.

Suppose robots are not deployed in the form of a sweep line. Since the com-

munication graph is connected the team has the capability to form a chain with

robot i following its neighbor robot i − 1 and robot 1 leading the chain. Robot

1 is then moving into an arbitrary direction until hitting an obstacle boundary.

Next, the last robot of the chain moves to find a second obstacle boundary. All

other robots follow while maintaining a chain, so the movement of the last robot

is restricted. Fig. 6.9 shows the reach such a chain in part a). Part b) of Fig. 6.9

shows that if there is no obstacle boundary reachable within the half circle with

221

a radius that 12 robots can cover then the environment cannot be cleared.

1 2 3 12

12

12 + ε

a) b)

Figure 6.9: The maximum reach given 12 robots.

Finally, the one sweep line that is now set up needs to either move into a

state in which two sweep lines can be set up or one of its sides can be declared

cleared. The former is only possible if the length of the sweep line in terms of

robots is smaller or equal to n
2

and then two parallel sweep lines can be created,

effectively assigning the space in between them as clear. If the first sweep that

is set up is longer than n
2

robots it can move forward until it shrinks to n
2
. If

this is not possible to either side, then the environment cannot be cleared with

the algorithm starting with a sweep line between the two obstacle boundaries

encountered first. In this case the first robot has to find a different starting

boundary. Moving the line can involve obstacle searches that extend the reach

of the robots to the maximum while maintaining a sweep line between the two

obstacles. We will discuss the details of the obstacle searches later.

222

In our implementation we use a simple bootstrapping procedure that moves

robot 1 towards an obstacle boundary and aligns all robots on a line orthogonal

to the tangent of the boundary until another obstacle is encountered. Then one

side of the line is declared cleared, as a homebase, and the algorithm starts by

moving the first and single sweep line forward.

6.2.2 Moving a Sweep Line

Once a line is chosen to move forward the two robots on its endpoints control

the forward movement by following the obstacle boundary. An example is seen

in Fig. 6.11. The two end robots, denotes as the left line-leader and right line-

leader, sense the tangents at the two obstacle boundaries between which the line

of robots is spanned. From these tangents one can determine whether a forward

movement will shrink or grow the line. Let us write b1(t) and b2(t) for the curves

defining the obstacle boundaries with b1(t0) and b2(t0) being the points between

which the line is spanned. At these points let the tangent along the obstacle

boundary as sensed by the robots be given by T̂ b1(t0) and T̂ b2(t0) respectively.

The relative angle between tangents and the line determines whether a forward

movement on b1 or b2 shrinks or grows the line. Given this information, the rules

for moving the line are straightforward. If both tangents determine a decrease

in length, then both line-leaders follow their boundary. If one is decreasing, then

only that robot moves. If both are increasing, then only the one with less increase

moves. Since robots can communicate with their neighbors on the line and sense

their relative position we can assume that they all have access to the relative

positions of the line-leaders and can use this information to position themselves

on the line between them. As seen in Fig. 6.11, robots that are currently not

needed to cover the line, denoted as reserve, just follow the robots of the line and

223

join in when the length of the line increases beyond a length that the current

robots that are part of the line can cover. This method is essentially a local

gradient search for short lines moving forward and as such is susceptible to local

minima. Fig. 6.10 shows how a line gets stuck in the analogue of a local minimum

and grows larger than it needs to if the robots had global knowledge about the

structure of the environment.

b1
b2

t

t
b1 b2

t

t

a)

b)

b)

a)

Figure 6.10: An example of how robots moving on a line cannot find the optimal

way of moving it forward and the left side stops at position a). Yet, as the right

side proceeds the left and right tangents approach the same values at position

b). At this point the left side will move again and the line will shrink again. The

bottom of the figure shows the local view from the robots of the tangents.

As the line moves forward it also keeps track of events that are occurring.

These events trigger state transitions for the whole system or simply record the

costs of moving by constructing a surveillance graph. The line moving routine

224

can be expressed in the form of three algorithms. Two robots execute execute Al-

gorithm 8. These are the left and right line-leaders following obstacle boundaries

b1, b2 by calling Line Leader(b1, b2) and Line Leader(b2, b1). Both have access to

the shared variables T̂ b1(t) and T̂ b1(t), i.e. each others sensed obstacle tangent,

in form of a vector. Algorithm 9 is executed by all robots that are following the

line between the two leaders while Algorithm 10 is executed by robots that are

following as part of the reserve. All robots executing these algorithms are part

of one connected communication graph and have access to the following shared

variables and functions:

1. rall: the number of robots associated to the line, i.e. the number of robots

currently running the Algorithms 8,9, and 10.

2. rline: the number of robots running only Algorithms 8 and 9.

3. rleft and rright: positions of the left and right line-leaders relative to a shared

coordinate system.

4. position: the position of the robot in the line counted from the left line-

leader. The left line-leader is at position 1 and the right line-leader at

position rline.

5. a: a function that returns the smaller angle between two vectors.

6. wait() simply leaves the robot stationary.

7. move robot(to) moves the robot to point to given in local coordinates of the

robots.

8. move along(d) moves it in the direction d.

9. follow line() lets the robot follow the line.

225

10. sense obstacles() returns true if a new obstacle is encountered and sets

shared variable new obstacle to true.

11. first in reserve() returns true if the robot’s id is the smallest amongst all

those running Algorithm 10.

12. Four functions trigger events that are used later on:

(a) trigger dissolve line(): line is no longer needed.

(b) trigger search(): start obstacle search procedure.

(c) trigger line shrinks(): line is shrinking by one robot.

(d) trigger line grows(): line is growing by one robot.

The events triggered are caught by Algorithm 13 introduced later.

b1 b2

tt

Figure 6.11: An illustration of the main line moving forwards to extend the

cleared area marked in grey. On the right hand side are possible configurations

for the tangent of the line. A tangent at an endpoint away from line leads to its

length increasing while a tangent inwards leads to a decrease. The three cases

depicted are one where 1) both sides lead to a decrease, 2) one side leads to a

decrease and one to an increase 3) both sides lead to an increase in length. On

the left figure some robots in the gray area serving as reserve are shown.

226

while !new obstacle do

l← rb2(t)− rb1(t)
if a(T̂ lb1(t), l) < π/2 OR a(T̂ lb1(t), l) ≤ a(T̂ lb2(t),−l) then

move along(T̂ lb1(t))

else

wait()

if length(l) < rfollow then

trigger dissolve line()

return

else if length(l) > (rall − 1) · rfollow then

trigger search()

return

else if length(l) > (rline − 1) · rfollow then

trigger line grows()

return

Algorithm 8: Line Leader(b1, b2)

227

while !new obstacle do

if sense obstacles() then

return

l← rright − rleft
m← (position− 1) · rfollow

length(l)

if m > length(l) then

trigger line shrinks()

return

else

g ← r1(t) + ·l
move robot to(id, g)

return

Algorithm 9: Line Center()

while !new obstacle do

if first in reserve() then

l← rright − rleft
m← length(l)

rline−1

if m ≤ rfollow then

trigger line grows()

Line Center()

else

follow line()

else

follow line()

Algorithm 10: Line Reserve()

228

6.2.3 Splitting a Line

Once an obstacle is encountered the robot team splits the line into two new sweep

lines. This is similar to the split for Line-Clear in Chapter 4 with the exception

that the split point is not necessarily the one at lowest cost. The simplest way

to split the line is to move one robot from the reserve onto the same spot as

the robot that encountered the obstacle and then declare the two robots the left

line-leader and right line-leader of each of the two new lines. This, however, is

also the most costly. The robots can attempt to reduce the cost of the split by

moving one of the line-leaders or the robot that hit the new obstacle along their

respective obstacle boundaries. Again, this can involve a reduction in line length

via a local gradient descent. Fig. 6.12 illustrates this.

a) b) c)

Figure 6.12: In this example a sweep line hits an obstacle and subsequently moves

the two line-leaders into the direction for which the line lengths decrease. This

reduces the number of robots needed by two. Then the sweep line splits, needing

one additional robot for a total of seven robots. Robots that are in the reserve

are not shown.

There are a few open questions with regard to splitting a line that call for more

theoretical investigations. Primarily the question whether we can find an optimal

229

split point with a given number of robots would be an important one to answer.

In our implementation we chose to only move the left and right line-leaders to

improve the cost, just as seen in fig. 6.12.

6.2.4 Obstacle Search

The purpose of an obstacle search is to discover obstacles that cannot be encoun-

tered simply by moving the sweep line forward. This can happen even when the

number of robots would theoretically suffice to reach a new obstacle. An obstacle

search is executed when the sweep line grows longer and runs out of robots in

the reserve. To execute an obstacle search the sweep line moves backwards into

a state in which at least one robot is in the reserve. This robot can then be

used to extend the reach of the line as seen in fig. 6.13. Therein the sweep line

is separated into two line segments, sl on the left and sr on the right with one

robot covering the ends of both of these segments. This extends the reach of the

chain of robots. Recall that we have rall robots and need rline robots to cover

the line at its narrowed position. At this point we can allocate i + 1 robots to

the left line segment sl with i ∈ {1, . . . , rall − 2}. The remaining robots rall − i
cover segment sr. Fig. 6.14 shows the simple trigonometry involved in finding the

outmost position for every i ∈ {1, . . . , rall − 2}. Since the lengths of the triangle

formed by each point pi are known we can find pi and move the robots to cover

the sl and sr for every choice of i. If no obstacle is encountered for any i the line

moves further backwards until yet another robot is freed and executes another

search. For this we need the method move line backwards(r) which moves the

sweep line with r robots backwards and returns the new number of robots on

the sweep line once it decreases. If the backward movement cannot free up an

additional robot it returns the old number of robots and the search has failed

230

and it triggers a search failure.

The method described in this section is implemented for our experiments, but

in principle one can use other implementations for an obstacle search as long as

they improve the capabilities of the robot team to discover obstacles. Notice that

the presented method does not guarantee that an obstacle will be discovered even

when with a known map an obstacle could be reached. This is due to the fact

that the points that can be reached is dependent on the position of the line when

the obstacle search is executed. Fig. 6.15 illustrates this with an example. It

is unclear how to amend the present method so that one could guarantee that

an obstacle will be discovered, but it will surely involve starting a search with

multiple line positions. But without metric information or reliable odometry this

is bound to be challenging. In Algorithm 11 we present some details on this

procedure.

If the search procedure is successful and a new obstacle is encountered the line

splits into a left and right side, similar to the discover of an obstacle while moving

a line forward. If the search procedure is not successful, then the robots go back

to a previous split which they choose with the help of a surveillance graph. This

is the backtracking that involves recontamination which we discuss in the next

section.

6.2.5 Surveillance Graphs and Line Coordination

The methods introduced in the previous section can been seen as local behaviors

of the robot team that enable the movement of robot lines through the envi-

ronment. In principle, they can be implemented in a variety of ways depending

on the robots and we presented methods that require rather limited capabilities.

We shall now describe how to coordinate the execution of these methods and

231

rold ← rline

rnew ← move line backwards(rold)

while !new obstacle do

if rnew < rold then

for i← 1 to rall − 2 do

Compute pi

for robot← 2 to rall − 1 do

if robot < i then

s2← r2(t)− pi
g ← rfollow

length(s2)
· (robot− i)

else if robot >= i then

s1← r1(t)− pi
g ← rfollow

length(s1)
· (i− robot)

move robot(robot, g)

else

g ← pi

move robot(robot, pi)

rold ← rnew

rnew ← move line backwards(rold)

else

trigger search failed()

return

return

Algorithm 11: Obstacle Search()

232

l1
l2

l3

sl
sr

Figure 6.13: Top left: a line runs out of robots and cannot move further (the

arrow indicates how it will move back). Top right: it then moves back. Bottom

left: it then searches for a new obstacle. Bottom right: the line is split in two

and each of them can individually move.

construct a surveillance graph of the environment that represents the discovered

topology of the environment as well as the cost of clearing it. This surveillance

graph is then used to coordinate the execution of the local behaviors and scale

them to clear a large environment.

A surveillance graph that represents all previous line movements and their

costs is easily constructed as follows. First, a vertex is created and given the cost

of the starting line. Every successful encounter of a third obstacle leading to a

split creates three new vertices. The first receives as cost the number of robots

233

1

2

3

4 5

p1

p3p2
p4 p5

p6

Figure 6.14: The radii of the circles are multiples of rfollow. The line from which

the search originated is marked as a thick black line with thick circles representing

the left and right line leader. The original line requires 7 robots and the small

black dots show which points can be reached with a total of rall = 8 robots by

separating them onto the two new line segments into, i.e. for i = 1 there are

i+ 1 robots on the left segment and 8− i robots on the right segment. The grey

circles indicate the points that could be reached if we had rall = 9.

that are needed to execute the split on the third obstacle into two sweep lines,

and is connected to the graph trough an edge added to the previous vertex. The

weight of that edge is the number of robots needed to cover the shortest line that

was encountered since the last vertex was added. Finally, two vertices for the

obstacle encounter are created for each new line and these receive as weight the

cost of the respective new line. For each of these new vertices, an edge to the

first vertex of the obstacle encounter is added, and it receives the same weight

as the vertex. This is illustrated in fig. 6.16. All vertices that are just added

are marked unexplored and have hence a sweep line associated that may lead to

the addition of new edges to that vertex. Once a new vertex is added with an

edge to that unexplored vertex it is considered explored. Alternatively, if a line is

234

Figure 6.15: In this example a line moving forward runs out of robots and moves

backward. It then initiates a search but cannot reach the third obstacle. Exe-

cuting a search from a different line position can, however, reach it.

dissolving due to trigger dissolve line() the vertex does not receive a new edge

and becomes a leaf that is also set to explored.

6

2

33

Figure 6.16: This figure shows the three vertices added to a graph when a split

occurs. Three vertices and three edges with their weights are added and connect

to the existing graph.

Furthermore, a number of consecutive increases in the number of robots while

235

Initialize surveillance graph G = (V,E,w) with one vertex vlast

while true do

event← catch event()

if event = new obstacle then

add vertices v1, v2, v3 to V and to U

w(v1)← cost(s1) + cost(s2), w(v2)← cost(s1), w(v3)← cost(s2)

add edges (vlast, v1), (v1, v2), (v1, v3) to E

w(vlast, v1)← last min, w((v1, v2))← cost(s1), w((v1, v3))← cost(s2)

U.remove(v1), U.remove(vlast), line grew ← false

if length(s1) > length(s2) then

vlast ← v2, last min← cost(s1))

else

vlast ← v3, last min← cost(s2))

else if event = line grows then

line grew ← true

else if event = line shrinks then

if line grew then

line grew ← false, U.remove(vlast)

add vertex called v to G, add edge (vlast, v) to E

w((vlast, v))← last min, w(v)← cost(lcurrent), vlast ← v

last min← cost(lcurrent)

else

last min← last min− 1

else if event = dissolve line then

U.remove(vlast)

return

Algorithm 12: Graph Construction()

236

moving the line forward followed by one decrease creates a vertex. This represents

the cost of passing through a region. Naturally, edges are created for every two

vertices that are encountered consecutively when moving a sweep line forward.

Their weight is always given by the number of robots needed to cover the short-

est sweep line encountered during the movement between vertices. We call this

sweep line blocking line, since it represents the cost of a blocking action of the

surveillance graph as it has the lowest cost of preventing contamination between

the vertices with a robot line. Built this way, the surveillance graph is a record

of the line movements. A traversal of a vertex in the graph can be associated to

moving a line from a blocking position to either another blocking line or a split.

It hence captures the motion primitives that the robot team can jointly execute.

Fig. 6.17 illustrates this and shows how vertices and edges are created as the lines

move and split. Algorithm 12 presents some details on the graph construction in

pseudocode. This algorithm has access to the variables s1, s2 which are the new

sweep lines after a split, the variable U which is a set of unexplored vertices and

generates a graph G that is merged when robots of different lines meet.

Given a sufficiently large number of robots for the environment being cleared,

one can incrementally discover the whole graph for an environment by just choos-

ing to continue on an arbitrary side, left or right, after a split, and coming back

once the side is entire cleared. If a successful search is triggered the robot team

can also continue with a split. But the sequence in which vertices are encoun-

tered can be expected to lead to a higher cost in terms of robots than the best

possible sequence based on a Graph-Clear strategy. The discovery of more ver-

tices may require all previously cleared vertices to be recontaminated to reach

a state of the graph from which an improved strategy can be executed. In the

worst case the discovery of the last vertex can require the recontamination of

all previously cleared vertices. This is an unavoidable problem, also occurring

237

4

3

4
4

6

7

3

7

7
3

4

6

4

4
44

Figure 6.17: Example of the construction of a graph as a result of the exploration

with lines. The cleared and known vertices are marked in grey. The lines leading

to their creation are marked as thick dashed lines with the associated number

of robots needed. The robots explore the environment, following the arrows and

stop before discovering the vertex with weight 7. Hence the neighboring vertex

4 is not considered explored.

in [SRL04] which also computes and executes partial solutions that can require

to start from scratch once the entire environment is explored.

Let us now describe the final part of the algorithm. At any point only one

sweep line is moving. It has all available robots in its reserve. Once a split is

encountered the robots choose with which direction, sl or sr (left or right), to

continue while the other side will remain stationary until the robots from the

moving sweep line return and activate it. Once the length of the moving line

reduces to zero, i.e. the two endpoints meet, it is dissolved and all its robots

follow either the left or right wall to go back to the next stationary line. The

same happens when the moving line encounters a stationary line which joins the

robots of both lines and sends them to the next stationary line. This happens

238

only for multiply connected environments, i.e. those with cycles. For now we

shall ignore this event and merely note that it can be dealt with by adding a

cycle edge into the graph and then simply dissolve the two lines consecutively.

This extension is not part of our current implementation. Every stationary line

is always associated to an unexplored vertex and hence one can find the next

stationary line by searching through the graph. As vertices are added during the

exploration they are considered unexplored until the line passing through them

has led to the addition of another vertex or triggered a dissolution of the line.

The choice of the next stationary line to become a moving line after a split is in

principle arbitrary since the cost of clearing the environment behind this line is

not known. As a heuristic one can choose to extend the line with more robots,

leaving less robots as stationary. Similarly, after the dissolution of the line the

choice is also arbitrary. As a heuristic we minimize the graph distance for our

implementation, but other criteria can be applied, such as picking the longest

stationary line.

If the entire algorithm continues without failed obstacle searches occurring it

is in principle a depth first traversal and discovery of a tree, if the environment

is simply connected, or a graph, if it is multiply-connected. If an obstacle search

fails, the robots move the sweep line backwards until a stationary line is encoun-

tered. Then the moving line then becomes stationary and the remaining robots

choose the next closest stationary line on the graph and attempt to extend it.

It is, however, possible that all stationary lines that are available will lead to

failed searches. In this case the given number of robots does not suffice to con-

tinue to explore the environment from the current state of the graph and it has

to be recontaminated in order to free up robots that are currently at stationary

lines blocking contamination. There is a variety of possibilities how to achieve

this. The brute force approach would be to recontaminate all known vertices and

239

move all robots to the chosen unexplored vertex. Obviously, a totally contami-

nated state of the graph does not require any robots to block contamination and

hence frees all robots. To avoid as much recontamination as possible one could

resort to modifying the algorithms from Chapter 3 to identify states of the graph

that allow more robots to be freed to search for obstacles. Unfortunately, in the

worst case it may well be that the unexplored vertex has a cost that requires all

robots. The environment could still be cleared with the given number of robots,

but only if starting at the high cost vertex. With plenty of excess robots and

if the total time needed for clearing is an issue, then cut sets should be used to

identify which vertices to recontaminate and free robots one by one. Algorithm

13 shows how to combine all the previous methods. The following functions are

required for this:

1. move line forward(l): calls the proper functions on the robots that move

a sweep line l forward.

2. stationary line at(v) returns the sweep line that is associated to a vertex

v.

6.2.6 Implementation and Testing

Most of the procedures presented above can be implemented in a variety of ways,

depending on the robot platform. In particular, if robots are non-holonomic or

part of a heterogenous team, the wall and line following behaviors have to be

designed with care. To demonstrate the feasibility of the proposed approach

we implemented a specific wall following routine that utilizes a laser sensor to

estimate the obstacle tangent. Robots are simulated with the Player/Stage soft-

ware [BCG05] and have an omnidrive and a laser range finder with a 360◦ field

240

Set up the first sweep line lcurrent (bootstrapping)

Create an empty set U of unexplored vertices for graph construction

Run Graph Construction() in a separate thread

move line forward(lcurrent)

while !U.empty() do

event = catch event()

if event = new obstacle then

set up split lines s1 and s2

if length(s1) > length(s2) then

move line forward(s1)

else

move line forward(s2)

else if event = dissolve line then

move free robots to any unexplored vertex v

lcurrent ← stationary line at(v)

else if event = search then

Obstacle Search()

else if event = search failed then

mark search failed for unexplored vertex vfail and find new vertex v ∈ U .

if v = null then

free robots by recontaminating

unmark failed search marks for all v ∈ U
move free robots to any unexplored vertex vnew

lcurrent ← stationary line at(vnew)

else

move robots to v, lcurrent ← stationary line at(v)

Algorithm 13: clear environment(lcurrent)

241

of view and limited range of 0.7m. Every robot is controlled by a separate client

program and communicates with other robots through the network interface. As

a test environment we created the simply connected environment seen in fig. 6.18.

The environment is based on a 457x458 pixel bitmap with a resolution of 0.032

meter per pixel leading to width and height of approximately 14.5m.

a)

Figure 6.18: A simply-connected environment with the starting point for the

clearing and homebase at a).

Applying the Line-Clear algorithm with graph extraction to this environment

yields a cost of 7 robots given a desired distance between robots on a line of

approximately 1 meter from each other. With a laser sensing range of 0.7 meter

242

this distance leads to an overlap of around 0.4 meter of the sensors between

adjacent robots. This accommodates for errors in synchronization and control of

the robots. The resulting surveillance graph is shown in fig. 6.19.

Figure 6.19: The surveillance graph corresponding to a sweep schedule created

with the methods from Section 5.2. The surveillance graph has 141 vertices

resulting in 7 robots for clearing it.

When implementing the distributed algorithm there are few technical details

243

that have to be considered. These primarily pertain to synchronization and

control issues. One has to ensure that the control of the robot is stable enough

so that it follows the boundary reliably. Since the sensed obstacle tangent is

only an estimate based on two laser reading it can lead to some jitter in the

motion of the robot. Also, in order to sense to obstacle gradient reliably the

robot needs to be closer to the obstacle to make sure that two laser readings are

available that are not immediately adjacent. Hence, we required the robots to be

within 0.4 meters of the obstacle boundary and used two readings that were a few

degrees apart to estimate the obstacle tangent. To ensure that robots can pass

messages to each other, remain under stable control and make high level decisions

at appropriate times we separated these functions into multiple threads running

concurrently. Synchronization issues also have to be handled with care and we

introduced thresholds for certain events such as a robot joining or dropping out

of a line. These events will only be triggered if the line is robustly expanding or

contracting to avoid very quick successive events which can lead to problems if

robots do not receive them in proper order. The obstacle search and split were

implemented as described before with the exception that for an obstacle search

to occur at least two robots need to be in the reserve, one for extending the reach

of the search and one for splitting the line if a search is successful. This is done

since a search usually has only one robot hitting an obstacle and hence a split

needs an additional robot to move onto the position of the robot that hit the

obstacle. For a split in which two robots see the obstacle we can split the line

between these two without requiring a reserve robot.

The starting position for the robot team was chosen to be the bottom of the

environment as seen in fig. 6.18 as the homebase. The overlap between sensor

of adjacent robots was set to 0.4 meter, just as for the computation of the sweep

schedule, leading to a desired distance between robots of 1 meter. In practice

244

this worked well to ensure that delays in the robot control do not lead to the

line falling apart. We ran the algorithm multiple times with 8 and 9 robots on

the environment from 6.18 and will describe the typical results in the following.

Notice that the investigations here are qualitative and not quantitative. With 8

robots the algorithms fails at the step shown in fig. 6.20. If the robots were to

start at the top right of the environment, however, this problem would not occur

and they are then able to clear the environment. Hence, an implementation al-

lowing complete recontamination and resetting the starting location can improve

performance. Yet it is unclear, how to effectively find new starting positions and

this may well involve many failed attempts. This illustrates the sensitive to the

starting location which is analogue to the choice of the best starting vertex in a

surveillance graph.

With 9 robots the environment is successfully cleared from the homebase. The

first split that occurs is seen in fig. 6.21. The second split that was problematic

for 8 robots succeeds after an obstacle search as seen in fig. 6.22. Subsequently

they clear the entire right side of the environment and join the bottom 3 robots

for the left side. This side is considerably harder to clear and there we will

see an example of backtracking that eventually leads to a successful clearing.

Fig. 6.23 shows how the robots have to backtrack twice to collect all 9 robots

when they attempt to cross the four way intersection. Each backtracking step

involves recontamination of the graph that is built. Once 9 robots are available

the obstacle search succeed for the top part as seen in fig. 6.24. It should be

noted that due to the large number of robots the graph recorded for the last steps

does not reflect the best way of clearing it. The robots simply move around the

left side even though a split would be better. Since they do not have information

about this we can force a split by removing a robot. With 8 robots this part can

be cleared and the robots have to execute an obstacle search as seen in fig. 6.25.

245

a) b)

c) d)

Figure 6.20: With 8 robots the distributed algorithm fails to clear this environ-

ment starting at the bottom. This is due to the failed obstacle discovery with

5 robots at the top right while 3 robots block the edge to the left. In part a)

the team runs out of robots and move back to part b). Once the line shrinks it

attempts an obstacle search in part c) but the reach is too limited and it fails.

The team then backtracks and tries the left side while blocking the right with 3

robots and fails in an identical manner.

Fig. 6.26 shows the final graph that the 9 robots created.

246

a) b)

c) d)

Figure 6.21: The first split of the line moving with 9 robots that subsequently

clears the environment.

6.2.7 Discussion and Conclusion

The results in this section are by no means a quantitative analysis of the al-

gorithm. For this we would have to consider more manifold scenarios and con-

figurations and compare across these. Yet, they offer a qualitative insight that

encourages further investigation. First we see clearly that the number of robots

traveling with a line influences the way a graph is built. On the one hand this

247

a) b)

c) d)

Figure 6.22: A successful search after the second search step shown in part b).

After the search the line splits and the right side clears the leaf in part c) and

returns in part d) to join the left side.

seems obvious, but it is significant. A robot team with less robots cannot know

whether they can clear an environment unless they have tried it as seen from the

contrast between fig. 6.24 and fig. 6.25. Most of these problems would be reme-

died if we were able to build a metric map as the robots explore the environment.

But in a way this case is uninteresting and if one can build a map Line-Clear

can be applied in a straight-forward manner and coupled with an exploration

248

a) b)

c) d)

Figure 6.23: For the left side the robots have to backtrack extensively. In part a)

they fail with three robots and backtrack to collect 3 more. They fail again with

6 robots and have to backtrack again to collect the bottom three.

algorithm. The approach from this section is fundamentally different and points

toward the question of what minimal capabilities a robot team needs to be able

to solve a pursuit-evasion task. So far we have reduced it to wall following, sens-

ing a neighbor and targets and communicating locally. But ideally one would

like to be able to prove that such a system is equally capable than one with a

known metric map and localization capabilities which would enable to execute a

249

3
9

3

33
3
3

6

a) b)

c) d)

Figure 6.24: The last steps of the clearing. In part a) the robots extend far to

follow the boundary and finish with steps b) and c). The graph resulting from

this is shown in d).

Line-Clear sweep schedule from a map. For this further investigations are needed.

One would need to show that the obstacle search can guarantee to find obstacles

if it is possible that one can be in the given map. One would also have to find

a routine that resets the exploration and starts anew once the team notices that

further clearing is not possible.

250

a) b)

c) d)

3
3

33

3
3

6

7 4 3 3

Figure 6.25: Reducing the number of robots to 8 forces an obstacle search which

leads to a different graph than fig. 6.24 as shown in d).

For all practical purposes and in the spirit of large robot teams, in which

individual robots are merely a commodity, we expect that the addition of a few

robots is preferred to extensive obstacle searches and recontamination through

backtracking. For such applications the presented work can already be useful.

251

3 93

3
3 3

3
6

6

3

3

6
3

3
7

4

3

6

3

3
3

3

3

6

33

3

3
3

3 4

3

Figure 6.26: The final graph created by 9 robots embedded in the environment.

6.3 Discussion and Conclusion

This chapter briefly presented two implementations that translate the Graph-

Clear and Line-Clear theory and algorithms to actual robot motion. The theory

developed for Graph-Clear and Line-Clear attempts to work with high level ab-

stractions that can then be implemented for a variety of settings. The work in

252

this chapter serves to exemplify its application for particular settings. Addition-

ally, both experiments opened many further questions. Questions arising from

the experiments from Section 6.1 have been discussed extensively in Chapter 4.

The new questions from the distributed algorithm from Section 6.2 have not yet

been studied thoroughly and are open to investigation.

253

CHAPTER 7

Discussion and Conclusion

In this dissertation we presented two models for pursuit-evasion, one in graphs

called Graph-Clear and one in two dimensional environments called Line-Clear.

These models abstract the sensing capabilities of the robot team to different

degrees and require an implementation of either sweeping and blocking or line

covering behaviors on the robot team. The major advantage is that they do not

commit to a particular sensor or robot platform but are applicable as long as a

given set of hardware is able to implement the behaviors. We have demonstrated

that it is possible to automatically generate surveillance graphs from robot maps

and relate these to particular sweep and block or line covering behaviors. Finally,

we demonstrated how to put everything together to design a multi-robot system

that solves the pursuit-evasion task in real and simulated environments.

The results of this dissertation are by no means a conclusive answer to the

challenges of multi-robot pursuit-evasion. We rather tackled a few of the most

glaring problems and there are very many that remain. Foremost, we dealt with

the combinatorial problem of allocating robots to actions on a graph and the

geometric problem of moving lines at low cost through a two dimensional envi-

ronment, reusing our algorithm from the combinatorial problems. We also started

to accommodate a few fundamental constraints of multi-robot systems, such as

limited range and possibly faulty sensors, errors in control and limited commu-

nication range. We have, however, ignored motion constraints and hence non-

254

holonomic robot platforms. For these, implementations of line-covering behaviors

may well lead to larger costs when considering such platforms and situations in

which the robot team cannot follow the movement of a line due to its motion con-

straints should then be addressed. Yet, the core of the theory will still apply, even

when particular blocking, sweeping, or line covering implementations have to be

designed more elaborately. Another area that we did not cover is the introduc-

tion of knowledge about targets. Once knowledge about target speed or behavior

is available one may attempt to maximize the likelihood of an early detection

or one can relax the sensor coverage. For example if a target moves slowly, one

robot may be able to patrol an entrance by moving back and forth, knowing that

slow target cannot cross in the time it leaves some areas uncovered. Finally, one

important aspect to address in future work is that of heterogenous robot teams,

particularly those in which there are stationary and mobile platforms.

Altogether, despite the still large number of unanswered questions looming

at the horizon, we are confident that the presented theory and algorithms will

aid the development of multi-robot systems for pursuit-evasion. Once the trends

towards reduced cost for robotic hardware continue sufficiently far and the costs

of a human operator for every robot becomes prohibitive we can expect to see

a dramatic rise in the use of multi-robot systems. Some of these might then be

running Graph-Clear.

255

References

[ARS02] M. Adler, H. Racke, N. Sivadasan, C. Sohler, and B. Vocking. “Ran-
domized pursuit-evasion in graphs.” In Proceedings of the Interna-
tional Colloquium on Automata, Languages and Programming, volume
2380, pp. 901–912, 2002.

[BBH07] S. D. Bopardikar, F. Bullo, and J. P. Hespanha. “Cooperative pursuit
with sensing limitations.” In American Control Conference, pp. 5394–
5399, 2007.

[BCG05] G. Biggs, T. Collett, B. Gerkey, A. Howard, N. Koenig,
J. Polo, R. Rusu, and R. Vaughan. “Player/Stage project.”
http://playerstage.sourceforge.net, 2005.

[BCM09] F. Bullo, J. Cortés, and S. Mart́ınez. Distributed control of robotic net-
works. Applied Mathematics Series. Princeton University Press, 2009.
To appear. Electronically available at http://coordinationbook.info.

[BF87] Y. Bar-Shalom and T. E. Fortmann. Tracking and data association.
Academic Press Professional, Inc., San Diego, CA, USA, 1987.

[BFF02] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. “Capture
of an intruder by mobile agents.” In Proceedings of the Fourteenth
Annual ACM Symposium on Parallel Algorithms and Architectures,
pp. 200–209, New York, NY, USA, 2002. ACM Press.

[BG08] E. Bitton and K. Goldberg. “Hydra: A framework and algorithms for
mixed-initiative UAV-assisted search and rescue.” In IEEE Interna-
tional Conference on Automation Science and Engineering, pp. 61–66,
2008.

[BKO00] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Com-
putational geometry: algorithms and applications. Springer, 2000.

[BLK01] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan. Estimation with ap-
plications to tracking and navigation. John Wiley & Sons, Inc., New
York, NY, USA, 2001.

[BMF00] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. “Collab-
orative multi-robot exploration.” In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, volume 1, pp. 476–481,
2000.

256

[BS91] D. Bienstock and P. Seymour. “Monotonicity in graph searching.”
Journal of Algorithms, 12(2):239–245, 1991.

[BS03a] M.A. Batalin and G. S. Sukhatme. “Efficient exploration without
localization.” In Proceedings of the IEEE International Conference
on Robotics and Automation, volume 2, pp. 2714–2719, 2003.

[BS03b] M.A. Batalin and G. S. Sukhatme. “Sensor network-based multi-robot
task allocation.” In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 1939–1944, 2003.

[BS05] M.A. Batalin and G. S. Sukhatme. “The analysis of an efficient al-
gorithm for robot coverage and exploration based on sensor network
deployment.” In Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 3478–3485, 2005.

[BSH03] M.A. Batalin, G. Shukhatme, and M. Hattig. “Mobile robot naviga-
tion using a sensor network.” In Proceedings of the IEEE International
Conference on Robotics and Automation, volume 1, pp. 636–641, 2003.

[BTK09] R. Borie, C. Tovey, and S. Koenig. “Algorithms and complexity re-
sults for pursuit-evasion problems.” In Proceedings of the International
Joint Conference on Artificial Intelligence, pp. 59–66, 2009.

[CB94] H. Choset and J. Burdick. “Sensor based planning and nonsmooth
analysis.” In Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 3034–3041, May 1994.

[CB95] H. Choset and J. Burdick. “Sensor based planning, Part I: the gen-
eralized voronoi graph.” In Proceedings of the IEEE International
Conference on Robotics and Automation, volume 2, pp. 1649–1655,
1995.

[CB07] T. H. Chung and J. W. Burdick. “A decision-making framework for
control strategies in probabilistic search.” In Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 4386–4393,
2007.

[CFK97] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng. “Cooperative mobile
robotics: antecedents and directions.” Autonomous Robots, 4(1):7–23,
March 1997.

[Cho01] H. Choset. “Coverage for robotics – A survey of recent results.” Annals
of Mathematics and Artificial Intelligence, 31(1-4):113–126, 2001.

257

[CLR01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to algorithms. McGraw-Hill Book Company, Boston, MA, 2nd edition,
2001.

[CMB04] J. Cortés, S. Mart́ınez, and F. Bullo. “Robust rendezvous for mo-
bile autonomous agents via proximity graphs in arbitrary dimensions.”
IEEE Transactions on Automatic Control, 51(8):1289–1298, 2004.

[CMK04] J. Cortés, S. Mart́ınez, T. Karatasand, and F. Bullo. “Coverage control
for mobile sensing networks.” IEEE Transactions on Robotics and
Automation, 20:243–255, 2004.

[CSY95] D. Crass, I. Suzuki, and M. Yamashita. “Searching for a mobile in-
truder in a corridor - The open edge variant of the polygon search
problem.” International Journal of Computational Geometry and Ap-
plications, 5(4):397–412, December 1995.

[Da08] T. K. F. Da. “2D alpha shapes.” In CGAL Editorial Board, editor,
CGAL User and Reference Manual. 3.4 edition, 2008.

[DBC02] A. Drenner, I. Burt, B. Chapeau, T. Dahlin, B. Kratochvil,
C. McMillen, B. Nelson, N. Papanikolopoulos, P.E. Rybski, K. Stubbs,
et al. “Design of the UMN multi-robot system.” In Multi-robot sys-
tems: from swarms to intelligent automata: Proceedings from the 2002
NRL workshop on multi-robot systems, p. 141. Kluwer Academic Pub-
lishers, 2002.

[DPS02] J. Diaz, J. Petit, and M. Serna. “A survey of graph layout problems.”
ACM Computing Surveys (CSUR), 34:313–356, September 2002.

[EG98] A. Elnagar and K. Gupta. “Motion prediction of moving objects based
on autoregressive model.” IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, 28(6):803–810, November
1998.

[EST94] J.A. Ellis, I.H. Sudborough, and J.S. Turner. “The vertex separa-
tion and search number of a graph.” Information and Computation,
113(1):50–79, 1994.

[FBD99] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. “Monte carlo localiza-
tion: efficient position estimation for mobile robots.” In Proceedings of
the National Conference on Artificial Intelligence, pp. 343–349, July
1999.

258

[FGY00] M. Franklin, Z. Galil, and M. Yung. “Eavesdropping games: a graph-
theoretic approach to privacy in distributed systems.” Journal of the
ACM, 47(2):225–243, 2000.

[FKM03] F. V. Fomin, D. Kratsch, and H. Müller. “On the domination search
number.” Discrete Applied Mathematics, 127(3):565–580, 2003.

[Fre07] E. W. Frew. “Cooperative standoff tracking of uncertain moving tar-
gets using active robot networks.” In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pp. 3277–3282, April
2007.

[FT08] F. V. Fomin and D. M. Thilikos. “An annotated bibliography on guar-
anteed graph searching.” Theoretical Computer Science, 399(3):236–
245, 2008.

[GCB06] A. Ganguli, J. Cortes, and F. Bullo. “Distributed deployment of asyn-
chronous guards in art galleries.” In American Control Conference,
pp. 1416–1421, Minneapolis, MN, June 2006.

[GJ79] M.R. Garey and D.S. Johnson. Computers and intractability : A guide
to the theory of NP-completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[GLL99] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani.
“A visibility-based pursuit-evasion problem.” International Journal of
Computational Geometry and Applications, 9:471–494, 1999.

[GSB] G. Grisetti, C. Stachniss, and W. Burgard. “GMapping –
OpenSLAM.org.” http://www.openslam.org/gmapping.html.

[GTG05] B. P. Gerkey, S. Thrun, and G. Gordon. “Parallel stochastic hill-
climbing with small teams.” Multi-Robot Systems: From Swarms to
Intelligent Automata, 3:65–77, 2005.

[GTG06] B. P. Gerkey, S. Thrun, and G. Gordon. “Visibility-based pursuit-
evasion with limited field of view.” The International Journal of
Robotics Research, 25(4):299–315, 2006.

[GTL04] L. Guilamo, B. Tovar, and S. M. LaValle. “Pursuit-evasion in an
unknown environment using gap navigation trees.” In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, volume 4, pp. 3456–3462, April 2004.

259

[Guy91] R. K. Guy. “Unsolved problems in combinatorial games.” In R. K.
Guy, editor, Combinatorial Games – Proceedings of Symposia in Ap-
plied Mathematics, volume 43, pp. 183–189. Cambridge University
Press, 1991.

[HDS07] G. Hollinger, J. Djugash, and S. Singh. “Coordinated search in clut-
tered environments using range from multiple robots.” In Interna-
tional Conference on Field and Service Robotics, pp. 433–442, July
2007.

[HER00] D. F. Hougen, M. D. Erickson, P. E. Rybski, S. A. Stoeter, M. Gini,
and N. Papanikolopoulos. “Autonomous mobile robots and distributed
exploratory missions.” In L. E. Parker, G. Bekey, and J. Barhen, ed-
itors, Proceedings of the International Symposium on Distributed Au-
tonomous Robotic Systems, volume 4, pp. 221–230. Springer, 2000.

[HKS07] G. Hollinger, A. Kehagias, and S. Singh. “Probabilistic strategies for
pursuit in cluttered environments with multiple robots.” In Proceed-
ings of the IEEE International Conference on Robotics and Automa-
tion, pp. 3870–3876, April 2007.

[HKS08] G. Hollinger, A. Kehagias, S. Singh, D. Ferguson, and S. Srinivasa.
“Anytime guaranteed search using spanning trees.” Technical Report
CMU-RI-TR-08-36, The Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, August 2008.

[HMB05] H. Hexmoor, B. McLaughlan, and M. Baker. “Swarm control in un-
manned aerial vehicles.” In Proceedings of the International Confer-
ence on Artificial Intelligence (IC-AI), pp. 911–917, 2005.

[HR03] A. Howard and N. Roy. “The robotics data set repository (Radish).”
http://radish.sourceforge.net/, 2003.

[HS08] G. Hollinger and S. Singh. “Proofs and experiments in scalable, near-
optimal search by multiple robots.” In Proceedings of Robotics: Sci-
ence and Systems, June 2008.

[HSD09] G. Hollinger, S. Singh, J. Djugash, and A. Kehagias. “Efficient multi-
robot search for a moving target.” The International Journal of
Robotics Research, 28(1):201–219, February 2009.

[HSK09] G. Hollinger, S. Singh, and A. Kehagias. “Efficient, guaranteed search
with multi-agent teams.” In Proceedings of Robotics: Science and
Systems, Seattle, USA, June 2009.

260

[HV99] M. Henning and S. Vinoski. Advanced CORBA programming with
C++. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

[IBD04] V. Isler, C. Belta, K. Daniiildis, and G. J. Pappas. “Hybrid con-
trol for visibility-based pursuit-evasion games.” In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, volume 2, pp. 1432–1437, 2004.

[IKK04a] V. Isler, S. Kannan, and S. Khanna. “Locating and capturing an
evader in a polygonal environment.” In Proceedings of the Workshop
on Algorithmic Foundations of Robotics, pp. 351–367, 2004.

[IKK04b] V. Isler, S. Kannan, and S. Khanna. “Randomized pursuit-evasion
with limited visibility.” In Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms, pp. 1060–1069, Philadelphia, PA, USA, 2004.
Society for Industrial and Applied Mathematics.

[IKK05] V. Isler, S. Kannan, and S. Khanna. “Randomized pursuit-evasion in a
polygonal environment.” IEEE Transactions on Robotics, 21(5):875–
884, 2005.

[ISS05] V. Isler, D. Sun, and S. Sastry. “Roadmap based pursuit-evasion and
collision avoidance.” Proceedings of Robotics: Science and Systems,
2005.

[JLM03] A. Jadbabaie, J. Lin, and A. Morse. “Coordination of groups of mobile
autonomous agents using nearest neighbor rules.” IEEE Transactions
on Automatic Control, 48(6):988–1001, 2003.

[JS01] B. Jung and G. S. Sukhatme. “Cooperative tracking using mobile
robots and environment-embedded, networked sensors.” In IEEE In-
ternational Symposium on Computational Intelligence in Robotics and
Automation, pp. 206–211, 2001.

[JS02] B. Jung and G. S. Sukhatme. “Tracking targets using multiple mobile
robots: the effect of environment occlusion.” Autonomous Robots,
13(2):191–205, 2002.

[JS06] B. Jung and G. S. Sukhatme. “Cooperative multi-robot target track-
ing.” In Proceedings of the International Symposium on Distributed
Autonomous Robotic Systems, pp. 81–90, 2006.

261

[Kal60] R. Kalman. “A new approach to linear filtering and prediction prob-
lems.” Transactions of the ASME. Series D, Journal of Basic Engi-
neering, 82:35–45, 1960.

[KBD03] Z. Khan, T. Balch, and F. Dellaert. “An MCMC-based particle filter
for tracking multiple interacting targets.” Technical Report number
GIT-GVU-03-35, Georgia Institute of Technology, Atlanta, GA, 2003.

[KC07a] A. Kolling and S. Carpin. “Cooperative observation of multiple mov-
ing targets: an algorithm and its formalization.” The International
Journal of Robotics Research, 29(9):935–953, 2007.

[KC07b] A. Kolling and S. Carpin. “Detecting intruders in complex environ-
ments with limited range mobile sensors.” In K. Kozlowski, editor,
Robot Motion and Control, LNCIS 360, pp. 417–426. Springer-Verlag
London Limited, 2007.

[KC07c] A. Kolling and S. Carpin. “The GRAPH-CLEAR problem: definition,
theoretical properties and its connections to multirobot aided surveil-
lance.” In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1003–1008, 2007.

[KC08a] A. Kolling and S. Carpin. “Extracting surveillance graphs from robot
maps.” In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2323–2328, 2008.

[KC08b] A. Kolling and S. Carpin. “Multi-robot surveillance: an improved
algorithm for the Graph-Clear problem.” In Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 2360–2365,
2008.

[KC09a] A. Kolling and S. Carpin. “Probabilistic Graph-Clear.” In Proceedings
of the IEEE International Conference on Robotics and Automation, pp.
3508–3514, 2009.

[KC09b] A. Kolling and S. Carpin. “Pursuit-evasion on trees by robot teams.”
IEEE Transactions on Robotics, 2009. accepted for publication.

[KC09c] A. Kolling and S. Carpin. “Surveillance strategies for target detec-
tion with sweep lines.” In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 5821–5827, 2009.

[KH05] M. Krishna and H. Hexmoor. “Resource allocation strategies for a
multi sensor surveillance.” In Proceedings of the IEEE International

262

Symposium on Collaborative Technologies and Systems, pp. 339–346,
2005.

[KHG09] A. Kehagias, G. Hollinger, and A. Gelastopoulos. “Searching the nodes
of a graph: theory and algorithms.” Technical Report ArXiv Reposi-
tory 0905.3359 [cs.DM], Carnegie Mellon University, 2009.

[KHP04] K. M. Krishna, H. Hexmoor, S. Pasupuleti, and S. Chellapa. “A
surveillance system based on multiple mobile sensors.” In In Pro-
ceedings of FLAIRS 2004 AAAI Press, pp. 128–134, 2004.

[KHS05] K. M. Krishna, H. Hexmoor, and S. Sogani. “A T-step ahead con-
strained optimal target detection algorithm for a multi sensor surveil-
lance system.” In Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pp. 1840–1845, 2005.

[KHS09] A. Kehagias, G. Hollinger, and S. Singh. “A graph search algorithm
for indoor pursuit/evasion.” Mathematical and Computer Modelling,
50(9-10):1305–1317, 2009.

[KP86] M. Kirousis and C. H. Papadimitriou. “Searching and pebbling.” The-
oretical Computer Science, 47(2):205–218, 1986.

[LaP93] A. S. LaPaugh. “Recontamination does not help to search a graph.”
Journal of the ACM, 40(2):224–245, 1993.

[LBC98] T. Liu, P. Bahl, and I. Chlamtac. “Mobility modeling, location track-
ing, and trajectory prediction in wireless ATM networks.” IEEE Jour-
nal on Selected Areas in Communications, 16:922–936, 1998.

[LGB97] S. M. LaValle, H. H. González-Banos, C. Becker, and J.-C. Latombe.
“Motion strategies for maintaining visibility of a moving target.” In
Proceedings of the IEEE International Conference on Robotics and Au-
tomation, pp. 731–736, 1997.

[LH99] B. Liang and Z.J. Haas. “Predictive distance-based mobility manage-
ment for PCS networks.” volume 3, pp. 1377–1384, 1999.

[LH01] S. M. LaValle and J. Hinrichsen. “Visibility-based pursuit-evasion:
the case of curved environments.” IEEE Transactions on Robotics
and Automation, 17(2):196–201, April 2001.

[LL07] Y. Li and Y.-H. Liu. “Energy saving target tracking using mobile
sensor network.” In Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 3653–3658, 2007.

263

[LLG97] S. M. LaValle, D. Lin, L. Guibas, J.-C. Latombe, and R. Motwani.
“Finding an unpredictable target in a workspace with obstacles.” In
Proceedings of the IEEE International Conference on Robotics and Au-
tomation, pp. 737–742, 1997.

[LSS02] S. M. LaValle, B. Simov, and G. Slutzki. “An algorithm for search-
ing a polygonal region with a flashlight.” International Journal of
Computational Geometry, 12(1-2):87–113, 2002.

[MB06] S. Mart́ınez and F. Bullo. “Optimal sensor placement and motion
coordination for target tracking.” Automatica, 42(4):661–668, 2006.

[MC94] G. F. Miller and D. Cliff. “Protean behavior in dynamic games: argu-
ments for the co-evolution of pursuit-evasion tactics.” In Proceedings
of the Third International Conference on Simulation of Adaptive Be-
havior: From Animals to Animats 3, pp. 411–420, Cambridge, MA,
USA, 1994. MIT Press.

[MCB07] S. Mart́ınez, J. Cortés, and F. Bullo. “Motion coordination with dis-
tributed information.” Control Systems Magazine, IEEE, 27(4):75–88,
August 2007.

[MHG88] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H.
Papadimitriou. “The complexity of searching a graph.” Journal of the
ACM, 35(1):18–44, 1988.

[Mic04] O. Michel. “Cyberbotics Ltd - WebotsTM: Professional mobile
robot simulator.” International Journal of Advanced Robotic Systems,
1(1):40–43, 2004.

[MJ05] M. Marzouqi and R. Jarvis. “Covert Robotics: Covert Path Plan-
ning in Unknown Environments.” In Proceedings of the Australasian
Conference on Robotics and Automation (ACRA), 2005.

[MMA05] R. Murrieta-Cid, L. Munoz-Gomez, M. Alencastre-Miranda,
A. Sarmiento, S. Kloder, S. Hutchinson, F. Lamiraux, and J. P.
Laumond. “Maintaining visibility of a moving holonomic target at
a fixed distance with a non-holonomic robot.” In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 2687–2693, 2005.

[MMH05] T. Muppirala, R. Murrieta-Cid, and S. Hutchinson. “Optimal motion
strategies based on critical events to maintain visibility of a moving tar-
get.” In Proceedings of the IEEE International Conference on Robotics
and Automation, pp. 3837–3842, 2005.

264

[MMH08] R. Murrieta-Cid, R. Monroy, S. Hutchinson, and J. P. Laumond. “A
complexity result for the pursuit-evasion game of maintaining visibil-
ity of a moving evader.” In Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 2657–2664, 2008.

[MMS07] R. Murrieta-Cid, T. Muppirala, A. Sarmiento, S. Bhattacharya, and
S. Hutchinson. “Surveillance strategies for a pursuer with finite sensor
range.” The International Journal of Robotics Research, 26(3):233–
253, 2007.

[MPS85] F. Makedon, C. H. Papadimitriou, and I. H. Sudborough. “Topolog-
ical bandwidth.” SIAM Journal on Algebraic and Discrete Methods,
6(3):418–444, 1985.

[MRS05] M. Moors, T. Röhling, and D. Schulz. “A probabilistic approach to
coordinated multi-robot indoor surveillance.” In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 3447–3452, 2005.

[MRV05] C. McMillen, P. E. Rybski, and M. Veloso. “Levels of multi-robot
coordination for dynamic environments.” Multi-Robot Systems. From
Swarms to Intelligent Automata Volume III, 3:53–64, 2005.

[MS83] F. Makedon and I. H. Sudborough. “Minimizing width in linear lay-
outs.” In Proceedings of the 10th Colloquium on Automata, Languages
and Programming, pp. 478–490, London, UK, 1983. Springer-Verlag.

[MS89] F. Makedon and I. H. Sudborough. “On minimizing width in linear
layouts.” Discrete Applied Mathematics, 23(3):243–265, 1989.

[MS03] R. Madhavan and C. Schlenoff. “Moving object prediction for off-
road autonomous navigation.” In Proceedings of the SPIE Aerosense
Conference, volume 5083, pp. 134–145, 2003.

[MS06] M. Moors and D. Schulz. “Improved markov models for indoor surveil-
lance.” In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 4072–4077, 2006.

[MTH05] R. Murrieta-Cid, B. Tovar, and S. Hutchinson. “A sampling-based
motion planning approach to maintain visibility of unpredictable tar-
gets.” Autonomous Robots, 19(3):285–300, 2005.

[Mur04] R. R. Murphy. “Rescue robotics for homeland security.” Communica-
tions of the ACM, 47(3):66–68, 2004.

265

[OGB07] K. J. Obermeyer, A. Ganguli, and F. Bullo. “Asynchronous dis-
tributed searchlight scheduling.” In Proceedings of the IEEE Con-
ference on Decision and Control, pp. 4863–4868, New Orleans, LA,
2007.

[OGB08] K. J. Obermeyer, A. Ganguli, and F. Bullo. “A complete algorithm
for searchlight scheduling.” International Journal of Computational
Geometry and Applications, October 2008. Submitted.

[OR87] J. O’Rourke. Art gallery theorems and algorithms. Oxford Univeristy
Press, 1987.

[ORS04] S. Oh, S. Russell, and S. Sastry. “Markov chain Monte Carlo data
association for general multiple-target tracking problems.” Proceedings
of the IEEE Conference on Decision and Control, 1:735–742, 2004.

[OS05] S. Oh and S. Sastry. “Tracking on a graph.” In IPSN ’05: Proceed-
ings of the 4th international symposium on Information processing in
sensor networks, p. 26, Piscataway, NJ, USA, 2005. IEEE Press.

[OSS05] S. Oh, L. Schenato, and S. Sastry. “A hierarchical multiple-target
tracking algorithm for sensor networks.” In Proceedings of the In-
ternational Conference on Robotics and Automation, pp. 2197–2202,
April 2005.

[Par76] T.D. Parsons. “Pursuit-evasion in a graph.” In Y. Alavi and D. R.
Lick, editors, Theory and Applications of Graphs, volume 642, pp.
426–441. Springer Berlin / Heidelberg, 1976.

[Par78] T.D. Parsons. “The search number of a connected graph.” In Pro-
ceedings of the 10th Southeastern Conference Combinatorics, Graph
Theory, and Computing, pp. 549–554, 1978.

[Par02] L.E. Parker. “Distributed algorithms for multi-robot observation of
multiple moving targets.” Autonomous Robots, 12:231–255, 2002.

[PLC01] S.-M. Park, J.-H. Lee, and K.-Y. Chwa. “Visibility-based pursuit-
evasion in a polygonal region by a searcher.” In Proceedings of the 28th
International Colloquium on Automata, Languages and Programming
(ICALP), pp. 456–468, 2001.

[PM07] J. Pugh and A. Martinoli. “The cost of reality: effects of real-world
factors on multi-robot search.” In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pp. 397–404, 2007.

266

[Ram72] U. Ramer. “An iterative procedure for the polygonal approximation
of plane curves.” Computer Graphics and Image Processing, 1(2):244–
256, 1972.

[RSE00] P. E. Rybski, S. A. Stoeter, M. D. Erickson, M. Gini, D. F. Hougen, and
N. P. Papanikolopoulos. “A team of robotic agents for surveillance.”
In C. Sierra, M. Gini, and J. S. Rosenschein, editors, Proceedings of
the Fourth International Conference on Autonomous Agents, pp. 9–16,
Barcelona, Catalonia, Spain, 2000. ACM Press.

[She92] T. Shermer. “Recent results in art galleries.” Proceedings of the IEEE,
80(9):1384–1399, 1992.

[Sie99] D. Siersma. “Voronoi diagrams and morse theory of the distance func-
tion.” In Geometry in Present Day Science, World Scientific, pp.
187–208. World Scientific, 1999.

[Sko00] K. Skodinis. “Computing optimal linear layouts of trees in linear
time.” In ESA ’00: Proceedings of the 8th Annual European Sympo-
sium on Algorithms, pp. 403–414, London, UK, 2000. Springer-Verlag.

[SLS02] B. Simov, S. M. LaValle, and G. Slutzki. “A complete pursuit-evasion
algorithm for two pursuers using beam detection.” In Proceedings of
the IEEE International Conference on Robotics and Automation, pp.
618–623, 2002.

[SOD02] M. Saptharishi, C. S. Oliver, C. Dihel, K. Bhat, J. Dolan, A. Trebi-
Ollennu, and P. Kohsla. “Distributed surveillance and reconnaissance
using multiple autonomous ATVs: Cyberscout.” IEEE Transactions
on Robotics and Automation: Special Issue on Multi-Robot Systems,
18(5):826–836, 2002.

[SOS05] L. Schenato, S. Oh, S. Sastry, and P. Bose. “Swarm coordination
for pursuit evasion games using sensor networks.” In Proceedings of
the IEEE International Conference on Robotics and Automation, pp.
2493–2498, 2005.

[SRE00] S. A. Stoeter, P. E. Rybski, M. D. Erickson, M. Gini, D. F. Hougen,
D. G. Krantz, N. Papanikolopoulos, and M. Wyman. “A robot team
for exploration and surveillance: design and architecture.” In The
Sixth International Conference on Intelligent Autonomous Systems,
pp. 767–774, Venice, Italy, July 2000.

267

[SRL04] S. Sachs, S. Rajko, and S. M. LaValle. “Visibility-based pursuit-
evasion in an unknown planar environment.” The International Jour-
nal of Robotics Research, 23(1):3–26, January 2004.

[SRS02] S. A. Stoeter, P. E. Rybski, K. Stubbs, C. P. McMillen, M. Gini, D. F.
Hougen, and N. Papanikolopoulos. “A robot team for surveillance
tasks: design and architecture.” Robotics and Autonomous Systems,
40(2-3):173–183, September 2002.

[SSL00] B. Simov, G. Slutzki, and S. M. LaValle. “Pursuit-evasion using beam
detection.” In Proceedings of the IEEE International Conference on
Robotics and Automation, volume 2, pp. 1657–1662, 2000.

[SSL09] B. Simov, G. Slutzki, and S. M. LaValle. “Clearing a polygon with
two 1-searchers.” International Journal of Computational Geometry
and Applications, 19(1):59–92, 2009.

[SSY90] K. Sugihara, I. Suzuki, and M. Yamashita. “The searchlight scheduling
problem.” SIAM Journal on Computing, 19(6):1024–1040, 1990.

[SY92] I. Suzuki and M. Yamashita. “Searching for a mobile intruder in a
polygonal region.” SIAM Journal on Computing, 21(5):863–888, 1992.

[TGL04] B. Tovar, L. Guilamo, and S. M. LaValle. “Gap navigation trees:
minimal representation for visibility-based tasks.” In M. A. Erdmann,
D. Hsu, M. Overmars, and A. F. van der Stappen, editors, Proceedings
of the Workshop on Algorithmic Foundations of Robotics, volume 17,
pp. 425–440, 2004.

[Thr98] S. Thrun. “Learning Metric-Topological Maps for Indoor Mobile
Robot Navigation.” Artificial Intelligence, 99(1):21–71, 1998.

[TL06] B. Tovar and S. M. LaValle. “Visibility-based pursuit-evasion with
bounded speed.” In Proceedings of the Workshop on Algorithmic Foun-
dations of Robotics, pp. 475–489, 2006.

[TLM03] B. Tovar, S. M. LaValle, and R. Murrieta. “Locally-optimal naviga-
tion in multiply-connected environments without geometric maps.” In
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, volume 3, pp. 3491–3497, 2003.

[Vaz01] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

268

[VFL09] D. Vasquez, T. Fraichard, and C. Laugier. “Growing Hidden Markov
Models: an incremental tool for learning and predicting human and ve-
hicle motion.” The International Journal of Robotics Research, 28(11–
12):1486–1506, 2009.

[VRS01] R. Vidal, S. Rashid, C. Sharp, O. Shakernia, J. Kim, and S. Sastry.
“Pursuit-evasion games with unmanned ground and aerial vehicles.”
In Proceedings of the IEEE International Conference on Robotics and
Automation, volume 3, pp. 2948–2955, 2001.

[VSK02] R. Vidal, O. Shakernia, H. Kin, D. Shim, and S. Sastry. “Probabilistic
pursuit-evasion games: theory, implementation and experimental eval-
uation.” IEEE Transactions on Robotics and Automation, 18(5):662–
669, 2002.

[YTW05] W.-L. Yeow, C.-K. Tham, and W.-C. Wong. “A novel target move-
ment model and energy efficient target tracking in sensor networks.”
IEEE 61st Vehicular Technology Conference (VTC), 5:2825–2829,
2005.

[YUS97] M. Yamashita, H. Umemoto, I. Suzuki, and T. Kameda. “Searching for
mobile intruders in a polygonal region by a group of mobile searchers.”
In Proceedings of the Thirteenth Annual Symposium on Computational
Geometry, pp. 448–450, 1997.

269

