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Abstract

We present a new algorithm for merging occupancy grid maps produced by multiple robots
exploring the same environment. The algorithm produces a set of possible transformations
needed to merge two maps, i.e translations and rotations. Each transformation is weighted,
thus allowing to distinguish uncertain situations, and enabling to track multiple cases when
ambiguities arise. Transformations are produced extracting some spectral information from the
maps. The approach is deterministic, non-iterative, and fast. The algorithm has been tested on
public available datasets, as well as on maps produced by two robots concurrently exploring both
indoor and outdoor environments. Throughout the experimental validation stage the technique
we propose consistently merged maps exhibiting very different characteristics.
Keywords:Multi-robot systems Mapping Hough Transform

1 Motivation

Research in multi-robot systems is motivated by multiple rationales [17]. Among them is the
possibility to build systems that exhibit superior performance in terms of robustness and time
needed to complete assigned missions. Despite the fact that these goals drove a lot of research
on the topic in the last two decades, the design and implementation of truly robust multi-robot
systems is still a challenge. Many difficulties arise while putting together various components. One
of the main problems is the integration of information collected by different robots operating in
different parts of the environment. Information integration can happen at different levels, but in
order to overcome possible communication bottlenecks, an appealing approach consists in merging
high level information extracted from raw low level data collected by sensors. In this paper we
address one of these problems, namely the integration of occupancy grid maps produced by various
robots exploring different parts of the same environment. Simultaneous localization and mapping
(SLAM) is a well established field of research that still draws significant attention due its enormous
practical importance. Most research, however, focuses, on the problem of building a single map,
either from data coming from a single robot, or from multiple robots. In both cases, however,
the map being built is unique. In many situations this approach is not practical at all. Besides
the problems arising from the increased dimensionality of the composed map, when robots are
exploring large environments continuous communication may be unavailable, and robots may be
able to exchange data only during sporadic rendezvous. As detailed in section 2, research in map
merging is still at its dawn, despite its acknowledged importance.
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In this paper we present a novel algorithm for merging multiple maps that is both fast and
accurate. The algorithm can be used to merge maps represented as occupancy grids. This technique
advances the current state of the art, including our previous work in the area, in various ways. First,
it is extremely fast. Grid maps with more than 250 thousands of cells can be merged in about 500
ms on common desktop PCs. This is orders of magnitude faster than approaches based on iterative
stochastic searches. Secondly, the algorithm is deterministic. Therefore its results are repeatable,
and its computation time predictable. This later aspect is particularly appealing when the map
merging step has to be embedded into a more complex controller with soft or hard real time
constraints. The algorithm computes a few functions describing salient features of the maps to be
merged, and builds its results from them. Finally, even though the algorithm is deterministic, it can
be used in a probabilistic framework. In fact, rather than producing a single solution, it can produce
a set of weighted possible solutions. Therefore, when ambiguities arise one can identify and track
multiple hypothesis until they are solved. Our technique works particularly well when merging maps
produced by multiple robots exploring building interiors. Indoor environments exhibit numerous
linear features that can be quickly detected and exploited for map merging. However, the algorithm
has been implemented and tested on various maps produced by mobile robots operating in very
diverse indoor and outdoor environments, and it has produced consistently good results.

This paper is organized as follows. Section 2 illustrates related literature in the field of map
merging. The problem studied in this paper is formalized in section 3, as well as relevant notation.
The core of the paper is section 4, where the mathematical foundations of the algorithm are
described and the whole approach is presented. Section 5 shows multiple results aimed to test
the robustness of the approach and to illustrate its performance when merging very diverse maps.
Finally in section 6 we draw the conclusions and outline some possibilities for future work.

2 Related work

In this section we address exclusively related literature concerning map merging. Therefore we do
not discuss the SLAM problem. The interested reader is referred to the recent book by Thrun and
colleagues for an up to date survey on building maps [20]. In a paper appeared in 2003 Konolige and
colleagues state that ”[map merging] is an interesting and difficult problem which has not enjoyed
the same attention that localization and map building have” [12]. Although some publications on
the topic appeared after this statement, the area is still under explored. Most approaches proposed
so far assume that maps are represented as occupancy grid maps, and this is the standpoint we
assume in this paper. In an earlier stage of this research we have investigated this problem casting it
as a stochastic search to solve an optimization problem [2]. A suitable transformation (i.e. a rotation
and a translation) aiming to overlap two grid maps is sought in the space of possible transformations,
and the functional being optimized measures the overlap between the two maps. In a subsequent
refinement [1] we introduced mechanisms to detect failures, and a more sophisticated way to guide
the search. Both approaches are guaranteed to find the optimal solution when the number of
iterations tends to infinite. Due to their iterative nature, their computational requirements are
notable, making them unsuited for real time operation. Howard et al. address the map merging
problem exploiting sporadic rendezvous between robots [10]. When two robots meet during the
mission, their relative pose is determined and their individual maps are merged into a combined
one. While this approach has been demonstrated to work well in practice, one shortcoming is the
necessity to compute the relative positions in order to merge maps. If relative localization requires
line of sight, for example when it is based on vision, robots will be unable to merge their maps when
they can communicate but do not see each other. A similar idea is exploited and refined in a paper
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by Fox and colleagues [7]. The main difference is that robots do not meet randomly, but rather
actively seek to meet each other to share and combine their maps. Moreover, relative localization
is determined exchanging sensor data as soon as two robots can communicate with each other, thus
relieving the line of sight requirement. Various other approaches have been proposed that merge
maps after having preliminary localized one robot within another robot’s map [5, 19, 21].

The map merging problem has a radically different twist when the maps to be merged are
topological, rather than based on occupancy grids. A topological map models an environment as a
graph, with vertices representing places and edges representing paths between places [13]. Huang
and Beevers [11] recently proposed a method to merge topological maps based on concepts drawn
from the maximal subgraph graph problem, a combinatorial problem whose NP-hardness is well
known [8]. Given two topological maps, i.e. two graphs, one or more common subgraphs are
identified. Each pair of common subgraphs serves as an hypothesis for merging. Hypothesis are
later on rejected or accepted based on geometrical aspects endowed with the topological map.

The problem of merging two maps represented as occupancy grids is similar to the image
registration problem commonly studied in computer vision. Maps can be in fact viewed as pictures,
and map merging can be seen as a special case of image registration. Numerous solutions have
been proposed to solve this problem. The method we propose in this paper is in close proximity
to those based on feature matching. It is however important to note that when occupancy grids
are interpreted as images, they offer far less distinctive features than digital images. The reader is
referred to [22] for a recent survey on the topic.

3 Notation and problem definition

We assume that a grid map M is a matrix with r rows and c columns. Each cell M(i, j) may contain
three different values, indicating whether the cell is free, occupied, or if its status is unknown.
We assume that these values are encoded as three different integer values. Maps produced by
contemporary SLAM algorithms usually encode occupancy beliefs for each cell, and can therefore
be easily converted into the representation we require. Each cell in M is also associated with a
spatial location that can be assumed to be its center. The spatial location of cell M(i, j) is indicated
as (xi,j , yi,j). Given two maps, M1 and M2, the goal of map merging is to find a rigid transformation
T so that the two maps can be overlapped. The transformation T is the combination of a rotation
ψ, followed by a translation along the x and y axis of magnitude ∆x and ∆y, respectively. T
can be conveniently represented as a 3×3 matrix, so that homogeneous coordinates can be easily
transformed [4].

T (∆x,∆y, ψ) =

 cosψ − sinψ ∆x

sinψ cosψ ∆y

0 0 1

 (1)

When transformation T is applied to map M , we obtain a new map M ′ indicated as M ′ = TM .
Given two maps M1 and M2 there can be multiple transformations overlapping them. Therefore

it is necessary to establish a metric to decide which one is better, and to reject possible false
positives. In order to rank different transformations we use the the acceptance index we formerly
introduced [1, 2].

Definition 1 Let M1 and M2 be two maps with r rows and c columns. The agreement between
M1 and M2 (indicated as agr(M1,M2)) is the number of cells in M1 and M2 that are both free or
both occupied. The disagreement between M1 and M2 (indicated as dis(M1,M2)) is the number of
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cells such that M1 is free and M2 is occupied or vice-versa. The acceptance index between them is
defined as

ω(M1,M2) =

{
0 if agr(M1,M2) = 0

agr(M1,M2)
agr(M1,M2)+dis(M1,M2) if agr(M1,M2) 6= 0

(2)

If T1 and T2 are two possible transformations to overlap M1 and M2, we prefer T1 if ω(M1, T1M2) >
ω(M1, T2M2). One instance of the map merging problem therefore consists of two maps, M1 andM2,
and the goal is to determine a transformation T that maximizes ω(M1, TM2). The reader should
note that for the definition of the acceptance index only free or occupied cells are considered, while
unknown cells are ignored. This is necessary in order correctly deal with maps including a significant
number of unknown cells. According to its definition, ω assumes values between 0 and 1. The two
extremes are reached when the maps do not agree in a single grid cell (i.e. agr(M1,M2), and then
ω = 0), or when the maps are the same (therefore dis(M1,M2) = 0 and ω = 1). For intermediate
situations, values between these two boundaries are obtained. As experimentally studied in [1],
values of ω below 0.9 indicate that the two maps do not overlap well, or enough, and the candidate
transformation should be discarded.

In the following section we will use some concepts coming from the signal processing domain,
like spectra and correlations. In particular we will deal only with discrete time signals. We say
that s is a signal with sampling period t (t > 0) when s is a function from the integer multiples of
t to the real numbers1, i.e. s : Z(t)→ R where

Z(t) = {. . . ,−2t,−t, 0, t, 2t, . . .}.

Since signals will always be defined over multiple integers of the sampling period, we will write s(k)
with k ∈ Z to indicate s(kt).

4 Map merging based on spectra

Differently from our previous work, in this approach the overall transformation T is computed
in two separate steps. First the rotation ψ is determined, and then the translations ∆x and ∆y

are deduced. Also, unlike other methods previously discussed, when two robots need to merge
their partial maps, we do not entail that they need to localize each other in their respective maps.
Finally, we outline that even if our approach inherently deals with just two maps, multiple maps
can be merged together in successive merging rounds.

4.1 Orientation estimation based on the Hough spectrum

This step of the algorithm builds upon a recent work by Censi et al. [3], where the concept of
Hough Spectrum was introduced for the problem of scan matching. The ideas introduced therein
are hereby briefly summarized. Given a binary image, the Hough transform is a well established
methodology to detect lines and other geometric curves that can be parameterized with few values
(see [6] for a concise introduction). Although Hough transform could be used to detect more
complex shapes, like circles and ellipses, we here focus on the detection of lines. This choice is
driven by the consideration that while mapping building interiors, numerous linear features arise,
due to the walls. Besides their traditional Cartesian coordinates, lines can be represented and

1We use the term sampling period to be consistent with standard signal processing terminology (see for example
[16]). However, none of the discrete signals we will introduce in this manuscript are obtained by sampling a continuous
signal.
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detected by choosing the polar representation, i.e. x cos θ + y sin θ = ρ. In this representation ρ is
the distance of the line from the origin, and θ is the angle between the x axis and the normal from
the line to the origin (see figure 1).

Figure 1: Hough transform uses a polar parameterization to represent lines. The values of ρ and θ
uniquely identify the depicted line.

In order to speedup the computation, line detection is usually performed using the Discretized
Hough transform (DHT). DHT discretizes the domain for ρ and θ, so that the DHT can therefore
be represented by a matrix with ρS rows and θS columns. In addition it is also necessary to set a
bound for ρ, while θ is naturally bounded to the [0, 2π) range2. The DHT can be applied to detect
lines in an occupancy grid map M , by converting it into a binary image. The conversion can be
performed setting all occupied cells to black, and all other cells to white, for example. If M is a
grid map, we indicate its DHT with HTM. Accordingly to our previous considerations, HTM is a
matrix with ρS rows and θS columns. Given HTM we define its associated Hough Spectrum as the
following signal with sampling period ϑ = 2π/θS :

HSM(k) =
ρS∑
i=1

HTM(i, k)2 1 ≤ k ≤ θS (3)

The signal is extend periodically for values of k outside the range 1 . . . θS . From an intuitive point
of view, HSM indicates which directions are more frequent among lines detected in M . Figure 2
illustrates a map and its corresponding Hough spectrum.
Hough spectra are unidimensional signals, therefore cross correlation between two such signals
can be used to determine similarities. Correlation, in particular outlines translations that will
overlap two signals. Since Hough spectra are defined over orientations, given two spectra their
cross correlation has to be computed taking the 2π periodicity into account. In other words it is
necessary to compute the so called circular cross correlation. Formally, if HSM1 and and HSM2

are two Hough spectra with the same sampling period ϑ, their circular cross correlation CCM1M2

is a signal with the same sampling period defined as follows:

CCM1M2(k) =
θS∑
i=1

HTM1(i)HTM2(i+ k) 1 ≤ k ≤ θS . (4)

2In certain cases one can allow negative values for ρ and then limit θ to the range [0, π). This option will not be
used here.
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Figure 2: On the top an occupancy grid map M . White cells are free, black cells are occupied and
grey cells are unknown. On the bottom, the corresponding Hough spectrum HSM normalized to
the range 0-1. In the depicted case θS = 360.

As for Hough spectra, CCM1M2 is extended periodically for k outside the 1 . . . θS range. Given two
maps M1 and M2, the cross correlation between their Hough spectra gives useful indications about
how HSM2 should be translated in order to overlap it to HSM1 . Translating the Hough spectrum
corresponds to rotating the associated map. Therefore local maxima in the spectra cross correlation
reveal how M2 should be rotated in order to align it with M1. Figure 3 shows two Hough spectra
and their circular cross correlation. It can be observed that the circular cross correlation displays
multiple local maxima. Each of them is associated with a possible rotation ψi. The algorithm we
propose therefore extracts more than just the global maxima. In fact it extracts a set of n local
maxima (n being a specified parameter), and returns n transformations. In this way, if more than
one rotation appears promising, they can all be tracked.

4.2 Fast displacement computation

Given a candidate rotation ψi, the corresponding translations ∆i
x,∆

i
y can be in principle easily

determined. Let M3 be the map obtained rotating M2 of ψi, i.e.

M3 = T (0, 0, ψi)M2.
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Figure 3: The two top panels show two Hough spectra, and the third one displays their circular
cross correlation. Local maxima in the circular cross correlation outline how the second image
should be rotated in order to align it with the first one.

Translations needed to overlap M3 to M1 can be obtained computing the bidimensional correlation
between M1 and M3. This approach however is computationally demanding, and can be avoided.
Rather than computing the bidimensional correlation, we extract two more spectral structures from
the binary images M1 and M3. The X-spectrum of a binary image M is a signal with sampling
period 1 defined as follows:

SXM(j) =
{ ∑r

i=1M(i, j) 1 ≤ j ≤ c
0 otherwise

(5)

Similarly, the Y-spectrum of image M is defined as the following signal:

SYM(i) =
{ ∑c

j=1M(i, j) 1 ≤ i ≤ r
0 otherwise

(6)

These two signals are basically the projections along the x and y axis of the two images. Figure 4
shows a map together with its X-spectrum and its Y-spectrum. Given SXM1 and SXM3 , ∆i

x can
be easily inferred by looking at the global maximum of the cross correlation between them, defined
as follows

CCXM1M3(τ) =
+∞∑

k=−∞
SXM1(k + τ)SXM3(k) (7)
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Figure 4: On top an occupancy grid map. On the bottom, its X-spectrum on the left and its
Y-spectrum on the right. Both spectra have been normalized to the range 0-1.

Similarly to the case of correlation between Hough spectra, multiple local maxima may emerge
when computing the cross correlation between X-spectra. Each of the maxima is associated with
a candidate translation to align the two maps and could be individually tracked. An analogue
relationship can be written to derive ∆i

y. Computing two cross correlations between couples of
unidimensional signals is much faster than computing a single correlation between two bidimensional
signals. Therefore the above technique yields a great speedup in the computation of the translations.
The approach however may be brittle if the map does not provide distinctive projections along the
x and y axis, i.e. if the spectra are mostly flat. To overcome this problem, before starting any
computation one of the two maps, say M1 is rotated in order to be aligned with the x and y
axis. This step is easy to compute as the required rotation is revealed by its Hough spectrum. We
have experimentally verified that this simple preprocessing step ensures translations can be reliably
computed. For example, the map shown in figure 4 is the result of such preprocessing step. In fact
the algorithm started with the top left map displayed in figure 5, and rotated it by the appropriate
angle, as computed from its Hough spectrum. As the focus of this paper is on maps of building
interiors, it is reasonable to assume that maps will exhibit numerous linear features (i.e. walls),
so that such alignment exists. In difficult cases when maps are built for environments that cannot
be aligned with the axis, one can revert to the bidimensional correlation, at the price of increased
computation time. Section 5 will provide additional details on this aspect.
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4.3 Algorithmic details

Algorithm 1 illustrates how the concepts illustrated above can be put together to derive a set of
candidate transformations. The algorithm requires two occupancy grid maps, M1 and M2 and a
number of hypothesis, n. We assume that map M1 has been preliminary aligned with the axis, as
described in the former paragraph.

Algorithm 1 Details
1: ComputeHypothesis(M1,M2, n)
2: HSM1 ← HoughSpectrum(M1)
3: HSM2 ← HoughSpectrum(M2)
4: CCM1M2 ← CircularCrossCorrelation(HSM1 , HSM2)
5: ψ1 . . . ψn ← LocalMaxima(CCM1M2 , n)
6: SXM1 ← XSpectrum(M1)
7: SYM1 ← Y Spectrum(M1)
8: for i← 1 to n do
9: M3 ← T (0, 0, ψi)M2

10: SXM3 ← XSpectrum(M3)
11: SYM3 ← Y Spectrum(M3)
12: ∆i

x ← arg maxτ CCXM1M3(τ)
13: ∆i

y ← arg maxτ CCYM1M3(τ)
14: Ti ← ∆i

x,∆
i
y, ψi

15: ωi ← (M1, TM2)
16: return T1 . . . Tn , ω1, . . . ωn

The algorithm first computes the circular cross spectra between M1 and M2 and then extracts
the n local maxima associated with the highest values. Each of them corresponds to a candidate
rotation ψi. For each candidate rotation the algorithm computes the corresponding translations ∆i

x

and ∆i
y. Finally, the algorithm computes the ω value associated with each candidate transformation

returned by the procedure. In this way it is possible to track multiple hypothesis and to rank them.
Depending on whether one is more interested in speed or accuracy, the key parameter to play with
is the number of hypothesis n to be created and evaluated. We have implemented two different
versions of the algorithm. The first one implements the procedure just described, and will be
referred to as basic version while describing the experimental results. The second one instead
creates three hypothesis for each local maxima detected in the cross correlation between the Hough
spectra. To be specific, if ψi is a local maxima, two additional hypothesis for rotation are created,
namely ψi + ε and ψi − ε. This variant of the algorithm is indicated as robust version, and turns
out to be more appropriate to use when it is necessary to merge maps whose occupied cells do
not mainly lie along straight lines. It is clear that when using this improved version there is a
tradeoff between accuracy and speed, due to the necessity to perform additional computations for
each supplemental hypothesis being evaluated.

5 Experimental results

Two different sets of experiments have been performed to measure the effectiveness of the proposed
technique3. The first aims to determine the robustness of the algorithm, i.e. the ability to consis-

3The code implementing the algorithm presented herein and the datasets are available for download on
http://robotics.ucmerced.edu/Software
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tently recover a set of transformations close to the optimal one. These experiments were performed
using public available data sets and maps. In the second set of experiments we built maps with
two robots exploring different parts of the same environment. Some experiments were conducted
indoor, i.e. in the ideal situation for the depicted technique. However, some experiments were also
performed outdoor, in order to verify how the algorithm performs in situations that deviate from
its ideal operating conditions. All the computations took place on a computer equipped with an
Intel dual core processor running at 2.14 GHz with 2 Gb of RAM. The machine runs Linux and
the code is written in C++.

5.1 Robustness

If M1 = M2, then by definition ω(M1,M2) = 1. Starting from this fact we can get a first indication
of the algorithm performance by applying a random transformation to a map, and verifying whether
the algorithm is capable to recover the inverse transformation. More precisely, let M be grid map,
and let M ′ = TM , with T being a random transformation. Let TB be the best transformation
produced by ComputeHypothesis. The value ω(M,TBM

′) should be 1 if the algorithm is capable
to recover the inverse transformation. In order to perform this test we have used the four maps
displayed in figure 5. These maps have been built using one of the datasets available on the Radish
repository [18]. The SLAM algorithm used to produce the maps is GMapping by Grisetti et al. [9],
whose implementation is available on the OpenSlam web-site [15]. These maps have been already
used as benchmarks in some previous publications about map merging, and therefore constitute
a good reference point. We performed 1000 trials. At each iteration one of the four maps was
randomly chosen, and then a random transformation T was applied. Results are illustrated in
figure 6. The figure plots ω(M,TBM

′) as a function of the random rotation4. When the algorithm
perfectly recovers the inverse transformation this value is 1. The average value of ω(M,TBM

′)
is 0.9930, and its standard deviation is 0.0048. These results were produced by the basic version
of the algorithm, setting the number of hypothesis to be tracked to n = 4. The average time to
compute a set of 4 hypothesis was 558 ms. Each of the maps used for this experiment had 530 rows
and 530 columns.

The maps used in the first experiment nicely fit the optimal hypothesis for the algorithm we
propose, i.e. they exhibit many straight lines. In order to test how the algorithm performs when
dealing with maps that feature also curved walls, we have used another dataset available on Radish
that produces the map with curved walls displayed in figure 7. This is significantly bigger than
those used in the previous test: it has 1000 rows and 1000 columns. Figure 8 compares the results of
the value obtained by two versions of the merging algorithm. Red dots illustrate the basic version,
while blue dots show the performance of the robust version. It is clear that for this specific map
the use of the robust version pays off. For what concerns speed, the average time to compute 12
hypothesis using the robust version is about 5 seconds. The average value of ω was 0.9904 with a
standard deviation of 0.106.

Finally, in figure 9 we show a comparison between the ω value associated with the 12 hypothesis
produced while solving one instance of the map merging problem with the later dataset using the
robust version of the algorithm. In this case it is possible to see how the ω value discriminates
good transformations from bad ones. The first transformation has a ω value of 0.9821. All the
other transformations have significantly lower values. In this case it is therefore possible to rule
out ambiguities, and commit to the transformation with the highest ω value.

4The random transformation T includes both a random rotation and random translations. We here display the
trend of ω as a function of the rotation, as this component of the transformation turns out to be the hardest to
recover.
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5.1.1 Considerations on the computational speed

The two set of experiments illustrated above give an idea about the speed of the algorithm being
proposed. In the first set of experiments the maps being merged have average size and feature
plenty of linear pieces. In such case the basic version of the algorithm can be applied and the
speed is remarkable. In the second set of experiments 12 hypothesis need to be tracked, and the
maps are significantly bigger. A corresponding slowdown is observed. The size of the maps being
merged plays of course a crucial role. In order to estimate T , the size of the map is not the only key
parameter. The number of occupied cells, in fact, plays also a key role, and these two numbers may
be significantly different. This is a consequence of the fact that the grid map is preliminary cast
into a black and white image, and only occupied cells are considered during spectral processing.
However, when T has been determined and ω is evaluated, the size of the map matters. In fact, to
evaluate ω it is necessary to construct M ′ = TM . Such operation considers all the cells in the map
(free, occupied or unknown). In the results presented here we have used the transformation routines
provided with the OpenCv library [14], so the computational time we report is negatively affected
by the necessity to transform the occupancy maps into a format that can be processed by OpenCv.
If for a certain application speed is of utmost importance, one may consider implementing these
operations from scratch in order to avoid this overhead. Alternatively one can directly represent
maps in a format that can be used by OpenCv.

5.2 Performance on different maps

In the second set of experiments we have collected data with two pioneer P3AT mobile robots
exploring different parts of the same building or an outside area. Both robots are equipped with a
SICK range finder (see figure 10), sonars and odometry.

Maps were built using the Gmapping algorithm described above. Since the sake of this exper-
iment is to verify how the algorithm works when merging challenging maps, robots were remotely
controlled in order to drive the exploration towards difficult spots in the environment. Whether
robots explore the environment autonomously, or are remotely operated by a human makes no
difference for the algorithm we propose. In the first scenario robots explore the inside part of the
science and engineering building at UC Merced. The building features long corridors with offices
and lab spaces on both sides. Figure 11 shows the result of one the experiments performed. The
two robots started at the lower right corner of the map (close to the spot indicated by the letter
S in the lower panel). The first robot went up, then came back, turned right, explored the long
corridor down to the hall displayed on the left of the map, and went finally back to the initial point.
The map produced by the first robot is displayed in the top panel. The second robot first moved
down the corridor on the right, then moved back and entered the room appearing on the top of the
map. The corresponding map is displayed in the middle panel. The merged maps are displayed in
the bottom panel. Similar results were produced in the other tests executed inside the building.
It can be observed that the merged map perfectly integrates the two partial ones produced by the
individual robots.

Finally we executed some tests outside, in the campus green (see the left picture in figure 10).
The outdoor environment obviously offers less linear features and poses significant challenges to
the mapping algorithm we used. In addition to lack of walls, an additional problem arises since the
robots move on an uneven terrain and many spurious readings returned by the SICK sensor are
not due to real obstacles, but rather to the robot moving down a slope. Figure 12 shows the two
maps produced by the individual robots, and the merged map. As long as the maps being merged
feature at least one wall of significant length the merging algorithm is capable to determine the
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needed rotation. Other features present in the map (like pillars, trees and benches) usually provide
enough data to compute the needed translation. In cases like these, however, it may make sense
to track not only multiple rotations but also multiple translations. This extension can be easily
added by extracting multiple local maxima from the cross correlations of the X and Y spectra.

6 Conclusions, limitations, and future work

We presented a novel algorithm to merge occupancy grid maps produced by two or more robots
operating in the same environment. The presented algorithm merges two maps, but can deal
with more than two by repeatedly merging couple of maps. The algorithm produces a set of
candidate transformations, i.e. rotations and translations, that can be used to overlap two maps.
Each candidate transformation is weighted using the acceptance index indicator we introduced in
a former stage of this research. The weight of each transformation indicates its quality, and the
relative weights allow to distinguish cases where more than one transformation appear appropriate.
Our technique has been tested to verify its performance on various maps. We have experimentally
assessed that when merging maps predominantly composed of straight lines the algorithm quickly
and reliably finds a suitable transformation by just tracking few hypothesis. Moreover, we have
tested the performance on maps built by robots exploring outside areas. In such case the algorithm
still manages to find meaningful transformations leading to the correct merging, but it needs to
track more hypothesis, due to the augmented uncertainty.
Three limitations affect the algorithm we propose. First, it is necessary to assume that the two
maps being merged have been built using the same scale. The algorithm is not capable to determine
whether one of the two needs to be magnified in order to be matched with the other, and this
possible extension appears not easy to include. Second, in order for the merging to be successful,
it is necessary that the two maps being merged exhibit a certain degree overlapping. If this is not
the case the algorithm is unlikely to find the appropriate transformation, although the acceptance
index will indicate that the produced merging should be discarded. It should however be noted
that most algorithms for map merging proposed so far share these limitations as well. Finally,
when robots map large environments, produced maps may end up being affected by a remarkable
degree of distortion, so that a rigid transformation would not produce a satisfactory alignment.
In that case if would be necessary to look for a transformation with local characteristics, i.e. a
transformation capable of modifying the two maps based on the local distortion. This problem
has also been scarcely addressed in the literature and appears to be beyond the range of problems
solvable by the proposed technique. However, throughout the tests we performed such problem
never appeared, thanks to the robustness of the mapping algorithm used.
The proposed technique could be extended in various directions. Firstly, when robots meet often,
and therefore merge their respective maps often, it could make sense to solve the merging task
not from scratch, but rather taking into account the prior partial results. In addition, considering
that Hough transform can be extended also to detect three dimensional shapes, we will investigate
whether the algorithm we propose could be extended to merge three dimensional maps produced
by tilting range sensors or three dimensional proximity finders.
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Figure 5: The four maps used to run the first robustness test. Each the map has been preliminary
rotated so that its walls are not aligned with the x and y axis. White cells are free, black cells are
occupied and gray cells are unknown.
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Figure 6: Trend of ω as a function of the random rotation for the first dataset.

Figure 7: The map featuring curved and straight walls used for the second set of experiments.
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Figure 8: Trend of ω as a function of the random rotation for the first dataset.

Figure 9: Comparison between the ω values associated with a set of 12 candidate transformations
produced in the second set of experiments. In this case the algorithm correctly retrieved the
inverse transformation. This is outlined by the transformation associated with a ω value close to
1. Hypothesis have been sorted according to their ω value for displaying purposes only.
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Figure 10: On the left the two robots exploring the interior of the engineering and science building.
On the right, one of the robots exploring the outside green quad at UC Merced.

Figure 11: The top two panels show the two maps built individually by the two robots. The bottom
panel illustrates the map obtained by merging the top ones.

Figure 12: On top, the two maps produced by the two robots while exploring the campus green.
On the bottom the merged map.
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