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Abstract

This paper presents a novel method for the online estimation of variance parameters regulating

the dynamics of a nonlinear dynamic system. The approach exploits and extends classical iterated

Kalman filtering equations by propagating an approximation of the marginal posterior of the un-

known variances over time. In addition to the theoretical foundations, this manuscript offers also a

variety of numerical results. In particular, experiments with data collected both in simulation and

with a real robot platform show how the proposed approach efficiently solves a robot localization

problem.
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1 Introduction

Kalman filter (KF) based algorithms are used to solve a variety of estimation problems spanning from

robotics to biomedicine and economy. Numerous reasons account for its popularity, and the reader is

referred to [1, 2] for detailed expositions of its properties. Central to its application is the assumption

that transition and measurement noises are Gaussian. When the system is linear these hypotheses

have favorable computational implications since they account for the conciseness of the parametric

representation of the different variables involved in the estimation process. When the system is nonlinear

the simplest generalization is the extended or iterated Kalman filter [3]. In either case, a drawback is

the necessity to determine beforehand the parameters characterizing the noise statistics. This may be

a time consuming process that may be rather complicated if the model is not simple. However, there

are various situations when this is not the case. Moreover, certain classes of systems exhibit dynamics

governed by time-varying noise distributions, so that one should update the system description while it

is evolving, rather than relying on stationary assumptions or off-line measures.
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These problems may be mitigated by the approach presented in this manuscript. The main contribu-

tion of this paper is an algorithm to estimate online the covariance parameters characterizing both the

measurement and evolution noise. In particular, we interpret these parameters as random variables and

propose an algorithm that propagates an approximation of their marginal posterior over time. When

identifying dynamical systems in an off-line manner, this approach is known to be more robust than

treating the covariance parameters as part of the state vector and using the standard KF to estimate

them. Our novel contribution is in showing that this estimation can be efficiently computed online. In

fact, integrating out the state vector from the joint posterior, i.e. the joint probability density of the

state vector and the parameters conditional on the output data, may remove biases in variance estima-

tion [4, 5]. Integration of the state vectors in an off-line context is also performed in stochastic grey box

models identification and is known to enhance the performance of the estimation process, see [6]. Other

methods have shown that covariance estimation can be performed thorough simulations accounting for

different error sources characterizing the physical process being modeled [7]. Our method differs because

it computes estimates online without making assumptions about the underlying process, e.g. it does

not need to account for different error sources. Moreover, we demonstrate that this approximation is

robust with respect to initial guesses of the parameter values.

To illustrate its strengths, the estimator is applied to a robot localization problem. In our experimental

setup we will focus on mobile robots moving in planar environments, where the aim is to determine the

position in the plane and the yaw orientation of the robot. In other words we look at algorithms that

estimate the triple (x, y, θ), indicated as pose in the following. The recent book by Thrun et al. [8]

offers an up to date description of the most commonly used probabilistic techniques adopted to solve

this problem. Most of the published literature in the field resorts to some implementation of the Bayes

filter, e.g. the extended Kalman filter (EKF)1 for position tracking [9] and particle filters for global

localization problems [10, 11, 12, 13]. Extensions to the so called multi-robot localization problem can

also be found in [14, 15, 16, 17, 18, 19].

In the experimental section present in this paper a mobile platform moves in an environment conditioned

with landmarks located at known locations, and it is equipped with a sensor identifying the landmarks

and estimating their distance. We use an iterated Kalman filter to reconstruct robot’s path and, dif-

ferently from all the works cited above, we assume that the covariance parameters of the sensors or of

the state transitions are unknown and must be estimated online. We show that the proposed approach

enables the use of Kalman based techniques even in cases where one has no information at all concerning

the statistics of the involved Gaussian distributions. The problem is studied both in simulation and

with a real mobile platform. Results illustrate the performance of the proposed technique, also pointing

out situations where the unknown covariance parameters cannot be identified.

The paper is organized as follows. Section 2 defines the problem and presents the theory supporting

our approach. The experimental setup is presented in Section 3, and results are illustrated in Section

1Extended Kalmand Filter is de facto almost always preferred to the basic Kalman filter due to the nonlinearities in

robot motion and sensing.
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4. Finally conclusions are given in Section 5.

2 Problem definition and theoretical background

We are interested in estimating the n dimensional state x ∈ Rn of a control system evolving according

to the discrete-time state-space model:

x(t) = g(x(t− 1),u(t)) + ν(t), t = 0, 1, 2, . . . (1)

where ν(t) is a zero-mean n-dimensional Gaussian random vector with covariance matrix Q(t), and

u(t) ∈ Rk is a vector of inputs. We assume the availability of a sensor providing observations for x, i.e.

z(t) = h(x(t)) + ζ(t) (2)

where z(t) ∈ Rm and ζ(t) is a zero-mean m-dimensional Gaussian random vector with covariance matrix

R(t). Finally, we assume an initial estimate for x(0) is available as a Gaussian vector independent of

transition and measurement noise, with known mean and covariance matrix. Under these assumptions,

in a Bayesian framework the evolution in time of x can be estimated using the Kalman filter (KF). Due

to possible nonlinearities in the functions g and h, a linearization around the current estimate for x is

usually performed leading to the extended Kalman filter (EKF) [20].

The situation addressed in this paper is complicated because we consider that the matrices R(t) and

Q(t) are not known, but rather depend on an unknown parameter vector θ ∈ Rp. Hence, these matrices

shall rather be written as R(t, θ) and Q(t, θ). The problem we aim to solve is the online estimation

of both x(t) and θ starting from the initial estimate for x(0), and the given sequences u(t), and z(t).

In the spirit of the KF framework, the estimation process for both x and θ will produce a posterior

distribution where both these quantities are modeled as Gaussian random vectors. In particular we aim

solve the problem under the following assumption.

Assumption 1 Given θ the random vectors {ν(t)} and {ζ(t)} are all mutually independent with zero

mean and covariance matrix Q(t, θ) and R(t, θ).

In the sequel we will indicate with x̂(t|t) the estimate of x obtained taking into account all data

available up to time t. x̂(t|t− 1) will instead indicate the estimate for x taking into account all inputs

up to time t and all sensor readings up to time t − 1, that is after the prediction step but before the

update step. Similarly, Σ̂x(t|t) indicates the covariance matrix of the estimate for x taking into account

all data up to time t, while Σ̂x(t|t − 1) is the covariance matrix after the prediction but before the

update. Estimates for θ will also be formulated as a Gaussian distribution, and the symbols θ̂(t) and

Σ̂θ(t) indicate the mean and the covariance matrix taking into account all data up to time2 t. The

estimation process involves two stages that are now described in detail.

2Due to the computations performed to estimate θ, there is no need to distinguish between prediction and update for

θ.
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2.1 Prediction

The first step is the prediction step of the EKF. During this initial stage both x̂(t − 1|t − 1) and

Σ̂x(t− 1|t− 1) are not considered as dependent on θ. Let us define the n× n Jacobian matrix around

x̂(t− 1|t− 1),u(t), i.e.

Gt =
∂g(x(t− 1),u(t))

∂x(t− 1)
|x̂(t−1|t−1),u(t)

Therefore the state evolution function g appearing in Eq. 1 can be linearly approximated as

g(x(t− 1),u(t)) ≈ g(x̂(t− 1|t− 1),u(t)) +Gt [x(t− 1)− x̂(t− 1|t− 1)] + ν(t).

The estimate for x at time t before considering the observation z(t) can be approximated as a Gaussian

vector whose mean and covariance matrix are:

x̂(t|t− 1) = g(x̂(t− 1|t− 1),u(t))

Σ̂x(t|t− 1) = GtΣ̂x(t− 1|t− 1)GTt +Q(t, θ) (3)

The reader should observe that whilst we assumed Σ̂x(t − 1|t − 1) does not depend on θ, after the

prediction step Σ̂x(t|t− 1) depends on θ through Q(t, θ). In order to make this dependency explicit in

the following we will therefore write Σ̂x(t|t− 1)(θ).

2.2 Update based on measurement

When the sensor reading z(t) is incorporated, a better estimate for x̂ is achievable, i.e. it is possible to

compute x̂(t|t) by taking into account the innovation. However, in this stage we also aim to provide a

better estimate for θ, i.e. θ̂(t) and Σ̂θ(t) starting from θ̂(t − 1) and Σ̂θ(t − 1). The update stage relies

on the following proposition3.

Proposition 2 Assume x(t) is Gaussian with mean x̂(t|t − 1) and covariance Σ̂x(t|t − 1)(θ). Then,

for known θ and z(t), the maximum a posteriori estimate of x(t) is

x̂(t|t) = arg min
x(t)

l(x(t); z(t), θ)

where

l(x(t); z(t), θ) =
1

2
ln det(2πR(t, θ)) +

1

2
ln det(2πΣ̂x(t|t− 1)(θ))

+
1

2
‖z(t)− h(x(t)), R(t, θ)−1‖2 +

1

2
‖x(t)− x̂(t|t− 1), Σ̂x(t|t− 1)(θ)−1‖2. (4)

The proof of proposition 2 is immediate once one writes down the expression for the joint density of x

and z conditioned on θ and considers assumption 1.

3If W is a r × r symmetric positive definite matrix and v ∈ Rr we define ‖v,W‖2 = vTWv.
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Remark: the reader will recognize that Eq. 4 defines a function l that is related to the logarithm of

a multidimensional Gaussian distribution. This function is explicitly introduced to simplify the descrip-

tion of the minimization algorithm described in the following.

In order to optimize the objective function l(.) (Eq. 4), a Gauss-Newton method can be exploited

(see e.g. [21]). It is now pivotal to recall that the iterated Kalman filter (IKF) update is exactly a

Gauss-Newton method, i.e. once assigned the same initial point, the sequence of iterates generated by

the Gauss-Newton method and the sequence of iterates produced by IKF are identical (see [22]). Recall

also that IKF corresponds to the EKF when just a single iteration is performed. Thus, the minimizer

of l(.) can be achieved by inductively defining the sequences xi and Σix as follows:

x0 = x̂(t|t− 1) (5)

Σ0
x = Σ̂x(t|t− 1)(θ)

xi+1 = x̂(t|t− 1) +Ki
[
zi − h(xi)−Hi

(
x̂(t|t− 1)− xi

)]
Σi+1
x = (I −KiHi)Σ̂x(t|t− 1)(θ)

where

Hi =
∂h(x)

∂x(t)
(xi) (6)

Ki = Σ̂x(t|t− 1)(θ)HT
i

[
HiΣ̂x(t|t− 1)(θ)HT

i +R(t, θ)
]−1

After computing a sufficient number of iterations to reach convergence, xi and Σix provide the updated

estimate x̂(t|t) and the covariance matrix of the error Σ̂x(t|t). However, both these quantities now

depend on θ through R(t, θ) and Q(t, θ). Therefore, similarly to the notation used for Σ̂x, we will write

x̂(t|t)(θ) to outline its dependency of x from θ. The core question at this point is how the estimate of

the unknown vector θ can be updated.

Let π(x(t), z(t)|θ) denote the joint density for x(t) and z(t) conditioned on θ. Recalling Eq. 4, one has

π(x(t), z(t)|θ) = e−l(x(t);z(t),θ)

Let instead π(z(t)|θ) be the marginal likelihood of z(t), which corresponds to the joint density of z(t)

and x(t), where x(t) is integrated out, i.e.

π(z(t)|θ) =

∫
π(x(t), z(t)|θ)dx(t). (7)

This integral is useful since it often allows to remove biases in parameter estimation [23]. Let πt−1(θ)

denote the current ”prior” for θ, i.e. a Gaussian with mean θ̂(t − 1) and covariance Σ̂θ(t − 1). Then,

our target estimate for θ is
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θ̂ = argminθ − ln [π(z(t)|θ)πt−1(θ)]

under the constraint that the resulting matrices Q(t, θ) and R(t, θ) are valid covariance matrices, i.e.

symmetric positive definite matrices.

Due to the possible non linearity of the measurement function h, the evaluation of π(z(t)|θ) for a

given θ requires to solve the integral in Eq. 7 which in general is analytically intractable. However, we

now illustrate that the computations performed by the IKF provide an approximation for this integral.

To start with, let us first consider the affine approximation of l(x(t); z(t), θ) for x(t) near y ∈ Rn. This

is defined by

l̃(x(t),y; z, θ) =
1

2
ln det(2πR(t, θ)) +

1

2
ln det(2πΣ̂x(t|t− 1)(θ))

+
1

2
‖z(t)− h(y)−Hy(x(t)− y), R(t, θ)−1‖2

+
1

2
‖x(t)− x̂(t|t− 1), Σ̂x(k|k − 1)(θ)−1‖2

with

Hy =
∂h(x)

∂x(t)
(y).

The Hessian of l̃ with respect to x(t) is easily obtained and reads as follows

∂2 l̃(x(t),y; z(t), θ)

∂x2(t)
= HT

yR(t, θ)−1Hy + Σ̂x(t|t− 1)(θ)−1. (8)

Let us now consider again Eq. 7. The information matrix approximation for the marginal likelihood

π(z(t)|θ), denoted by π̃(z(t)|θ), is given by (see [24] and [25])

π̃(z(t)|θ) = det

{
1

2π

∂2 l̃(x(t), x̂(t|t)(θ); zk, θ)
∂x2(t)

}−1/2
e−l(x̂(t|t)(θ);z(t),θ) (9)

Therefore, in view of Eq. 8 and Eq. 9, one can notice that such an approximation requires x̂(t|t)(θ) and

the Jacobian of h computed at x̂(t|t)(θ) which represent quantities returned by IKF. Stated differently,

for every θ value IKF can be used to evaluate an objective function whose optimization provides the

estimate of θ. Thus, we are now in a position to define the estimate of θ, obtained after seeing all data

up to instant t, as the solution to the problem

θ̂(t) = argminθ − ln [π̃(z(t)|θ)πt−1(θ)] (10)

while Σ̂θ(t) is given by

Σ̂θ(t) = −

[
∂2 ln(π̃(z(t)|θ̂(t))πt−1(θ̂(t))

∂θ2

]−1
(11)

and can be calculated numerically.

This completes the update for parameter θ. Finally, the overall measurement update is completed

by setting the estimate of x(t) to x̂(t|t)(θ̂(t)) with associated covariance matrix of the error given by
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Σ̂x(t|t)(θ̂(t)).

The covariance matrix of Eq. 11 provides an indication of the information on θ carried by output

data collected up to instant k. Notice however that, due to possible modeling errors or particular noise

realizations, the error covariance matrix could become small (as it may happen for state estimation and

discussed e.g. in Chapters 8 and 9 of [20]). Thus, a drawback is that subsequent output data could

have no effect on the estimate of θ. To prevent divergence, a simple approach consists in fixing a lower

bound on the elements of matrix Σ̂θ(t|t). This approach could also have advantages if one assumes

time-variance of the parameters and one wants to increase adaptivity of the estimates.

3 Experimental setup

The estimation algorithm has been experimentally tested using the two different dynamical models

introduced later on in this section4. In the various situations we always compare the performance of

three estimators. The first one, called EST in the following, is based on the new approach proposed in this

paper. It will be used to estimate the state of the dynamical system and to identify online the unknown

covariance parameters, either for measurement noise or for transition noise. The second estimator,

indicated as IKF1 in the following, is an iterated Kalman filter that always uses the correct noise

autocovariances and performs 10 iterations during its update step. In the context of these experiments,

IKF1 can be considered as the ideal estimator for the state of the system. The third estimator, indicated

as IKF2 in the following, is also an iterated Kalman filter performing 10 iterations, but it is fed with

inaccurate information about the various covariances, as indicated in the different experiments described

later on. IKF2 is introduced to outline that poorly chosen values for these parameters may lead to poor

performance. On the contrary, our experiments demonstrate that even when boostrapping our proposed

EST with arbitrarily wrong parameters, its performance eventually converges to the ideally calibrated

iterated Kalman filter. The same symbols are used both when describing simulation results and results

obtained with a mobile robotics platform. We conclude this introduction mentioning that both IKF1

and IKF2 use the linearized model during their iterations.

3.1 A realistic dynamical model for robot localization

We first consider a differential drive robot moving on a flat surface, as described in [8] (chapter 5).

Assuming that its initial pose is known, the goal of the estimation process is to track its pose while the

robot moves around. As usual in this kind of applications, the pose of the robot is a three dimensional

vector x = (x, y, θ), where x and y are the coordinates of the mid point on the axle between the wheels,

and θ is the robot heading measured with respect to a fixed reference frame. Two inputs are used to

drive the robot. These are u = (uv, uw), and correspond to the translational and rotational speeds,

4Matlab c© code implementing the algorithm described in this paper and data sets used to produce the results presented

in this section are available for download from http://robotics.ucmerced.edu.
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respectively. When uw(t) 6= 0, the equations describing the next state of the robot are the following

(when uw(t) = 0 the robot moves forward without turning and the relationships are simplified in the

obvious way).
x(t) = x(t−∆t) +

[
− uv(t)
uw(t) sin θ(t−∆t) + uv(t)

uw(t) sin(θ(t−∆t) + uw(t)∆t)
]

y(t) = y(t−∆t) +
[
uv(t)
uw(t) cos θ(t−∆t)− uv(t)

uw(t) cos(θ(t−∆t) + uw(t)∆t)
]

θ(t) = θ(t−∆t) + uw(t)∆t

(12)

Consistently with the model set in Eq. 1, the evolution noise corrupting x(t) is assumed to be Gaussian,

i.e. ν(t) ∈ N (0, Q(t)). Q(t) can be either known, or depending on unknown parameters and possibly

the input vector u, as assumed in [8]. A detailed discussion about the form of Q and its estimation

is postponed to a later subsection. Assuming C landmarks are located in the environment at known

positions, we hypothesize the robot is equipped with a single sensor returning only measurements to

landmarks closer than a certain threshold T . Therefore the measurement vector at time t is a vector

z(t) ∈ RM with M ≤ C. We furthermore assume that the landmark correspondence problem does not

occur, i.e. for each element in z(t) it is known to which landmark it corresponds to5. Finally, we

hypothesize that the individual readings of z(t) are mutually independent and affected by Gaussian

noise with zero mean and variance ζ, i.e. the measurement noise covariance matrix at time t is

R(t) = ζIM (13)

where IM is the M ×M identity matrix. In the sequel, the value of ζ will be either assumed known or

estimated online by the algorithm. We conclude this section pointing out that it is straightforward to

extend this formulation assuming different values on the main diagonal of R(t), for example to model

the case where distance measurements from different landmards imply different precision. This case will

not be discussed here but can be accommodated with a careful implementation of the the algorithm,

while the underlying theory does not change at all.

3.2 A simplified dynamical model for robot localization

The second dynamical model considers a simplified situation6 where the robot translates only on the

plane, and so its state vector is x = (x, y), where x and y are its coordinates in the plane. Two inputs

are used to drive the robot, u = (u1, u2), and the state transition equations are as follow: x(t) = x(t−∆t) + u1(t)∆t

y(t) = y(t−∆t) + u2(t)∆t
(14)

Consistently with the model set in Eq. 1, the evolution noise corrupting x(t) is assumed to be Gaussian,

i.e. ν(t) ∈ N (0, Q). Q is assumed to be constant over time and diagonal. The robot is equipped with a

sensor identical to the one considered in the previous model.

5The case of uknown correspondences can be dealt with as well via maximum likelihood, but it is not considered in

this manuscript. The reader is referred to [8], chapter 7, for details.
6Although simplified, the model can be appropriate to model holonomic platforms.
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4 Experimental results

In this section we first illustrate simulation results for both models and a variety of situations, and we

then discuss an implementation on a mobile platform.

4.1 Simulated data

4.1.1 Estimating the measurement noise covariance

We start considering the evolution model given in Eq. 12 and assume that the transition noise covariance

Q(t) is known to all estimators. Instead, ζ (and then R(t)) is assumed to be unknown to EST; IKF2

uses a value 5 times bigger; and IKF1 is always provided with correct values for R. Figures 1 and 2

display prototypical results for one of the tests. Figure 1 shows the estimated value for ζ produced

by the proposed estimator EST as a function of time. The true ζ value is 10−1, and the plot shows

that even though EST starts with an initial estimate of ζ = 102, it quickly decreases its value and it

eventually converges to the right number. Figure 2 instead shows the position and orientation error for

the three different estimators through the mission. It is evident that there is no appreciable difference

in performance between EST and IKF1, while IKF2, suffering from an poor choice for the measurement

noise covariance, shows sporadic burst errors. We conclude remarking that the performance of EST is

basically independent of the initial choice for ζ. In fact, even initializing EST with a ζ estimate that is

108 times larger than the correct value the algorithm shows the same performance. The figures display

a single set of results, but these are consistent with the observed behavior over a large number of trials,

as shown in Table 1. Similar findings are also evidenced when using the evolution model given by Eq.

14.

Average

estimated ζ

Variance

estimated ζ

EST average er-

ror

IKF1 average

error

IKF2 average

error

0.101 0.00789 0.0428 0.0424 0.0528

Table 1: Results obtained averaging 500 random trials with the same conditions used to produce Fig. 1

and 2. The unknown measurement noise covariance is ζ = 0.1. Displayed errors are the average position

errors throughout the 500 trials and are expressed in meters.

Finally, Table 2 outlines the robustness of the proposed estimator EST. Three different experiments

are performed with EST starting with estimates for ζ off by a factor between 102 and 106 (second

column). The third column shows that the overall error is insensitive to the initial mismatch, whereas

the fourth column displays the estimated value for ζ. The true value for ζ, unknown to the estimator,

is shown for comparison in the last column.

9



0 100 200 300 400
10

−3

10
−2

10
−1

10
0

10
1

10
2

E
st

im
at

ed
 ζ

Figure 1: Trend of the estimated ζ value pro-

duced by EST. The true value for ζ is 10−1.
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Figure 2: Trends for position and orientation

error as a function of time.

Table 2: Measurement noise covariance estimation

Experiment Bias Error Estimated ζ True ζ

100 0.015852 0.045365 0.050000

1 10000 0.015851 0.045354 0.050000

1000000 0.015850 0.045354 0.050000

100 0.010416 0.042807 0.050000

2 10000 0.010419 0.042813 0.050000

1000000 0.010416 0.042800 0.050000

100 0.061317 0.092201 0.100000

3 10000 0.061320 0.092205 0.100000

1000000 0.061317 0.092225 0.100000

4.1.2 Estimating the evolution noise covariance

The situation may be more intricate when the evolution noise covariance needs to be estimated. These

complications are not a limit of the proposed technique, but may rather outline an impossibility to

determine the unknown covariance parameters. This kind of non identifiability issues are in particular

related to the structure of the model in Eq. 12. In particular, recalling Eq. 3, the covariance matrix

after the prediction step is

Σ̂x(t|t− 1) = GtΣ̂x(t− 1|t− 1)GTt +Q(t, θ)

where the expression for Gt depends on the state transition equation. Using realistic values to fully

define the model in Eq. 12, we have assessed that the first term in Eq. 3 always dominates the second

one. As a consequence, it is not possible to reliably recover the unknown parameters θ. In fact, the

estimator tends to underestimate Q since the uncertainty described by GtΣ̂x(t− 1|t− 1)GTt is already
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large enough to perform the state update in a satisfactory manner. This is shown in Fig. 3 where it is

evident that underestimation of θ does not imply that the estimator returns erroneous estimates for the

state x. Instead, similarly to what was observed in the previous case it eventually shows a performance

similar to IKF1.

−2 0 2 4 6 8 10 12

0

2

4

6

8

10

 

 

IKF1
EST
IKF2

Figure 3: Estimated path by the three estimators while using the model given by Eq. 12. Red crosses

show the landmarks locations, and distances are measured in meters.

The non identifiability scenario for θ estimation changes when the model given in Eq. 14 is considered.

In this case Gt = I2, so that Eq. 3 becomes

Σ̂x(t|t− 1) = Σ̂x(t− 1|t− 1) +Q(t, θ).

and Σ̂x(t − 1|t − 1) in general does not dominate Q(t, θ) any more. In particular, we consider two

different cases for Q(t, θ), namely

Q1(t, θ) =

 θ 0

0 θ

 Q2(t, θ) =

 θ1 0

0 θ2


Figures 4 and 5 show an example of results obtained while estimating Q1 with θ = 10−2. Similarly to the

previous situation, the estimated value for the unknown covariance parameter converges to the unknown

value (Figure 4). Figure 5 instead shows the trend of the position error as a function of time (the reader

should notice that in this case the state has dimension two, so no orientation error is defined). IKF2 in

this case is run with a value for θ three times larger than the correct one. One can see that a moderately

wrong choice for θ can lead to large errors. On the contrary, even though EST is initialized with θ = 10

(i.e. off by a factor of 1000), its performance eventually matches IKF1, i.e. the estimator equipped with

the correct θ.

Finally, we consider the case where Q2 is estimated, with θ1 = 10−2 and θ2 = 10−3. Results are displayed

in figures 6 and 7. Once again the estimation process eventually computes values for the unknown θ
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Figure 4: Trend of the estimated θ value pro-

duced by EST. The true value for θ is 10−2.
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Figure 5: Trends for position error as a func-

tion of time.

components close to the correct ones. Figure 7 also reveals that, after an initial transitory phase where

EST incurs in sporadic estimation errors, it eventually matches IKF1 performance. Initial errors are

easily accountable to the initial largely wrong values chosen to initialize the covariance parameters being

estimated. Once EST settles around the right values (time t = 100), its performance is identical to IKF1.

0 50 100 150 200 250 300
10

−4

10
−3

10
−2

10
−1

10
0

E
st

im
at

ed
 θ

 

 

θ
1

θ
2

Figure 6: Trend of the estimated θ values pro-

duced by EST. The true values are θ1 = 10−2

and θ2 = 10−3
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Figure 7: Trends for position error as a func-

tion of time.

4.2 Real data: estimating the measurement noise covariance using a mobile

platform

Finally, we have tested the proposed algorithm with data collected from a mobile robot moving in an

indoor environment. The robot moves according to the model expressed by Eq. 12. No ground truth is

available for the path followed by the robot, so in this section we will compare the performance of EST,

where the covariance of the transition noise is assumed known while the measurement noise statistics

need to be estimated, against IKF1 which is still provided with the correct autocovariance matrices.
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The robotic platform used is an ActiveMedia P3AT, as shown in figure 8. The distance sensor was

Figure 8: The robotic platform used to validate the proposed algorithm. On the left one marker used

for localization is visible.

implemented using a camera with a resolution of 320×240 pixels mounted atop the robot. Landmarks

have been implemented using distinctive, colored markers with a known size and hanging at known

locations a fixed height (see Figure 8). In order to increase the number of landmarks visible by the

robot during the experiment, the camera was mounted on a servo so that it can be directed towards a

landmark even if it is not in front of the robot. Knowing the real height of the markers (H) and the

focal length in pixels f of the camera, the distance from a perceived marker can be estimated by the

following formula

d =
H · f
h

where h is the height in pixels of the marker in image plane. This simplistic approach ignores issues

related to distortion and similar problems, but this aspect is not relevant here because the goal of the

experiment is not to accurately measure distances using a camera. After having collected 200 measures,

two parameters p0 and p1 were experimentally determined so that by correcting the returned distance

as follows

z = (1− p1)d+ p0

the error of the distance returned by this sensor is appropriately modeled by a Gaussian distribution

with 0 mean and covariance ζ = 0.538m2 (see [26] for details). This value should be interpreted as

indicative and not as ground truth because inevitable changes in the light conditions of the environment

will lead to a difference in the actual value of ζ.

During the data collection session the robot and the tiltable camera were remotely operated by a human

so that sufficient landmarks could be observed. Figure 9 shows that the proposed algorithm eventually

estimates a value of ζ converging towards the known true value, notwithstanding that EST started with

an initial estimate for ζ off by a factor of 1000. Figure 10 instead displays the paths estimated by EST

and IKF17. Since during the real robot run it was not possible to collect data concerning the real robot

7The reader will notice that that landmarks are located as in Fig. 3. This is no coincidence, as the simulated

environment was designed to replicate our lab testbed.
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pose, the figure outlines that the estimates provided by EST and IKF1 are close throughout the estimate

task.
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Figure 9: Trend of the estimated θ values pro-

duced by EST.
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Figure 10: Paths estimated by EST and IKF1.

5 Conclusions

We have introduced an algorithm able to estimate in an online manner the covariance parameters

of the measurement and transition noise regulating the dynamics a nonlinear dynamic system. The

algorithm relies upon the propagation of the marginal posterior of the unknown parameters over time

by extending the equations underlying the iterated Kalman filter. As outlined in [27], the approach can

also be related to Tikhonov regularization, and the reader is referred to the details provided therein for

a more elaborate discussion. The effectiveness of the new numerical scheme has been assessed using

both real and simulated data regarding a robot localization problem.
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