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Abstract We consider the problem of merging together multiple appearance-based

maps independently built by a team of robots jointly exploring an indoor environment.

Due to the lack of accepted metrics to evaluate the quality of merged appearance-based

maps, we propose to use algebraic connectivity for this purpose, and we discuss why this

is an appropriate measure. Next, we introduce QuickConnect, an anytime algorithm

aiming to maximize the given metric and we show how it can merge couple of maps, as

well as multiple maps at the same time. The proposed algorithm has been implemented

and tested on a fully functioning robotic system building appearance-based maps using

a bag of words approach. QuickConnect outperforms alternative methods and features

a convenient tradeoff between accuracy and speed.

1 Introduction

In this paper we consider the problem of merging multiple appearance-based maps

independently created by teams of robots exploring the same unknown environment.

Spatial awareness is one of the fundamental abilities for mobile robots, and the abil-

ity to fuse multiple maps into a single spatial model greatly enhances the utility of

multi-robot systems. Numerous robotic tasks are solved more efficiently when a team

of robots are used instead of a single robot. Robot teams are more robust to failures

and can solve a task in less time. Moreover, teams of robots can physically operate in

different areas and then collect spatially distributed information. The problem of com-

bining together data produced by different sources then naturally emerges, and in this

paper we specifically target the issue of merging spatial models (maps) independently

computed by robots operating in a shared environment. After multiple maps have been

combined together and the result has been shared, each of the robots that contributed

one of the partial maps is then equipped with a more comprehensive spatial model.
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The merged map can then enable robots to individually perform tasks they would

otherwise not be able to accomplish, like for example safely navigating to a part of

the environment they have not explored. In this paper we indeed see map merging as

a process aiming to enable safe navigation into regions explored by other robots, but

the concept has evidently a much broader applicability. For this reason, it is important

for the merging process to be computationally efficient, so that robot can immediately

exploit merged maps for navigation without having to wait for the completion of an

off-line merging process.

The problem of autonomous map building has received enormous attention in the

last two decades, and led to the development of diverse spatial models, like occu-

pancy grids, feature-based maps, topological maps, and, more recently, appearance-

based maps. In this work we focus on appearance-based maps. These spatial models

are gaining importance because images offer a natural way to exchange information

between robots and humans. Informally speaking, an appearance-based map consists of

a graph where every vertex is associated with an image, and edges are added between

similar images. Figure 1 shows a simple example of an appearance-based map.

Fig. 1: A simple appearance-based map with edges inserted between sufficiently similar

images.

While map building has attracted plenty of research, map merging has emerged only

recently and fewer results are available. Map merging is here defined as the process

of combining multiple maps that have been independently built by different robots.

This is different from cooperative mapping, where multiple robots concurrently and

continuously contribute their data to a single map (see e.g., [55]). In our previous

research we have proposed algorithms to combine multiple occupancy grid maps [6,

8, 9]. Other solutions for merging occupancy grid maps were proposed in [20, 21,

28]. The problem of combining topological maps has been addressed in [16] and [25].
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Additionally, various methods have been proposed for merging feature-based maps

[4, 5, 12, 30, 42]. However, to the best of our knowledge, the problem of combining

multiple appearance-based maps has not been considered, and this paper presents the

first solution to this challenge. Given that appearance-based maps are represented by

graphs, our method aims to identify edges connecting vertices belonging to different

maps. Stated differently, it aims to find pairs of similar images in disjoint maps, where

the concept of similarity will be defined in the following.

A problem inherently related to map merging (and more in general to mapping) is

the evaluation of results. Two maps can be merged in countless ways, so the problem of

quantitatively measuring the quality of a merged map immediately arises. Unsurpris-

ingly, this is an open problem and no well-accepted metric exists. In this manuscript we

therefore put forward a criterion based on algebraic connectivity specifically developed

for appearance-based maps. The contributions we offer in this paper are the following.

– We propose to use algebraic connectivity as a metric to measure the quality of

multiple appearance-based maps merged together and we show how some of its

well known properties capture desirable properties for merged maps.

– Starting from the proposed metric, we develop an anytime algorithm that quickly

identifies edges leading to the largest gain in terms of algebraic connectivity. Given

that the problem of determining edges leading to the largest increase in algebraic

connectivity is known to be NP-hard [38], the algorithm we propose necessarily

produces a suboptimal solution. The algorithm is anytime inasmuch as it iteratively

discovers and adds new edges, and it outputs a partial, valid solution if stopped

before completing its computation.

– We offer an end-to-end experimental validation of the algorithm we propose. The

system we developed constructs appearance-based maps in real time and then

merges them. Experimental findings reveal that our proposed method quickly de-

termines the most convenient edges to add, and, according to an anytime paradigm,

eventually determines all edges that could be added.

The remainder of the paper is organized as follows. We address related work in

Section 2. Next, in Section 3 the framework used to build appearance-based maps

is presented. Section 4 discusses why algebraic connectivity is a good measure for

the quality of merged maps, and Section 5 illustrates the algorithm we used to build

appearance-based maps in real-time. The proposed map merging method is introduced

in Section 6 for the case when two maps have be combined. Section 6.2 discusses how

our algorithm can be extended when multiple maps have to be combined. Finally, in

Section 7, we present an experimental evaluation of the algorithm and conclude the

paper with final remarks and future work in Section 8.

2 Related Work

The problem of robot mapping and localization using visual sensors has generated enor-

mous interest thanks to progress in sensor technologies and computer vision research.

Solutions based on triclops camera systems [48–50], omnidirectional cameras [7, 10, 54],

and monocular cameras [11, 19, 46] have been proposed. Among them, systems based

on monocular cameras provide an inexpensive solution using off-the-shelf sensors.

The paper by Kosnar et al. [29] focuses on monocular cameras and considers the

problem of visual topological mapping for outdoor environments where color based
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segmentation is used for path identification. Vertices in the graph are defined as cross

sections, and vertex matching is realized by comparing the number of outgoing edges

and their azimuths. With these assumptions this method is designed for very specific

environments and is not suitable for generic scenarios. Similarly, Victor et al. [47] build

topological maps only targeting corridor-like indoor environments. Since their visual

navigation algorithm is based on vanishing points, the method is unsuited for envi-

ronments with large open spaces. Many of the aforementioned systems embed metric

information extracted either from odometry or multi-view geometry when multiple

cameras are used. Fraundorfer et al. [19], targeting systems where there is no odome-

try available or odometry is very difficult to estimate as in human motion, present an

image based localization and mapping solution. They build an appearance-based map1

using images from a monocular camera. Under this paradigm, mapping is reduced to

identifying edges between similar images, whereas localization is defined as the problem

of finding the image most similar to a query image. This setup takes advantage from

state-of-art solutions to extensively studied information retrieval problems.

A common step in most content-based image retrieval algorithms is to discover pairs

of matching images using local feature matches, and organize these results into a graph

structure. Then, given a query image the graph is searched for the most similar one.

The seminal paper by Sivic and Zisserman [51] demonstrates an efficient image search

algorithm by using a Bag of Words (BoW) framework where images are categorized by

the set of words they contain and their frequencies. Similar to [41], the authors generate

a dictionary of visual words offline by clustering descriptors from a training set. Due

to its speed and accuracy, the BoW framework is extensively used for image-based

mapping.

Indoor localization based on the BoW idea is presented in [31], where each feature

is treated as a single word in the dictionary. Focusing on the localization aspect, the

paper does not provide any mapping algorithm. Similarly, in [36, 53] localization to

one of the images acquired in the learning stage is implemented by comparing features

from the current image to the features in the database using an approximate nearest

neighbor search algorithm. Kang et al. [26] introduce an additional filtering level in

which a small set of images returned by the standard voting process is re-evaluated

and new similarity weights are learned from this small set, rather than from the whole

database.

A hierarchical appearance-based topological mapping algorithm is proposed by

Zivkovic et al. [7, 56–59]. The higher level topological map is constructed by using

a graph partitioning method to cluster vertices in the appearance graph. However, the

algorithm requires the number of clusters to be known in advance. Besides, vertices

are permanently assigned to their clusters which limits the algorithm’s adaptivity to

the changes in the environment. An alternative approach is demonstrated in [1, 2, 18,

40] which dynamically constructs the dictionary. While this dynamic approach allows

images with features not represented in the training to be recognized, it can only

accommodate a few thousand images for real-time performance. Hence, for systems

with real-time performance requirements, offline training methods are adopted and

their efficiency is shown [43] for very large (1M+) image collections.

Among these approaches for appearance-based mapping and localization, only a

few discuss how the system could be extended to accommodate multi robots and how

1 From now on we will refer to image-based maps in which no metric information is used as
appearance-based maps
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maps built by different robots could be merged. One of the few systems implementing

visual localization and mapping for multi-robot systems is presented by Hajjdiab and

Laganiere [22]. Each robot is equipped with a monocular camera and starts from an

unknown location and incrementally builds a local visual map of the environment with

the ability to localize itself in the map. In the case of an overlap between any two robots,

images from both maps are stitched together using inter-image homography and the

resulting joint map is utilized by both robots. However, the resulting map is not suit-

able for our purposes because we rely on an epipolar based visual servoing approach

for navigation [13, 37]. Another study published by Ferreira et al. [16] addresses the

problem of merging image-based maps. In particular, they propose a two-step approach

to find overlaps in view sequences and stitch them together into a generic topological

map. Tentative overlaps are first discovered from the similarity matrix built by pairwise

comparisons of all images, and identified overlaps are merged together after they are

verified based on the idea that matched similar vertices should also have similar neigh-

bors. One disadvantage of the method is that the merging procedure does not start

until after the similarity matrix is built by pairwise comparisons of all images and

local alignments are found. Hence, the algorithm’s performance suffers as the number

of images increases. Ho and Newman [24] propose a system in which an algorithm

to identify matching subsequent images between two maps is implemented. They also

process the similarity matrix and apply a modified version of the Smith-Waterman

algorithm [52] to find local alignments. The proposed method similarly does not scale

well with respect to the number of images due to the dependency on the creation of a

full similarity matrix.

This article builds upon and extends our former papers [13] and [15]. In [13] we only

developed a strategy to navigate an appearance-based map using epipolar geometry,

but we did not consider the map merging problem, as we focused on just one map.

In [15] we presented an initial version of the merging algorithm limited to the case of

pairwise matching and we illustrated its performance on a limited set of test cases. This

manuscript presents results from more datasets, introduces an algorithm to efficiently

merge together multiple maps (Section 6.2), and builds upon an improved version of

the map building stage.

3 Appearance-based maps and map merging

In formerly published work there exist no unified definition of appearance-based map.

The one we embrace in this paper is aligned with most literature but includes also

some ad-hoc features aiming to enable autonomous navigation via image-based visual

servoing. We define an appearance-based map as an undirected weighted graph M =

(V,E,w) in which every vertex2 v ∈ V represents an image acquired by a camera at

a certain position in the workspace. The correspondence between images and vertices

is one to one, i.e., every vertex is associated with one and only one image, and vice

versa. An edge eij ∈ E connects vertices vi, vj ∈ V whenever the associated images are

sufficiently similar according to a given similarity metric. Different metrics can be used

and edges are therefore parametric with respect to the used metric. Let S : V ×V → R
the similarity function used. An edge is added between vi and vj whenever S(vi, vj) >

Tf , where Tf is a metric dependent threshold. If eij ∈ E we set w(eij) = S(vi, vj),

2 Throughout the paper, vertex and image will be used interchangeably.
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i.e., the weight of an edge is given by the similarity between the vertices it connects.

In Section 5 we describe the image similarity metric we use in our implementation.

The basic version of the map merging problem we consider in this paper is the fol-

lowing. Given two appearance-based maps M1 = (V1, E1, w1) and M2 = (V2, E2, w2),

determine a merged map Mm = (Vm, Em, wm) with Vm = V1 ∪ V2, and Em =

E1∪E2∪Ec, where Ec ⊆ V1×V2 is the set of edges connecting images in V1 with images

in V2. Evidently, wm are the weights induced by the image similarity function S. We

require that every edge in the merged map still satisfies the condition S(vi, vj) > Tf
introduced above. This is trivially true for edges coming from E1 and E2, but must

also hold for edges in Ec discovered during the merging process. From our point of

view the very purpose of map merging is to enable robots to navigate and reach areas

discovered by other robots (for example, using the image-based methods described in

[13, 37]). Therefore, our emphasis is on finding edges in Ec connecting the two maps

and enabling navigation. From the definition it is evident that the merged map Mm

retains all images originally included in M1 and M2 as well as their edges. The value of

merging is given by the novel edges discovered in Ec that link the two graphs together.

Given the definition of Ec and its constraints, it is immediately clear that one could

evaluate image similarity for every couple of images in V1, V2 and add edges whenever

their similarity exceeds Tf . This brute force approach will discover the largest possible

set, E∗c , and will be further discussed in a later section. However, brute force search

is clearly time consuming and we are interested in faster alternatives that will output

sets of edges that are subsets of E∗c .

The problem statement considers only the case where two maps are merged, but

the idea can naturally be extended when more than two maps need to be combined.

In the following the discussion mainly focuses on pairwise merging, and the case of

multiple maps merged together is presented in Section 6.2.

We conclude this section noting that the graph structure does not include any

metric information. In the next section we then propose a method to measure merging

quality that relies exclusively on graph properties.

4 Measuring the quality of merged maps

The definition of mapping metrics is an open question still drawing significant inter-

est [35]. The answer remains elusive for almost all types of maps, including metric

and topological models, and the research community has not yet settled on a widely

accepted comparison method. With this motivation, we proposed a set of task-based

performance evaluation criteria in [14] to measure the quality of appearance-based

maps independently from the algorithm used to build them.

In this paper we are concerned with a slightly different problem, i.e., assessing the

quality of merged maps. Referring to the problem stated in the previous section, for

a given instance of the map merging problem two different algorithms may produce

two sets of connecting edges, say E′c ⊂ E∗c and E′′c ⊂ E∗c . We are therefore interested

in a criterion to establish in a quantitative way which one is better. We maintain

that the main attribute to be considered in appearance-based map merging is how

much the merged maps are intertwined. In the following we refer to this property as

entanglement, but this term does not refer to the graph entanglement property some

times used in graph theory. Informally speaking, entanglement is the amount of effort
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needed to split the merged map back into two separate maps. Given two solutions to

the merging problem, we prefer the one with higher entanglement.

The concept of entanglement can be formalized in different ways. Edge connectivity

e(G) is a commonly used metric to measure the connectivity of graphs and is defined as

the minimum number of edges to be removed to get two separate components. In a map

merging scenario where vertices are preserved and interconnecting edges are added this

metric offers poor results. For example, for a well connected graph with just a single

vertex of degree 1, e(G) = 1. Even tough inserting edges will improve the graph’s

overall connectivity (and then utility in terms of navigation), its edge connectivity

will not change until one of the inserted edges is connected to the vertex with degree

1. Based on this and similar observations, we maintain that algebraic connectivity

is a better measure to assess the quality of map merging in the appearance-based

domain. Introduced in the seminal work by Fiedler [17], algebraic connectivity is a

spectral property of the graph widely used to measure robustness and connectivity.

Algebraic connectivity carries more information about the structure of the graph and

is a more useful measure than edge connectivity. In the following we therefore recall its

formal definition and display some examples substantiating our preference over edge

connectivity. We emphasize that our choice for this metric is based on some of its

well known properties, and we are not aiming at unveiling new properties for this well

studied mathematical concept.

Let G = (V,E) be an undirected graph with n vertices. The Laplacian matrix L(G)

is defined as L = D −A where A is the adjacency matrix and D is the n× n diagonal

matrix of vertex degrees. The second smallest eigenvalue of L, λ2(L), is called algebraic

connectivity and is usually indicated as α(G). Various properties of algebraic connec-

tivity have been discovered [17]. For example α(G) > 0 if and only if G is connected.

It is also known that for non-complete graphs, algebraic connectivity defines a lower

bound on both the vertex and edge connectivity. Additionally, algebraic connectivity

is bounded from below by a monotonic function of the minimum degree δ(G) of the

graph (see Section 6 for details). More importantly, α(G) is a monotonically increasing

function of the edge set, i.e., if G1 = (V,E1) and G2 = (V,E2) are such that E1 ⊆ E2,

then α(G1) ≤ α(G2). Therefore, the more edges the merging algorithm inserts, the

more connected the graph, and the higher algebraic connectivity will be. Therefore,

E∗c is optimal when algebraic connectivity is the considered metric. Finally, algebraic

connectivity is related to the sparsity of cuts in the graph. That is, a graph with large

algebraic connectivity cannot have very sparse cuts. Figure 2 displays some examples

of simple graphs and contrasts their algebraic connectivity with edge connectivity, a

graph property that one could consider as an alternative to algebraic connectivity.

These simple topologies show that edge connectivity is not very discriminative because

very different topologies like chain, star, and tree all share the same value for e(G)

whereas algebraic connectivity provides a better distinction.

Figure 3 instead shows how algebraic connectivity varies when different edges are

added between two star shaped graphs being merged. This simple example aims at

showing how algebraic connectivity changes when edges are added between different

vertices of the graphs being connected. Graphs associated with the appearance-based

maps considered in this paper include thousands of vertices and edges and are evi-

dently much more complex. However, similar effects in terms of variations of algebraic

connectivity are observed when edges are added between vertices that are peripheral or

more internal to the graph. These changes in algebraic connectivity justify the trends

that will be later on observed in Figure 8 when discussing the experimental results.
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Fig. 2: The figure shows edge connectivity e(G) and algebraic connectivity α(G) for

different elementary graph topologies.

Fig. 3: Variations in algebraic connectivity when different edges are added between two

star shaped graphs being merged.

It therefore appears that algebraic connectivity is a promising criterion to evaluate

the performance of merging algorithms and we embrace it for the remaining of this

paper.

5 Building appearance-based maps

In this section we describe the system we developed for real-time building of appearance-

based maps. Our goal is not to create an algorithm to generate appearance-based maps,

but to merge them. Therefore in this section we purposefully combine approaches for-

merly proposed, and we are aware that more sophisticated solutions could be imple-

mented. However, map building is a pre-requisite for map merging, so for sake of com-

pleteness we here describe the system we use. The system has three parts, i.e., training,

localization, and map update. Figure 4 shows its block diagram, and we describe it in

the following.

5.1 Data structures and training

Our method is based on the BoW approach developed by Sivic and Zisserman [51] for

searching similar images. The dictionary is built extracting SIFT features [32] from a
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Fig. 4: Overview of how dictionary learning, map building, and localization interact.

set of training images and quantizing them using k-means clustering. The dictionary is

built extracting more than 20 million SIFT features from random images obtained from

online image repositories [3, 23, 33, 44, 45]. After various tests we determined that 50k

clusters, also known as words, offer a good compromise between speed and accuracy,

so we fixed the number of clusters to this value. This computationally expensive offline

training procedure is only applied once and the resulting dictionary is preloaded to

all robots performing appearance-based localization and mapping. Robots can then

encode their visual perception with words from the same dictionary. This aspect plays

an important role in the map merging algorithm, as described in the next section. It is

also worth noting that no images from the environment used to test our algorithm were

included in the training set. With the idea that words that are too common among the

training images will not help differentiating query images, a stop list with the top 5%

of the most common words is created. The dictionary includes also an inverted index

that is incrementally updated when new images are added to the map. The inverted

index associates every word to the list of images in which the word is seen, together

with the x, y coordinates in the image plane.

5.2 Localization

Given an appearance-based map M = (V,E,w) and a query image Iq, we want to

find the most similar image in V . This step is needed for both map building and map

merging. The algorithm should either return the most similar image, or determine

that no sufficiently similar image exists in the map. Localization proceeds as follows.

Starting from Iq we extract the set of SIFT features Fq. For every feature fqi ∈ Fq,

the closest word in the dictionary is determined. Matching is performed using the L2

norm, and given that we opted for a SIFT implementation with 128 features we use
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an approximate3 nearest neighbor solution [39]. After every feature has been matched

to the closest word, an appearance vector vq is built. The appearance vector vq records

every word in the dictionary matched to the features extracted from Iq. Then, by using

vq and the inverted index each word that is not in the stop list and appeared in the

query image casts a vote for all images in the map that also contain this word. When

normalized, the histogram of accumulated votes defines a probability distribution over

all images in the map. As a result of this voting procedure, all images sharing one

or more features with Iq are identified as candidate matches. The number of votes

indicating the number of common features defines the formerly introduced similarity

metric S . Among all candidate images, we discard those with less than a fixed number

Tmin of matches. We set this threshold to 15, i.e., the minimum number of matches

required to robustly navigate between two images using the navigation algorithm we

presented in [13]. Note that, for what concerns navigation, we have experimentally

determined that this majority voting based approach outperforms other methods [13].

It is worth noting that Tmin not only plays a role in defining when an edge should

be added between two vertices, but it will also influence the behavior of the merging

algorithm, as explained in section 6.1. However, according to our experience, the choice

of its value should be mainly driven by the requirement of providing enough features

to ensure robust navigation between two images using a visual servoing algorithm, like

[13] or [37]. The Tmin value we outlined above reflects the characteristics of our test

environment, of the cameras we used, and of the robotic platform used to navigate

in the environment. Evidently, in a different scenario the user should adjust the value

based on preliminary experiments aimed at identifying the sensitivity to Tmin.

The number of feature matches computed through this voting scheme could still be

affected by outliers due to quantization effects in word clustering and to the approxima-

tion in finding the nearest neighbor. Therefore, as final step a robust estimation of the

multi-view geometry that links these images is performed by utilizing the RANSAC

algorithm presented in [34]. Feature matches supporting the computed fundamental

matrix are also tested for spatial consistency as described in [51]. Based on the idea

that matching regions in compared images should have a similar spatial agreement,

the algorithm eliminates feature matches not complying with the spatial layout of the

neighboring matches in the query and target images. If the number of remaining fea-

ture matches still exceeds Tmin, the image is considered a match. Among all candidate

images that pass the geometric verification test, the image with the largest number of

matches is chosen to be the most similar and considered as the most likely location in

the map. If not enough matches are left, the algorithm terminates indicating no similar

image was found.

5.3 Mapping

Mapping is the process of iteratively acquiring new images and updating the appearance-

based map, if needed. Given a new image In, the process starts by running the formerly

described localization algorithm. Localization returns either a set of similar images, or

an empty set. If no image is returned, then In is inserted into the map because the

3 Kd-trees provide no speedup over exhaustive search for spaces with 10 or more dimensions
for exact solutions, therefore striving for real time performance we decided for an approximate
solution.
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robot has discovered a new location that has no connection with any previous image. If

localization returns a set of similar images, then image similarity is used to determine

whether In should be inserted. If Is is one of the returned images and S(In, Is) > Tmax,

then Is is considered too similar to In and it will not be inserted because it is not suf-

ficiently informative. By rejecting the insertion of similar images into the map, we

prevent the map from growing too much (in terms of images) when the robot revisits

the same area numerous times. Otherwise, the image is added to the map and edges

are added between the new vertex and all similar images identified by the localization

algorithm. If the robot maps an environment with highly repetitive visual patterns, it

is possible that in this stage edges will be added between images that are similar but

far apart. This aliasing problem affects also the merging process described later on and

is inherent to any algorithm establishing similarity relying only on visual information.

However its effects are mitigated by discarding images with more than Tmax matches.

In fact, in the results presented in this paper this problem hardly occurred when the

robot mapped one of the buildings in our university.

Figure 5 shows some snapshots of the process we described. The system can build

appearance-based maps in real-time. A non-optimized C++ implementation4 of map-

ping runs in real-time on a P3AT robot equipped with a 2GHz CPU. It takes around

0.6 seconds to process a single image of size 320 × 240, including image capturing,

feature extraction, global localization, and map update. The framework also enables

robust navigation without the need of any metric information [13].

6 Merging Appearance-based Maps

6.1 Merging Two Maps

Let M1 = (V1, E1, w1) and M2 = (V2, E2, w2) be two appearance-based maps indepen-

dently created by two robots running the algorithm described in Section 5. Without

loss of generality let |V1| ≥ |V2|. As explained in Section 3, our focus is on determining

the set Ec, i.e., edges connecting vertices in V1 with vertices in V2. The motivation

behind this idea is that these connections are needed to take advantage from maps cre-

ated by other robots. In particular, with no connectivity between its own map and the

new one, a robot will not be able to use image-based visual servoing to reach locations

discovered by the other robot. In the following we present a centralized solution, i.e.

we assume all computation is performed by one robot, but the proposed method can

be easily distributed to share the workload.

To put our algorithm in perspective, it is useful to first consider a brute-force

solution. Edges in Ec can be determined by brute-force by repeatedly calling the lo-

calization algorithm to localize every vertex in v ∈ V2 inside map M1. Localization

returns the set of images whose similarity with v exceeds the given threshold Tmin.

This approach therefore identifies all edges that can be added between M1 and M2.

Since algebraic connectivity is a monotonic function of the set of edges, this algorithm

is optimal with respect to the algebraic connectivity metric formerly introduced. How-

ever, its performance is evidently unsatisfactory from the point of view of required

time. Nevertheless, it provides a useful yardstick to evaluate the performance of the

solution we propose.

4 All code and dataset is freely available on our website.
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(a) t = 1.5 mins (b) t = 2.6 mins

(c) t = 8.3 mins (d) t = 9.2 mins

Fig. 5: The figure shows some snapshots taken while the robot builds an appearance-

based map using the BoW method. The last captured image is displayed at the top

right corner of the GUI, while matched images are shown at the bottom right corner.

Vertices corresponding to query and matched images are shown in green and blue,

respectively. Note that the occupancy grid map overlaid with images is shown for

display purposes only and not used by the robot.

A fundamental aspect to consider is that algebraic connectivity will be maximized

only after adding all possible edges in Ec. Therefore, if the goal is to optimize this per-

formance metric there is not much one can do to outperform the brute force approach.

But a key observation to develop a more efficient method is that most edges make only

marginal contributions to algebraic connectivity, while just a few yield large gains [27].

Our goal is therefore to develop an anytime algorithm that quickly determines a subset

of Ec yielding a large increase in algebraic connectivity and eventually reaching the

optimal value returned by the brute-force method. The algorithm QuickConnect that

we describe in the following aims to test and insert edges yielding large gains early

in the process, and to postpone performing computationally expensive multi-view ge-

ometry and spatial consistency tests for edges giving only marginal increments. The

algorithm is therefore anytime in the sense that even when it is stopped before it has

processed all its input, it still produces a valid solution. Moreover, if it is allowed to

run to completion, it determines the optimal solution and the quality of the solution it

produces is a monotonic function of the time spent. The problem of identifying edges

yielding the largest increase in algebraic connectivity is NP-hard [38] and the method

we propose is therefore necessarily suboptimal.

Algorithm 1 sketches the pseudocode for QuickConnect. The algorithm consists

of two phases, i.e., exploration (Line 1-10) and refinement (Line 11-13). Exploration

works towards quickly identifying the most similar images from both maps and add at



13

most one edge per vertex. The goal is to create only the essential connections between

most similar vertices, and postpone the validation and insertion of the remaining edges.

After all similar vertices have at most one edge inserted, refinement starts and all edges

not processed during exploration are considered. According to this idea, QuickConnect

will eventually discover all possible connections, but ideally the most relevant ones will

be identified early on during the exploration process.

Algorithm 1 QuickConnect(M1 = (V1, E1, w1),M2 = (V2, E2, w2))

1: W ← InitializeQueue(M2)
2: R,L← null
3: Ec ← ∅
4: repeat
5: d← W .pop front()
6: P ← getVotes(M1,M2,d)
7: E ← update(R,P )
8: if !E.empty() then
9: L← processEdges(E,W ,L,Ec)
10: until W .empty()
11: L← sort(L)
12: for all e in L do
13: insertEdge(e,Ec)
14: return Ec

Exploration is based on the incremental construction of a similarity matrix R where

rij stores a score (vote) between image vi ∈ V1 and vj ∈ V2. The score is the number of

common features between vi and vj and R is incrementally built as follows. A priority

queue W is initialized with all dictionary words appearing at least once among images

in map M2 (Algorithm 1, Line 1). All words are initially assigned the same priority.

Then, all words in W are dequeued. For every word d a vote vector P is computed.

Images in M2 which contain this word cast a vote for all images in M1 that also

have this word in their appearance vectors (Line 6), and the similarity matrix R is

then updated with the integration of new votes (Line 7). While updating R a list of

candidate edges E is also created. A candidate edge between vi and vj is added to E

as soon as rij exceeds Tmin. Every candidate edge is then processed by the algorithm

processEdges described in Algorithm 2.

Algorithm 2 processEdges(List E, Queue W , List L)

1: for all e in E do
2: if !isProcessed(e.source) OR !isProcessed(e.target) then
3: insertEdge(e,Ec)
4: setProcessed(e.source, true)
5: setProcessed(e.target, true)
6: Q1← getWords(e.source)
7: Q2← getWords(e.target)
8: W .reorder(Q1 ∪Q2)
9: else
10: L.push back(e)
11: return L
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Algorithm processEdges inserts a new edge in Ec only if it originates from a vertex

in M2 from which no new edge has been discovered yet (Algorithm 2, Line 2). If the

edge is added, then its source vertex is suspended from inserting any more edges until

the end of exploration phase (Line 4). All edges not inserted because connected to an

already processed vertex are inserted in a waiting list L that will be processed during

the refinement stage (Line 10). In order to improve the performance of exploration, we

also alter the priority of queue W based on the following locality observation. A word

seen by an image is likely to be visible by its adjacent images. Therefore, by casting

votes from this word we can identify new edges originating from these neighbor vertices.

To implement this idea, once a similar image is found we increase the priorities of the

words it contains (Line 8) so that if they are not processed yet, they move to the top

of the word priority queue and become the next in the list to be processed.

When all the words are processed and the similarity matrix is completely filled,

the refinement stage starts (Algorithm 1 Line 11 - 13). Exploiting the fact that the

minimum vertex degree provides a lower bound on algebraic connectivity5, we aim

to improve the minimum vertex degree (and then algebraic connectivity) early in the

map merging process. Therefore, identified edge candidates are sorted with respect to

the minimum degree of the two vertices it connects. Finally, edges are inserted sequen-

tially starting from the ones connecting vertices with least number of adjacent vertices.

Figure 6 shows an example of result for the map merging process implemented by

the algorithm just described. Figures 6a and 6b display two maps independently built

by two robots exploring different parts of the Science and Engineering building at UC

Merced. Note that vertices of the graph have been correctly placed in the blueprint

of the building because the robots used for this experiment are also equipped with a

laser range finder, and we run a localization algorithm together with the known map to

accurately determine where pictures are taken. This information is however used only

for display purposes and for performance analysis, but is not available to the merging

algorithm. Figure 6c shows the resulting merged map. In this case too, the merged

graph Mm is overlaid to the blueprint to evidence the coverage of the merged map, but

this is just for display purposes. The reader will notice that if the maps are used for

navigation via visual servoing the merged map is much more useful than the individual

ones because thanks to its discovered edges (see detail in the bottom one) a robot will

be able to go from the start to the goal location, whereas none of the individual maps

would allow that.

6.2 Merging Multiple Maps

In the previous section we addressed the problem of merging two maps. The pre-

sented method can be easily extended to solve the problem of merging N appearance-

based maps. The map merging problem description presented in Section 3 can be

generalized as follows. Given a set of N appearance maps M = {M1, ...,MN} where

Mi = (Vi, Ei, wi), compute a merged map Mm = (Vm, Em, wm) with Vm =
⋃
Vi, and

Em =
⋃
Ei ∪ Ec, where Ec =

⋃
Eij
c with 1 ≤ i, j ≤ N , and Eij

c ⊆ Vi × Vj is the set

of edges connecting images in Vi with images in Vj . Note that, as in the previous de-

5 It is known that 2δ(G)− n+ 2 ≤ α(G), where n is the number of vertices [17].
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(a) First map (b) Second map

(c) Merged maps

Fig. 6: The top two panels show two appearance-based maps independently built by

two robots exploring different parts of the same environment. The last figure shows

the merged map and the detail shows some of the edges (red) discovered during the

merging process and linking the two maps together.

scription, the merged map includes all vertices from all maps and we focus on creating

new edges between images from different maps.

One approach to merging multiple maps is to merge two of them, merge the re-

sulting map with a third, and so on, until all input maps are merged together. This

sequential pairwise merging method merges a pair of maps at a time and creates in-

between merged maps after each step. However, the intermediate solutions provided

by this approach do not capture the connectivity of all maps until the very last step.

In other words, during all but the last step there is at least one map not involved in

the merging process, and because of this map the number of connected components
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within Mm is greater than one. Hence, the algorithm is not strictly anytime because

algebraic connectivity remains zero until merging with the last map starts.

To overcome this limitation, and restore the desirable anytime feature, we introduce

QuickConnect-simultaneous, an efficient parallel merging algorithm that overcomes the

disadvantages of sequential merging approach. In the exploration phase, the algorithm

incrementally constructs NR similarity matrices in parallel, where NR = N(N − 1),

i.e., one similarity matrix for each pair of maps. For each word being processed, the

algorithm first identifies images that contain this word from the first pair of maps and

casts votes into their similarity matrix as described in Algorithm 1. Then, the same

procedure is repeated for the remaining map pairs and the corresponding similarity

matrices are filled with the votes for the same word. When all map pairs cast their

votes into their similarity matrices, this word is labeled as processed and the next one

in the priority queue is selected. A candidate edge is identified whenever the score of

an image pair exceeds Tmin in any of the similarity matrices, and the edge is inserted

according to the processEdges routine described in Algorithm 2. Thanks to this par-

allel voting schema, from the very beginning edges between all map pairs are created

simultaneously. All the remaining identified but not inserted edges from all map pairs

are sorted by their vertex degree in increasing order and inserted during the refinement

phase starting with the one with the minimum degree.

7 Results

In this section we present a comparative evaluation of the proposed map merging algo-

rithm. Brute-force merging sets the baseline for our comparisons because it eventually

reaches the highest possible algebraic connectivity of the merged map. However, the

trend to reach the maximum strongly depends on the sequence it follows in select-

ing couples of vertices to try adding edges between them. Algebraic connectivity may

quickly increase if the algorithm finds good vertices and edges early in the process,

but it may also be the case that good attempts are made only later on in the pro-

cess. Therefore, if the goal is to assess the performance of brute-force from an anytime

standpoint, the algorithm should be tested on a large set of highly diverse maps. On

the other hand, having only a limited number of datasets available, we compare our

algorithm against a randomized brute-force method, BruteUniform, that randomly se-

lects couples of images from M1 and M2 using a uniform distribution, and we consider

its average performance over repeated runs. As an additional term of comparison, we

introduce DegreeMin, a variant of the randomized brute-force method that samples

vertices from M2 with a mass distribution inversely proportional to their degree. The

rationale behind DegreeMin is trying to bias the search towards vertices with low de-

grees in order to possibly obtain large gains in algebraic connectivity, as outlined in

section 6.1.

To test these algorithms, various appearance-based maps with a number of vertices

ranging from a few hundreds to several thousands are built by a P3AT mobile robot

equipped with a monocular camera using the map building algorithm described in

Section 5. Various combinations of these maps are merged using these algorithms and

a representative sample of these results are shown in Figure 7. The first 5 columns

correspond to map pairs built in one side of the engineering building at UC Merced

(research labs), whereas the remaining columns correspond to maps built on a different

side of the building featuring a significantly different layout (administrative wing). The
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goal is to evaluate the algorithm on realistic and heterogeneous datasets. For different

map pairs we present the quality of merging (i.e., algebraic connectivity) after 10% of

the time required by the brute-force approach to complete its processing. The rationale

behind this evaluation criterion is to embrace an anytime viewpoint and assess how

different algorithms will perform when stopped early. The results for the randomized

algorithms (randomized brute-force and DegreeMin) are the average of 20 runs. The

chart shows that QuickConnect outperforms the other two methods, reaching above

90% of the maximum possible algebraic connectivity within 10% of total time. It is

also notable that DegreeMin with its heuristic that favors minimum degree vertices

performs better than randomized brute-force.

Fig. 7: The chart contrasts algebraic connectivity when merging is stopped at 10% of

the time required by brute-force algorithm to complete its exhaustive search. Results

are shown for a representative selection of merged maps and three different algorithms

are compared: QuickConnect, DegreeMin, and BruteUniform. Error bars representing

one standard deviation are shown for randomized algorithms. Note that since algebraic

connectivity varies for different map couples, we display a normalized value correspond-

ing to the percent of the maximum value.

The temporal evolution of the merging process for a subset of representative map

pairs from Figure 7 is shown in Figure 8. Note that all algorithms eventually reach the

same maximum algebraic connectivity by adding all possible edges. However, Quick-

Connect achieves a steeper quality gain with its selective insertion process during the

exploration phase. For instance, during the merging of the map pair shown in Figure 8a

the exploration phase inserting only 247 edges in 1.5 seconds improves the quality up

to 96% while it takes around 24 and 40 seconds and 2112 and 3989 edges to reach the

same level of quality for DegreeMin and brute-force, respectively. On the other hand,

the refinement stage adds almost 15 times more edges than the exploration phase to

only improve the connectivity by 4%. Similar trends are observed in the rest of the

dataset as can be seen in Figure 8. These charts experimentally support the claim that

the exploration stage successfully identifies the small portion of edges that substantially

increase algebraic connectivity.
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(a) M2 vs M6 (b) M1 vs M4

(c) M9 vs M12 (d) M10 vs M7

Fig. 8: Normalized algebraic connectivity of four pairs of merged maps as a function

of time for the three algorithms are presented.

Finally, in figure 9 we show a further analysis of the changes in algebraic connec-

tivity for the last map merging example shown in Figure 8. The figure analyzes the

spikes in algebraic connectivity observed during the exploration stage of QuickConnect.

For each of the three major increases we show the two images associated with vertices

being connected by the new edge.

It is also important to note that in its exploration stage QuickConnect identifies the

edges connecting the most similar images between two maps. This trend can be seen

in Figure 10, where a closeup view of the aforementioned merging process is shown.

This characteristic of the proposed algorithm is indeed the main desired property of a

compression algorithm that unifies similar vertices in both maps. Hence, this framework

could easily be extended to merge maps by not only adding new edges but also unifying

vertices. Nevertheless, the problem of merging images described as sets of features in

appearance maps and the effects of such unification on the quality and robustness of

the map in terms of algebraic connectivity warrants much further investigation.

When multiple maps created by teams of robots need to to be merged, it is impor-

tant to maintain the same performance displayed by the pairwise matching algorithm.

Thus, we evaluated the performance of the generalized version of the proposed merging

algorithm, QuickConnect-simultaneous, on the same datasets. For comparison purposes

we also devised modified versions of previously presented methods: BruteUniform-
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Fig. 9: Images associated with the vertices being connected by edges causing the largest

increases in algebraic connectivity during the explore stage of QuickConnect.

(a) M2 vs M6 (b) M1 vs M4

Fig. 10: Weights, i.e., similarity of connecting images, of the identified edges for two of

the representative merging processes are plotted for three algorithms for the duration

of the exploration phase of QuickConnect.

simultaneous and DegreeMin-simultaneous which randomly sample vertices from the

set of all vertices, Vm, uniformly and with a mass distribution inversely proportional to

their vertex degree, respectively. Additionally, the standard sequential pairwise merging

approach described in Section 6.2 is applied to all pairwise merging algorithms result-

ing in three new merging methods: QuickConnect-pairwise, BruteUniform-pairwise,

and DegreeMin-pairwise. However, as mentioned in Section 6.2, in sequential pair-

wise merging the algebraic connectivity remains equal to zero until the very last map

is merged. Therefore, presenting the quality of merging captured by each algorithm

within 10% of total time as in Figure 7 would negatively affect sequential pairwise

merging methods. To counter this fact, for each algorithm the time required to reach

90% of the overall quality is recorded and the results are shown in Figure 11. Again,

for randomized methods the results are the averages of 20 runs.
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Fig. 11: A representative selection of maps are merged together using simultaneous and

pairwise merging algorithms. The cart shows the normalized time required to reach 90%

of the total quality.

As shown in Figure 11, QuickConnect-simultaneous, taking advantage of its parallel

voting schema, creates edges between vertices from different map pairs, and therefore,

outperforms all other algorithms for all merged maps. The ranking for the rest of the

algorithms is not consistent. QuickConnect-pairwise in general achieves higher per-

formance than its closest competitor DegreeMin-simultaneous with the exception of

second and last group in Figure 11. However, its performance depends on the ratio of

the duration of last merging step to the overall merging time, and cannot be generalized

since until the last step the algebraic connectivity stays at zero due to the map being

disconnected. Therefore, the performance of sequential pairwise merging algorithms

suffers more when the number of maps to be merged increases, as in the last group

where 4 maps are merged together.

8 Conclusion and Future Work

We have studied the problem of merging appearance-based maps, an underexplored

topic that is very relevant in the area of multi-robot systems. Because of the lack of

clearly accepted criteria to evaluate the quality of a merging algorithm operating on

appearance-based maps, we have put forward algebraic connectivity and illustrated why

it is a good criterion to assess the value of a map merging algorithm. The algorithm we

proposed, QuickConnect, is motivated by this metric and features an anytime behavior

by discovering important edges early on during the process. Our claims have been

validated by an end-to-end implementation including real time map generation and

merging. We are aware that more advanced algorithms creating appearance-based maps

have been and are being developed, but this is not the focus of this work, as we position

ourselves as consumers of maps after they have been generated. Finally, in this paper

we have also explored how pairwise merging can be extended to handle the case when

multiple maps need to be combined together. In this case too, QuickConnect yields the

best results.
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In the future, we plan to refine this line of research by considering merging algo-

rithms that not only add novel edges between the maps being merged, but that also

compress them by removing images that are represented in both maps.
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