
Trading Safety Versus Performance: Rapid
Deployment of Robotic Swarms

with Robust Performance Constraints

Yin-Lam Chow
Institute for Computational & Mathematical Engineering

Stanford University
Stanford, CA 94305

Email: ychow@stanford.edu

Marco Pavone
Aeronautics and Astronautics

Stanford University
Stanford, CA 94305

Email: pavone@stanford.edu

Brian M. Sadler
Army Research Lab
Adelphi, MD 20783

Email: brian.m.sadler6.civ@mail.mil

Stefano Carpin
School of Engineering
University of California

Merced, CA 95343
Email: scarpin@ucmerced.edu

In this paper we consider a stochastic deployment problem,
where a robotic swarm is tasked with the objective of posi-
tioning at least one robot at each of a set of pre-assigned
targets while meeting a temporal deadline. Travel times and
failure rates are stochastic but related, inasmuch as failure
rates increase with speed. To maximize chances of success
while meeting the deadline, a control strategy has therefore
to balance safety and performance. Our approach is to cast
the problem within the theory of constrained Markov Deci-
sion Processes, whereby we seek to compute policies that
maximize the probability of successful deployment while en-
suring that the expected duration of the task is bounded by a
given deadline. To account for uncertainties in the problem
parameters, we consider a robust formulation and we pro-
pose efficient solution algorithms, which are of independent
interest. Numerical experiments confirming our theoretical
results are presented and discussed.

1 Introduction
Recent technological advances have made possible the

deployment of robotic swarms comprising hundreds of
small, minimalistic, and inexpensive ground, air, and un-
derwater mobile platforms [1]. The potential advantages of
robotic swarms are numerous. For example, it is possible
to reduce the total implementation and operation cost, and
add flexibility, robustness, and modularity with respect to
monolithic approaches. Accordingly, planning and control
for multi-robot systems (including robotic swarms) has re-
ceived tremendous attention in the past decade from the con-
trol, robotics, and artificial intelligence communities, see [2]
and references therein.

When deploying robotic swarms, safety and speed often
come as contradicting objectives: the faster it is required for
robots to accomplish a task, the higher the chance that the
task is not accomplished. For example, robot batteries dis-
charge more rapidly when robots operate at high velocities,
thus shortening operational time and increasing the proba-
bility that the assigned task will not be completed. Simi-

larly, sensor accuracy often decreases with speed, thereby
interfering with the ability of a robot to accomplish its mis-
sion (see, e.g., [3]). Accordingly, the goal of this paper is
to devise analysis tools and control algorithms to address
such safety/performance trade-off within the context of the
stochastic deployment problem, whereby it is desired that a
robotic swarm deploys within a given map so that each of a
set of target locations is reached by at least one robot. The
set up is stochastic in the sense that traversal times and robot
failures represent stochastic events, and we propose an ap-
proach that is robust to additive errors in the modeling of
traversal times.

Deployment problems have been recently studied along
a number of dimensions and with a variety of techniques,
including coverage control through locational optimization
[4, 5], robot dispersion through minimalistic control strate-
gies (e.g., random walks) [6–8], workload sharing in dy-
namic environments through distributed optimization [9], de-
ployment with temporal logic specifications, e.g., through
formal methods tools [10–12], deployment under commu-
nication constraints through Partially Observable Markov
Decision Processes [13–15], and strategic deployment with
complex mission specifications through the theory of con-
strained Markov Decision Processes [16]. This list is nec-
essarily incomplete (see [2] for a thorough literature review
on this problem), but it however outlines the main facets and
tools employed for this problem in the last decade, and shows
the research shift from results mostly focusing on the quality
of the steady-state solution (e.g., coverage control) to studies
enforcing constraints on the transient (e.g., strategic deploy-
ment).

Yet, despite the wealth of results available for the de-
ployment problem and, more in general, for multi-robot co-
ordination, to the best of the authors’ knowledge no results
exist today that explore the trade-off between safe and rapid
deployment in stochastic environments (perhaps with the ex-
ception of [17], where stochasticity is shown to increase fault
tolerance, but no temporal constraints are considered). The
purpose of this paper is to bridge this gap. Our strategy
is to frame the problem within the paradigm of constrained
Markov Decision Processes (CMDPs). Specifically, our con-
tributions are as follows:

1. We show how the rapid single-robot deployment prob-
lem, where it is desired to trade-off safety versus perfor-
mance, can be modeled as a robust CMDP (RCMDP).
The robustness aspect of the formulation stems from the
fact that the parameters of the constraint cost functions
belong to a (known) uncertainty set.

2. We show that an optimal policy for a RCMDP can be
determined using a linear optimization problem based
on the concept of occupation measures developed for
CMDPs.

3. We demonstrate how the linear optimization problem
can be efficiently solved using a transformation that re-
duces the number of constraints from (possibly) expo-
nential to linear in the size of the problem.

4. We illustrate how RCMDPs can be used to determine

both centralized and (minimalistic) decentralized poli-
cies to solve the rapid multi-robot deployment problem.

The rest of the paper is organized as follows. Section 2
formally introduces the CMDP model and provides well-
known results, together with pointers to selected references.
The RCMDP model is introduced in Section 2 as well. Sec-
tion 3 defines the rapid deployment problem for both the
single- and multi-robot cases, and shows how RCMDPs to-
gether with a task assignment strategy can be used for its
solution. An efficient algorithm for the RCDMP problem is
presented in Section 4, while in Section 5 we describe the
task assignment algorithm used in our approach. Section 6
presents the overall solving algorithm. Detailed numerical
experiments are presented in Section 7, and in Section 8 we
draw our conclusions and provide directions for future re-
search.

2 Background Material
In this section we provide a brief summary about

Markov Decision Processes and constrained Markov Deci-
sion Processes. We limit our discussion to finite MDPs and
we embrace the notation used in [18]. For a complete treat-
ment on this subject, the reader is referred to [19,20] and [21]
for MDPs and CMDPs, respectively.

2.1 Total Cost Markov Decision Processes
A stationary, finite MDP is a quadruple X,A,c,P where:

1. X is a finite set of n = |X| states. The temporal evolution
of the state of an MDP is stochastic and the state at time
t is given by the random variable Xt .

2. A is a collection of n finite sets. Each set is indicated as
A(x) and represents the set of actions that can be applied
when the system is in state x. It is convenient to define
the set K = {(x,a) : x ∈ X,a ∈ A(x)}. K is the set of
allowable state/action pairs. In general, the action taken
at time t is a random variable indicated by the letter At .

3. c : K → R≥0 is the function defining the objective cost
incurred when applying action a ∈ A(x) while in state
x ∈ X. We assume that these costs are non-negative.

4. P a
xy is the one step transition probability from state

x to state y when action a is applied, i.e., P a
xy =

Pr[Xt+1 = y|Xt = x,At = a].

The above model is stationary because costs and transition
probabilities do not depend on time. Based on the above def-
initions, the sequence of states and actions over time consti-
tutes a stochastic process that we denote as (Xt ,At). Without
loss of generality (since the model is stationary), we assume
that the evolution starts at t = 0.

The optimal control of an MDP entails the determina-
tion of a closed-loop policy π defining which action should
be applied in order to minimize an aggregate (sum) objec-
tive function of the objective costs. A policy π induces a
mass distribution1 over the realizations of the stochastic pro-

1Such mass distribution not only exists, but can be explicitly computed.

cess (Xt ,At). Let ΠD be the set of closed-loop, Markovian,
stationary, and deterministic policies π : X→ A. It is well
known that for MDPs there is no loss of optimality in restrict-
ing the attention to policies in ΠD (instead, e.g., of also con-
sidering history-dependent or randomized policies). On the
other hand, as we will discuss later, randomization is needed
for optimal policies for CMDPs.

Depending on the specific form of the objective func-
tion, MDP problems can be categorized into four main
classes: finite horizon MDPs, infinite horizon MDPs with
discounted cost, average-cost infinite horizon MDPs, and to-
tal cost MDPs (or optimal stopping MDPs), where the cost
is on an infinite horizon but the state will eventually enter an
absorbing set where no additional costs are incurred. Given
their relevance to deployment problems, in this paper we fo-
cus on total cost MDPs. In the literature one finds three types
of total cost MDPs: (i) the transient MDPs, for which the to-
tal expected time spent in each state is finite under any pol-
icy, (ii) the absorbing MDPs, for which the total expected
“life time” of the system is finite under any policy, and (iii)
contracting MDPs [18]. One can show that all three types of
total cost MDPs are equivalent under the assumption of a fi-
nite state space [18]. Accordingly, in this paper we focus on
transient total cost MDPs, with the understanding that our
results apply also to the other two types of problems.

Transient total cost MDPs are defined as follows. Con-
sider a partition of X into sets X′ and M, with X = X′ ∪M
and X′∩M = /0. A policy π is said to be transient in X′ if2

1. ∑
∞
t=0 Prπ

x0
[Xt = x]< ∞ for every x ∈ X′, and

2. P a
yx = 0 for each y ∈M, x ∈ X′, and a ∈ A(y).

In order words, the transient policy π ensures that, eventu-
ally, the state will enter the absorbing set M. The second
constraint on the transition probabilities implies that once the
state enters M it will remain there. An MDP for which all
policies are transient in X′ is called a X′-transient MDP.

We study in this paper the total cost criterion for X′-
transient MDPs. We assume throughout the paper that
c(x,a) = 0 for any x ∈M, and that the initial state x0 /∈M.
We define ∑

∞
t=0 Eπ[c(Xt ,At)] as the total expected cost until

the set M is reached [18], where the subscript π means that
the expectation is with respect to the mass probability in-
duced by the policy π. Note that this definition is well posed
because the X′-transient MDP assumption ensures that the
expected total cost function exists and is bounded. A tran-
sient total cost MDP problem is then defined as follows:

Transient total cost MDP — Given a X′-transient
MDP, determine a policy π∗ minimizing the total
expected cost, i.e., find

π
∗ ∈ arg min

π∈ΠD

∞

∑
t=0

Eπ[c(Xt ,At)].

Optimal policies can be computed in different ways, but,
in practice, dynamic programming methods (value iteration

2Prπ
x0
[Xt = x] is the probability that Xt = x given the initial state x0 ∈ X′

and the policy π.

or policy iteration) are the techniques most commonly used.

2.2 Total Cost Constrained Markov Decision Processes
A Constrained Markov Decision Process (CMDP) ex-

tends the MDP model by introducing additional costs
and associated constraints. A CMDP is defined by
X,A,c,P ,{di}L

i=1,{Di}L
i=1 where X,A,c,P are the same as

above and furthermore:

1. di : K →R≥0, with 1≤ i≤ L, is a family of L constraint
costs incurred when applying action a ∈ A(x) from state
x. We assume that these costs are non-negative.

2. Di ∈R≥0 is an upper bound for the expected cumulative
(through time) di costs.

Informally, solving a CMDP means determining a policy π

minimizing the expected objective cost defined by c while
ensuring that each of the constraint costs defined by the func-
tions di are (in expectation) bounded by Di. This notion can
be formalized as follows. First, it is necessary to highlight
that for CMDPs an optimal policy in general depends on the
probabilistic distribution of the initial state. In the follow-
ing this distribution is indicated with the letter β, with the
understanding that β(x) = Pr[X0 = x] for x ∈ X.

The same conditions outlined in the previous subsection
to define a transient total cost MDP can be used to define a
transient total cost CMDP. A CMDP for which all policies
are transient in X′ is called a X′-transient CMDP. As for the
total cost MDP problem, we assume that c(x,a) = 0, but for
the CMDP problem we further assume that di(x,a) = 0, i ∈
{1, . . . ,L}, for any x ∈M, and that β(x) = 0 for all x ∈M.

The total expected cost for an X′-transient CMDP is de-
fined as ∑

∞
t=0 Eπ,β [c(Xt ,At)] where the expectation is taken

with respect to the mass distribution induced by π and the
initial distribution β. Similarly, we can define the total ex-
pected constraint costs as Eπ,β [di(Xt ,At)]. Note that because
of the assumptions made about the costs in M and because,
by assumption, the CMDP is X′-transient, these expectations
exist and are finite.

Henceforth, we will use the following nota-
tion: c(π,β) := ∑

∞
t=0 Eπ,β [c(Xt ,At)], and di(π,β) :=

∑
∞
t=0 Eπ,β [di(Xt ,At)] , 1 ≤ i ≤ L. A transient total cost

CMDP problem is then defined as follows:

Transient total cost CMDP — Given a X′-
transient MDP, determine a policy π minimizing the
total expected cost and satisfying the L constraints
on the total expected constraint costs, i.e., find

π
∗ ∈ arg min

π∈ΠM
c(π,β) (1)

s.t. di(π,β)≤ Di, 1≤ i≤ L,

where ΠM is the set of closed-loop, Markovian, sta-
tionary, and randomized policies (i.e., mapping a
state x into a probability mass function over A(x)).

It is well known (see, e.g., Theorem 2.1 in [18] and Theorem
6.2 in [21]) that there is no loss of optimality in restricting

the attention to policies in ΠM (instead, e.g., of also consid-
ering history-dependent policies). However, one should not
restrict π to be in ΠD, as for the MDP case, because an op-
timal policy might require randomization. CMDPs do not
share many of the properties enjoyed by MDPs (see [21] for
a comprehensive discussion of the subject.) For example,
CMDPs cannot be solved using dynamic programming but
can be solved, for example, using a linear programming for-
mulation presented below3.

A fundamental theorem concerning CMDPs [18] relates
the solution of the optimization problem defined in equa-
tion (1) to the following linear optimization problem. Let
K ′ := {(x,a),x ∈ X′,a ∈ A(x)} and consider |K ′| optimiza-
tion variables ρ(x,a), each one associated with an element in
K ′. Let δx(y) = 1 when x = y and 0 otherwise, and define
the linear optimization problem:

min
ρ

∑
(x,a)∈K ′

ρ(x,a)c(x,a) (2)

s.t. ∑
(x,a)∈K ′

ρ(x,a)di(x,a)≤ Di 1≤ i≤ L

∑
y∈X′

∑
a∈A(y)

ρ(y,a)(δx(y)−P a
yx) = β(x) ∀x ∈ X′

ρ(x,a)≥ 0 ∀(x,a) ∈K ′.

The optimization problem defined in equation (1) has a so-
lution if and only if the problem defined in equation (2) is
feasible [18], and the optimal solution to the linear program
induces an optimal, stationary, randomized policy for the
CMDP defined as follows:

π
∗(x,a) =

ρ(x,a)
∑a∈A(x) ρ(x,a)

x ∈ X′,a ∈ A(x), (3)

where π∗(x,a) is the probability of taking action a when in
state x. If the denominator in equation (3) is zero, then the
policy can be arbitrarily defined for (x,a). Note that equation
(3) does not specify a policy for states in M. Since no further
costs are incurred in M and the state cannot leave M once it
enters it, a policy can be arbitrarily defined for those states.
The optimization variables ρ(x,a) are referred to as occu-
pation measures [18], since for each pair (x,a), they can be
written as:

ρ(x,a) =
∞

∑
t=0

Pr[Xt = x,At = a], (4)

where the probability is implicitly conditioned on a policy π

and an initial distribution β. Note that an occupation measure
is a sum of probabilities, but in general is not a probability
itself.

3More in general, there exist more than one linear programming formu-
lation that can be used, and methods based on Lagrange multipliers have
been introduced as well. However, they will not be considered in this paper.

2.3 Robust Constrained Markov Decision Processes
In this section we introduce a natural generalization of

the CMDP problem to the case where there is uncertainty
in the model’s parameters (this uncertainty should not be
confused with the probabilistic uncertainty affecting the out-
come of a control action). The standing assumption is that
the underlying MDP is transient. Specifically, we consider
the scenario where the stage-wise constraint costs are af-
fected by additive uncertainty in the form:

dε(Xt ,At) := d(Xt ,At)+ ε(Xt ,At), ∀(Xt ,At) ∈K ′,

where d(Xt ,At) represents the nominal stage-wise constraint
cost, and ε(Xt ,At) is the uncertain term. Thus, for a given
sequence of state-action pairs {Xt ,At}t , the uncertain con-
straint cost is defined as: dε(π,β) := ∑

∞
t=0 Eπ,β [d(Xt ,At)+

ε(Xt ,At)].
Note that, according to our definition, the uncertainty is

stage-invariant (i.e., it does not change from stage to stage,
but of course it is a function of Xt and At). In practice it
is often difficult to give a stochastic characterization of such
uncertainty. On the other hand, in many cases it is still pos-
sible to characterize the support of the uncertainties. Specif-
ically, we let U ⊂ R|K ′| denote the set of admissible values
for the uncertainty. In this paper we restrict our attention to
budgeted interval uncertainty:

Assumption 2.1 (Budgeted Interval Uncertainty).
Let {ε(x,a)}(x,a)∈K ′ be a given non-negative vector in RK ′

≥0.
Then the uncertainty set is given by

U =

{
ε ∈ R|K

′|
≥0 :

0≤ ε(x,a)≤ ε(x,a),∀(x,a) ∈K ′
∑(x,a)∈K ′ ε(x,a)≤ Γ

}
,

where Γ, 0 ≤ Γ ≤ ∑(x,a)∈K ′ ε(x,a), is a given “uncertainty
budget.”

Note that the constraint costs remain non-negative under any
perturbation in U, hence the problem is well-posed under
any realization of the underlying uncertainties, see Section
2.2. Within the Budgeted Interval Uncertainty model, ε(x,a)
represents the deviation from the nominal cost coefficient for
a given (x,a)∈K ′. In turn, Γ has the interpretation of a bud-
get of uncertainty that a system designer selects in order to
easily trade robustness and performance. As an alternative
interpretation, it is unlikely that all of the d(x,a), (x,a)∈K ′,
will deviate up to their worst case values, and the goal is to
protect the system up to an uncertainty magnitude equal to
Γ. Note a value of Γ = 0 implies that no uncertainty is ex-
pected, while a value Γ = ∑(x,a)∈K ′ ε(x,a) implies that the
system designer expects that all parameters will deviate up
to their maximum values (in which case the problem could
be rewritten as a problem without uncertainty and with mod-
ified constraint stage costs d(x,a)+ ε(x,a)). This model of
uncertainty is fairly common in robust optimization, we refer
the reader to [22, 23]. Extensions to alternative uncertainty
models are possible (e.g., multiplicative uncertainty), and are
left for future research.

Consider, then, the robust constraint

sup
ε∈U

dε(π,β)≤ D. (5)

The next lemma (whose proof is provided in the Appendix)
shows that we can replace the sup operator with the max op-
erator.

Lemma 2.2. For any policy π and initial distri-
bution β, the supremum in the optimization prob-
lem supε∈U dε(π,β) is achieved. Hence one has
supε∈U dε(π,β) = maxε∈U dε(π,β).

In light of equation (5) and Lemma 2.2, we can therefore
formulate the following Robust Constrained Markov Deci-
sion Problem (RCMDP):

Optimization problem RCMDP — Given a X′-
transient CMDP, an initial distribution β, and a con-
traint threshold D, find

π
∗ ∈ arg min

π∈ΠM
c(π,β) (6)

s.t. max
ε∈U

dε(π,β)≤ D, (7)

over the class of policies π ∈ΠM.

We next show how the RCMDP problem can be solved
as a linear optimization problem on the space of occupation
measures. Consider the following optimization problem:

Optimization problem OP T — For a given initial
distribution β and risk threshold D, solve

min
ρ

∑
(x,a)∈K ′

ρ(x,a)c(x,a)

s.t. ∑
y∈X′

∑
a∈A(y)

ρ(y,a)
[
δx(y)−P a

yx
]
= β(x),∀x ∈ X′

max
ε∈U ∑

(x,a)∈K ′
ρ(x,a)(d(x,a)+ ε(x,a))≤ D

ρ(x,a)≥ 0, ∀(x,a) ∈K ′.

Note that problem OP T is a robust linear programming
problem. As for non-robust CMDPs, ρ(x,u) has the meaning
of occupation measure. The following theorem (whose proof
is given in the Appendix) establishes the relation between
RCMDP and OP T .

Theorem 2.3. The RCMDP problem has a solution if and
only if problem OP T is feasible. The optimal solution to the
robust linear program OP T induces an optimal stationary,
randomized policy for RCMDP defined as follows:

π
∗(x,a) =

ρ∗(x,a)
∑a∈A(x) ρ∗(x,a)

, x ∈ X′,a ∈ A(x), (8)

where {ρ∗(x,a)}(x,a)∈K ′ is the optimal solution to problem
OP T . For states x ∈ X such that ∑a∈A(x) ρ∗(x,a) = 0,
π∗(x,a) is arbitrarily chosen, for every a ∈ A(x).

3 The Deployment Problem as a RCMDP
In this section we formalize the rapid deployment prob-

lem we wish to study and we show how it can be modeled as
an instance of a RCMDP.

3.1 General Description
At a high level, the problem is as follows. A set of

robots are placed within a bounded environment where a set
of points represent target locations. The objective is to de-
ploy the robots so that each location is reached by at least one
robot and the deployment task takes no longer than a given
temporal deadline. However, the environment is stochas-
tic, in the sense that robots might “probabilistically” fail. In
such a stochastic setup, the objective is then to maximize the
probability that each location is reached by at least one robot
while ensuring that the expected duration of the deployment
task is upper bounded by a given temporal deadline. In this
paper we interpret the duration of the deployment task as
the elapsed time between the common instant when robots
start moving and the instant when the last robot stops mov-
ing, either because of a failure or because a target has been
reached.

Specifically, following the approach presented in [10],
the environment is abstracted into an undirected graph G =
(X ,E) where X is the set of vertices and E is the set of edges.
(The vertex set X will be later mapped into the state space X
in the ensuing RCMDP model.) An edge e ∈ E between two
vertices v1 and v2 means that a robot can move from v1 to v2
and vice versa. We consider that there are K robots, initially
located at a single vertex v0 ∈ X , that are required to reach a
set of target vertices, denoted as T ⊂ X . Self-loops in G are
only allowed for vertices in the target set, i.e., (v,v)∈E if and
only if v ∈ T . The deployment task is considered successful
if (i) each vertex in T is reached by at least one robot, and
(ii) this is accomplished within a given temporal deadline D.

To capture the time/safety trade-off, we associate to each
edge ei ∈ E, i∈ |E|, a safety function Se :R≥0→ [0,1]. Func-
tion Se(t), for each t, represents the probability of success-
fully traversing an edge e given that the traversal time is
equal to t. The safety function satisfies the boundary con-
straints Se(0) = 0 and limt→+∞ Se(t) = 1, and must be non-
decreasing. Other than those constraints, the safety function
is arbitrary (and potentially different for each edge). An
example is provided in Figure 1, where the probability of
success is modeled using a sigmoidal function. There are
many other success probability models available in the sur-
vival analysis community. For example, in [24], the haz-
ard probability functions are modeled either with Exponen-
tial, Gamma and Weibull distributions or with other non-
parametric estimates. However the advantages of modeling
the success probability with a sigmoidal/logit function are,
(i) this function serves as a good model for binary classifi-
cation, and (ii) the model parameters can be easily estimated
by logistic regression, after experimental data is given.

Accordingly, the deployment problem entails finding
control policies for each robot that prescribe at each ver-
tex (i) which vertex to visit next, and (ii) at what speed the

edge should be traversed. Robots should move slowly to in-
crease their chances of successfully traversing the edges of
the graph, however they can not arbitrarily slow down be-
cause they will otherwise miss the temporal deadline. In this
paper we consider robotic swarms, hence we seek minimalis-
tic control strategies that do not involve any communication
after the deployment process is initiated.

0 20 40 60
0

0.2

0.4

0.6

0.8

1

t

P
ro

b
a
b
ili

ty
 o

f
S

u
c
c
e
s
s

S function

t
min

t
max

Fig. 1: A sigmoidal shape for the safety function Se associ-
ated with the edges in the graph.

3.2 Formulation as RCMDP — Single-Robot
We now show how to cast the aforementioned deploy-

ment problem within the RCMDP model.
Consider, first, the single-robot case and, hence, a tar-

get set that comprises a single vertex (i.e., |T | = 1). The
state space comprises all the vertices of the graph G plus
a virtual sink state S modeling failures, i.e., the robot en-
ters the sink state when it experiences an irremediable fail-
ure while traversing an edge and then stops functioning. The
state space is then X := X ∪{S}. The initial distribution β

is defined as β(v0) = 1 and β(x) = 0 for x ∈ X ,x 6= v0, since,
in our model, v0 is (deterministically) the initial location of
the robot. At each vertex y ∈ X , the robot needs to decide
(i) what vertex to visit next, and (ii) the traversal time (or,
equivalently, the traversal speed), within given bounds (dic-
tated by velocity bounds). The traversal time is a continuous
variable, which is discretized with a time step ∆ > 0 to make
the model amenable to dynamic optimization. (For simplic-
ity, we assume that the discretization step ∆ is equal for all
stages.) Summarizing, the action set at a vertex y ∈ X ,y /∈ T ,
is given by:

A(y) =
{
(x, t) ∈ X×R≥0 :(y,x) ∈ E, t = tmin

yx + k ∆,

k ∈ N, 0≤ k ≤
⌊ tmax

yx − tmin
yx

∆

⌋}
,

where tmin
yx ≥ 0 and tmax

yx > 0 are the minimum and maximum,
respectively, traversal times for the edge (y,x) ∈ E (see Fig-
ure 1). An action (x, t) ∈ A(y) means that the robot decides
to navigate from y to x spending time t. For the target vertex,

i.e., y ∈ T , we consider a single action:

A(y) =
{
(x, t) ∈ X×R≥0 : x = y, t = tyy

}
,

where tyy > 0 models the self-loop time (the choice of this
value is immaterial, since T will be the absorbing set in the
RCMDP model). For the special sink state S we define just
one action, denoted as aS , which lets the state of the robot
transition to the unique vertex in the target set T (this choice
is made to ensure that T is the absorbing set in the ensuing
RCMDP model).

The above action sets and the fact that the traversal of
each edge in E can only be accomplished probabilistically
(according to the safety function Se) induce the following
transition probabilities on X:

P a
yx =

S(y,x)(t) if y 6= S , a = (x, t) ∈ A(y), x 6= S ,
1−S(y,x)(t) if y 6= S , a = (x, t) ∈ A(y), x = S ,
1 if y = S , a = aS , x ∈ T.

All other transition probabilities are equal to zero. The first
case models the probability of successfully completing a
traversal from y to x, where the success probability is dic-
tated by the safety function S(y,x). The second case models
the failure probability, i.e., when a robot does not success-
fully perform the traversal from y to x and, hence, it enters
the sink state S . The third case enforces the deterministic
transition from a sink state to the target vertex (which, as
discussed before, ensures the T is the absorbing set). It is
immediate to conclude that, with these transition probabili-
ties, any Markovian, stationary, and randomized policy on X
is transient on the set {X \T} := X′; the corresponding ab-
sorbing set is M := T . Figure 2 illustrates the relationship
between X, S , and T .

S

v0

M = T

Fig. 2: Given a graph G = (X ,E) and a policy π, multiple
stochastic paths from the deployment vertex v0 to the target
vertex set T exist. Whenever a failure occurs, the state enters
S (dashed arrows). States outside the box labeled M are in
X′.

To complete the definition of the RCMDP model, we
need to define the objective costs c(x,a) and the constraint

costs d(x,a). Given that our stated objective is to maxi-
mize the probability of success (or equivalently, minimize
the probability of failure), the objective costs are defined as
follows:

c(y,a) =

{
0 if y 6= S ,a = (x, t) ∈ A(y),
1 if y = S , a = aS .

Note that, with this choice, ∑
∞
t=0 Eπ,β [c(Xt ,At)] is exactly

the probability that the robot fails to reach the target. To
see this, denote the sample space by Ω, define the events
Bt = {Xt = S}, for t = 0,1, . . ., and let B := Ω \ ∪∞

0 Bt .
Clearly, the events {Bt}∞

t=0 and B are collectively exhaus-
tive, i.e., their union yields Ω. Also, there is only one action
available when the system is in S , and such action determin-
istically moves the state to the absorbing set M (where the
state remains trapped). Hence, the events {Bt}∞

t=0 and, of
course, B, are mutually exclusive. We can then apply the law
of total probability and write (where we omit the subscripts
π and β for simplicity)

Pr[Failure] =
∞

∑
t=0

Pr[F |Bt]︸ ︷︷ ︸
=1

Pr[Bt]+Pr[F |B]︸ ︷︷ ︸
=0

Pr[B]

=
∞

∑
t=0

Pr[Xt = S] =
∞

∑
t=0

Pr[Xt = S ,At = aS]

=
∞

∑
t=0

E [c(Xt ,At)] ,

(9)

and the claim follows. Also, the above derivation highlights
that ∑

∞
t=0 Eπ,β [c(Xt ,At)] = ρ(S ,aS), hence the cost function

is indeed equal to the occupation measure for the state-action
pair (S ,aS).

Similarly, the constraint costs are defined as

d(y,a) =

t if y ∈ X \T,a = (x, t) ∈ A(y),
0 if y ∈ T, a = (x, t) ∈ A(y),
0 if y = S , a = aS .

Note that, for simplicity, travel times are assumed determin-
istic, but our framework can be easily extended to the case
where travel times are stochastic. With these definitions both
the objective and the constraint costs evaluate to zero on the
absorbing set M = T (in particular, d(y,a) for y ∈ T is set to
zero rather than to tyy).

In this paper we assume that the constraint costs (i.e.,
the travel times) are not exactly known (as it is oftentimes
the case in practical scenarios), and they are instead charac-
terized through a budgeted interval uncertainty model (see
Assumption 2.1). Conceptually, the traversal time t selected
by a robot should be interpreted as an intended travel time:
the (uncertain) constraint costs then translate intended travel
times into actual travel times, whereas safety functions trans-
late intended travel times into risk of failure (the idea being

that, for example, shorter intended travel times correspond
to more dangerous maneuvers). Note that within our model
the transition probabilities are certain (the uncertainty in the
mapping from intended travel times to risk is encapsulated in
the safety function Se). One could also consider formulations
where the transition probabilities and the objective costs are
uncertain as well: this, however, would significant compli-
cate the model and is left for future research.

The single-robot deployment problem is then reformu-
lated as a RCMDP problem: find a Markovian policy that
minimizes the probability of failure (i.e., the summation of
the expected objectives costs c) while robustly keeping the
traversal time (i.e., the summation of the expected constraint
costs d) below a given temporal deadline D. The robust-
ness of the formulation stems from the fact that we consider
traversal times (i.e., the functions d(y,a)) that are uncertain.

This formulation is consistent with our definition of
task duration as discussed in Section 3.1. Other formula-
tions are possible, for example one might be interested in
minimizing the expected deployment duration while con-
straining the probability of failure below a given thresh-
old (possibly with uncertain safety functions), or might de-
sire to constrain the duration of the deployment task only
for those executions that do not involve failures. Such for-
mulations are left for future research. We mention, how-
ever, that in many cases the latter formulation and our
formulation are essentially equivalent. This can be seen
by observing that E[taskduration|success]Pr(success) ≤
E[taskduration] ≤ E[taskduration|success], where the first
inequality is a consequence of the law of total expectation
and the second inequality follows from the fact that in case
of failure the state enters T through a shortcut via S . As-
suming that Pr(success) (which can be computed exactly in
our formulation) is high, say, 90%, the discrepancy between
the two formulations will then be small. We investigate this
aspect further in Section 7.

3.3 Formulation as RCMDP – Multi-Robot
The multi-robot formulation is indeed a simple exten-

sion of the single-robot formulation. The main tenet in
our approach is that we seek minimalistic control strate-
gies that do not involve any communication once the robotic
swarm is deployed (which is oftentimes a requirement for
the deployment of robotic swarms comprising simple and
inexpensive platforms). We note that the proposed model
can also serve as a yardstick for comparison with more so-
phisticated coordination mechanisms, by providing easily-
computable bounds for the achievable safety-speed Pareto
curves. Our key technical assumption is that congestion ef-
fects (i.e., robots colliding into each other) are negligible.
In other words, we assume that failures are statistically in-
dependent. This is normally the case in the fast growing do-
main of robotic swarms comprising minimalistic, palm-sized
micro-aerial vehicles (MAVs) [25–28].

Consider K ≥ |T | robots (if K < |T |, clearly, the de-
ployment objective as formulated before can not be accom-
plished). Our formulation of the multi-robot deployment

problem essentially decouples the target assignment problem
from the path planning problem, specifically:

1. each robot is assigned a deployment location in T ;
2. each robot executes a single-robot deployment policy

(by solving the associate RCMDP) to reach the assigned
location.

Such formulation fulfills the requirement that robots do not
need to communicate during the deployment process (e.g.,
to learn how many robots are in the team, or to communicate
that a certain target vertex has been already reached, or to up-
date the safety functions Se). The problem, then, is how to as-
sign targets to robots. Let α := (α1, ,αK)∈ T K denote a
target assignment, with the understanding that αi = v∈ T im-
plies that the ith robot is assigned to target v, i = {1, . . . ,K}.
Since each robot executes a single-robot deployment policy
(in a statistically independent fashion, by assumption), the
probability that the overall deployment is successful, given
an assignment α, can be easily computed from the proba-
bilities that each robot can successfully reach its assigned
target. Specifically, let ϕ(α) denote the probability that the
deployment task is successful for a given assignment α, and
let PF(v), for v ∈ T , denote the probability that a robot as-
signed to target v fails to reach such target (these probabilities
are simply the optimal costs of the corresponding RCMDPs).
The probability ϕ(α) is then given by

ϕ(α) =
|T |
∏
j=1

(
1−PF(v j)

|{αi∈α: αi=v j}|
)
,

where v j is the jth target in T . Accordingly, the target as-
signment problem becomes:

Target Assignment (TA) — For K ≥ |T |, solve

max
k j

|T |
∏
j=1

(
1−PF(v j)

k j+1
)

s.t.
|T |
∑
j=1

k j = K−|T |

k j ≥ 0, k j ∈ N, j ∈ {1, . . . , |T |}.

The formulation assigns target v1 ∈ T to the robots 1 to
k1 +1, target v2 to robots k1 +2 to k1 + k2 +2 and so on, in
order to minimize the global success probability. The rapid
multi-robot deployment problem is then formulated as fol-
lows (assuming K ≥ |T |):

1. For each target in v ∈ T , solve the RCMDP version
of the single-robot deployment problem with target set
equal to v (note that the optimal cost of the RCMDP is
exactly the probability PF(v)).

2. Solve the target assignment problem TA and assign tar-
gets to robots accordingly.

3. Let each robot execute the single-robot optimal deploy-
ment policy to reach its assigned target.

This formulation requires computationally-efficient so-
lutions for RCMDP and TA, which are discussed next.

4 Efficient Solution for RCMDP
As shown in the proof of Theorem 2.3 (provided in the

Appendix), the RCMDP problem can be solved as a robust
linear optimization problem, and in particular as a linear op-
timization problem with a number of constraints equal to the
number of vertices of the uncertainty set U. Since this num-
ber is, possibly, exponential4 in the number of states and ac-
tions, it becomes critical to find an efficient algorithm for
the solution of problem OP T . We next show how problem
OP T can be transformed into a linear programming problem
with a number of constraints and variables that is linear in
|K ′| for all choices of the uncertainty budget Γ (the strategy
is to introduce an auxiliary set of variables whose cardinality
is |K ′|+1). Consider the following optimization problem:

Optimization problem OP T 2 — Given an initial
distribution β and a risk threshold D, solve

min
ρ,λ,µ

∑
(x,a)∈K ′

ρ(x,a)c(x,a)

s.t. ∑
y∈X′

∑
a∈A(y)

ρ(y,a)
[
δx(y)−P a

yx
]
= β(x),∀x ∈ X′

∑
(x,a)∈K ′

ρ(x,a)d(x,a)+ ε(x,a)λ(x,a)+µΓ≤ D

λ(x,a)+µ≥ ρ(x,a), ∀(x,a) ∈K ′

ρ(x,a), λ(x,a)≥ 0, ∀(x,a) ∈K ′

µ≥ 0.

Note that optimization problem OP T 2 involves 2|K ′|+ 1
decision variables (µ is just a scalar).

Theorem 4.1. Let {ρ∗(x,a)}(x,a)∈K ′ be part of the optimal
solution of problem OP T 2. Then, {ρ∗(x,a)}(x,a)∈K ′ is an
optimal solution to problem OP T .

Proof. For any fixed ρ := {ρ(x,a)}(x,a)∈K ′ , and D ∈ R≥0,
consider the constraint:

max
ε∈U ∑

(x,a)∈K ′
ρ(x,a)(d(x,a)+ ε(x,a))≤ D, (10)

which can be written equivalently as

max
ε∈U ∑

(x,a)∈K ′
ρ(x,a)ε(x,a)≤ D− ∑

(x,a)∈K ′
ρ(x,a)d(x,a).

The optimization problem on the left-hand side of the above

4The number of vertices indeed depends on the value of Γ. In the extreme
case where Γ = 0 the uncertainty set U has only one vertex.

equation can be written explicitly as:

p∗(ρ) = max
ε

∑
(x,a)∈K ′

ρ(x,a)ε(x,a)

s.t. 0≤ ε(x,a)≤ ε(x,a), ∀(x,a) ∈K ′

∑
(x,a)∈K ′

ε(x,a)≤ Γ.

Consider the dual formulation of the above linear pro-
gramming problem:

d∗(ρ) = min
λ,µ

∑
(x,a)∈K ′

ε(x,a)λ(x,a)+µΓ

s.t. λ(x,a)+µ≥ ρ(x,a), ∀(x,a) ∈K ′

λ(x,a)≥ 0, ∀(x,a) ∈K ′

µ≥ 0.

By strong duality in linear programming, the primal opti-
mal cost is equal to the dual optimal cost. Thus, one has
p∗(ρ) = d∗(ρ). The constraint in expression (10) can then be
equivalently written as

∃λ, µ :

∑
(x,a)∈K ′

ρ(x,a)d(x,a)+ ε(x,a)λ(x,a)+µΓ≤ D

λ(x,a)+µ≥ ρ(x,a), ∀(x,a) ∈K ′

λ(x,a)≥ 0, ∀(x,a) ∈K ′

µ≥ 0.

(11)

This implies that the robust constraint in problem OP T can
be replaced by the set of linear constraints in expression (11).
The claim then follows.

Since the number of constraints in the dual formulation is
always O(|K ′|), the computational complexity of problem
OP T 2 (assuming one uses an interior point algorithm for its
solution) is linear in the number of state-action pairs [29], for
all choices of the uncertainty budget Γ.

5 Efficient Solution of the Target Assignment Problem
In this section we show how to efficiently solve the TA

problem introduced in Section 3.3. In the following, we as-
sume that PF(v j) ∈ (0,1) for all j. This is without loss of
generality. In fact, if PF(v j) = 1 for some j, the deployment
problem is infeasible (since it is impossible to reach target
j no matter how many robots are destined there), while if
PF(v j) = 0 for some j, then one should just send one robot
to target j and consider the reduced problem without target
j.

Consider, first, the case where K ≥ |T | and K < 2|T |.
This is the case where the number of robots is on the order
of the number of target locations. In practice, the number of
elements in T is usually no larger than a small constant, say,

50, and in this case problem TA can be efficiently solved by
using branch and bound techniques.

Let us consider the more challenging case where K ≥
2|T | (the usual case for robotic swarms). In the remainder of
this section we present a polynomial-time, asymptotically-
optimal algorithm for the solution of problem TA. To this
purpose, consider the following relaxed version of problem
TA:

Relaxed Target Assignment (RTA) — For K ≥
2|T |, solve

max
k j

|T |
∑
j=1

log
(

1−PF(v j)
k j+1

)
s.t.

|T |
∑
j=1

k j = K−2|T |,

where we have taken the log of the objective function, we
have relaxed the integrality and non-negativity constraints,
and we have reduced the right hand side of the equality con-
straint to K−2|T |. Note that problem RTA is a concave max-
imization problem with a linear equality constraint. The first
order sufficient optimality condition reads as [30]:

λ
∗ =

PF(v j)
k∗j+1 log(PF(v j))

1−PF(v j)
k∗j+1 , for all j ∈ {1, . . . , |T |}, (12)

which implies:

k∗j = log
(

λ∗

λ∗+ log(PF(v j))

)
1

log(PF(v j))
−1,

for all j ∈ {1, . . . , |T |}. Note that since PF(v j)∈ (0,1), equa-
tion (12) implies λ∗ ≤ 0. The Lagrangian multiplier is found
by solving the primal feasibility equation, that is:

|T |
∑
j=1

log
(

λ∗

λ∗+ log(PF(v j))

)
1

log(PF(v j))
= K−2|T |,

which can be readily solved, for example, by using the bisec-
tion method.

Consider the approximation algorithm for problem TA
in Algorithm 1. We next prove that the above approximation
algorithm is asymptotically optimal, that is it provides a fea-
sible solution for problem TA whose cost converges to the
optimal cost as K→+∞.

Theorem 5.1. The approximation algorithm for problem
TA:

1. delivers a feasible solution for all values of K ≥ 2|T |,
2. is asymptotically optimal.

Algorithm 1 Approximation algorithm for problem TA

1 Solve problem RTA and obtain λ∗ and k∗j for all j ∈
{1, . . . , |T |}

2 Pick (arbitrarily) a set of non-negative integers
r1,r2, . . . ,r|T | such that ∑

|T |
j=1 r j = K − |T | −∑

|T |
j=1dk∗je

(note that ∑
|T |
j=1dk∗je ≤ K− |T |, so this is always possi-

ble)
3 k̄ j← dk∗je+ r j

4 Return {k̄ j} j as approximate solution for problem TA

Proof. First, note that the objective function in problem RTA
acts as a barrier function, hence its optimal solution, {k∗j} j,
satisfies the condition k∗j > −1 for all j ∈ {1, . . . , |T |}. This
implies that the solution provided by the approximation al-
gorithm, {k̄ j}, is a feasible solution for problem TA, in fact:

1. k̄ j ≥ 0 (since k∗j >−1),

2. ∑
|T |
j=1 k̄ j = K−|T | (by construction).

This proves the first part of the claim. To prove the sec-
ond part of the claim, consider the approximation error, e, in
terms of the log of the objective function of problem TA. The
approximation error can be bounded as:

|e|=
∣∣∣∣∣ |T |∑

j=1
log
(

1−PF(v j)
k∗∗j +1

)
−
|T |
∑
j=1

log
(

1−PF(v j)
k̄ j+1

)∣∣∣∣∣
≤
|T |
∑
j=1

∣∣∣∣∣log

(
1−PF(v j)

k∗∗j +1
)

(
1−PF(v j)

k̄ j+1
) ∣∣∣∣∣,

(13)

where {k∗∗j } j is the optimal solution to problem TA (which
should not be confused with the optimal solution to problem
RTA, that is, {k∗j} j). Hence, one can bound e according to

e≤ T max
j

∣∣∣∣∣log

(
1−PF(v j)

k∗∗j +1
)

(
1−PF(v j)

dk∗j e+r j+1
)∣∣∣∣∣.

Note that all {k∗∗j } j’s and {k∗j} j’s tend to +∞ as K → ∞

(this can be easily shown by noticing that if some of the k j
variables stay uniformly bounded as K → +∞, for K large
enough one obtains a suboptimal solution — this exploits
the assumption that PF(v j) ∈ (0,1)). Hence, as K → +∞,
one obtains |e| → 0.

In summary, when K ≤ 2|T |, we directly solve the target
assignment problem using branch and bound. When K ≥
2|T | the solution can instead be (approximately) found by
solving a convex problem.

6 Solution Algorithm for Rapid Swarm Deployment
Collecting the results so far, we can now present a

computationally-efficient algorithm for the solution of the

rapid multi-robot deployment problem. The pseudocode is
presented in Algorithm 2.

Algorithm 2 Deployment Algorithm

1 α ← solution (possibly approximate) to target assign-
ment problem TA

2 Assign target αk to each robot k ∈ {1, . . . ,K}
3 for each k do
4 Build RCMDP instance with M = {vαk}
5 (ρ∗,λ∗,µ∗)← Solve Problem OP T 2
6 for each x ∈ X′,a ∈ A(x) do
7 if ∑a∈A(x) ρ∗(x,a)> 0 then
8 π∗(x,a)← ρ∗(x,a)/

(
∑a∈A(x) ρ∗(x,a)

)
9 else

10 Choose an arbitrary value for π∗(x,a)
11 end if
12 end for
13 Navigate to vαk according to policy π∗

14 end for

In case no a-priori coordination is possible, one should
consider as target assignment strategy a random uniform
choice of the targets (made in a distributed fashion by the
robots).

7 Numerical Experiments and Discussion
We present three sets of numerical experiments. In the

first set of experiments we focus on the single-robot deploy-
ment problem, for a fixed uncertainty budget. The objec-
tive is to experimentally verify the correctness of the results
obtained for RCMDP problem. In the second set of exper-
iments we investigate the sensitivity of the solution to the
single-robot deployment problem with respect to different
values of the uncertainty budget (in other words, we inves-
tigate how a system designer can trade robustness and per-
formance). In the third set of experiments, we consider the
swarm deployment problem, and we discuss how the success
probability scales with the number of robots for both the ran-
dom target assignment algorithm (which requires no coordi-
nation among the robots), and the optimized target assign-
ment algorithm (which requires a priori coordination among
the robots).

For all numerical experiments we consider a map that is
obtained from the publicly available Radish dataset (see Fig-
ure 3), where the traversal graph used for the simulations is
overlaid onto the blueprint of the environment. For lack of
space we present results concerning this map only, but our
results are representative for a wide range of environments.
Target vertices are marked with a number and the initial ver-
tex is indicated with a pink triangle (vertex number 1). Each
edge is characterized by a different safety function Se. In
our experiments we considered safety functions with a sig-
moidal shape (as in Figure 1). The parameters tmin and tmax
(as defined in Figure 1) were randomly selected (in a way, of

course, that tmin < tmax) and are in general different for each
edge. This particular choice of the safety function Se is meant
to be just an example, and in practice one can consider any
safety function as long as it obeys the constraints outlined in
Section 3. In all experiments we assume that the constraint
cost uncertainty is upper bounded by ε(x,a) = 0.5d(x,a) for
all (x,a) ∈K ′.

32

33
2

4
6

26
24

22

21
19 16

13

52

43

11

42

1

Fig. 3: The map used to experimentally evaluate the deploy-
ment policies is the same as the one used in [10]. The de-
ployment vertex is marked with a pink triangle, whereas goal
vertices are indicated by green crosses. Edges between ver-
tices indicate that a path exists.

7.1 Single-Robot Deployment Problem
In this section we numerically investigate the rapid

single-robot deployment problem along two dimensions:
convergence of the empirical success probability to its the-
oretical value (equal to ρ(S ,aS)), and fulfillment of tempo-
ral constraint in expectation. Collectively, these experiments
are aimed at showing the correctness of our approach (i.e., of
Algorithm 2) for the single-robot case. For all experiments
in this section, we consider an uncertainty budget

Γ = 1× ∑
(x,a)∈K ′

ε(x,a),

and we assume that vertex 13 is the target vertex (a para-
metric study for different values of Γ is presented in Section
7.2).

To study the convergence of the empirical success prob-
ability with respect to the number of Monte Carlo trials, we
consider a temporal deadline D = 237. The convergence er-

MC = 100 MC = 1,000 MC = 5,000 MC 10,000

Error 4.82% 1.37% 0.57% 0.46%

DKL 0.0146 0.0011 0.0002 0.0001

Table 1: Convergence analysis for empirical success proba-
bility (MC stands for number of Monte Carlo trials).

ror is defined as:

error :=
|empirical PF− theoretical PF|

theoretical PF
.

Alternatively, one can consider the binary random variable
M ∈ {success, fail}, and then study the Kullback-Leibler
(KL) divergence for the probability mass function associated
with M , that is:

DKL = ln
(

PM
1−ρ(S ,aS)

)
PM + ln

(
1−PM
ρ(S ,aS)

)
(1−PM),

where PM is the empirical success probability and 1 −
ρ(S ,aS) is the theoretical success probability. The results
are presented in Table 1. One can note that (i) the empir-
ical success probability converges to the theoretical success
probability, as expected, and (ii) with 100-1,000 Monte Carlo
trials convergence is already satisfactory. Accordingly, for
the numerical experiments in the remainder of this section
and for those in Section 7.2 we will use a number of Monte
Carlo trials equal to 1,000, while for the numerical experi-
ments in Section 7.3 we will use a number of Monte Carlo
trials equal to 100.

We next study how the temporal constraint is fulfilled
in expectation. We consider different values for the tempo-
ral deadlines, namely D = {175,237,299}. Results are pre-
sented in Table 2. The first and second rows of the table
report, respectively, the theoretical and the empirical success
probabilities, which, as expected, increase as the temporal
threshold is increased. The third row reports the values for
the constraint costs, which are always lower (in expectation)
than their corresponding thresholds. The fourth row reports
standard deviations. One can note that the standard devi-
ations are rather large: this is due to the fact that, in our
formulation, the duration of a deployment task is given by
the elapsed time between the instant when the robot starts
moving and the instant when it stops moving, respectively.
Such duration has a large spread (since failures might in-
duce early termination), and the standard deviation is con-
sequently quite large. In the fifth row, we report the expected
time to successfully complete the deployment task, condi-
tioned on incurring no failures. For D = 175, such time
is slightly higher than the threshold. This mismatch is ex-
plained by the relatively high failure probability shown in the
first row of the table. On the contrary, for higher values of
D the probability of failure is lower and the temporal dead-
line is met. These findings confirm our discussion in Section

D = 175 D = 237 D = 299

Theoretical success prob. 0.5356 0.7321 0.9172

Empirical success prob. 0.5350 0.7370 0.9140

Expectation 115.2550 158.5350 199.7270

Standard dev. 94.8038 72.5002 34.0615

Expectation (success) 200 199.8225 207.9409

Standard dev. (success) 0 0.5441 1.3213

Table 2: Probability of success and fulfillment of temporal
constraint for single-robot deployment.

3.2 about the relation between our formulation and a formu-
lation where one constrains the duration of the deployment
task assuming no failures. Finally, in the last row of the table
one can notice very low values for the standard deviations
(again, conditioned on no failures): this is due to two facts
(i) assuming no failures, the only source of randomness is
the randomization of the control policies, and (ii) according
to [18, Theorem 3.8], with one constraint (since there is no
uncertainty) an optimal policy only uses one randomization.

7.2 Sensitivity with Respect to Budget Uncertainty
In this section we study the sensitivity of the solution to

the single-robot deployment problem with respect to differ-
ent values of the uncertainty budget. Specifically, we param-
eterize the uncertainty budget as:

Γ = γ× ∑
(x,a)∈K ′

ε(x,a),

where γ, referred to as “factor of uncertainty”, takes the val-
ues shown in the first column of Table 3. We assume, as be-
fore, that vertex 13 is the target vertex and we consider a con-
straint threshold D = 237. The results are reported in Table
3. One can observe that, for this example, the success proba-
bility decreases by about 25% when going from the nominal
model γ= 0 to the worst-case perturbation model (γ= 1). In-
terestingly, the success probability decreases steeply as soon
as a small amount of uncertainty is allowed (say, γ = 0.01, or
1% uncertainty budget) and then it saturates. In general, this
analysis would allow a system designer to assess the “robust-
ness” of the deployment protocol.

7.3 Deployment of Robotic Swarms
Finally, in this section we study how the success prob-

ability scales with the number of robots (we recall that the
multi-robot deployment is considered successful if each tar-
get is reached by at least one robot). We consider an uncer-
tainty budget:

Γ = 0.25× ∑
(x,a)∈K ′

ε(x,a).

Uncertainty budget Theoretical succ. prob. Empirical succ. prob.

γ = 0 0.9853 0.9840

γ = 0.005 0.8850 0.8910

γ = 0.0075 0.8390 0.8350

γ = 0.01 0.8227 0.8220

γ = 0.0125 0.8166 0.8120

γ = 0.025 0.7464 0.7450

γ = 0.25 0.7321 0.7340

γ = 1 0.7321 0.7310

Table 3: Sensitivity of success probability with respect to
factor of uncertainty γ.

First, we test the strategy whereby targets are ran-
domly assigned to robots according to a uniform probabil-
ity distribution. We consider as temporal deadlines D =
{20,51,82,113,144,175,206,237,268,299}. The results
are presented in Figure 4. One can notice that, as expected,
the success probability increases with the number of robots
and time threshold. We believe that this type of plots can be
very valuable in practical applications, as one can then de-
cide upfront how to pick the size of the team based on a given
temporal deadline and a desired probability of success. Fig-
ure 4 indeed describes the interplay between the size of the
team, the temporal deadline, and the probability of success.
For example, by using the RCMDP algorithm with uniform
random target assignment, for a time threshold equal to 175,
one would require at least 118 robots in order to achieve a
success probability larger than 0.8. These results do not con-
sider congestion effects: inclusion of upper bounds on the
number of robots that can traverse each edge of a map (that
is, edge capacities) will be studied in future research.

0 50 100 150 200 250 300
0

100

200

0

0.2

0.4

0.6

0.8

1

K

Time Threshold

RCMDP with Uniform Sampling

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

Fig. 4: Success rate as a function of the number of robots for
different temporal deadlines using random uniform assign-
ment.

We next test the strategy whereby targets are assigned
to robots by executing Algorithm 1 (presented in Section 5).
Results are presented in Figure 5. As in the previous case,

the success probability increases with the number of robots
and time threshold, but it does so much faster. For example,
with a time threshold equal to 175, one would require at least
69 robots (instead of 118 as in the previous case) in order to
achieve a success probability larger than 0.8. Visually, this
improved performance is evidenced by the steeper shape of
the surface when compared with the analogous one in Figure
4.

0 50 100 150 200 250 300
0

100

200

0

0.2

0.4

0.6

0.8

1

K

Time Threshold

RCMDP with Optimal Target Assignment

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty

Fig. 5: Success rate as a function of the number of robots for
different temporal deadlines using optimal target assignment.

8 Conclusions
In this paper we studied the rapid multi-robot deploy-

ment problem, where there is an inherent trade-off between
mission success and speed of execution. We showed how the
rapid deployment problem can be formulated within the the-
ory of constrained Markov Decision Processes, whereby one
seeks to compute policies that maximize the probability of
successful deployment while ensuring that the expected du-
ration of the deployment task is bounded by a given deadline.
To account for uncertainties in the problem parameters, we
considered a robust formulation and we proposed efficient
solution algorithms, which are novel and of independent in-
terest. Numerical experiments corroborated our findings and
showed how the algorithmic machinery we introduced can
be used to address relevant design questions. For example, it
is possible to anticipate the performance of a team of a given
size, or to decide the size of a team in order to achieve certain
performance objectives.

Future research will develop in two directions. From
the point of view of deployment, methods relying on explicit
communication and coordination between the agents are of
course of interest and will be investigated. From the point
of view of modeling, additional or different types of uncer-
tainties will be considered. In particular, it is of interest to
study the impact of uncertainty in the objective costs and/or
on the transition probabilities. This would for example be of
interest when the safety functions characterizing the edges
are only coarsely estimated.

Acknowledgements
Stefano Carpin is partially supported by ARL under con-

tract MAST-SUPP-13-6-CNC. Any opinions, findings, and
conclusions or recommendations expressed in these materi-
als are those of the authors and should not be interpreted as
representing the official policies, either expressly or implied,
of the funding agencies of the U.S. Government.

The authors thank the reviewers for numerous thought-
ful comments that helped to improve the quality of this paper.

References
[1] Bonabeau, E., Dorigo, M., and Theraulaz, G., 1999.

Swarm Intelligence: from Natural to Artificial Systems,
Vol. 4. Oxford University Press New York.

[2] Bullo, F., Cortés, J., and Martı́nez, S., 2009. Dis-
tributed Control of Robotic Networks. Princeton.

[3] Pavlic, T., and Passino, K., 2009. “Foraging Theory
for Autonomous Vehicle Speed Choice”. Engineering
Applications of Artificial Intelligence, 22(3), pp. 482–
489.

[4] Cortes, J., Martinez, S., Karatas, T., and Bullo, F.,
2004. “Coverage Control for Mobile Sensing Net-
works”. IEEE Transactions on Robotics and Automa-
tion, 20(2), pp. 243–255.

[5] Schwager, M., McLurkin, J., and Rus, D., 2006. “Dis-
tributed Coverage Control with Sensory Feedback for
Networked Robots”. In Proceedings of Robotics: Sci-
ence and Systems.

[6] Morlok, R., and Gini, M., 2004. “Dispersing Robots
in an Unknown Environment”. In International Sym-
posium on Distributed Autonomous Robotic Systems
(DARS).

[7] Pearce, J., Rybski, P., Stoeter, S., and Papanilolopoulos,
N., 2003. “Dispersion Behaviors for a Team of Multiple
Miniature Robots”. In IEEE International Conference
on Robotics and Automation, pp. 1158–1163.

[8] Purohit, A., Zhang, P., Sadler, B., and Carpin, S., 2014.
“Deployment of swarms of micro-aerial vehicles: from
theory to practice”. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation,
pp. 5408–5413.

[9] Pavone, M., Arsie, A., Frazzoli, E., and Bullo, F., 2011.
“Distributed Algorithms for Environment Partitioning
in Mobile Robotic Networks”. IEEE Transactions on
Automatic Control, 56(8), pp. 1834–1848.

[10] Carpin, S., Chung, T., and Sadler, B., 2013. “Theoret-
ical Foundations of High-Speed Robot Team Deploy-
ment”. In IEEE International Conference on Robotics
and Automation, pp. 2025–2032.

[11] Kloetzer, M., and Belta, C., 2007. “Temporal Logic
Planning and Control of Robotic Swarms by Hierar-
chical Abstractions”. IEEE Transactions on Robotics,
23(2), pp. 320–330.

[12] Ding, X., Kloetzer, M., Chen, Y., and Belta, C., 2011.
“Automatic Deployment of Robotic Teams”. IEEE
Robotics & Automation Magazine, 18(3), pp. 75–86.

[13] Batalin, M., and Sukhatme, G., 2007. “The Design and

Analysis of an Efficient Local Algorithm for Cover-
age and Exploration Based on Sensor Network Deploy-
ment”. IEEE Transactions on Robotics, 23(4), pp. 661–
675.

[14] Fink, J., Ribeiro, A., and Kumar, V., 2013. “Ro-
bust Control of Mobility and Communications in Au-
tonomous Robot Teams”. IEEE Access, 1, pp. 290–
309.

[15] Matignon, L., Jeanpierre, L., and Mouaddib, A., 2012.
“Coordinated Multi-Robot Exploration Under Commu-
nication Constraints Using Decentralized Markov De-
cision Processes”. In AAAI Conference on Artificial
Intelligence, pp. 2017–2023.

[16] Ding, X., Pinto, A., and Surana, A., 2013. “Strategic
Planning under Uncertainties via Constrained Markov
Decision Processes”. In IEEE International Conference
on Robotics and Automation, IEEE, pp. 4568–4575.

[17] Napp, N., and Klavins, E., 2011. “A Compositional
Framework for Programming Stochastically Interacting
Robots”. International Journal of Robotics Research,
30(6), pp. 713–729.

[18] Altman, E., 1996. “Constrained Markov decision Pro-
cesses with Total Cost Criteria: Occupation Measures
and Primal LP”. Mathematical Methods of Operations
Research, 43(1), pp. 45–72.

[19] Bertsekas, D., 2005. Dynamic Programming & Opti-
mal Control, Vol. 1 and 2. Athena Scientific.

[20] Puterman, M., 1994. Markov Decision Processes –
Discrete Stochastic Dynamic Programming. Wiley-
Interscience.

[21] Altman, E., 1999. Constrained Markov Decision Pro-
cesses. Stochastic modeling. Chapman & Hall/CRC.

[22] Ben-Tal, A., El Ghaoui, L., and Nemirovski, A., 2009.
Robust Optimization. Princeton University Press.

[23] Bertsimas, D., and Sim, M., 2003. “Robust Discrete
Optimization and Network Flows”. Mathematical Pro-
gramming, 98(1-3), pp. 49–71.

[24] Rausand, M., and Høyland, A., 2004. System Reliabil-
ity Theory: Models, Statistical Methods, and Applica-
tions, Vol. 396. John Wiley & Sons.

[25] Purohit, A., and Zhang, P., 2011. “Controlled-
mobile Sensing Simulator for Indoor Fire Monitoring”.
In Wireless Communications and Mobile Computing
Conference, pp. 1124–1129.

[26] Kumar, V., and Michael, N., 2012. “Opportunities
and Challenges with Autonomous Micro Aerial Vehi-
cles”. The International Journal of Robotics Research,
31(11), pp. 1279–1291.

[27] Kushleyev, A., Mellinger, D., and Kumar, V., 2012.
“Towards a Swarm of Agile Micro Quadrotors”. In
Robotics: Science and Systems.

[28] Mellinger, D., Michael, N., and Kumar, V., 2012. “Tra-
jectory Generation and Control for Precise Aggressive
Maneuvers with Quadrotors”. The International Jour-
nal of Robotics Research, 31(5), pp. 664–674.

[29] Nesterov, Y., Nemirovskii, A., and Ye, Y., 1994.
Interior-point Polynomial Algorithms in Convex Pro-
gramming, Vol. 13. Society for Industrial and Applied

Mathematics.
[30] Luenberger, D., 2003. Linear and Nonlinear Program-

ming. Kluwer Academic Press.

Appendix
Proof of Lemma 2.2. Fix a policy π and an initial distribu-
tion β. First, we note that

sup
ε∈U

dε(π,β) =
∞

∑
t=0

Eπ,β [d(Xt ,At)]+ sup
ε∈U

∞

∑
t=0

Eπ,β [ε(Xt ,At)],

(14)
which follows from the additivity property of the series and
expectation operator, and the fact that both series converge
given our standing assumption of X′-transient CMDP. Next
we define ψπ,β(ε) := ∑

∞
t=0 Eπ,β [ε(Xt ,At)] and we show that

it is a linear functional. Indeed, one has for all ε1,ε2 ∈R|K
′|:

ψ
π,β(ε1 + ε2) =

∞

∑
t=0

Eπ,β [ε1(Xt ,At)+ ε2(Xt ,At)]

=
∞

∑
t=0

Eπ,β [ε1(Xt ,At)]+
∞

∑
t=0

Eπ,β [ε2(Xt ,At)]

= ψ
π,β(ε1)+ψ

π,β(ε2),

where the second equality again follows from the additivity
property of the series and expectation operators and the fact
that both series converge. Analogously, one has for all ε ∈
R|K ′| and α ∈ R

ψ
π,β(αε) =

∞

∑
t=0

Eπ,β [αε(Xt ,At)]

= α

∞

∑
t=0

Eπ,β [ε(Xt ,At)] = αψ
π,β(ε).

Hence, the functional ψπ,β is linear. Since U is a finite di-
mensional set and ψπ,β is a linear functional, it follows that
ψπ,β is continuous. Note that U is closed and bounded, hence
by the extreme value theorem the functional ψπ,β achieve its
maximum. Combining this fact with equation (14), one ob-
tains the claim.

Proof of theorem 2.3. As in the proof of Lemma 2.2, let
ψπ,β(ε) := ∑

∞
t=0 Eπ,β [ε(Xt ,At)]. As shown in Lemma 2.2,

ψπ,β(ε) is a linear functional with respect to ε. The constraint
maxε∈U dε(π,β)≤ D is clearly equivalent to the constraint

∞

∑
t=0

Eπ,β [d(Xt ,At)]+max
ε∈U

ψ
π,β(ε)≤ D.

Note that U is the intersection of a hyper-rectangle, i.e.,
{ε : 0 ≤ ε(x,a) ≤ ε(x,a),∀(x,a) ∈ K ′}, and a simplex, i.e.,
{ε : ∑(x,a)∈K ′ ε(x,a) ≤ Γ}. Thus, U has a finite number of
vertices. Let V be the set of vertices of the polytopic set

U and let |V | be its cardinality. Since the maximum for a
linear optimization problem over a bounded polytopic set is
achieved at one of the vertices, then the constraint

∞

∑
t=0

Eπ,β [d(Xt ,At)]+max
ε∈U

ψ
π,β(ε)≤ D,

is equivalent to

∞

∑
t=0

Eπ,β [d(Xt ,At)]+ψ
π,β(ε j)≤ D for all ε j ∈ V .

Therefore, problem RCMDP is equivalent to the prob-
lem:

min
π∈ΠM

c(π,β)

s.t.
∞

∑
t=0

Eπ,β [d(Xt ,At)+ ε j(Xt ,At)]≤ D for all ε j ∈ V ,

where the number of constraints is |V |. According to Theo-
rem 8.1 in [18], this problem is equivalent to the problem

min
ρ

∑
(x,a)∈K ′

ρ(x,a)c(x,a)

s.t. ∑
y∈X′

∑
a∈A(y)

ρ(y,a)
[
δx(y)−P a

yx
]
= β(x),∀x ∈ X′

∑
(x,a)∈K ′

ρ(x,a)(d(x,a)+ ε j(x,a))≤ D for all ε j ∈ V

ρ(x,a)≥ 0, ∀(x,a) ∈K ′.

Equivalency is in the sense that the solution to the above
linear optimization problem induces an optimal policy, see
equation (3) in section 2.2.

Finally, the above problem can be rewritten as

min
ρ

∑
(x,a)∈K ′

ρ(x,a)c(x,a)

s.t. ∑
y∈X′

∑
a∈A(y)

ρ(y,a)
[
δx(y)−P a

yx
]
= β(x),∀x ∈ X′

max
ε∈U ∑

(x,a)∈K ′
ρ(x,a)(d(x,a)+ ε(x,a))≤ D

ρ(x,a)≥ 0, ∀(x,a) ∈K ′.

This concludes the proof.

