
University of California

Merced

Robots Learning to Manipulate:

Real-Time Application-Oriented Algorithms Using

Feature-Based and Machine Learning Techniques

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering and Computer Science

by

Benjamin Daniel Balaguer

2012

c© Copyright by

Benjamin Daniel Balaguer

2012

The dissertation of Benjamin Daniel Balaguer is approved.

David Noelle

Marcelo Kallmann

Stefano Carpin, Committee Chair

University of California, Merced

2012

ii

“Rarely is the question asked: is our children learning?”

George W. Bush, January 11, 2000

iii

Table of Contents

1 Introduction . 1

1.1 Robotic Manipulation . 2

1.2 Machine Learning . 5

1.3 Dissertation Contributions . 7

1.3.1 Algorithmic Properties . 9

1.4 Robotic Platform . 12

2 Literature Review . 15

2.1 Grasp Planning . 15

2.1.1 Feature-Based Methods . 16

2.1.2 Dimensionality Reduction . 20

2.1.3 Regrasping . 22

2.2 Multi-Manipulator Motion Planning 25

2.3 Machine Learning in Robotics . 27

2.3.1 Object Recognition and Pose Estimation 27

2.3.2 Grasping . 30

2.3.3 Reinforcement and Imitation Learning 33

2.4 Deformable Objects . 35

2.4.1 Models from the Computer Animation Community 35

2.4.2 Models from the Robotics Community 39

iv

2.4.3 Folding . 40

2.4.4 Other Robotic Applications 42

2.5 Human Manipulation . 42

2.5.1 Grasping Strategies . 43

2.5.2 Regrasping Strategies . 44

2.5.3 Learning . 46

3 Image Processing . 47

3.1 Finding Good Grasping Points . 49

3.1.1 Training Stage . 50

3.1.2 Classification Stage . 52

3.1.3 Algorithm Modifications . 52

3.1.4 Different Approaches . 53

3.2 Dimensionality Reduction for Efficiency 55

3.2.1 Feature Selection . 56

3.2.2 Search Space Reduction . 61

3.3 Experimental Results . 66

3.3.1 Accuracy for Trained Objects 67

3.3.2 Accuracy for Novel Objects 69

3.3.3 Speed-Accuracy Tradeoff . 71

3.3.4 Robot Validation . 75

3.4 Conclusions . 78

v

4 Grasp Synthesis . 81

4.1 Problem Formulation . 83

4.2 Supervised Learning Algorithm . 85

4.2.1 Training Data . 87

4.2.2 Layer 1: Classification . 90

4.2.3 Layer 2: Determining Object Rotation 93

4.2.4 Layer 3: Calculating End-Effector Rotation 97

4.3 Experimental Results . 98

4.3.1 Classification Accuracy . 98

4.3.2 Object Rotation Estimation 101

4.3.3 Overall System Performance 102

4.4 Conclusions . 108

5 Bimanual Regrasping . 109

5.1 Algorithm Overview . 111

5.2 Algorithm Details . 114

5.2.1 Image Processing . 114

5.2.2 Grasp Synthesis . 115

5.2.3 Optimization . 116

5.3 Experimental Results . 122

5.4 Conclusions . 126

vi

6 Deformable Object Manipulation . 128

6.1 Problem Definition . 129

6.2 Training Data . 132

6.3 Proposed Approach . 137

6.3.1 Reward Function . 137

6.3.2 Imitation Learning . 139

6.3.3 Reinforcement Learning . 144

6.4 Finishing the Fold . 146

6.4.1 Trajectory Generation in Configuration-Space 146

6.4.2 Roadmap Creation . 150

6.4.3 Path Selection . 153

6.5 Experimental Results . 155

6.5.1 Motion Planning . 155

6.5.2 Learning Algorithm . 161

6.5.3 Algorithm Time . 164

6.6 Conclusions . 166

7 Conclusions . 168

References . 170

vii

List of Figures

1.1 Stereo Camera Used throughout the Dissertation 13

1.2 Robotic Platform Used throughout the Dissertation 14

3.1 Convolution Filters Used by the Feature Vectors 51

3.2 Eigenvalue Plot of Training Data . 58

3.3 Eigenvector Plot of Training Data . 59

3.4 Visual Example of Point Cloud Denoising 63

3.5 Visual Example of Search Space Reduction 65

3.6 Representative Images Used for Classification 67

3.7 Accuracy for Trained Objects . 68

3.8 Accuracy for Novel Objects . 70

3.9 Examples of Good Grasping Points 71

3.10 Classification Speed . 72

3.11 Training Speed . 73

3.12 Grasp Success Rate . 78

3.13 Example of Algorithm Running on the Robot 79

4.1 Grasp Synthesis Algorithm Flowchart 86

4.2 Objects Used for Training . 88

4.3 Kinesthetic Teaching from a Human to a Robot 90

4.4 Example of the Plane-Fitting Process 94

viii

4.5 Example of the Central Image Moment Process 96

4.6 Novel Objects Used in the Experiments 101

4.7 Object Rotation Estimation Results 103

4.8 Representative Examples of Algorithm Running on the Robot for

Trained Objects . 104

4.9 Representative Examples of Algorithm Running on the Robot for Sim-

ilar but Novel Objects . 105

4.10 Representative Examples of Algorithm Running on the Robot for

Completely Novel Objects . 106

4.11 Representative Examples of Algorithm Running on a Different Ma-

nipulator . 107

5.1 Bimanual Regrasping Algorithm Flowchart 112

5.2 Visual Example of Image Processing Component 115

5.3 Grasp Synthesis Flowchart . 116

5.4 Geometrical Visualization of Regrasping Configuration 121

5.5 Experimental Results . 123

5.6 Examples of Robot Performing Bimanual Regrasping 125

6.1 Human Demonstrations of Towel Folding 130

6.2 Example of the False Positives Removal Process 133

6.3 Example of the False Negatives Recovering Process 135

6.4 Principal Component Analysis for the Training Data 137

ix

6.5 Learning Actions from Observations 143

6.6 Geometrical Representation of Manipulators’ Trajectories 147

6.7 Graphical Representation of a Roadmap. 152

6.8 Juxtaposition of Simulated and Real Robot 157

6.9 Number of Paths Generated for Each Experiment 158

6.10 Time Weight Effect on Motion Execution Time 159

6.11 Collision Weight Effect on Manipulators’ Distance from Each Other . 161

6.12 Examples of Folds Performed at Different Angles 162

6.13 Example Folding Motions Performed by the Robot 163

6.14 Rewards Given to the Robot for a Training Session 164

x

List of Tables

3.1 Search Space Reduction Computation Time 74

4.1 Number of Grasping Examples for each Object Class 91

4.2 Confusion Matrix for Trained Objects 99

4.3 Confusion Matrix for Randomly Configured Trained Objects 100

4.4 Confusion Matrix for Novel Objects 101

4.5 Algorithm Time Complexity . 108

5.1 Algorithm Time Complexity . 126

6.1 Algorithm Time Complexity . 165

xi

Acknowledgments

Reflecting back on the journey leading to this dissertation, it is evident that such

an accomplishment is impossible without an often implicit support team. In my

case, this team consists of family members, professional colleagues, academic pro-

fessors, friends, and lab mates. They are presented in chronological order first and

alphabetically second.

I would like to thank my supportive family. First, my mom, whose unconditional

support, both moral and financial, has always been a significant source of motivation

for all my endeavors, academic or otherwise. Second, my grandfather, whose pas-

sion for mathematics, desire to teach, and wisdom appropriate for his eighty-eight

years were, retrospectively, the first building block that initiated the proverbial con-

struction of my academic career. Third, my aunt, the Parisian “par excellence”,

whose lifestyle and sense of relativization help surmount seemingly tough situations.

Fourth, my two brothers, whose disconnect from the world of academia offers a fresh

perspective on things and helps bridge the gap between academia and the “real

world”. Last and least, my dad, for his contributions to my hereditary baldness,

potentially malignant birthmarks, and unusually high cholesterol levels.

If my grandfather was the first building block towards a mathematically-oriented

academic path, my year working for the National Institute of Standards and Technol-

ogy (NIST) while finishing my undergraduate studies was the stepping stone towards

my specialization in robotics and affiliation with the University of California, Merced.

Of particular note are my supervisor, Stephen Balakirsky, and closest collaborator,

Chris Scrapper, who were both amazing mentors, capable of giving me the freedom

to explore my own ideas while still teaching me valuable skills and leading me in

xii

the right direction. An additional group of great NIST employees, including Fred

Proctor, Tom Kramer, Raj Madhavan, and Elena Messina, have strengthened my

experience at NIST, directly contributing to my academic and professional develop-

ment. I am especially grateful for the numerous opportunities given to me, from my

role as one of the lead USARSim developers to my participation as an administrator

for the Rescue Simulation league of RoboCup 2007 and my hands-on experience at

NIST-organized events such as the Response Robot Evaluation at the Montgomery

County Fire Rescue Training Academy, MetroTech, a meeting of bomb squads from

the national capital region to evaluate response robots and test methods, and various

Performance Metrics for Intelligent Systems (PerMIS) workshops. My time at NIST

helped me choose a research-oriented path in robotics while allowing me to collabo-

rate with Professor Stefano Carpin, who would become my advisor at the University

of California, Merced.

Evidently, this dissertation would not be possible without the supporting pro-

fessors at the University of California, Merced, starting with my advisor, Professor

Stefano Carpin. He has guided me throughout my Ph.D. while allowing me to explore

my own ideas and come up with my own solutions, supported me financially thanks

to teaching assistantships or funded research projects, and encouraged attendance to

international robotic conferences. I am especially grateful to the depth of experience

acquired through his guidance and support, as exemplified by my participation in

the Rescue Simulation league of RoboCup in 2008 and 2009 as well as the different

research projects I had the opportunity to work on, often deviating from my princi-

pal research topic. Indeed, although this dissertation covers robotic manipulation, I

have also had the opportunity to gain experience on urban search and rescue robots,

heterogeneous controllers, robot simulations, performance metrics, and localization.

xiii

Next, I would like to show gratitude towards my dissertation committee comprised

of Professors Marcelo Kallmann and David Noelle. They have both played an in-

strumental part in this dissertation, thanks to their valuable comments, questions,

suggestions, and dedication to their work as committee members. I have found it

especially beneficial to receive comments from their keen and fresh perspective, es-

pecially since we, as graduate students, are often guided, perhaps mistakenly, by

the research area’s literature. Last but not least, I want to thank Professors Miguel

Carreira-Perpiñán, Alberto Cerpa, and Shawn Newsam with whom I have had con-

structive discussions regarding both academic and non-academic subjects.

Perhaps as important as family, friends have also contributed, in some way or

another, to the completion of this dissertation. I want to thank members of UC

Merced’s robotics group, who have become close friends, Nicola Basilico, Derek

Burch, Görkem Erinç, and Andreas Kolling for their insights and intellectual dis-

cussions regarding academia in general and robotics projects in particular. I ad-

ditionally want to thank Varick Erickson, David Huang, Ankur Kamthe, Tao Liu,

Mentar Mahmudi, Oktar Özgen, Gayatri Premasekharan, Gosia Skorek, and Gokce

Ugur, who have supported me throughout this process. Although they have had a

less direct though still significant impact on this dissertation, I am especially grateful

for their encouragement and shared personal experiences ranging from social dinners

and barbecues to game nights, hiking and backpacking trips, and sport games that

have all allowed me to relax from the unrelenting fast-paced world of academia.

Last but not least, from more practical and financial standpoints, I wish to thank

the National Science Foundation (grant BCS-0821766), the UC Merced Graduate

and Research Council (summer 2010 fellowship), and the Fletcher Jones Foundation

(fall 2011 and spring 2012 fellowship) for financially supporting my work.

xiv

Vita

1985 Born, Saint-Germain-en-Laye, France.

2003–2007 Bachelor of Science, Computer Engineering, University of

Maryland, College Park.

2004 Associate Web Designer and Developer, CyberVillage Network-

ers Incorporated, Ellicott City, MD.

2006–2007 Urban Search & Rescue Simulation (USARSim) Lead Devel-

oper and Release Manager, National Institute of Standards and

Technology, Gaithersburg, MD.

2007 (Fall) Teaching Assistant, Single Variable Calculus, University of Cal-

ifornia, Merced.

2007–2011 Graduate Student Researcher, University of California, Merced.

2008 Teaching Assistant, Algorithm Analysis and Design, University

of California, Merced.

2008 2nd place in the Rescue Simulation league of RoboCup 2008,

Suzhou, China.

2009 1st place in the Rescue Simulation league of RoboCup 2009,

Graz, Austria.

2011–2012 Fletcher Jones Fellowship Recipient, University of California

Office of the President.

xv

Publications

S. Balakirsky, C. Scrapper, B. Balaguer, A. Farinelli, and S. Carpin. Virtual Robots:

progresses and outlook. In Workshop on “Synthetic Simulation and Robotics to

Mitigate Earthquake Disaster” at the RoboCup International Symposium, p. 15-19,

2007.

B. Balaguer, S. Carpin, and S. Balakirsky. Towards Quantitative Comparisons of

Robot Algorithms: Experiences with SLAM in Simulation and Real World Systems.

In Workshop on “Performance Evaluation and Benchmarking for Intelligent Robots

and Systems” at the IEEE/RSJ International Conference on Intelligent Robots and

Systems, p. 26-32, 2007.

F. Proctor, C. Scrapper, and B. Balaguer. Run-Time Integration of Robotics Ma-

nipulators and their Controllers. In ASME International Mechanical Engineering

Congress and Exposition, 2007.

B. Balaguer and S. Carpin. UC Mercenary Team Description Paper: RoboCup 2008

Virtual Robot Rescue Simulation League. In RoboCup International Symposium,

2008.

B. Balaguer and S. Carpin. Where Am I? A Simulated GPS Sensor for Outdoor

Robotic Applications. In International Conference on Simulation, Modeling and

Programming for Autonomous Robots, p. 222-233, 2008.

xvi

B. Balaguer, S. Balakirsky, S. Carpin, M. Lewis, and C. Scrapper. USARSim: a

Validated Simulator for Research in Robotics and Automation. In Workshop on

“Robot Simulators: Available Software, Scientific Applications and Future Trends”

at the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008.

S. Balakirsky, S. Carpin, G. Dimitoglou, and B. Balaguer. From Simulation to Real

Robots with Predictable Results: Methods and Examples, p. 113-137. Performance

Evaluation and Benchmarking of Intelligent Systems, R. Madhavan, E. Tunstel, and

E. Messina (Eds). Springer, 2009.

B. Balaguer, D. Burch, R. Sloan, and S. Carpin. UC Merced Team Description

Paper: RoboCup 2009 Virtual Robot Rescue Simulation Competition. In RoboCup

International Symposium, 2009.

B. Balaguer, S. Carpin, S. Balakirsky, and A. Visser. Evaluation of RoboCup Maps.

In Performance Metrics for Intelligent Systems, 2009.

B. Balaguer, S. Balakirsky, S. Carpin, and A. Visser. Evaluating Maps Produced

by Urban Search and Rescue Robots: Lessons Learned from RoboCup. Autonomous

Robots, 27(4):449-464, 2009.

B. Balaguer and S. Carpin. Efficient Grasping of Novel Objects through Dimension-

ality Reduction. In IEEE International Conference on Robotics and Automation, p.

1279-1285, 2010.

xvii

B. Balaguer and S. Carpin. Motion Planning for Cooperative Manipulators Fold-

ing Flexible Planar Objects. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, p. 3842-3847, 2010.

B. Balaguer and S. Carpin. Learning End-Effector Orientations for Novel Object

Grasping Tasks. In IEEE/RAS International Conference on Humanoid Robots, p.

302-307, 2010.

B. Balaguer and S. Carpin. Human-Inspired Grasping of Novel Objects through Imi-

tation Learning. In Workshop on “Autonomous Grasping” at the IEEE International

Conference on Robotics and Automation, 2011.

B. Balaguer and S. Carpin. An Hybrid Approach for Robots Learning Folding Tasks.

In Workshop on “New Developments in Imitation Learning” at the International

Conference on Machine Learning, 2011.

B. Balaguer and S. Carpin. Combining Imitation and Reinforcement Learning to Fold

Deformable Planar Objects. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, p. 1405-1412, 2011.

B. Balaguer and S. Carpin. A Learning Method to Determine How to Approach

an Unknown Object to be Grasped. International Journal of Humanoid Robotics,

8(3):579-606, 2011.

xviii

B. Balaguer and S. Carpin. Bimanual Regrasping from Unimanual Machine Learn-

ing. In IEEE International Conference on Robotics and Automation, p. 3264-3270,

2012.

B. Balaguer, G. Erinc, and S. Carpin. Combining Classification and Regression for

WiFi Localization of Heterogeneous Robot Teams in Unknown Environments. In

IEEE/RAS International Conference on Intelligent Robots and Systems, (accepted

for publication), 2012.

B. Balaguer and S. Carpin. Learning and Optimizing Bimanual Regrasping Behav-

iors. In Workshop on “Beyond Robot Grasping: Modern Approaches for Dynamic

Manipulation” at the IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2012.

xix

Abstract of the Dissertation

Robots Learning to Manipulate:

Real-Time Application-Oriented Algorithms Using

Feature-Based and Machine Learning Techniques

by

Benjamin Daniel Balaguer

In this dissertation, we present four application-driven robotic manipulation tasks

that are solved using a combination of feature-based, machine learning, dimension-

ality reduction, and optimization techniques. First, we study a previously-published

image processing algorithm whose goal is to learn how to classify which pixels in

an image are considered good or bad grasping points. Exploiting the ideas behind

dimensionality reduction in general and principal component analysis in particular,

we formulate feature selection and search space reduction hypotheses that provide

approaches to reduce the algorithm’s computation time by up to 98% while retain-

ing its classification accuracy. Second, we incorporate the image processing tech-

nique into a new method that computes valid end-effector orientations for grasping

tasks, the combination of which generates a unimanual rigid object grasp planner.

Specifically, a fast and accurate three-layered hierarchical supervised machine learn-

ing framework is developed, where the robot is kinesthetically taught a set of valid

end-effector orientations by a human-in-the-loop. Third, we solve the challenge of bi-

manual regrasping, where a pick-and-place operation requires an object transfer from

one manipulator to another, by casting it as an optimization problem where the ob-

xx

jective is to minimize execution time. The optimization problem is supplemented

by the image processing and unimanual grasping algorithm that jointly identify two

good grasping points on the object and the proper orientations for each end-effector.

Fourth, we target deformable objects by solving the problem of using cooperative

manipulators to perform towel folding tasks. We solve this problem with a new learn-

ing algorithm that combines both imitation and reinforcement learning in such a way

that human demonstrations are used to reduce the search space of the reinforcement

learning algorithm, resulting in quick convergence and fast learning capabilities.

Collectively, the tasks solved in this dissertation establish application-oriented

feature-based and machine learning techniques in robotics. Although the tasks are

different from each other, ranging from unimanual to bimanual manipulation and

handling both rigid and deformable objects, the mathematical frameworks and design

principles behind their implementations are similar. In addition to their common use

of features, machine learning, and dimensionality reduction, the tasks are commonly

designed to be general, efficient, modular, anthropomorphic, and manipulator-, end-

effector-, and sensor-independent. These properties not only affect choices made

during the algorithms’ development but also alleviates the problem of sharing con-

tributions amongst roboticists, each with their own sensors, hardware platforms, and

research agendas. With all of these considerations, the algorithms are experimentally

validated in offline and online scenarios, respectively consisting of synthetic and real

data. The real scenarios are executed on a dual manipulator torso equipped with

two Barrett WAM manipulators, two Barrett Hands, and a single stereo camera.

Furthermore, the algorithms presented were all successfully executed and validated

on the real robot under numerous differing conditions. This essential element of the

dissertation bridges the gap between the algorithms’ theory and applicability.

xxi

CHAPTER 1

Introduction

During the last 25 years, research in robotics was greatly expanded with a plethora

of new applications, broadening an already considerable research field. Indeed, one

can trace the beginnings of scholarly robotics research back to manufacturing and

assembly line automation, which has remained, even to this day, a highly mechanized,

repetitive, and environment-constrained domain. Evidently, time, increased interest,

and better resources have all helped catapult what used to be a one-dimensional

view of robot utilization into a vibrant discipline promoting artificial intelligence

and autonomous behaviors. The many constraints and assumptions of early robotic

systems have been, and continue to be, chipped away. Over a relatively short time

period, the quantity of robotic functions has grown tremendously, now spreading to

sectors such as police or firefighter assistance, urban search and rescue, consumer

products, education, healthcare, micro and nano technology, and biology. One of

the most novel, interesting, and particularly appealing research area comes from

the world of service robots, where robots are developed to help consumers perform

everyday duties. These duties cover a wide spectrum of robot applications that range

from helping consumers or elders with household tasks (e.g., cleaning the dishes,

cooking meals, cleaning up) to assisting in rehabilitation following accident injuries.

Given the target market for service robots, it is evident that part of their popularity

1

comes from entrepreneurs and resellers seeking to make profit, rarely realizing the

tremendous amount of research necessary for robots to perform human tasks. In

fact, the inability to grasp and interact with simple or complex everyday objects is

currently the most limiting factor for service robots and the research topic that this

dissertation focuses on. While dexterous robotic manipulation can be achieved by

widely different approaches, we chose to concentrate on machine learning techniques

that give robots the power to learn, rather than injecting them with heuristics or a

priori knowledge that are too scenario-specific and consequently do not generalize to

different situations that the robot might find itself in. Specifically, this application-

oriented dissertation exploits machine learning to successfully solve three distinct,

yet primordial, autonomous manipulation problems: grasping everyday rigid objects

(e.g., mugs, bottles, plates, etc...), transferring those objects from one manipulator

to another, and manipulating deformable objects (e.g., towels, clothes, paper, etc...).

Although the dissertation will be presented with service robotics as the principal

motivation behind the work, we note that the algorithms extend beyond this specific

research area and would be useful to modular manufacturing, warehouse automation,

search and rescue, patrolling, combat, demining, and medical robotics, just to name

a few.

1.1 Robotic Manipulation

As will be described in further details in Chapter 2, data-driven research in robot

manipulation can categorically be described by two distinct approaches. The first,

model-based approaches, consists of a database of specific object models, each of

which contains one or more grasping configurations (e.g., position relative to the ob-

2

ject, rotation relative to a specific coordinate frame, and finger positions). In addition

to the grasping configurations, hard-coded manipulation behaviors (e.g., flipping a

pancake) can also be included in the database. The manipulation configurations or

behaviors can either be manually labeled by a human operator or computed auto-

matically thanks to simulations, grasp quality metrics, or heuristics. When an object

needs to be manipulated, the state of the object is inferred through sensory feedback

and mapped to the closest one in the database, from which the manipulation configu-

ration or behavior can be extracted. The second, feature-based approaches, relies on

features extracted from objects as opposed to explicit object models. The features

attempt to represent interesting attributes of the object that can then be mapped

to specific manipulation characteristics (e.g., good grasping point, end-effector con-

figuration, etc...). A tremendous amount of features can be extracted from different

sensors (e.g., image, sound, touch, point cloud, etc...), with a few popular ones being

SIFT, SURF, histograms, convolution filters, and edge, corner, line, and point detec-

tors. Although the information being extracted from the object is very different, the

data-driven component of feature-based approaches is very similar to model-based

approaches. Indeed, a database of features are created, labeled either manually or

automatically with manipulation characteristics, which is then exploited when an

object needs to be manipulated. In these data-driven frameworks, the problem of

using the database to deduce appropriate manipulation characteristics or behaviors,

regardless of whether the approach is model- or feature-based, has been historically

solved through numerous competing techniques ranging from simple nearest neigh-

bor searches and heuristics to more complicated task-oriented and machine learning

techniques. We note that the line between model- and feature-based approaches is

often blurry and further described in the next chapter.

3

Although both methods are data-driven, the approaches’ strengths and weak-

nesses are not only different, but also transposed. In other words, the strengths of

model-based approaches are the weaknesses of feature-based approaches, and vice-

versa. More specifically, model-based approaches are beneficial thanks to their solid

mathematical foundation and extensive literature from the robotics community. In-

deed, explicit object models dictate the state of the object and how it will be af-

fected under manipulation, which can then be exploited in a convenient mathematical

framework to anticipate how the object will behave given a certain manipulation be-

havior and to choose the best solution for a particular task (e.g., computing finger

friction on the object). This convenient mathematical framework and applicability to

robotic simulations have made this method very popular among roboticists, resulting

in a large number of publications. Conversely, features extracted from feature-based

methods do not generally encompass appropriate information to perform physics-

based mathematical computations, a primary reason feature-based methods are less

popular. Model-based approaches have a few weaknesses, however, that feature-

based methods can surmount. The need for explicit object models in the database

make it very difficult to generalize and, as a direct consequence, complicated to scale.

If a robot needs to manipulate an object that is not part of the database, it will either

not be possible or necessitate time-consuming stratagems, in turn requiring a large

database of object models that weakens the utilization of model-based approaches in

real-world scenarios. It is both unrealistic and intractable to make sure that every

object the robot might interact with is included in the database. The feature-based

approach can bypass these two problems because the features are not object-specific

and the same features can be extracted from completely different objects. With

model-based techniques, an object to be grasped by the robot will need to be mod-

4

eled online, so that it can be matched to one of the models in the database. This

online modeling step often requires non-human like sensors (e.g., range scanners) or

slow behaviors (e.g., getting many views of the objects from different locations and

orientations). If service robots are truly going to replace humans, they need to not

only be competitive in terms of task completion time, but also human-like so that

they more seamlessly integrate into human-dominated environments. Feature-based

approaches, on the other hand, can be extremely efficient and human-like. Last but

not least, and considering that it is much easier to build explicit object models from

simulations, model-based approaches are frequently exclusively solved in simulation

environments and, as such, their applicability to real-world scenarios is discredited.

From the aforementioned description, and despite the relative lack of previously

published materials, this dissertation focuses on what we consider the most promising

approach of the two: the feature-based method. We find the tradeoff between the

method’s strengths and weaknesses to be attractive, especially when considering real-

world scenarios and having the algorithms run on a real robot. More specifically, we

exploit machine learning techniques to further address the problem of generalization

with model-based approaches as well as dimensionality reduction, when appropriate,

to guarantee the algorithms’ efficiency.

1.2 Machine Learning

Machine learning techniques allow engineers to instill artificial intelligence into oth-

erwise brainless computers using a data-driven methodology. Generally, to solve a

problem using machine learning, training data (i.e., a set of examples encoded by a

set of parameters labeled with a valid solution) is presented to the computer. The

5

computer learns from the training data and is then able to generalize to different cases

that were not necessarily part of the training data. The idea behind this process is

that most problems, regardless of complexity, can be solved given the training data is

both correct and provides a sufficient number of examples. Machine learning has seen

tremendous success and popularity over the last decade, solving problems ranging

from stock market analysis to medical diagnosis, speech recognition, language trans-

lation, and face recognition. Mathematically, machine learning techniques attempt

to find the function that best explains the training data, by mapping the example

parameters to their labeled solution. For robotic manipulation in general, and this

dissertation in particular, the most popular machine learning methods exploited are:

supervised, imitation, kinesthetic, and reinforcement learning. In supervised learn-

ing, someone manually creates the training data by generating examples and labeling

them with appropriate solutions. In imitation learning, a human operator explicitly

shows how to perform various manipulation tasks and the robot uses its sensors to

extract information from the human demonstrations and use them to generate the

training data. A human operator is also used in kinesthetic learning but the human

physically moves the robot’s manipulator, showing examples of a manipulation task

to the robot. Although imitation and kinesthetic learning are similar in their use of

a human operator performing demonstrations for the robot, we note that kinesthetic

learning provides the significant advantage of having the robot learn from its own

movements (even if they are physically dictated by the human operator). This is

a very important property of kinesthetic learning, since imitation learning requires

an often difficult mapping from human to mechanical movements. In reinforcement

learning, the robot performs manipulation tasks on its own (usually with a priori

information or a starting seed), in an attempt to maximize some notion of reward

6

over time. We note that one of the most appealing characteristic of machine learn-

ing, especially for robotic manipulation, comes from its potential to generalize since

the function learned from the training data can then be applied to new examples

that are different from and not encompassed by the training data. Additionally,

an explicit object model is unnecessary, an important fact when object models are

unavailable or inadequate (e.g., deformable objects), as is the case for feature-based

manipulation methods. It is worthwhile to note that, since the machine learning

algorithms do not have any explicit knowledge of the meaning behind the parame-

ters it is trying to learn, processing the parameters using dimensionality reduction

techniques becomes a valuable tool when dealing with high-dimensional parameters,

which can significantly reduce the time-complexity of the algorithm.

1.3 Dissertation Contributions

In this dissertation, we focus on manipulation problems that are of fundamental na-

ture for service robots. Considering the large amount of theoretical works that are

only evaluated in simulations, all of the problems we solve are not only extensively

validated on a real robot, but also designed considering the difficulties involved with

real-world scenarios, such as the lack of a priori information or the need to manipulate

a wide range of objects that the robot has potentially never seen before. Although

the specific manipulation problems we solve range from grasping a rigid object to

transferring it from one manipulator to the other or folding a towel, these differ-

ent manipulation applications are all solved similarly using feature-based, machine

learning, dimensionality reduction, and optimization techniques. Consequently, our

primary contribution comes from the foundation of mathematical frameworks behind

7

these techniques and their applicability to different manipulation tasks. More specif-

ically, we describe and design algorithms for three distinct tasks. In Chapter 3 and 4,

we implement a grasp planner for rigid objects with the principal constraint that the

robot should be capable of grasping objects that have never been seen before. Chap-

ter 3 focuses on the image processing component of the algorithm, which, although

not novel, has been greatly improved thanks to dimensionality reduction techniques

so that it runs in real-time. Chapter 4 describes the grasp synthesis process, which

exploits the image processing of Chapter 3 and is implemented as a completely novel

machine learning framework that not only generalizes to unseen objects but also runs

in real-time. In Chapter 5, the rigid object grasp planner is extended to solve the

problem of bimanual regrasping, where two manipulators are used cooperatively to

move an object from one manipulator to another. Although this problem has not

been studied extensively by the robotics community, perhaps due to its difficulty, it is

of principal importance in service robotics since it remains one of the most exploited

human manipulation behavior, especially for efficiency reasons. Last but not least,

we switch our focus from rigid to deformable objects in Chapter 6, where we con-

centrate on towel folding. Although we specifically solve the towel folding problem,

we describe the undeniable strengths of machine learning techniques to solve such a

complex task that does not possess good object models and requires two manipula-

tors working closely together to perform a task. We present the first algorithm that

solves a deformable object problem without utilizing an explicit deformable object

model, a parameterized model, or a set of heuristics.

8

1.3.1 Algorithmic Properties

In addition to the aforementioned application-oriented contributions, our algorithms

are designed by following a set of guidelines that are essential assets to robotic re-

search in general and manipulation in particular. These algorithmic properties, which

dictate our design choices, are as follows, described from most to least important:

Generalization: Since it quickly becomes intractable to encompass information

regarding any scenario that might be encountered by a robot, especially when the

environments are unknown, algorithms capable of generalizing from their a priori

data or current experience are crucial to the success of robotics. Indeed, the lack of

generalization is one of the primary weaknesses to model-based grasping approaches,

since they essentially require a three-dimensional model of every possible object that

the robot may encounter. This prominent weakness with current approaches is the

principal motivation behind our algorithms, which exploit features that can be shared

between different objects and machine learning techniques that inherently try to gen-

eralize from relatively small data sets.

Efficiency: With the main goal of service robots being to help humans perform

a variety of tasks, it is evident that the robots should perform at, or close to, the

same speed as humans. Evidently, and as an example, if it takes a robot three to

five times longer than a human to perform a simple task (e.g., bringing a drink from

the fridge), it will be considered a failure for the consumer. Consequently, it is of

utmost importance for algorithms to be designed with processing speed in mind, a

fact that has shaped many of our design choices and that we discuss throughout

the dissertation. We note that our discussion and design choices regarding efficiency

refer to the algorithms’ time complexity. Hence, we do not exploit special or specific

9

hardware (i.e., we use a standard consumer desktop computer for all the algorithms’

processing), since they simply shift the problem from software to hardware.

Hardware Independence: From both research-oriented and practical stand-

points, the algorithms we propose are manipulator- and sensor- independent. Since

the goal of this dissertation is to advance research and provide contributions to the

robotics community, we have paid particular attention to design algorithms that

are independent from the hardware we use in our laboratory. More specifically, the

algorithms were all designed assuming a manipulator capable of moving in the six-

dimensional space of locations and rotations and for which Forward Kinematics (FK)

and Inverse Kinematics (IK) are available. FK provides a one-to-one mapping from

the manipulator’s configuration space to the six-dimensional space of locations and

rotations. Conversely, IK provides a one-to-many mapping from the six-dimensional

space of locations and rotations to the manipulator’s configuration space. The spe-

cific kinematic equations for our manipulator can be found in [7]. In terms of sensory

information, any sensor, or combination of sensors, can be used as long as both an

image and a point cloud can be retrieved along with the mapping from points in

the point cloud to pixels in the image. Consequently, although we exploit a stereo

camera for all the algorithms presented, different sensors capable of generating this

data could alternatively be used (e.g., a single Microsoft Kinect, or the combination

of a webcam and laser range finder). Last but not least, and as mentioned for the

efficiency property, we do not impose any restrictions on the power of the control-

ling computer, other than it should be a typical consumer desktop (i.e., single-core

2.0-3.0GHz machine with at least 4GB of RAM).

Modular: The algorithms we present in this dissertation are designed to be mod-

ular, so that certain components can easily be replaced by others. The algorithms’

10

modularity allow other robotics researchers to modify parts of our algorithms, result-

ing in a potential for greater exposure and utilization. This utilization can manifest

itself in one of two ways. First, and similarly to the hardware independence property,

researchers with different sensors or who already have established image processing

or grasp synthesis algorithms can effortlessly introduce their own algorithms by re-

placing the ones we propose, as long as the simple input and output requirements are

respected. Second, roboticists with a particular research topic can specifically work

on the algorithm’s component that is most important to them, while still having

a complete algorithm in the end. In addition to these benefits, a popular modular

algorithm can produce more insightful results, since different versions of the same

algorithm can experimentally be compared to each other. This is a very interest-

ing algorithm property, coveted by initiatives such as the Robot Operating System

(ROS) [124], since it can generate a community of researchers trying to ameliorate

certain components, resulting in a better algorithm over time.

Low Sensory Requirements: The algorithms we present all work with a very

limited sensor load, namely a single stereo camera. The reasons behind this property

are three-fold. First, sensors are generally expensive and can quickly increase the

cost of a service robot, which needs to be affordable for consumers. Second, and

despite the fact that multiple sensors can add robustness to an algorithm, acquiring

and processing data from many sensors is generally a time consuming process. Third,

we believe that service robots should be similar to humans, both in terms of look

and function, a conviction that, if followed, restricts a humanoid robot’s sensors to

a stereo camera and touch sensors.

Anthropomorphic: Once again considering that the goal of service robots is

to perform human tasks, it seems evident that they should have anthropomorphic

11

characteristics. In order for service robots to seamlessly integrate human-dominated

environments, their appearance and behaviors should be similar to humans. This

observation has influenced our choices to use an anthropomorphic robotic torso with

a single stereo camera for our experimental platform as well as learning techniques

with a human-in-the-loop such as supervised, kinesthetic, and imitation learning. In

addition to these physical constraints, the anthropomorphic characteristics can also

be applied to the robot’s internal functions. Since humans are good at performing

dexterous manipulation tasks, it is reasonable to study them, the findings of which

can be exploited to design better robotic algorithms. Consequently, some of the

algorithmic design choices made throughout this dissertation are based on human

manipulation literature, as will be described in Section 2.5.

1.4 Robotic Platform

Throughout this dissertation, the algorithms presented are all implemented and eval-

uated on our robotic platform, shown in Figure 1.2, composed of two Barrett ma-

nipulators mounted sideways on a custom steel frame. Each manipulator has seven

degrees of freedom: three on the shoulder, one on the elbow, and three on the wrist.

Each manipulator is additionally equipped with a three-finger Barrett Hand. The

hand has four degrees of freedom, one controlling the spread of the fingers and three

controlling the closure of each finger. Although each finger is controlled by a sin-

gle servo motor, it actually has two joints that are controlled simultaneously (by

the same motor) and a patented system called TorqueSwitch, which automatically

switches motor torque to the appropriate finger joint. When one of the finger joints

stops due to its torque limit (e.g., when being blocked by an object), the other con-

12

tinues to move until its joint value or torque limit is reached. Consequently, the

hand is under-actuated and designed for power grasps that will try to envelope the

object. On top of the frame, a Point Grey BumbleBee2 stereo camera is mounted on

two servo motors allowing for motions about the yaw and pitch angles (see Figure

1.1). The robot is controlled by an external computer running a real-time (Xenomai)

Linux distribution. The computer exchanges data with any of the manipulators or

end-effectors, possibly simultaneously, using a CAN bus card. The servos controlling

the camera are instead connected to the computer with USB cables and are con-

trolled using a driver provided by the manufacturer (Phydget). A program written

in C++ computes FK, IK, and handles image acquisition from the BumbleBee2.

More information on our robot setup, including the mathematical framework behind

FK, IK, the robot’s calibration, and the stereo camera can be found in [7].

Figure 1.1: The BumbleBee2 stereo camera, by Point Grey, is the only sensor used

by the robot throughout this dissertation. It is mounted on a pan-tilt servo system.

13

(a)

(b)

Figure 1.2: The experiments presented in this dissertation have all been implemented

and validated on the humanoid robotic torso displayed in this figure.

14

CHAPTER 2

Literature Review

2.1 Grasp Planning

Research on grasp planning is usually divided between model-based and feature-

based algorithms. Briefly described, model-based techniques capture the geomet-

ric model of the object (e.g., using range scanners or stereo cameras) and match

it against an object in a database labeled with grasps. Conversely, feature-based

techniques extract features from object views (e.g., using pictures), a database of

which indicates whether the observed feature set corresponds to a particular grasp-

ing characteristic. Model-based approaches has captivated much of the grasp plan-

ning research community and solutions have been extremely varied, ranging from

the utilization of shape primitives [102, 76], trial-and-error learning algorithms [2],

full [133] or partial [53] object reconstruction, and modeling objects as task space

regions [15] possibly encompassing large uncertainties [16]. The primary assumption

for model-based approaches is that the objects’ geometrical shape can be inferred,

either fully or partially, by one or more sensors. In general, model-based grasp plan-

ning algorithms suffer from high computational costs, resulting in slow algorithms

that require expensive hardware to run in real-time, and tend to strictly be imple-

mented in simulation since it simplifies the acquisition of three-dimensional object

15

models. Additionally, model-based grasp planners have exclusively been applied to

rigid objects and have not been exploited for highly deformable objects. Although

we try to explicitly differentiate between feature- and model-based techniques, we

note that the line between the two is often blurry and depends on one’s definition

of what constitutes a model. Indeed, a model could be a set of logistic regression

coefficients, an hyperplane defined by a support vector machine, a set of features,

etc... In this dissertation, and as is the case for many robotic publications [101], we

define a model as a three-dimensional polygonal surface of an object and focus on

feature-based grasp planners.

2.1.1 Feature-Based Methods

SIFT [93] and SURF features [11] are the most popular feature extraction methods

in image processing for their desirable properties, the most important of which are

scale and rotation invariance and robustness to view point, occlusion, and illumina-

tion discrepancies. These two feature extraction methods, originally introduced by

the Computer Vision community, have been applied to robotic grasping with great

success in numerous papers [108, 1, 90, 31, 91, 128], where a database of objects

encoded by their corresponding features is used to determine the location and rota-

tion of the object that the robot wants to grasp. While generating the database is

often a cumbersome, time-consuming, and labor-intensive process [78], authors have

proposed different techniques to speed up the process or learn the database in a fully

automatic fashion such as using a turntable apparatus [107] or a manipulator [91] to

acquire images around the full 360-degree object’s spectrum. The principal drawback

with these features, and the reason we do not use them, is that they are dependent

16

on texture. For example, two geometrically-identical soda cans with different logos

would require two different sets of feature descriptors. Additionally, all of the pa-

pers are limited in scope since they require a database of all possible objects that

the robot will encounter (i.e., at least one reference image of the object is required

for the method to work). This means that they do not work for novel objects (i.e.,

objects not included in the database). Last but not least, their success is directly

dependent on the object’s texture, a fact that means they would not work well for

the type of often texture-less areas found on most household objects.

The author Piater builds upon an already-established mechanical framework

where a manipulator physically tries a variety of grasps for an object until a sta-

ble one is found. More specifically, in [120], this mechanical framework is enhanced

by utilizing visual features from an overhead camera as a learning tool for good

grasps. Once a good grasp is mechanically found, its visual features are put into a

list that can then be used when trying to grasp other objects. The paper introduces

a good series of concepts such as the need for task decomposition and learning, the

importance of replicating humans, and the focus on visual features that remove the

need for scene reconstruction or geometric reasoning. It is, however, limited in scope

in that it is only applicable to two-dimensional hand orientations (i.e., the technique

assumes planar objects), it focuses exclusively on simple objects that are not good

representations of what a robot would encounter in the real-world (i.e., a triangle,

a circle, and a square), and experiments are solely conducted through a simulator,

from which it is difficult to extrapolate, without specific experiments, the algorithm’s

applicability to real manipulators. In [20], Bowers and Lumia also exploit a vision

system to grasp planar objects. More specifically, vision data, in the form of an over-

head snapshot of the object to be picked up, is used to create a mapping from the

17

object in image-space to a hand configuration. While the paper outlines additional

research topics, such as the use of fuzzy logic, the vision system is fairly simple: us-

ing image contrast to form object blobs and categorizing them as one of four shape

primitives (i.e., circle, ellipse, rectangle, or triangle). The algorithm is shown to work

very well on a real robotic platform, the success of which is clearly dependent on the

objects’ simplicity (i.e., how well the objects can be approximated by a single shape

primitive).

A similar project has been published in [105], focusing on grasping unknown

planar objects that are not limited to shape primitives and can consequently have

complex contours with no straight segments. The object’s contour is determined

from an overhead camera and a grasp characterization metric calculates grasp re-

gions (i.e., regions that do not exceed a contour curvature threshold) and contact

points. The paper contributes a good algorithm for its intended application while

coming up with important cornerstones such as the necessity of vision for grasping in

unstructured environments. They, however, have some limiting assumptions, namely

the fact that the input image is only comprised of the object contour and that objects

are extrusions of these contours. This work is subsequently implemented on a real

platform in [104], where the authors decouple the processes that find stable grasps

(i.e., visual processing) and physically grasp the object. In addition, they identify

the visual processing step as being independent from the end-effector configuration.

The authors revisit their framework in [106], in greater detail, contributing more

realistic examples (e.g., scissors) and pointing out the very desirable characteristic

that their system is modular with respect to the manipulator’s hand configuration.

The method is still limited in scope, however, since it assumes planar objects - an

assumption that does not hold for most real-world objects.

18

In [125], Remazeilles et al. offer a feature-based method focused on solving the

visual servoing method, which is itself usually implemented by extracting image

features coming from an eye-in-hand camera [64, 58, 84]. The authors come up with

an environment-independent solution where the objects are completely novel. In

other words, no information about the objects is known in advance (e.g., a database

of models or features is not made available to the algorithm) such that any object

can theoretically be grasped. Unfortunately this seemingly powerful algorithm is

rendered inadequate since an operator draws a box around the object to be picked

up rather than using a completely autonomous algorithm. Such algorithm is clearly

aimed at service robotics for very specific applications where a human-in-the-loop

can dictate what the robot should do and is, consequently, not applicable to this

dissertation.

Another approach to feature-based grasping, focusing on the online learning of

grasps, is presented by Kroemer et al. [85]. The authors come up with an online

learning method that is initialized with some prior knowledge. More specifically, ob-

jects are represented by Early Cognitive Vision descriptors [160] and a hierarchical

Markov model that are together capable of estimating the object’s position and rota-

tion. The robot is then taught a series of grasps for a given object by a human using

kinesthetic teaching. The active learning component of the algorithm is performed

using a combination of Gaussian Processes Regression and Mean-Shift, which finds

best grasp candidates for a new object. These grasps can be attempted by the real

robot and new knowledge about the outcome (i.e., whether the grasp is good or not)

can be fed back into the algorithm. The principal problem with this method is shown

in the experiments. Once the robot starts learning on its own, it quickly moves away

from what he has initially observed and comes up with its own grasps. While such

19

a characteristic can be desirable for certain scenarios, it also means that the robot

is not taking into account the valid and human-like grasps originally demonstrated

by humans. From this point of view, the active learning method presented does not

put enough importance on human teaching, which can be thought of as the ultimate

set of positive examples and should not be discarded.

From the perspective of the goals of this dissertation, the most interesting recent

publication to solve the problems associated with feature-based grasp planers was

presented by Saxena et al. [135]. In the paper, the authors come up with the idea

of image features as a direct representation of good grasping points. In this context,

a binary learning algorithm can be created where sets of features represent either

good or bad grasping points. These positive and negative examples form the training

data that is exploited by a supervised learning method based on logistic regression

[35]. Even though the actual features used do not really matter since the learning

algorithm will adapt to different features, the authors use 6 oriented edge filters from

[112] and 9 Laws’ masks [40]. The results are very impressive, allowing two different

robotic manipulators to grasp typical household objects that are both new and part

of the training data.

2.1.2 Dimensionality Reduction

Some recent work on grasp planning has incorporated dimensionality reduction tech-

niques due to the high Degrees Of Freedom (DOFs) encompassed by the human hand

and the end-effectors getting closer to fully replicate, in terms of hardware, human

hands. In [33], Ciocarlie et al. try to resolve the issue of planning grasps in high-

dimensionality. Evidently, as robotic hands approach the dexterity of human hands,

20

through the use of more and more DOFs, the time complexity for planning stable

grasps increases to such an extent that real-time grasping becomes impossible. The

authors exploit the finding that, based on observations made from human subjects,

a two-dimensional subspace accounts for 80 percent of the variance in hand posture

[134]. As such, they come up with the concept of eigengrasps, where an n-DOF

hand is reduced to 2 dimensions. This lower subspace can then be exploited to find

an accurate pre-grasps, which, in turn, are used to grasp the object. The authors

claim that the method presented works across hand models, without modifying the

subspace or changing parameters even though they contradict themselves by men-

tioning that some robotic hand models worked better than others (i.e., those better

represented by the subspace). Evidently, such a claim is debatable since the com-

putation of the eigengrasp subspace is highly dependent on the objects used, the

different hand properties (i.e., finger length, palm size, etc...), and the application.

Consequently, great care is in order when carrying information across platforms or

tasks. It is worthwhile noting, however, that the application of the eigengrasp sub-

space only solves half of the problem. Indeed, the eigenspace helps reduce the time

it takes to find very good finger pre-grasps, but does not alleviate the problem of

solving for the correct wrist location and rotation or exact finger positions.

In [150], Suarez et al. attempt to reduce the time complexity associated with high-

dimension obstacle-free path generation for a manipulator with an anthropomorphic

hand. They decouple the search space into arm and hand search spaces. However,

since they assume a 3-DOF arm, which removes redundancy and lowers the arm’s

search space, the paper’s main contribution revolves around searching in the hand

configuration space. For the hand search space, the authors propose an iterative

technique that searches for solutions using only one DOF and increasing the search

21

dimensionality (using 2, 3, 4, ..., n DOFs) until a solution has been found. While

the author’s intention is clearly focused on time complexity and, to a certain extent,

dimensionality reduction, it is evident that the proposed method might be more time

consuming than planning directly on the high number of DOFs, especially in highly-

restrictive environments. Indeed, in the worst case scenario, the hand planning

algorithm would have to run n times as opposed to once if already planning with all

DOFs. All things considered, dimensionality reduction techniques are very important

for the tractability and real-time performance required by robotic systems and have

to considered when designing algorithms.

2.1.3 Regrasping

The regrasping problem consists in modifying an object’s configuration after it has

been grasped and when anticipating mechanical constraints (e.g., reaching joint lim-

its) that would otherwise prohibit the task’s completion. Regrasping is an interesting

robotics problem that needs to be solved before robots can ubiquitously perform hu-

man tasks. Approaches proposed by the robotics community can generally be divided

into three categories. In on-surface regrasping, the object is placed on a surface (e.g.,

a table) so that it can be regrasped. In in-hand regrasping, the robot’s end-effector

directly modifies the object’s configuration. Last but not least, in bimanual regrasp-

ing, two manipulators are exploited collectively to regrasp the object in the air.

From a practical standpoint, a robot capable of regrasping is more efficient perform-

ing manipulation tasks since it can predict its limitations and plan accordingly to

successfully complete its task. From a theoretical standpoint, solutions to regrasping

offer important contributions in anticipatory planning and cooperative manipulation.

22

One of the earliest works attempting to solve on-surface regrasping is presented

by Yournassoud et al. [153]. The regrasping operation is divided into two compo-

nents. The Grasp Space defines the space where the object is being carried by the

manipulator. The Placement Space defines objects’ locations on the table. The re-

grasping problem is then cast as the problem of finding the right transitions between

Grasp and Placement spaces given a starting and ending object placement. Although

the algorithm lays the theoretical foundation for most regrasping algorithms, it does

not generalize well (only three-dimensional polyhedron objects are considered) and

does not provide experimental results.

Building upon Yournassoud et al. early work, Koga et al. address the motion

planning problem of bimanual regrasping in [81]. Both works are related in that

they utilize two similar regrasping phases (called transfer and transit phases in [81]),

but Koga et al. exploit a second manipulator and remove the on-surface grasping

condition. The algorithm operates in the object’s configuration space to find a path

from the initial to final object configuration. For each configuration in the path, all

possible ways of grasping the object can be determined, and pruned according to a set

of metrics and constraints. Unfortunately, the problem is solved from a computer

animation perspective, which provides simplifications that would be invalid in a

real-world robotics scenario (e.g., the entire environment’s geometry, the object’s

configuration, and a set of valid grasps are known a priori).

Kawamura et al. approach the problem of regrasping using dual manipulators

without relying on external sensors [75]. Their solution is not general, since they

solve it specifically for two 2-link planar arms and assume rectangular objects. A

previously-published grasp algorithm [4] is rendered computationally efficient by em-

pirically determining, using numerical simulations, a quasi-linear relationship be-

23

tween the object’s orientation and the manipulator’s initial contact positions. This

relationship is then exploited to calculate regrasping phases that will change the ob-

ject’s orientation. The work is theoretical in nature, and many assumptions make it

unsatisfactory for a real robotic scenario. Finding the linear relationship has merit,

however, and the process can be thought of as machine learning.

In a more practical paper, Berenson et al. investigate the problem of finding valid

grasps in cluttered environments, supplemented by in-air regrasping scenarios [14].

They rely on a database of pre-computed grasps for a set of known objects, along

with motion capture, to calculate the best grasp’s quality based on forces, friction,

and contact points. Evidently this approach does not generalize since the robot will

only be able to grasp objects that are part of its database and requires an expensive

motion capture system.

Differently from the typical robot regrasping papers, Edsinger et al. consider

human-robot regrasping [44]. This complex interaction is solved using a set of pre-

defined behaviors (e.g., detect a person, give object to a person, etc...) that are

exploited when necessary. The authors extend this behavior database in a subsequent

paper [45], allowing for bimanual manipulation of two objects. A potential problem

with the generation of robotics behavior is that they are constrained to the tasks and

robots for which they are originally designed and might not generalize well to different

tasks, robots, or end-effectors. Additionally, the behaviors assume that the human-

in-the-loop will understand cues given by the robot. These cues effectively place

the burden of learning the environment and understanding the tasks to the human

rather than the robot. The authors’ works are interesting, however, since using

human intuitions is a valid strategy in scenarios involving human-robot interactions.

We also believe in taking advantage of humans to advance robotics research and

24

specifically use them to acquire good training examples for our machine learning

component.

2.2 Multi-Manipulator Motion Planning

In [155], Vahrenkamp et al. study the grasping of large or heavy objects that require

two manipulators to handle. The proposed solution is based on Rapidly-exploring

Random Trees RRTs [89] and the authors address the high DOFs encompassed by

a dual-arm robot by utilizing a randomized IK solver that analytically solves a six

DOFs portion of the arm while randomly sampling values for the remaining joints.

A nice benefit of the randomized IK solver is that a pre-computed reachability space

can be exploited to speed up the process. The reachability space essentially encodes

how likely an IK query can be satisfied, in 6-Dimensional space, and can be utilized

to quickly reject unlikely configurations that would result in unnecessary calls to the

IK solver. These techniques can be extended to a dual-manipulator setup, where the

reachability space is used in conjunction with two analytical solvers (one for each

arm) to find valid grasps. With a proper IK framework formulated, planning in

obstructed environments can be achieved by modifying the RRT algorithm appro-

priately (called Dual-Arm IK-RRT, which is bi-directional). While far from being

novel, the authors propose simple but efficient techniques that can be used for IK

solvers and optimization algorithms.

In a similar work, Tsai et al. also look at dual-arm manipulation using RRTs

in [154] but focus on the more difficult problem of path planning in highly dynamic

environments comprised of moving objects. To take into account moving objects, a

configuration-time space is exploited and a RRT variant called CT-RRTs (i.e., Bi-

25

directional RRTs in Configuration-Time space) is created. The CT-RRT is formed

from the normal RRT, adding time and cost information to dictate where the tree

should grow and to eliminate possible redundant twists and turns. The dynamic

nature of the environment requires re-planning when, for example, new objects come

into the sensing horizon, a problem that the authors solve using Dynamic Rapidly-

exploring Random Trees (DRRTs) [46]. The presented framework is then tested,

in simulation, where two manipulators have to grab different objects while avoiding

each other. This dual-arm experiment is fairly simplistic since the first arm plans

a path, relays it to the second arm, and the second arm proceeds as if the first

arm was a moving object. It is important to note that this is only done in the

shared workspace of the arms, a simple yet effective way of improving efficiency.

While the work presented is sound, it is difficult to get a good idea of how well it

performs under different conditions and, more importantly, with real manipulators.

Additionally, the dual-arm time scheduling (i.e., waiting for the first arm to plan

a path before moving the second one) makes it relevant to parallel manipulation

but questionable for cooperative manipulation. Nevertheless, the work introduces

interesting ideas, such as the use of cost functions to help steer the motion plans

towards particular configurations (e.g., reducing redundant twists and turns).

In [49], Gharbi et al. also look at the planning problem for dual-manipulators but

they use Probabilistic RoadMaps (PRMs) [74] rather than RRTs. More specifically,

they are interested in path planning for multi-manipulators, where a PRM-based

approach that takes into account the entire system will result in slow performance due

to the high-dimensionality of the configuration space. Consequently, and the main

idea behind the work, the authors propose the decomposition of a multi-arm system

into sub-components that can be exploited to reduce the speed of path planning. The

26

issue of path planning can then be restated as a two-part problem where 1) a collision-

free roadmap has to be solved for each sub-system and 2) the constructed roadmaps

need to be merged. Generating collision-free roadmaps for sub-system components is

straightforwardly achieved by any PRM-based method and the authors experiment

with PRM [74], Vis-PRM [143], and PDR [67]. Merging the roadmaps is fairly

easy as well since a finite number of cases can be established based on the part

decomposition of the manipulators. We cannot help but remark that the approach

is, unfortunately, system-dependent and, as such, a new robotic platform will require

a thorough analysis before being able to use the techniques presented by the authors.

2.3 Machine Learning in Robotics

2.3.1 Object Recognition and Pose Estimation

The topics of object recognition and pose estimation are important for robotic ma-

nipulation since the robot needs information (e.g., object’s type, physical properties,

position, or rotation) for objects in the environment that it will interact with. Azad

et al. have published a couple of papers focusing on the estimation of single-colored

objects’ configurations. In [5], they decouple the pose estimate into position and

rotation calculations. The single-colored objects presents both drawbacks and bene-

fits. On one hand, they lack texture making texture-based approaches such as SIFT

difficult to use. On the other hand, they simplify object segmentation by being of

a distinct color. For the position estimation, the authors use stereo triangulation

between the center pixels of color blubs from the left and right images. For the

rotation estimation, they exploit a learning method, where objects in the training

27

data are labeled with their rotation. Once the closest object in the training data

has been found, the object’s rotation is simply the one annotated in the training

example. This work is quite restricted since it requires the images in the training

data to be acquired from the exact same viewpoint than those acquired online. The

authors attempt to remove this limitation in [6] by introducing an iterative correction

algorithm. The problem is solved by having three-dimensional models of objects and

generating virtual views of the object that accurately represent the current camera

viewing conditions. These virtual views are then exploited to infer the position and

rotation of the perceived object. The inclusion of the three-dimensional models seem

to take a step back from their original work that explicitly mentioned the fact that

no model was required. With a full three-dimensional model, more robust techniques

can be used that would not be limited to single-colored objects.

Schneider et al. build an interesting learning-based framework [138] specifically

designed for a novel, infrequently exploited, tactile sensor, although the work could

easily be extended to different sensors. Sensor data from a parallel-jaw gripper

is used in conjunction with a bag-of-features approach for object recognition. A

codebook is created using k-means clustering, based on training data acquired by

the sensor, the height of the gripper, and the width between the two fingers. When

a newly observed object needs to be classified, its corresponding feature vector is

extracted and searched within the entries in the codebook using a nearest neighbor

search. While the experimental section suggests that the algorithm works for the

relatively small data set presented, it is evidently constrained by the limited amount

of information it gathers. As such, different objects with similar subparts will surely

be wrongfully classified (e.g., a fork, a knife, a pen) and, conversely, similar objects

with different variations will be classified as different objects (e.g., an under-inflated

28

and over-inflated tennis ball). All things considered, the presented method provides

an interesting learning-based approach and a good first implementation of a tactile

sensing object recognizer, the results of which should be fused with an additional

sensor.

A very interesting technique, which uses shape retrieval as a means to object

recognition, is presented by Bitsakos et al. [19]. They design feature vectors that are

directly extracted from object shape contours. The shape contours are encoded using

Tri-Grams [141], a process normally reserved to computational linguistics that pairs

three consecutive words together. More specifically, an object’s shape contour is ex-

tracted and discretized into a set of 50 points. Each contour segment comprised of

two consecutive points is labeled with one of 8 words indicating the segment’s orien-

tation. The sequence of words is, in essence, a dimensionally-reduced representation

of the shape’s contour. The feature vectors are expanded based on the idea of skip

Tri-Grams [22] that are three words, each separated by a certain number or words. In

order to add robustness, the feature vector representing the object is comprised of all

skip Tri-Grams where the word separation number is varied. Once the objects have

been encoded and manually grouped into categories, learning is essentially achieved

through a nearest neighbor search that adds a probabilistic component using a Gaus-

sian Distribution over the objects’ categories. Overall, the presented work comes up

with a novel object representation that is efficient, works well in practice, and can

be trained on either a real or synthetic dataset. This representation provides simi-

lar accuracy to competitive algorithms while being a lot more efficient. Due to the

nearest neighbor search, the learning does not generalize to object categories that

were not part of the training data. Nevertheless, the encoding approach could very

well be extended to applications beyond the simple task of object recognition.

29

2.3.2 Grasping

One of the earliest successful projects in exploiting machine learning techniques to

solve the grasping problem was presented by Kamon et al. [70]. They divide the

grasping problem into two learning problems, where they first generate candidate ac-

tions and then calculate the actions’ quality. A candidate action is generated, thanks

to a database of manually and heuristically discovered grasps, and it is evaluated by

a quality estimate also learned from previous examples. This step is repeated until a

sufficiently high grasp quality has been found. The quality estimation operates on a

subset of visual features that were chosen through a simple dimensionality reduction

technique, which attempts to select the smallest number of features while retaining

as much variance as possible (this is similar to Principal Component Analysis [18],

except that the features themselves are selected, as opposed to the combination of

features). The learning is very simplistic, however, since it relies on heuristics and

nearest neighbor searches. Both real and simulated experiments are presented and

the results are encouraging. The method is, however, highly end-effector dependent,

assuming a parallel-jaw gripper that implicitly simplifies the grasping problem and

allows for simple image features. The algorithm is unlikely to work for more complex

manipulators that would require more features and for which it might be extremely

difficult to estimate the grasp quality metric on such a small visual feature vector.

Piater proposes a similar method in [119], also decomposing the grasping problem

into grasp generation and quality estimation phases, both supplemented by learn-

ing. Instead of manually generating a database of good grasps, Piater generates its

database by utilizing a mechanical framework that allows the manipulator to use

its fingers to probe the object surface until a stable grasp is found. For each stable

30

grasp found during training, a mixture of edge pixels and texture pixels computed

by a Gaussian-derivative filter are extracted [121] and used to predict the relevant

grasping parameters. Since different features can have similar grasping parameters,

a k-means problem is solved in order to find appropriate grasping parameters given

a feature vector from an object to grasp. While Piater’s work is additionally capable

of determining the number of fingers that should be used to perform the grasp, it

only works with planar objects, it is very sensitive to image noise, and results are

only shown for simulated data.

A different approach in learning how to solve the grasping problem is presented

by Oztop et al. in [115]. They focus on the execution of power grasps [110] and,

as such, do not take into account the grasp’s quality. Instead, they decompose the

problem into two components, a reaching phase that positions and orients the end-

effector close to the object and a closure phase that selects the appropriate closure

of each finger. The reaching phase is solved by knowing the object’s location a priori

and using a Jacobian-based IK solver. The closure phase is solved by training a

neural network based on a set of simulated examples acquired using a set of highly

specific heuristics. Specifically, the neural network finds the best offset between the

hand and the object as well as the best joint speed for each joint of the fingers.

This approach does not take into account the shape of the object, however, and its

application is consequently extremely limited. In other words, it is simply learning

the best hand closure for the average object in the training data. A similar work,

which also decomposes the problem into a reaching phase and a closing phase, is

presented by Rezzoug et al. in [126]. The two works differ, however, in that Rezzoug

et al. take into account a lot more input parameters for their learning framework

(e.g., contact points, hand dimensions, object’s bound, etc...) and exploit a learning-

31

based IK solver for the fingers. More specifically, a trained neural network deduces

the hand’s location and orientation from the input parameters. The hand configu-

ration is then exploited to find the joint angles of each finger thanks to an IK finger

solver that also utilizes a neural network. Even though the method is a significant

improvement over [115], mainly due to the fact that it takes into account individual

object’s properties, the authors unrealistically assume that the contact points of the

fingers are already known. Furthermore, only simulated experiments are presented.

Together, these shortcomings reduce the applicability of the algorithm, especially for

real-world scenarios.

In [118], Pelossof et al. attempt to remove the inherent complexity of grasping

simulators by using machine learning. Indeed, grasping simulators tend to use a set of

heuristics to minimize and search the grasp parameter space of various end-effectors

[102]. More specifically, they acquire grasping training data from the GraspIt! simu-

lator [101] and learn, using Support Vector Machines (SVM), a function from object

shape and grasping parameters to its grasp quality metric. The shape parameters

add a degree of difficulty to the problem, since it is difficult to come up with a

fixed-size feature vector required by SVM due to the highly variable objects likely

to be encountered. The problem is circumvented by modeling each object as a su-

perquadratic model [10], which implicitly constrains the problem to simple objects,

since a superquadratic model would not be able to represent more complex objects.

Additionally, since the entire work is validated in simulation, it is difficult to see how

the presented superquadratic modeling of objects would work efficiently in a real-

world scenario, where the models would have to be constructed from sensor data.

These two concerns are somewhat alleviated in a subsequent publication [52], which

explains how complex objects can be represented as a set of superquadratic models

32

and how a superquadratic model can be fitted to a point cloud (possibly coming from

a sensor such as a stereo camera). Such a representation and conversion from sen-

sor data is, however, extremely computationally expensive and would have difficulty

running in real-time without specialized hardware. The learned function maps both

the object shape and grasping parameters to a grasp quality metric. However, since

the goal is to find the best grasping parameters given an object shape, the learned

function is used in conjunction with an gradient ascent optimization algorithm that

finds the grasp parameters yielding the highest grasp quality metric. The paper pro-

vides a good machine learning solution to essentially bypass the direct use of a grasp

simulator. However, since no quantitative or temporal results are provided, it is dif-

ficult to understand how accurate and time efficient the overall method is. Indeed,

for the work to be practical, the time complexity of generating the superquadratic

models from sensor data and running the optimization should be much lower than

using the grasping simulator directly.

2.3.3 Reinforcement and Imitation Learning

Typical off-the-book gradient-based policy learning approaches to learning [151] have

seen little practical use in the robotics community, mainly due to the lack of adapt-

ability to high-dimensional control, the manual parameter-tuning of the learning rate,

and the difficulty of formulating real-world robotics problem as a set of differentiable

functions.

One of the earliest gradient-free reinforcement learning approaches in robotics,

presented by Rossler et al., introduced the concept of local and global features to the

grasping problem [130]. Local features are independent of the object’s shape and can

33

consequently be generalized to many different objects. Conversely, global features

are correlated to a specific object and, since they rely on the entire object, are

more appropriate to define grasps. The authors develop two reinforcement learning

procedures, one that exploits local features to infer the end-effector’s rotation and

the other that utilizes global features to deduce the end-effector’s position. Various

end-effector orientations are physically attempted by the manipulator based on the

extracted local features, where each orientation attempt is given a reward. This

process is repeated until a sufficiently high reward has been observed. Similarly,

different end-effector positions are attempted based on the extracted global features

and a force sensor grades the resulting grasps. The proposed reinforcement learning

methodology, where the robot attempts various grasps until it gets a sufficiently high

reward, is demonstrated in a real-world scenario but unfortunately assumes planar

objects and a parallel-jaw gripper, limiting its applicability to simple scenarios.

Theodorou et al. realized the problems associated with gradient-based methods

and implemented a reinforcement learning algorithm called Policy Improvements

with Path Integrals (PI2) [152]. The authors’ algorithm is capable of learning pa-

rameterized policies by using stochastic optimal control with path integrals. PI2

does not require parameter tuning, although it requires an initial seed behavior that

might be difficult to obtain, and works well with high-dimensional data, as exem-

plified by the learning of how to jump as far as possible on a quadruped robotic

dog.

Policy learning by Weighting Exploration with Returns (PoWER) [80] also solves

the same problems seen in gradient-based policy learning and is, arguably, one of

the leading algorithms when it comes to reinforcement learning for manipulation.

Indeed, within a very short time, it has been applied to a great number of heteroge-

34

neous applications including the ball-in-a-cup task [80], flipping pancakes [82], and

performing archery [83]. PoWER is based on Expectation-Maximization, exploits

a weighted sampling technique for exploration of the parameter space, and only

requires an example motion to bootstrap the algorithm.

The line between imitation and reinforcement learning is often blurred. Our def-

inition of imitation learning, and the nomenclature we use, follows that of Schaal et

al. as “a complex set of mechanisms that map an observed movement of a teacher

onto one’s own movement apparatus” [136]. The distinct features between the two

are that reinforcement learning exploits a trial-and-error methodology whereas imi-

tation learning does not. Consequently, imitation learning requires multiple sample

demonstrations in order to learn something. Related publications on imitation learn-

ing differ greatly from the approach we describe in this dissertation since we focus

on imitation for the purpose of reinforcement learning. Interested readers should see

[136] for a good review of imitation learning techniques in robotics.

2.4 Deformable Objects

2.4.1 Models from the Computer Animation Community

Since Chapter 6 focuses on deformable objects, we first look at research involving

the modeling of such objects, most of which comes from the Computer Animation

community. The modeling of deformable objects can be divided into geometrical and

physical approaches.

The first geometrical methods developed to model deformable objects came from

the Computer-Aided-Design (CAD) community, where three-dimensional objects

35

needed to easily be shaped at users’ discretion. In this context, objects were repre-

sented as curves and surfaces, each of which defined by a set of control points. One of

the earliest projects appears in [117], where the author lets sculptors operate directly

on primitive objects as if from clay, without the need for complicated mathematical

formulas or coordinate frames. In some sense, the work presented set the stage for

modern CAD tools.

The control point approach to object deformation led to the Free Form Deforma-

tion (FFD) method [139], which can be considered an extension and generalization

of [117]. In FFD, the object is enclosed in a three-dimensional grid of a given paral-

lelepiped (e.g., a cube) and displacing the grid points results in object deformations.

In other words, the space in, on, or around the object can be manipulated to deform

the object. The application to arbitrary shapes, the amount of control, the possibility

of preserving volume, and the speed of the method all contributed to the populariza-

tion and extension of the FFD. For example, the grid representations were extended

to combinations of parallelepipeds [36] or arbitrary topologies [95] and surface points

on the objects could be used instead of control points on the grid [63]. While the

extensions of FFD allow for better generalization and fine-grain control, drawbacks

do exist, such as the restriction to a uniform grid, which may translate into a need

for many FFDs even for simple deformations. Evidently, the principal drawback of

these control point methods is that they are strongly dependent on a human-in-the-

loop, who deforms the object manually and makes sure that the deformations are

qualitatively correct.

Physical approaches to modeling deformable objects have extensively been stud-

ied by the Computer Graphics community, with the two most popular solutions being

mass-spring systems and Finite Element Methods (FEM). In a mass-spring system,

36

the earliest account of which can be traced back to [122], a two or three dimensional

lattice is used in a similar fashion to FFDs. Conversely to FFDs, however, the lattice

has physical attributes, since each point has a mass and is connected to neighbors

by springs, and is a direct representation of the object. Accordingly, mass-spring

systems cannot be used on arbitrarily complex shapes without some loss of accuracy

and the proportion of mass points to surface area or volume dictates the model’s

precision. The spring stiffness is used to dictate the material’s elasticity, which, in

turn, affects the overall behavior of the deformable objects given a set of constraints

and forces acting on them. The physical equations behind mass-spring systems are

quite simple, solely relying on Newton’s Second Law, for each point in the lattice,

where the force at each point can be decomposed into damping, gravity, and external

forces. It is worthwhile to mention that the determination of the spring constants

can be difficult and laborious to obtain from measured material properties [87] and

that some constraints are difficult to model such as volume or shape conservation

[158]. Moreover, a significant problem in this area of research, the stiffness prob-

lem, occurs when the spring constants and the integration time step are large, which

results in an unstable system with frenetic mass-point movements. While the solu-

tion to the problem might simply be to find the right value for the integration time

step, as is suggested by the Courant-Friedrichs-Lewy condition, which finds the nec-

essary proportion between the spring constants and the integration time step [162],

the time steps will be so small that real-time simulation becomes intractable, an

undesirable characteristic for robotic applications. Popular alternatives have been

proposed [9, 41], exploiting Implicit Euler Integration where the dependence on the

integration time step is removed by approximating the forces at the next time step.

In most cases, and for realistic models requiring many mass points, Implicit Euler

37

Integration is still computationally expensive since it requires solving a linear system

of size proportional to the number of mass points squared, a new problem partially

solved through matrix optimization [71].

Conversely to mass-spring systems that discretize an object as a finite set of

points and solve the equilibrium equation at each point, FEM divides the object

in continuous regions and approximates the continuous equilibrium equation over

each region. Since an object reaches a stable state when its potential energy is at a

minimum, the derivative of the equation for potential energy can be utilized as the

equilibrium equation for FEM. More specifically, FEM requires the selection of finite

elements with their corresponding nodes (e.g., 2D triangle with 3 nodes, 3D triangle

with 4 nodes, 3D rectangle with 8 or 20 nodes), the modification of the equilibrium

equation (i.e., potential energy) to express it in terms of node displacement while

taking into account material properties, and solving the linear system consisting of

the equilibrium equations for each element in the object. It is worthwhile to note

that while the calculations are only performed on the nodes of each element, inter-

polation functions can be used to deduce the location, displacement, or energy of

any other point located within the element. Even though FEM are physically more

accurate than mass-spring systems, they are computationally more expensive due to

two issues. First, applied forces have to be converted, at each time step, to force vec-

tors over volume. Second, and more importantly, FEM assumes small deformations.

If this condition does not hold, the various matrices (e.g., mass, stiffness) have to

be re-evaluated, after each time step, during the simulation - a time consuming pro-

cess. Given this insight, it becomes evident that the majority of research involving

deformable objects with FEM focuses on techniques to render the solution tractable

such as pre-processing [21] and elasticity approximation by using a linear model [30].

38

For applications where surface nodes are important, the system can be simplified us-

ing condensation, a technique that reduces the system of equations by circumventing

calculations for internal nodes while keeping the volumetric behavior of the modeled

object [73]. A substantial amount of research, that is beyond the scope of this disser-

tation, has also been achieved to determine the element decomposition (i.e., element

shape and nodes) and interpolation functions for specific deformable material.

For more information on modeling deformable objects, from a Computer Graphics

perspective, interested readers should see the survey in [50].

2.4.2 Models from the Robotics Community

The modeling of deformable objects from the robotics community has taken drasti-

cally different approaches, especially given the time constraints of robotic systems.

Indeed, the drawbacks of the Computer Animation methods (e.g., small deforma-

tions, small time steps, or high time complexities) have directed robotics research

away from physical accuracy and towards more efficient methods. Consequently, the

models are all geometric, extremely simplified, and, in some instances, entirely omit-

ted [109]. The most popular and recurring method, uniquely exploited for folding

problems, decomposes a deformable object into a set of kinematic links composed

of a face (i.e., a link) and a foldable edge (i.e., a joint). This representation has

successfully been utilized for different applications ranging from paper and protein

folding [147] to carton folding [94] and metal sheet bending [59]. The faces and fold-

able edges are known a priori and the possible states of the deformable object can

consequently be constructed through FK. While being simple and fast, this crude

model possesses drawbacks in the form of the assumption of rigid faces, the a priori

39

knowledge of the face-edge relationships, the inconsideration of material properties,

and the impossibility to model certain folding patterns (e.g., a fold on top of a fold).

2.4.3 Folding

Song et al. look at the problem of folding paper craft from the interesting perspective

of motion planning in [147]. Indeed, they exploit the aforementioned deformable

object model, which decomposes a piece of paper into kinematic links comprised of

a face and a foldable edge. The paper folding problem is formulated as a kinematic

motion planning problem where each link corresponds to a face of the object and

each joint to a foldable edge. This formulation allows the authors to use a PRM

approach to solve the folding problem by setting up a configuration space comprised

of each DOF. More specifically, after decomposing the object into the correct number

of faces and edges, a goal and start position is fed into a PRM to find a path (i.e.,

a sequence of folds). Overall, the work is simple but very effective, as shown by the

experiments, and employs a popular mechanism to a new problem statement. The

problem statement is, however, quite simplistic and suffers from a few pitfalls. Due

to the nature of the decomposition into links and joints, the folds are constrained to

tree-like structures and will not work, for example, when a fold needs to be performed

on top of another (e.g., folding the wings of a paper airplane). Last but not least,

the folding process does not take into account the actuating robot. Taking into

account the robot that will fold the object can be achieved by adding constraints

when evaluating the fold quality or by incorporating it directly into the PRM. A

very similar work, exploiting the same kinematic description of links and joints, is

presented in [94]. The work differs, however, in that the authors do not use PRMs,

40

are looking to find all possible foldable solutions, and implement their method on

a real robot. Instead of using PRMs, the authors use a tree, where each level of

the tree represents a set of cells encompassing discretized possibilities for each joint

and each leaf represents a range of robot configurations. The solutions can then

be found by using the tree to generate all possible joint sequences and pruning the

colliding configurations. Once all feasible fold configurations have been found, a

human operator selects the best one and builds a physical structure that the folding

robot can use to help it fold the carton. The work presented suffers from the same

pitfalls as the previous one. While the authors implement the system on a real robot,

the algorithm does not directly control it. Instead, the operator chooses the best fold

sequence and constructs a fixture for the robot. In terms of running time, the PRM

is much faster since it is only concerned with finding one folding sequence. Better

robotic implementations have been presented for origami folding [8] and T-Shirt

folding [13]. Both papers offer manipulator-dependent solutions, relying on highly

specific platforms, which render the work useful in specialized environments (e.g., a

manufacturing plant) but unsuitable for service robotics.

The state of the art in folding comes from Abeel et al. who have demonstrated

the folding of towels [96] and clothes [156]. Their work however depends on a param-

eterized shape model [103] created by a human and, as such, does not necessarily

generalize to pieces of clothing or other deformable objects that were not already

parameterized. Additionally, the folding sequences are either pre-programmed or

need to be entered by a user.

41

2.4.4 Other Robotic Applications

Nagata et al. study deformable objects in the towel picking task, where a robot

needs to grasp and move the top-most towel from a stack [109]. They describe finger

movements as one of five functional finger primitive actions (e.g., support, press,

grasp, search, and insert). A high-level language incorporates the primitive actions,

the number of fingers used by the primitive action, and the task at hand. The

language can then be used to describe tasks that the robot will be able to perform,

based on previously hardcoded behaviors. Even though the idea of a language capable

of describing various tasks is very interesting, it is evident that the authors are

focusing on the single task of picking up towels rather than making sure the language

and action primitives generalize. An additional weakness of the paper comes from the

assumption that the position of the top-most towel is approximately known and that

the grasping is performed in a two-dimensional plane. These assumptions greatly

reduce the contribution of the paper by oversimplifying the task (i.e., not relying on

sensors).

2.5 Human Manipulation

It is crucial to recognize the importance of human grasping as an insight to come

up with viable robotic manipulation solutions and, as such, we summarize some

interesting research about human subjects and grasping.

42

2.5.1 Grasping Strategies

Through a case study, Goodale et al. found that there exists a dissociation between

recognizing objects and grasping them [55]. In other words, the human process of

analyzing a scene to deduce object information (e.g., size, shape) is separated from

that of the visuo-motor skills required to pick up the object. This observation allows

humans to grasp possibly-novel objects quickly, without knowing a lot of details

about them. This work is substantiated by [28], where the author mentions that

several neural pathways are used during a grasping task and, more specifically, that

separate neural activities encode object features and move the fingers appropriately.

In addition, the author reviews a variety of human and monkey studies that establish

a correlation between object features (e.g., size, fragility, texture, weight, surface)

and grasping parameters.

An important research area has been focused on defining human grasps, which

are essential when preshaping the hand in anticipation for grasping. Early work in

the 1940s and 1950s has categorized grasps into cylinder, ball, ring pincer, and plier

grips [57], grasp, pinch, and hook hand functions [145], and as either using the entire

hand, grasping between the thumb and the fingers, or a combination of both [98].

One of the earliest influential papers in this area was published by Napier, where

he successfully argued that only two grasp categories were necessary: power and

precision grasps [110]. Power grasps are grasps where the hand attempts to cradle

the entire object such that the maximum surface area of the hand is in contact with

the object. Power grasps are very stable and do not require a large amount of finger

force applied to the object. Conversely, precision grasps use a few fingers with well-

defined contact points, where opposing finger forces account for a stable grasp. The

43

idea behind power and precision grasps proposed by Napier for human hands has

been accepted within the robotics community with the different names of form and

force closure, respectively [42, 113, 123]. The aforementioned publications have set

the stage for the rest of the research community in the domain, a review of which

is presented in [65]. Two additional papers complementing the characterization of

human grasps are worth mentioning. In the first [3], the idea of virtual fingers (i.e.,

a set of fingers exerting forces in the same overall direction) is presented. In the

second [66], the authors propose an opposition space model that takes into account

three basic directions along which the human hand can apply forces.

Last but not least, a multitude of small but important factors associated with

human grasping have been highlighted such as the importance of the hand preshape

before grasping [68] (i.e., the hand’s shape and orientation is set well before making

contact with the object), the irrelevance of maintaining visual contact with the hand

and the object during a reaching or grasping phase [69], and the lack of importance

that intrinsic object properties (e.g., texture or weight) have on the preshape phase

[159].

2.5.2 Regrasping Strategies

With the inherent connection between service robots and humans, a series of human

studies have influenced our regrasping algorithm. Churchill et al. investigate the

kinematic behaviors of unimanual and bimanual human grasps [32]. No significant

kinematic difference was found between human unimanual and bimanual manipula-

tion. Specifically, one- and two-effector tasks pose the same constraints, share the

same control structures, and are achieved in similar fashion by human test subjects.

44

Earlier works by Rizzolatti et al. [127] and Castiello [27], with fewer experiments

and data, also pointed out this phenomenon. These experiments show that the same

neural pathways apply to different end-effectors and suggest that common control

processes are capable of handling a broad range of grasping actions, whether they

involve one or two hands or different grasping apparatus. These findings have in-

fluenced our decision to build our bimanual regrasper from a unimanual grasping

algorithm.

Simoneau et al. and Spencer et al. study the importance of vision in human

bimanual tasks in [144] and [148], respectively. Both publications show that there is

little effect from complete vision loss during bimanual tasks. These findings suggest

that humans possess spatial awareness independent of sensory feedback. We exploit

these findings by only depending on vision to start the regrasping procedure (i.e., no

sensory feedback is used during the regrasping phase), allowing for significant savings

in computation time.

Gribova studies bimanual coordination from a neural perspective, finding that

bimanual movements are internally handled by the brain as a single process [56]. In

other words, bimanual movements are not a serialization of unimanual ones. Robotic

on-surface regrasping violates this finding.

Another interesting finding was published by Mason et al. as they consider the

grip forces when a partner receives an object from a passer [97]. Evidently, the

problem of passing an object from one subject to another is more complicated than

from one limb to another, since it requires anticipatory behavior. The results are

nonetheless interesting given that the passer performed typical kinematic movements,

whereas the receiver was highly sensitive to the object’s motion. In fact, the passer’s

45

movement towards the transfer zone was impervious to any receiver’s movement.

More interestingly, an increase number of trials using the same passer and receiver

did not ameliorate the resulting transfer task, indicating that no internal model of

the task is inherently created by the subjects, as is usually done in other tasks [47].

2.5.3 Learning

Our algorithms are heavily influenced by human grasp strategies, developed in the

first two years of infancy, which relies primarily on learning (imitated [100] and rein-

forced [157]) and human senses (sight [99] and touch [114]). Furthermore, evidence

suggests that, for babies learning to manipulate, imitated learning is supplemented

by sight [100], whereas reinforcement learning is driven by touch [116]. Following

human grasping, and given the fact that we are interested in imitation learning, we

abstain from touch sensors, sensor-fusion, and object/model reconstruction and limit

our algorithm’s sensory input to a single stereo image.

46

CHAPTER 3

Image Processing

Evidently, a robot capable of anthropomorphic manipulation will rely on information

gained through its sensors. In an effort to reduce cost and replicate human behavior,

which predominantly relies on stereo vision for manipulation (see Section 2.5), we

limit our sensory equipment to a single stereo camera. The stereo camera not only

replicates a human’s vision system, but also allows roboticists to work with both two-

dimensional images and relatively sparse three-dimensional point clouds. Although

denser point clouds, usually generated by other components such as laser range

finders, have been used extensively by the robotics community, they are expensive,

lack anthropomorphic behavior, and often result in slow algorithms or sub-sampling.

In this chapter, we consequently focus on methods allowing the extraction of crucial

information for a robot grasping task, exploiting image processing techniques along

with data acquired from our stereo camera.

A major development in this direction was recently reported by Saxena et al.

[135], who developed a robotic system capable of grasping novel objects based on

vision alone. Their approach relies on machine learning and exploits a huge training

set of synthetic images labeled with good grasping points. As described in subsequent

sections, the algorithm learns to identify good grasping points in the image-space of

a novel object by first computing a high-dimensional feature vector for every pixel in

47

the image. The problem of finding good grasping points in image space can then be

cast as a classification problem that the authors solve by applying logistic regression

trained on manually-labeled images. The feature vector characterizing a pixel in the

novel images is obtained by applying a battery of filters in a 5×5 patch surrounding

the pixel to be classified. As reported by the authors, a feature vector in R459 is

computed for classification at every pixel of an image. This high dimensionality has

two significant drawbacks. First, the training stage requires fitting a generalized

linear model [43] of high dimensionality that leads to time consuming computations

in addition to requiring significant amounts of memory. In principle, this is not an

overwhelming problem if the training stage is rarely performed, as is the case for an

offline supervised learning approach to the problem. This time and space complexity

becomes a more significant problem, however, when the robot needs to frequently be

re-trained, whether it be due to a highly dynamic environment or the need for online

unsupervised training. Second, in order to identify good grasping points at run time,

one needs to compute these high-dimensional feature vectors for every pixel of an

image. As a consequence, the amount of frames per second that can be processed

for a typical image resolution is severely limited. This issue is particularly relevant

when considering the applications of service robotics that cannot afford to wait tens

of seconds while computing how to grasp an object.

After having replicated Saxena’s original experiments, and having noticed the

aforementioned limitations, we considered the possibility of carefully analyzing the

algorithm and applying dimensionality reduction techniques in order accelerate the

algorithm. The reduction is obtained through two potentially inclusive techniques.

In the first, feature selection, features analyzed as having relatively small contribu-

tions to the classification process are removed altogether from the feature vector.

48

The benefit of feature reduction applies to both the training and classification stages

of the algorithm. In the second, search-space reduction, the number of pixels used

when searching for good grasping points is reduced by eliminating pixels that do not

represent the object to grasp (e.g., a table or a wall). The search space reduction

technique is similar in principle to object segmentation, and only affects the classi-

fication stage of the algorithm. The results presented in this chapter confirm that

significant speedups thanks to dimensionality reduction are indeed possible, and we

eventually produce a refined version of Saxena’s algorithm that retains a high clas-

sification accuracy while relying on smaller feature vectors and exploring less pixels

per image. The improvement is demonstrated both theoretically and practically in

the experimental section of this chapter.

3.1 Finding Good Grasping Points

Given the literature review, our primary motivation for working with a feature-based

approach is that, when properly implemented, they are manipulator-independent,

they account for untrained objects, they replicate visual cues used in human grasping,

they can use a single visual sensor (i.e., cheap sensor), and they do not make a

priori assumptions about the objects or the environment. In this section we shortly

summarize what we consider to be the best feature-based algorithm to date, from

Saxena et al. The reader is referred to [135] for a more detailed description, also

including suggestions about integrating depth information at the cost, however, of

increasing the size of the feature vector. We purposefully do not take into account

depth information because, with a stereo camera, it rarely can be obtained for all

pixels in an image and, as such, could introduce bias resulting in classification errors.

49

3.1.1 Training Stage

The starting point for the learning algorithm is a vast set of synthetic images where

good grasping points have already been labeled. A good grasping point is defined

as any point on an object that a human would use to grasp the object. In other

words, if we were to give an image of an object to someone and asked him/her to

identify points on the image where he/she would be able to grasp the object, any

points given by the person would be considered a good grasping point. Consequently,

objects have many good grasping points that are manually labeled for the training

data. Objects in the training set include everyday entities such as a cereal bowl,

a pencil, an eraser, etc... Every image comes in two versions. The first one is the

actual object image, while the second is a binary version labeling pixels associated

with good grasping points1. Readers are referred to the experimental section of this

chapter for representative images taken directly from the training data set (Figure

3.6).

In order to learn how to discriminate pixels associated with good grasping points

from bad ones, 17 filters are applied in a 5×5 patch surrounding a pixel. In addition,

the same 17 filters are also applied to the pixel in two suitably scaled versions of the

image itself, yielding a feature vector of size 459. This process is performed on every

pixel of the image. The filters are applied to a YCbCr image as follows: six edge

filters and nine Law’s masks (see Figure 3.1) applied on the intensity channel of the

image (i.e., Y), one average filter applied on the blue-difference chroma component

(i.e., Cb), and one average filter applied on the red-difference chroma component

(i.e., Cr).

1The whole data set is freely available for download.

50

Figure 3.1: The six edge filters (left) and nine Law’s masks (right) used to create

the feature vector.

The feature vector is then obtained by concatenating the energy of these filters

into a vector in R459. Therefore, the synthetic data leads to a set of (xi, zi) couples,

where xi ∈ R459 and zi is a binary label indicating whether the associated pixel

in the image is a good grasping point or not (with the value 1 associated to good

grasping points). A parameter θ∗, the logistic regression coefficients, is then learned

by solving a maximum likelihood problem using iteratively reweighted least squares.

The equation to solve is as follows:

θ∗ = arg max
θ

ΠiP (zi|xi; θ). (3.1)

More specifically, the goal is to find a set of logistic regression coefficients, θ, that

maximize the combined probabilities of each pixel i (from the training data) being

a good or bad grasping point (defined by zi = 1 or zi = 0, respectively), given its

feature vector xi. Assuming that the training data is already available, solving the

maximum-likelihood estimation defined in Equation 3.1 encompasses the primary

time commitment for the algorithm’s training stage.

51

3.1.2 Classification Stage

When the robot needs to grasp a novel object given an image of it, it starts computing

the same filters for every pixel in the image, thus getting a feature vector xi ∈ R459

for the ith pixel. The point is probabilistically classified as a good grasping point

based on logistic regression:

P (zi = 1|xi; θ∗) =
1

1 + e−x
T
i θ

∗ . (3.2)

In order to appreciate the power of the technique, it is worth observing that the

authors report remarkable results in terms of prediction accuracy both for objects

similar to those in the training set, but also, and more importantly, for novel objects

of classes not found in the training data set. For example, it is shown that the system

can predict how to grasp a coffee pot, a marker, and duct tape even though none of

these objects were part of the training set. Consequently, we define, as was done by

Saxena et al., a novel object as an object that was not part of the training data.

3.1.3 Algorithm Modifications

In this dissertation, we use a slightly modified version of the algorithm. First, we

remove the two features that are based on the color channels of the image, since the

color of an object should not affect how a robot should grasp it, as is the case for

human grasping [159]. We also remove the features acquired on scaled versions of the

original image since they do not capture sufficient information about different object

sizes or views. Instead we suggest that it would be more beneficial to scale the images

and treat them as new images for training (i.e., computing the full feature vector on

52

the scaled images) to better account for different camera views representing smaller

or bigger objects. In order to have a similar feature vector size, and to further test

our dimensionality reduction theory, we add five more filters: a first-order 5×5 Sobel

operator, a second-order 5 × 5 Sobel operator, a first-order 7 × 7 Sobel operator, a

second-order 7 × 7 Sobel operator, and a Laplacian operator. As such, our final

feature vector size is 500, with the original 15 filters from the algorithm added to the

new 5 filters and performed in a 5×5 window around each pixel. The Sobel [137] and

Laplacian [142] operators are discrete differentiation operators that approximates the

gradient of the image intensity function.

3.1.4 Different Approaches

Although Saxena’s et al. original algorithm exploits logistic regression, one can won-

der if a better algorithm could be used. Evidently, one of the major strengths of

logistic regression is its fast classification speed and the closest competitive algo-

rithm we could find, both in terms of speed and accuracy, was Linear Discriminant

Analysis (LDA). In the interest of completeness, we briefly describe LDA in this

section. Referring to literature related to dimensionality reduction for face detection

[12], it makes sense to explore whether LDA may be used in order to exploit the fact

that features are assigned to two classes (i.e., good or bad grasping points). LDA is a

technique that expresses the original data as a linear combination of other features,

where the between-class covariance is maximized and the within-class covariance is

minimized. Similarly to logistic regression, and conversely to other regression meth-

ods, LDA exploits the binary categorical training labels. More specifically, LDA finds

a separating hyperplane between the two classes. A preliminary investigation of this

53

idea evidences that the hyperplane separation leads to a significant compromise in

terms of accuracy. The confusion matrix obtained processing a set of 330035 labeled

features is as follows:  54.20% 8.14%

3.10% 34.56%

 .
The confusion matrix shows that 8.14% of the feature vectors were false positives,

whereas 3.10% were false negatives. These results are about 2 times worse than

Saxena’s original algorithm and the approaches we describe in this chapter. The

fraction of false positives is of particular concern because it may drive the robot to

try grasping objects in points that are not appropriate. We attribute these lower

results to the fact that LDA assumes that the training data is normally distributed,

whereas logistic regression does not. We consequently conclude that although LDA

solves the problem of finding good grasping points in image-space, it provides inferior

results when compared to logistic regression.

A different potential approach would be to learn the quality of a good grasping

point, as opposed to simply learning the binary outcome of whether a point is good

or bad for grasping. Encoding good grasping qualities (e.g., from zero to one) would

result in a regression problem, as opposed to the binary classification methodology

used in this chapter. There is no reason to doubt that a regression problem in this

context can be solved using, for instance, a neural network [17] or support vector

regression [29]. Solving the grasping point problem this way has its limitations,

however. Since regression is harder than classification, the speed and accuracy of

such algorithm would decrease. From a more practical standpoint, acquiring training

data where the grasping points need to be labeled with a value is a lot more difficult.

In other words, it is much easier for a human to label a point as being either good or

54

bad as opposed to having to rate the quality of a good grasping point. Additionally,

although logistic regression is trained on binary data, it returns a probability. Due

to these aforementioned reasons, we do not further investigate regression algorithms

and follow Saxena’s et al. original methodology.

3.2 Dimensionality Reduction for Efficiency

The weakest point of the presented solution, and the one that we address in this

chapter, comes from the authors’ choices to rely on a high dimensional vector of

features and computing them for every pixel in the image. Since each feature requires

its own convolution filter to be computed on the entire image, the algorithm is

extremely time consuming. Indeed, computing the good grasping points in a 640×480

image takes about 8 seconds on current hardware, which renders the robot incapable

of operating in real-time, especially since this timing does not include any path or

grasp planning phases. We note that the poor speed of the algorithm is entirely

attributed to the feature vector computation rather than the classification stage. In

order to compute the feature vectors, a large set of convolution filters are applied

to the entire image, a time-consuming process. Conversely, the classification stage

is extremely fast thanks to logistic regression, where the most complex operation of

Equation 3.2 is a dot product. The authors’ intuition for introducing such a high-

dimensional vector is that a higher number of features encompassed by the feature

vector cannot hurt the accuracy of classification, since any features not contributing

to the classification’s accuracy will be learned during training and used to a less

significant extent. Although this intuition is correct, it is not practical since a large

feature vector is computationally expensive, both during training and execution time,

55

as substantiated in Section 3.3. We note, however, that the features are highly

dependent on each other since they are both similar and spatially close together.

Additionally, it is unnecessary to compute feature vectors for every pixel in an image,

since it will be comprised of many pixels representing unimportant features to the

grasping problem (e.g., table, wall, etc...).

These observations suggest that dimensionally reduction techniques would be

prime candidates to increase the algorithm’s efficiency. Specifically, we propose and

evaluate two potentially inclusive techniques. First, we describe our feature selection

technique, whose aim is to directly decrease the size of the feature vectors, resulting in

significantly less time spent on calculating convolutions. Second, we propose a search

space reduction method, based on findings from feature selection, that efficiently

segments an object out of the original image and reduces the number of pixels that

need to be evaluated.

3.2.1 Feature Selection

Dimensionality reduction techniques have become mainstream tools in machine learn-

ing when high dimensional data sets hide intrinsic lower dimensionalities. A large

number of tools have been developed over the years, each often tailored to the specific

problem being tackled. The reader is referred to [26] for a general introduction about

the topic. One of the most common, yet powerful, techniques is Principal Component

Analysis (PCA) [18]. PCA has already been used in the recent past in the context of

robotic grasping, leading to the well-known concept of eigengrasps [34]. PCA can be

formulated in various and eventually equivalent ways. In essence, given a set of data

points X = [x1,x2, . . .xn] from which the mean has been subtracted in order get a

56

zero-mean data set, we seek a change of bases capturing the dimensions associated

with the highest variance. The matrix X has d rows and n columns, where each col-

umn corresponds to a d dimensional feature extracted from the training images. For

our specific problem, we have 500 features and train on 154188 samples of good and

bad grasping points, resulting in X ∈ R500×154188. With our training data encom-

passed by X, PCA is performed by solving an eigenvalue problem on the covariance

matrix, CX = XXT . Arguably the most important aspect of PCA is that by sorting

the eigenvectors according to their associated eigenvalues (in decreasing order), it is

possible to select a subset of m eigenvectors, e1, . . . , em, retaining a certain level of

variance from the original data set.

Once the eigenvectors have been identified, they can be used in various ways. The

most straightforward approach consists in using them to compute a different feature

vector as a linear combination of the various ei eigenvectors. This corresponds to

projecting the original data set X along the directions identified by them eigenvectors

(a popular example of this procedure is face recognition [79]). In this case, the

dimensionality reduction comes from the fact that only m eigenvectors are used,

effectively reducing the size of each feature vector from d dimensions (e.g., 500)

down to m dimensions (e.g., 9). Unfortunately, this approach is unsuitable for our

problem because it still requires the computation of all features in the feature vector.

Additionally, any speed gained by the lower feature vector dimension is negated by

the matrix transformation required to convert the original d-dimensional feature

vector to the new m-dimensional feature vector. An alternate solution, and the one

we exploit, is to analyze the eigenvectors directly to identify patterns outlining which

components of the original feature vectors contribute to more variability. This is,

essentially, a feature selection process that only works effectively when some features

57

do not vary, or vary insignificantly, regardless of whether the pixel they represent is

labeled as a good or bad grasping point.

Figure 3.2 plots the ratio between the first 100 eigenvalues and the largest one

(λMax) for a training data set comprised of feature vectors representing both good

and bad grasping points. This chart was obtained by analyzing feature vectors of

size d = 500. It is evident from the plot that only a small subset of dimensions

contribute to the variability found in the set of features. In particular, the first 9

eigenvectors retain 99% of the energy found in the data set. Put differently, Figure

3.2 corroborates our presentiment that a lot of redundant information is unnecessarily

encompassed by the feature vectors, whether it be due to the spatial co-occurrence of

features, similar information encoded by different features, or superfluous features.

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

eigenvalues

λ/
λ M

ax

Figure 3.2: Spectrum of the first 100 eigenvalues normalized by the largest eigenvalue

λMax. The reader should note the y-scale is logarithmic.

58

Although Figure 3.2 provides quantitative evidence that dimensionality reduction

is indeed possible, more insightful information can be ascertained by examining the

eigenvectors themselves. Figure 3.3 plots the components of the first eigenvector

normalized by the largest one.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eigenvector coefficients

R
at

io

Figure 3.3: Plot of the normalized coefficients of the eigenvector associated with the

largest eigenvalue.

A periodic pattern is evident, as well as the fact that certain components have

normalized values close to 0. A similar trend is evidenced in the other 8 eigenvectors

accounting for 99% of the energy. Two aspects are especially important:

• the data shows a periodic trend with period 20 (i.e., the number of applied

filters). In particular, it is always the same set of six filters that have normalized

coefficients significantly larger than 0, and always the remaining fourteen filters

that have negligible coefficients. This suggests that feature selection is possible.

Indeed, since the PCA data is comprised of features labeled as both good and

59

bad grasping points, a low eigenvector coefficient for feature i indicates a low

variability in the value of feature i. In turn, a low variability in the value of

feature i indicates that a learning algorithm will not be able to use feature i

effectively when it needs to discriminate between good and bad grasping points.

• the repetitive trend stems from the fact that each feature vector is produced

by concatenating together the energy of the 20 features applied to a 5×5 patch

centered around the pixel to be classified. By analyzing the size of the peaks,

we can deduce that peaks belonging to pixels that are furthest away from the

pixel to classify in the 5×5 window have between 30 and 40 percent lower

coefficients than the highest peak. This observation suggests that the size of

the window may be larger than what is needed in order to account for most of

the variability in the data.

These two observations respectively lead to the formulation of three feature se-

lection hypotheses:

Hypothesis 1 it is possible to identify good grasping points relying on a subset of

filters, which are, based on the eigenvector analysis, the six edge filters.

Hypothesis 2 it is possible to identify good grasping points by only processing a

3×3 window around a candidate pixel rather than a 5×5 window.

Hypothesis 3 by combining Hypotheses 1 and 2, it is possible to identify good

grasping points relying on a subset of filters (i.e., the six edge filters) and only

processing a 3×3 window around a candidate pixel rather than a 5×5 window.

It is worth outlining that if the first hypothesis is verified, the dimension of the

feature space drops from 500 to 150 (i.e., 6 filters applied to a 25-pixel patch), if the

60

second hypothesis is verified it drops to 180 (i.e., 20 filters applied to 9 pixels), and if

both hypotheses hold, the dimension of the feature space drops to 54 (i.e., 6 filters on

9 pixels). These feature selection approaches circumvent the aforementioned problem

with traditional PCA, which requires the original feature vector to be computed and

projected into a lower dimensional subspace at runtime - a time consuming process.

Consequently, we focus on avoiding the extraction of many, possibly insignificant,

features by relying on feature selection.

3.2.2 Search Space Reduction

In the previous section, we have described a feature selection approach to solve the

problem of the algorithm’s computationally expensive feature extraction. It is cru-

cial to note, however, that in a practical scenario, it is not necessary to apply the

algorithm to every pixel in an image, as is done in the original algorithm. Indeed,

a large percentage of the pixels in an image will encompass points that are not part

of the object (e.g., table, wall, floor) and the algorithm, with or without feature

selection, will spend valuable time classifying pixels that are evidently bad grasping

points. We consequently present in this section an efficient algorithm that reduces

the number of pixels for which the aforementioned algorithm will be applied. Evi-

dently, the less number of pixels being considered, the less the number of total filter

convolution operations, and the faster the overall algorithm. We additionally note

an implicit connection between our presented search space reduction technique and

the research area of object segmentation.

The principal methodology exploited for our Search Space Reduction method

relies on the fact that stereo cameras provide a one-to-one relationship between points

61

in the three-dimensional point cloud and pixels in the two-dimensional image (see

[7] for more information the stereo vision process). Consequently, any modifications

made to the point cloud can be transposed to the image. More specifically, and as

an example, removing points from the point cloud can be transferred to image-space

by removing the corresponding pixels from the image. This observation provides a

powerful and efficient tool that allows us to perform operations on both the point

cloud and the image. Given this information, and as aforementioned, we improve

the algorithm’s speed by reducing the number of pixels to classify. We start the

Search Space Reduction technique by extracting the object from the point cloud, the

process of which is highlighted in Figure 3.4.

We start with our 640×480 camera image (Figure 3.4(a)) and compute its cor-

responding point cloud using stereo vision (Figure 3.4(b)). As exemplified by the

Figure, point clouds provided by the stereo camera are inherently noisy. Moreover,

the point cloud necessarily includes not only the object, but also the supporting sur-

face (i.e., table). Hence, right after acquisition, every point cloud is post-processed

to remove noise and points belonging to the supporting surface. In order to remove

points belonging to the supporting surface we use a process based on a previously-

published algorithm [132]. A best-fit plane is fitted to point neighbors in the point

cloud using orthogonal distance regression [140]. If the best-fit plane is approxi-

mately parallel to the robot’s horizontal base, we eliminate all points whose distance

from the plane falls below a given threshold εT (see Figure 3.4(c)). This process

is repeated for different point neighbors until a number of different point neighbors

have been tried or a sufficient number of points have been removed. This technique

applies a simple heuristic, with the evidently valid assumptions that the supporting

surface (e.g., table) is horizontal. While being straightforward, it works well in prac-

62

(a)

0

0.3

0.6

−0.3−0.2−0.100.10.2

0

0.1

0.2

0.3

0.4

Y (m)X (m)

Z
(m

)

(b)

0

0.3

0.6

−0.3−0.2−0.100.10.2

0

0.1

0.2

0.3

0.4

Y (m)X (m)

Z
(m

)

(c)

0

0.3

0.6

−0.3−0.2−0.100.10.2

0

0.1

0.2

0.3

0.4

Y (m)X (m)

Z
(m

)

(d)

Figure 3.4: Figure 3.4(a) shows an object (drill) as seen from the robot’s stereo

camera. Figure 3.4(b) displays the point cloud computed, including both points

belonging to the supporting surface and noise. Figure 3.4(c) shows the point cloud

after points belonging to the supporting surface have been eliminated and Figure

3.4(d) illustrates the final result after outliers have been removed.

tice [131] without assuming explicit knowledge of the distance between the camera

and the object. Therefore, it can also be used in more general experimental condi-

tions where, for example, the robot might change its posture and re-position itself

with respect to the table. Once points belonging to the table have been removed

from the point cloud, an outlier detection algorithm is run to remove spurious read-

ings. To this end, we use a method described by Laurikkala et al. based on quartile

ranges [88]. More specifically, two thresholds εL and εU for lower and upper outlier

63

classification, respectively, are defined as follows:

εL = LowerQuartile− Step (3.3)

and

εU = UpperQuartile+ Step. (3.4)

The Step variable is usually taken, as we do in this chapter, to be 1.5 times the

interquartile range (i.e., UpperQuartile − LowerQuartile), although that number

can be modified depending on the expected noise in the point cloud. If p is a data

point, it is labeled as an outlier and removed from the point cloud if p < εL or

p > εU . We note that we perform this process three times, for each X, Y, and

Z coordinate independently, in order to equally remove outliers in each coordinate

direction. An example of a resulting point cloud is shown in Figure 3.4(d). The

two-step denoising process works well in practice, is extremely efficient, and does

not require human intervention. For more complex situations, more sophisticated

methods for environment detection and outlier detection can be exploited [60, 131].

With the object isolated in the point cloud (Figure 3.4(d)), we can use the one-to-

one relationship between points in the point cloud and pixels in the image to transfer

the operations performed on the point cloud to the image (see Figure 3.5(a)). As can

be seen from the Figure, we have essentially cropped the object in image-space and

consequently already drastically reduced the pixel search space in the image. Using

the information from the Feature Selection process that edge filters are the best to

differentiate between pixels that are good or bad grasping points, we further reduce

the search space by applying a Canny edge detector [24] to the cropped image (see

Figure 3.5(b)). Once again relying on our Feature Selection analysis, which indicates

that a window around the pixel to classify is indeed beneficial, we set our search space

64

region R to the pixels that are in a 3×3 window around each pixel detected as an

edge. In our representative example, the Search Space Reduction region R is shown

in Figure 3.5(c). Once the region has been computed, the original algorithm, with or

without feature selection, can be applied to the search space region to discover the

good grasping points. This process is highlighted in Figure 3.5(d), which shows the

results from the Canny edge detector (gray pixels), the pixels with a good grasping

point probability higher than 90% (black pixels), and the best good grasping points

(i.e., the pixel with the highest probability of being a good grasping) as a gray circle.

(a)

(b) (c) (d)

Figure 3.5: Step by step example of the Search Space Reduction component, after

the object has been isolated in image-space (Figure 3.5(a)). The results of applying

the Canny edge detector, the search space region, and the outcome of the classifying

algorithm where dark pixels have 90% probability or higher of being good grasping

points are shown in Figures 3.5(b), 3.5(c), and 3.5(d), respectively.

65

3.3 Experimental Results

In order to validate the hypotheses formulated for the proposed Feature Selection

and Search Space Reduction methods, we performed a series of experiments. First,

we compute the accuracy of finding good grasping points for trained objects, by

using synthetic data for training and classifying. Second, we compute the accuracy

for novel objects, by training the algorithm on the synthetic data and classifying

points on images coming from our stereo camera. Third, we evaluate the tradeoff

between speed and accuracy by juxtaposing our accuracy results with timed data

from our experiments. Finally, we implement the proposed accelerated techniques

on our formerly described robotic system.

The entire synthetic data is comprised of 13247 labeled images, divided into the

following nine object classes: cereal bowl, eraser, martini glass, mug, stapler, tea

cup, pencil, two tea cups, and two mugs (see Figure 3.6). Each object class has

a number of images ranging from 120 to 2001. We train our algorithm using 20%

of all training images, a number chosen based on both the speed of the training

and the empirical observation that 10%-20% of the images captured enough varied

information about the data. Although we are using 20% of all images from the

training set, the size of the training data is much bigger since each image encompasses

many good and bad grasping points. More specifically, the training data is comprised

of a set of 154188 feature vectors, with the ratio of good-to-bad grasping points

being one-to-one (i.e., 50% of the feature vectors represent good grasping points,

with the other 50% representing bad grasping points). The training is performed

for the original algorithm (500 features) and for each of the three Feature Selection

hypotheses: Hypothesis 1 (150 features), Hypothesis 2 (180 features), and Hypothesis

66

3 (54 features). Consequently, the dimension of the training data X for the original

algorithm, Hypothesis 1, Hypothesis 2, and Hypothesis 3 is R500×154188, R150×154188,

R180×154188, and R54×154188, respectively. Additional training for the Search Space

Reduction algorithm is unnecessary since it can use either the original algorithm

or any of the Feature Selection hypotheses. Specifically, for all the results shown

in this section, we use the Search Space Reduction along with Hypothesis 2, after

empirically determining that it provided the best accuracy-to-time ratio.

Figure 3.6: Object classes used in the experiments, with both synthetic (left) and

real (right) images.

3.3.1 Accuracy for Trained Objects

In this experiment, each algorithm’s ability to learn directly from the training data

is tested by classifying the same objects that the algorithms were trained on. Specif-

ically, since the algorithms were trained using 20% of the images, the remaining 80%

are used for classification. For each algorithm and each image used for classification,

we assign each pixel a probability of being a good grasping point and select up to

67

15 pixels with highest probabilities, under the constraint that the probabilities have

to be greater than 90% (in some rare cases, less than 15 pixels in an image have a

probability higher than 90%). Since the images have good grasping points labeled,

the accuracy measure trivially becomes the total number of correctly classified pixels

divided by the total number of pixels being classified. In other words, we are com-

puting the percentage of true positives, where false positives lower the algorithms’

accuracies. We note that by only attempting to classify the best 15 pixels in an

image, we are trying to replicate a robotics scenario where only a subset of the pixels

classified as being good grasping points would actually be exploited.

0

10

20

30

40

50

60

70

80

90

100

Cereal
Bowl

Eraser Martini Mug Stapler Tea Cup Pencil Two Mugs Two Tea
Cups

All

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Original Algorithm Hypothesis 1 Hypothesis 2 Hypothesis 3 Search Space Reduction

Figure 3.7: Accuracy measure for trained objects. Results are shown for each algo-

rithm, each object, and the combination of all the objects (right-most column).

The results of the experiment are shown in Figure 3.7. As can be seen from the

figure, the results corroborate our hypotheses. More specifically, when compared to

the original algorithm, we can observe that Hypothesis 2 (i.e., reducing the size of

the window) has only a small negative effect on the accuracy. Hypothesis 1 (i.e.,

68

reducing the number of filters) and, as a result, Hypothesis 3 (i.e., the combination

of Hypothesis 1 and 2) have slightly lower accuracies than Hypothesis 2, explained

by the fact that a small portion of the good grasping points for some objects were

influenced by the features removed. The Search Space Reduction technique provides

similar results to Hypothesis 1. Overall, the modifications proposed to the original

algorithm only lower its accuracy by 3.81% in the worst case.

3.3.2 Accuracy for Novel Objects

Having verified the validity of our hypotheses on the same objects that were trained

on, we move on to novel objects by executing our algorithm on real data. The real

data, collected directly from our robot’s camera, is significantly different than the

training data, being comprised of a bottle, a calculator, a very small cup, a hammer,

a shampoo bottle, and tape (see Figure 3.6). We do not retrain the algorithm, instead

relying on the training procedure acquired in the previous experiment (i.e., 20% of

training data from synthetic images). For classification, a set of 30 different images

for each novel object is used and encompasses different poses and light conditions.

The results of the experiment are displayed in Figure 3.8, which shows a very

similar trend as the one in Figure 3.7, although the accuracies of every algorithm

drops by about 5%. Alike the previous experiment, reducing the window size (Hy-

pothesis 2) has very little effect on accuracy while reducing the filters (Hypothesis

1) has a slightly more, yet still reasonable, negative effect on accuracy. Once again,

the Search Space Reduction behaves similarly to Hypothesis 1. When all objects

are considered, the modifications proposed to the original algorithm only lower its

accuracy by 5.12% in the worst case.

69

0

10

20

30

40

50

60

70

80

90

100

Bottle Calculator Cup Hammer Shampoo Tape All

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Original Algorithm Hypothesis 1 Hypothesis 2 Hypothesis 3 Search Space Reduction

Figure 3.8: Accuracy measure for real objects, trained on synthetic data. Results

are shown for each algorithm, each object, and the combination of all the objects

(right-most column).

These accuracy experiments clearly confirm that our approach to dimensionality-

reduction, in this context, works for objects that have been trained on and that are

completely novel. It is important to note that objects have multiple good grasping

points and that these algorithms only need to find a few good ones to be successful.

Figure 3.9 attempts to illustrate this fact with a couple of representative examples

from our real images representing novel objects. As can be seen from these repre-

sentative snapshots, although the best grasping point generated by our methods are

sometimes different, they are part of the subset of points generated by the original

method.

70

Figure 3.9: Two real objects, a bottle and a hammer, with black and white pixels

showing all the good grasping points for the original method (1st column) and the

best grasping point for Hypothesis 1 (2nd column), Hypothesis 2 (3rd column),

Hypothesis 3 (4th column), and the Search Space Reduction (last column).

3.3.3 Speed-Accuracy Tradeoff

As suggested earlier, the principal reason for dimensionality-reduction is to speed up

the entire process in order to allow the robot to plan grasps in real-time. Although

less crucial, lowering the time that it takes to train is an interesting benefit since it

provides an opportunity for online learning. We have shown, in the previous exper-

iments, that our Feature Selection and Search Space Reduction modifications have

little negative effect on the overall accuracy of the algorithm. We then performed

timing experiments to demonstrate the speed gains due to these modifications. Fig-

ure 3.10 shows the speed of the algorithm as a function of the feature vector size.

The displayed timing information refers to a C++ implementation using OpenCV for

71

image processing and executed on a 3GHz Linux system. The time is measured from

the acquisition of a 640×480 image to the determination of all good grasping points

within that image (i.e., every pixel in the image is classified). Evidently, and as sup-

ported by the plot, a decrease in the number of features results in a linear decrease

in the algorithm’s computation time. The dimensionality-reduction’s influence on

speed is substantiated by two operations of the algorithm, namely the application

of filters (i.e., less filters to apply) and the logistic regression (i.e., smaller vector

sizes). By reducing the feature vector size from 500 to 54, the computation time of

the algorithm decreases from about eight seconds down to one second.

50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

Number of Features

C
la

ss
ifi

ca
tio

n
Ti

m
e

(s
)

Figure 3.10: Average computation time to identify all good grasping points in a

640×480 image, as a function of the number of features.

An additional benefit of Feature Selection comes from the fact that by reducing

the number of filters we expect a time reduction not only for classification but also

for training. Figure 3.11 shows the time it takes to train the algorithm, given that

our training data is comprised of 154188 feature vectors. The timing information

72

was acquired on a 2.6GHz Windows system and refers to a MatLab implementation

of the generalized linear model used to solve the logistic regression problem. The

Figure shows the same linear trend as for the classification timings, where a decrease

in the size of the feature vector results in a decrease in the learning time. Similarly

to the previous figure, decreasing the number of features from 500 to 54 reduces the

training time by a factor of 10.

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

Number of Features

Tr
ai

ni
ng

 T
im

e
(s

)

Figure 3.11: Average computation time to learn the logistic regression coefficients

from training data, as a function of the number of features. The plot refers to a

training data set of 154188 feature vectors.

Having evaluated the time complexity of the Feature Selection process, we now

turn our attention to the Search Space Reduction complexity. As previously noted,

after the search space of pixels has been reduced, any of the Feature Selection hy-

potheses can be used (the original algorithm can also be used). The results pre-

sented in this section perform Hypothesis 2 (i.e., reducing the window size to 3×3)

73

in the reduced search space, since we empirically determined that it provided the

best accuracy-to-time ratio among all of the hypotheses and original algorithm. The

Search Space Reduction procedure results in a dramatic reduction of the pixel search

space. Indeed, an original search space of 307200 pixels is reduced, on average, to

38339 pixels by cropping the object and to 12429 pixels by searching the 3×3 window

around each pixel labeled as an edge. As shown in Table 3.1, the aforementioned

Search Space Reduction procedure lowers the average computation time from 3.25

seconds to 212 milliseconds (i.e., 93.5% reduction). We note that these results are

conditioned on our application and that running the algorithm for images with mul-

tiple objects will evidently take longer. In those cases, our approach can nevertheless

be applied, still providing a time reduction, although less significant.

Component Time (ms)

Image Acquisition 40

Denoising 42

Pixel Selection 130

Total 212

Table 3.1: Average Search Space Reduction computation time, divided by each com-

ponent.

We conclude this section by discussing the scalability of the algorithm, where

we want to study the effect of an increased number of training objects on the time

complexity of the algorithm. For the training stage, increasing the number of data

points results in a linear increase in the time it takes to compute the logistic regression

coefficients. Consequently, adding too many new training instances into the training

data could result in a significant increase in training time. We note, however, that

74

the training is very fast and that it would take an incredible amount of new features

for the time complexity to pose problem. Indeed, it takes between 20 and 200 seconds

to process 154188 training feature vectors, depending on the size of the feature vector

(see Figure 3.11). In this chapter, the 154188 training feature vectors only account

for 9 object classes, but they could easily represent a lot more object classes (i.e.,

training the algorithm with 100 different object classes would still yield 1541 training

feature vectors per class, without increasing the time it takes to train). Adding to

this observation the fact that the training is an offline step that only needs to be

performed once, it is clear that this algorithm scales well for its training phase.

Adding more feature vectors would have no effect for the classification stage of the

algorithm since the size of the logistic regression coefficients would be the same and

the complexity of the logistic regression equation would remain unchanged.

3.3.4 Robot Validation

The proposed algorithm has been implemented on the robotic torso described in Sec-

tion 1.4. For the experimental purposes relevant to our validation, we used only one

arm, namely the right one, and the camera was kept at a fixed position, so that possi-

ble variations in performance can be attributed to the algorithm identifying grasping

points, and not to changes in the operating conditions. The control software acquires

one image from the camera, computes a set of good grasping points according to the

techniques formerly described, and then selects the upper-rightmost one. We define

a good grasping point as a point whose probability of being a good grasping point is

higher than 90%. Out of the set of good grasping points, the upper-rightmost one is

chosen because the object will be approached from the right by the right manipulator

75

and to provide the maximum amount of clearance possible from the table. Although

this is evidently a crude heuristic that is not a realistic solution for many robotics

scenario, we note that the focus of this chapter is to find good grasping points in

image-space and this section serves as a proof of concept that the algorithms pre-

sented are directly applicable to real robot platforms. The more difficult problem of

finding the right manipulator approach and grasp orientation will be discussed in the

next chapter. Given that we have selected the best grasping pixel, its 3D coordinate

is inferred from a typical three-step stereo process involving 1) the rectification of

the images so that they are row-aligned, 2) finding pixel correspondences between

the left and right images using a block matching algorithm, and 3) triangulating the

3D location of a pixel. The detailed mathematical derivation for the stereo vision

process can be found in [7]. The stereo process does not guarantee that every pixel in

the image can be triangulated to a 3D point (e.g., if the correspondence between the

left and right images could not be found). If the 3D point cannot be computed, two

solutions are available. First, the next best grasping point can alternatively be used.

Second, the point can be deduced by interpolating the 3D positions of the pixel’s

neighbors. Although we provide two different solutions to this potential problem, it

rarely arises because the correspondence problem works very well, resulting in dense

point clouds. The 3D point is passed to the IK solver that computes an appropriate

manipulator’s configuration to approach the object.

We performed a simple power grasp where the manipulator is moved to the best

grasping point and the end-effector closes all its fingers until torque limits are reached,

essentially trying to create a power grasp. For this experiment, two trained objects

(e.g., an eraser and a round mug) and five novel objects (e.g., plastic and steel bottles,

a shampoo bottle, an hexagonal mug, and a box) were presented under different

76

locations, orientations, and lighting conditions. Each object was placed in one of 10

random configurations in the manipulator’s reachability space and the manipulator

tried to grasp it. The grasp is deemed to be successful if the robot is capable of

lifting the object above the table by at least 10 centimeters for at least 30 seconds.

It is worthwhile to mention that, in order to preserve the same operating conditions

for each method, clear tape was used on the table to make sure that the objects were

positioned in the exact same manner. Although the results presented in this section

followed this protocol, we stress the fact that the algorithm was also tested in more

unstructured approaches (e.g., by allowing visitors to place an object in front of the

robot), for which we cannot provide useful experimental results due to the lack of

cohesion between each trial. The results of the experiments are shown in Figure 3.12,

from which two main observations can be made. First, the grasp success rate of all

algorithms is not only high, but also follow a similar pattern to the accuracy results

for the experiments performed offline, without the robotic platform (see Sections 3.3.1

and 3.3.2). Indeed, the average grasp success rate across all objects is higher than

85% for any algorithm. In addition, the proposed techniques perform only slightly

worse than the original algorithm, with rates lower by only 2.85%-5.71%. Second, all

of the objects except for the mugs had the same grasping success rate regardless of

the technique used. The mugs had very different outcomes, mainly due to our simple

power grasp technique that does not take into account the proper finger positioning

with respect to the mug’s handle. We note that for the simple scenario presented,

which requires grasping an object in an uncluttered environment, our algorithm is

similar, in terms of success rate, with other approaches (both model- and feature-

based). Our algorithm is, however, a lot more efficient and capable of running in

real-time, when others are not or require special hardware or implementations.

77

0

10

20

30

40

50

60

70

80

90

100

Eraser Round Mug Plastic Bottle Steel Bottle Shampoo
Bottle

Hexagonal
Mug

Box All

G
ra

sp
 S

u
cc

e
ss

 R
at

e
 (

%
)

Original Algorithm Hypothesis 1 Hypothesis 2 Hypothesis 3 Search Space Reduction

Figure 3.12: Grasp success rate for the robot validation. Results are shown for each

algorithm, each object, and the combination of all the objects (right-most column).

Figure 3.13 shows an example grasp acquired by the robot grasping the most

difficult object in our experiment: the mug. Specifically, the figure shows how the

different hypotheses proposed for Feature Selection provide different, yet successful,

grasps for the object. Although this is a representative example, this behavior was

encountered many times while performing the experiments and stems from the fact

that there are many equally valid grasping points that can be chosen.

3.4 Conclusions

In this chapter, we have presented a detailed study and improvement of a recently

proposed algorithm for computing good grasping points from images [135]. After

having implemented the algorithm and performed an analysis based on principal com-

ponents, we formulated three Feature Selection hypotheses and proposed a Search

Space Reduction algorithm with the goal of reducing the original algorithm’s time

78

Figure 3.13: Example of the robot grasping a mug with each of the Feature Selection

hypotheses. For each picture, the mug started from the same configuration.

complexity. The experiments performed on the Feature Selection hypotheses uncov-

ered interesting findings, the most important of which being that, out of 20 different

filters, only the six edge filters significantly contribute to the classification of good

grasping points. This finding is logically sensible since humans tend to grab objects

by their edges and the training data exploited for learning is labeled by humans.

The verification of the proposed algorithms lead to a dramatic reduction in the

dimension of the feature vector and search space. Our accuracy measures show an

attractive tradeoff between the inevitable loss of accuracy and decreased computation

time. This finding has two main consequences. Firstly, the overall computation time

to identify good grasping points in a 640×480 image drops from about 8 seconds

79

to 212 milliseconds, thus paving the way to real-time object grasping, without the

need for special hardware. Secondly, and not less importantly, the training time also

dramatically drops, since the regression coefficients can be computed much more

quickly thanks to the reduced feature vector size. This finding is particularly relevant

for future robotics research, where robots will need to start learning online in an

unsupervised fashion, which, in its simplest form, requires running the training stage

many times to integrate the experience it acquires while successfully or unsuccessfully

trying to grasp new objects.

The implementation on the real robot additionally provided an interesting and

fundamental future research direction. Given a target grasping point, the problem

of computing a good manipulator orientation that will result in a successful grasp

is a difficult problem for feature-based methods that cannot rely on explicit object

models. The reader should note the difference between these two different problems.

This chapter deals with the problem of computing good grasping points. In other

words, the problem is to determine where the hand and the object to grasp should be

in contact with each other. Once one of these points is chosen, there is the additional

problem of moving the hand to a vantage point from which chances of successfully

grasping the object at the given point are maximized. As the focus of this chapter

is about efficiently computing good grasping points, we have opted for a simplified

motion strategy. The next chapter, however, follows a similar supervised learning

approach using extracted object features to solve the problem of finding a good end-

effector orientation that will more robustly allow the manipulator to successfully

grasp the object.

80

CHAPTER 4

Grasp Synthesis

As presented in the previous chapter, we have shown that exploiting machine learning

techniques to solve the grasping problem provided the benefit of generalization from

training data, yielding a system that does not rely on 3D models. The method

presented in Chapter 3 identifies a good grasping point in image-space but, in order

to successfully grasp an object, the robot additionally needs to approach it with

the correct orientation. Even if the robot finds a perfectly good grasping point,

approaching it with the wrong orientation will result in a failed grasp. In this chapter,

we focus on the second part of the grasping problem, namely finding an appropriate

orientation for the end-effector in order to successfully grasp an object. As our

everyday experience suggests, given a certain point to grasp on an object, we may

approach it using different orientations. Certain orientations are more appropriate

than others but it is likely that many different orientations still result in a successful

grasp, an observation reflecting the one-to-many mappings of this problem. Similarly

to the previous chapter, our method exploits supervised machine learning. The

goal is to determine a correct approaching configuration to grasp a potentially novel

object by generalizing from training data provided by a human operator. Moreover,

emphasis is given to implement a system that is robust to noise and invariant to

scale, translations, and rotations of the objects being considered.

81

Formally, assuming that the robot is equipped with a stereo camera capable of

generating a picture and a point cloud of an object to be grasped, the goal of a

grasp planner is to determine the pose and orientation for the end-effector so that

the robot can successfully grasp it. Since the image processing method presented in

Chapter 3 provides the end-effector’s pose, we focus in this chapter on calculating

the end-effector’s orientation, assuming that its position is already given. The given

position can come from the algorithm presented in Chapter 3, but it can also come

from a human operator, when, for example, the robot operates in a semi-autonomous

environment with a human in the loop. We solve this problem by extracting appro-

priate end-effector orientations from training data acquired by a human operator

in the form of positive examples showing how the robotic arm should approach a

certain number of objects in order to successfully grasp them. At run time, a three

layer approach is used where the first two layers reduce the search domain and the

last layer identifies an appropriate example from the training set. The first layer

classifies the object to be grasped into one of the objects used during training. This

problem is solved using a multi-class Support Vector Machine (SVM). Next, in the

second layer, the orientation of the object to grasp is determined using plane fitting

and central image moments. Finally, a nearest neighbor search identifies the most

similar example in the training data matching the closest object class and orientation

determined in the first two steps.

Combining the method presented in this chapter with the one from Chapter 3

produces a complete grasp planner, which we show to be effective and practical in

the experimental section of this chapter. Indeed, our robotic platform successfully

manages to grasp a variety of trained and novel objects, with the end-to-end pro-

cessing time being on the order of half a second. We remark that the principal goal

82

and consequent contribution of this work come from the ability to compute, in real-

time, valid grasps for untrained objects given a single stereo image. Consequently,

we perform experiments without regards for planning in cluttered environments or

dealing with partial occlusions since they are beyond the scope of this chapter.

4.1 Problem Formulation

The grasping problem is, in general, very unconstrained. In order to formalize our

contribution we make some operative assumptions. We assume the robot is tasked

with the goal of grasping an object placed on a planar surface in front of the robot

(e.g., a table). The object to be grasped can be reached by the robot, strictly relying

on one of its manipulators. In other words, we do not consider situations where the

robot may need to move to get closer to the object it has to grasp, neither do we

consider situations where it needs to squat or stand up. It is assumed the robot arm

has n degrees of freedom, with n ≥ 6. Let q = (q1, . . . , qn) indicate a vector of n

joint values specifying the manipulator’s configuration. The object to be grasped

has a size such that it can be grasped using one arm and a power grasp. We do

not make any assumptions about the shape of the object, nor about its color. We

do not make assumptions about its location or orientation, as long as it is within

the arm’s reachable space. The robot we consider is equipped with a stereo camera,

which provides both an image Ig of the object as well as a point cloud Pg with depth

estimates expressed with reference to a known Cartesian global frame.1 However,

the stereo camera is not used to reconstruct a three-dimensional model of the object

1Throughout the chapter, subscript g is used to indicate data referring to the object to be
grasped.

83

on the fly in order to match it against a library of models. Starting from Ig and

Pg, our method outputs a configuration q = (q1, . . . , qn) such that if the arm attains

such configuration and closes its fingers, it successfully grasps the object. This goal

can be achieved by first computing the 4 × 4 transformation matrix specifying the

pose and orientation of the end-effector, and then computing q via IK. Let TE be

the matrix specifying the end-effector’s pose and orientation[38]

TE =


px

R py

pz

0 0 0 1

 (4.1)

where R specifies the rotation and pg = (px py pz)
T provides the position. Given

image Ig, Chapter 3 computes a grasping point pI in image space (i.e., it identifies a

pixel in Ig where the object should be grasped at). Since the stereo camera provides

both the image Ig and the corresponding point cloud Pg, and there is an inherent one-

to-one relationship between points (in Pg) and pixels (in Ig), it is possible to extract

the pixel’s corresponding spatial coordinates, pg ∈ R3, from Pg given pI . Hence

we assume that the sub-problem of determining pg is solved, and this is indeed the

contribution presented in Chapter 3. The focus of this chapter, then, is to compute

the rotational component R, under the assumption and constraint that the pose

component of TE is already provided. The above consideration leads us to formulate

our question as the design of an algorithm that computes a function

f : I × P × R3 → SO(3) (4.2)

where I is the space of images, P is the space of point clouds, and SO(3) indicates

the special orthogonal group in R3 (i.e., the space of three-dimensional rotations).

84

We conclude this section stressing that, in our formulation, f is a function of the

image Ig, of the point cloud Pg, and of the point pg. In other words, we do not have

control over how pg is chosen, since it is the algorithm’s output presented in Chapter

3 (pg could alternatively be provided by another method or a human in the loop).

Although it is true that pg is actually a function of Ig and Pg, and then one could

write R = f(Ig, Pg) (rather than R = f(Ig, Pg, pg)), the algorithm we propose in

general would work even when pg is chosen independently from Ig and Pg, as long as

it is a valid grasping point. It should also be noted that we require the algorithm to

compute R given a single view point. In other words, it is not possible to observe

the object from different vantage points as is done in other methods [53].

The system we present is scale, rotation, and translation invariant for objects.

Put differently, the algorithm can cope with objects placed at different locations and

rotations in the reachable area, and the same objects of different sizes will not affect

the algorithm’s outcome. Specifically for rotational invariance, we consider invariance

to rotations about the axis orthogonal to the plane where the object is placed (we

force such axis to be z). Rotations about other directions can be accounted for by

providing additional training data encompassing those directions, but this extension

will not be described in this chapter.

4.2 Supervised Learning Algorithm

In this section we first give a high-level overview of the algorithm and we then care-

fully describe its individual components in greater detail. The method we propose

works by generalizing from a set of training instances showing how different objects

could be grasped. Every training object, also referred to as a class, is presented to

85

the robot in different orientations around the z axis. During training, a picture of the

object is taken, as well as its corresponding point cloud, and the orientation of the

object is manually recorded. In addition, for a subset of each object’s orientation the

robot is also provided with information regarding a good end-effector’s orientation

in order to grasp it. This information is provided by a human supervisor placing the

robot manipulator at appropriate grasping points.

Classification Orientation
Estimation

Nearest
Neighbor Search

Inverse
Kinematics

 =(q 1,q2,...,qn)

Class M g R g

Robot Stereocamera

Point
Cloud

P g

Image
Ig

Grasp Point
Computation

pg

Training Data

q

Figure 4.1: A schematic representation of the grasp synthesis algorithm. The block

labeled as “Grasp Point Computation” is implemented as described in Chapter 3.

The three layers and the grasp point computation blocks provide an orientation and

pose for the end-effector that are then used to compute the manipulator’s configu-

ration thanks to IK.

At run time, the stereo camera starts by capturing an image Ig and a point

cloud Pg of the object to be grasped (see Figure 4.1). Ig and Pg are preliminarily

used to compute an appropriate grasping point pg using the algorithm presented in

Chapter 3. Then, the problem of computing the correct orientation is solved in three

stages referred to as layers since they progressively prune the training data’s search

space in order to determine the end-effector’s orientation. The first layer performs

86

a classification using a multi-class SVM, whose goal is to classify the object to be

grasped into one of the classes used during training. After the object class has been

identified, the orientation of the object to be grasped is determined, in the second

layer, using a plane fitting technique and central image moments matching. Finally,

in the third layer, the object’s class and orientation is used with a nearest neighbor

search in the training data to deduce the correct approach orientation. The nearest

neighbor search takes place in a reduced search space taking into account the results

of classification, estimated orientation, and grasping position pg. Therefore, this final

step is extremely efficient. At last, the position pg and orientation Rg are provided

to an IK solver that computes an appropriate joint configuration q for the robot.

4.2.1 Training Data

From the previous description, it should be clear that training data is used for three

purposes: object classification, orientation estimation, and nearest neighbor search.

These different sub-problems are solved thanks to two sets of training data. To solve

the first two, classification and orientation estimation, we train the system using k

instances (Ici , P
c
i , α

c
i) where Ici is an image of the object to be grasped, P c

i is the

corresponding point cloud, αci is the manually labeled orientation of the object with

reference to a predetermined global frame, and c is the label of a particular object

class. For the third sub-problem (i.e., the nearest neighbor search), we consider a

subset of orientations for each class, and for each of these we record a number of

appropriate robot grasping configurations. The training data in this case consists

of sets (P c
i , α

c
i ,T

c
Ei), where P c

i , and αci are defined as before, while Tc
Ei is the end-

effector pose and orientation demonstrated to the robot by a human operator. It is

87

important to stress that for a fixed object class c and orientation αci the operator

provides multiple valid grasping end-effector configurations. Therefore, there will be

numerous training instances (P c
i , α

c
i ,T

c
Ei) with the same P c

i , and αci , but different

Tc
Ei. We note that a given Tc

Ei can be decomposed into a corresponding position pcEi

and corresponding orientation Rc
Ei.

Training is performed using the six different objects shown in Figure 4.2. Train-

ing objects differ in size, shape, and color. Evidently, a richer set of training objects

is expected to improve the system’s performance, but we have experimentally deter-

mined that already with m = 6 different classes the algorithm performs well and is

able to generalize.

Figure 4.2: A coffee can, a drill, a mouth wash bottle, a mug, a detergent bottle,

and a plastic bottle were used for training. While discussing the results we will refer

to them as object 1 to 6 (with 1 being the leftmost one).

4.2.1.1 Training for Classification and Orientation Estimation

For the classification and orientation estimation components, we collect k instances

(Ii, Pi, αi). Since we design an algorithm invariant to the objects’ rotation, every

object is considered in 36 different orientations during the training stage. In other

words, for every object, 36 different values for αi are considered. More precisely,

every object is rotated about z in increments of 10 degrees. Therefore a total of

88

k = 6 × 36 = 216 instances are acquired to solve the classification and orientation

estimation components. These will be indicated as Ici , P
c
i , and αci , with 1 ≤ i ≤ 36

and 1 ≤ c ≤ 6. The point clouds, which are intrinsically noisy due to errors in the

stereo vision, are processed as described in Section 3.2.2.

4.2.1.2 Training for Nearest Neighbor Search

The most time consuming offline training step consists of recording valid end-effector

poses and orientations associated with the training objects. For a given object at a

given orientation, a human operator moves the robot arm to a variety of appropriate

grasping configurations around the object to be grasped, as shown in Figure 4.3.

For our experiments, this task was facilitated by the fact that our robotic platform

features a “gravity compensation mode” that allows a human to effortlessly dictate

the manipulator’s configuration. Once a valid pose is achieved, the human operator

records the manipulator’s configuration. By reading the manipulator’s joint values

and computing FK, the end-effector transformation matrix TE can be computed and

recorded. Since this process is the most time consuming, it is performed only for a

subset of the orientations used in the previous data set. Specifically, this procedure

is repeated only for 12 of the 36 views, in increments of 30 degrees about the z

axis. However, and as anticipated, multiple grasping configurations are recorded for

the same object configuration. Therefore, this stage produces training instances of

the type (P c
i , α

c
i ,T

j
Eic) where 1 ≤ c ≤ 6, 1 ≤ i ≤ 12, and j varies between 126

and 525 depending on the specific object class being considered. Typically, more

training points are provided for highly asymmetric objects, and less for symmetric

objects. According to this notation, Tj
Eic is the j-th grasping example provided

89

when considering the c-th object class in the i-th orientation. Overall, a total of

23984 instances (Ici , P
c
i ,T

j
Eic) were collected, and Table 4.1 gives more details on the

number of training samples for each class.

Figure 4.3: A human teaching the robot to grasp a detergent bottle (left), a plastic

bottle (center), and a drill (right).

4.2.2 Layer 1: Classification

The classification sub-problem is solved using a multi-class SVM [18, 72]. A classi-

fication problem with m classes can be solved in two ways. In the one-against-all

paradigm m SVMs are used to separate every class from the remaining m−1 classes.

Alternatively, in a one-against-one framework,
(
k
2

)
SVMs are trained to separate

each couple of classes from each other. Preliminary results showed that the one-

against-one methodology outperforms the other method in terms of accuracy, a fact

corroborated by Hsu et al. in [62]. In addition, the one-against-one approach might

seem more computationally expensive since it requires training a greater number of

SVMs, but it is actually faster to train and classify because every individual clas-

90

Object Object Number Number of Grasping Examples

Coffee can 1 5607

Drill 2 3623

Mouth wash bottle 3 3619

Mug 4 1795

Detergent bottle 5 4419

Plastic bottle 6 4885

Total 23984

Table 4.1: Number of grasping examples provided for each of the six object classes

considered (see also Figure 4.2). Each object is assigned a number in order to simplify

the experimental discussion.

sification problem is simpler. Consequently, a clear competitive advantage, both in

terms of speed and accuracy, is obtained by using the one-against-one multi-class

SVM as opposed to the one-against-all method. In our implementation, every SVM

uses a polynomial kernel, since preliminary experiments suggested that it performs

better and faster than when using a kernel based on radial basis functions.

The use of SVMs to classify an object starting from a point cloud is not straight-

forward. Indeed, SVMs require a constant size feature vector that is associated to

each training and classification object. However, the various point clouds repre-

senting different objects of different sizes include a variable number of points and,

therefore, an additional processing step is necessary in order to extract a constant

size feature vector from every point cloud. Hence, we need a method that, given a

point cloud P c
i , returns a fixed-size feature vector F c

i . This conversion is performed

for all point clouds, both for training data and for data acquired at run time.

91

Similarly to other publications [51, 149], for each point cloud P c
i we first generate

a new point cloud, P ′ci , with zero mean. Indicating with M c
i ∈ R3 the Euclidean

mean of P c
i , the new point cloud P ′ci is obtained from P c

i by subtracting M c
i from

all its points. Mathematically, ∀p ∈ P c
i , p′ = p −M c

i , where p′ ∈ P ′ci . Zero mean

point clouds are created with the intention of rendering the algorithm translation

invariant. Indeed, the point clouds lose any global spatial information, which was

originally dependent on the locations of the camera and the object. It is worthwhile

to mention that the new point clouds have the added benefit of allowing training in

a much more open environment, where objects can arbitrarily be placed in front of

the robot. Having achieved translation-invariance, we convert the point clouds P ′ci

to fixed-size feature vectors F c
i using Algorithm 1. Specifically, the feature vector F c

i

is a gridSize× gridSize matrix, stored in row-major vector format. Every element

in the matrix summarizes the information of a set of points in the point cloud: the

value stored in one element is the average of the points lying in an associated region.

One can think of this process as layering a grid on top of the depth image acquired

through stereo vision and taking the mean of all the points, in Cartesian coordinates,

that are included in each cell. In order to remain fixed-size across all objects, the

grid is fitted to the minimum (minRow,minCol) and maximum (maxRow,maxCol) pixel

coordinates of the object. Consequently, the number of pixels encompassed by each

cell in the grid (∆Row,∆Col) adapts to the object. We use a gridSize of 50, yielding

2500 cells and a constant feature vector size of 7500 (each cell is comprised of three

Cartesian components). It is important to note that this encoding not only creates

a fixed-size feature vector necessary for SVM but also makes our algorithm scale

invariant. Indeed, the grid automatically adjusts to changes in object size that could

occur from being at different distances from the robot’s camera. We conclude this

92

section by acknowledging that other methods could be used to create F c
i such as

circular and radial sampling filters [77]. These methods, however, have not been

investigated because the simple approach we sketched is fast and gives satisfactory

results.

Algorithm 1 Computation of F c
i from P ′ci

1: gridSize← 50, F c
i ← 0, Count← 0

2: ∆Row ← b(maxRow−minRow)/gridSizec // Number of row pixels per cell

3: ∆Col← b(maxCol−minCol)/gridSizec // Number of column pixels per cell

4: for all p ∈ P ′ci do

5: r ← b(Row(p)−minRow)/∆Rowc //Row of cell ∈ F c
i encompassing p

6: c← b(Col(p)−minCol)/∆Colc // Column of cell ∈ F c
i encompassing p

7: F c
i (r × gridSize+ c) = F c

i (r × gridSize+ c) + p // Sum of all ps in cell

8: Count(r × gridSize+ c)← Count(r × gridSize+ c) + 1 // Pixels in cell

9: end for

10: for k = 1 to size(F c
i) do

11: F c
i (k) = F c

i (k)/Count(k) // Compute the mean of the points in each cell

12: end for

4.2.3 Layer 2: Determining Object Rotation

Layer 1 classifies the object to be grasped into one of the m classes, which we iden-

tify as class M . In the second layer, starting from Pg and M we determine the

orientation of the object to be grasped, αg. This is done by contrasting Pg with

PM
1 , PM

2 , . . . , PM
36 . In other words, we are restricting the search domain to class M

only. Before introducing the method, we reiterate that we are only concerned with

93

identifying the orientation about the z axis. This is consistent with the approach we

took while collecting training data.

The problem of orientation estimation is solved using a plane fitting technique

complemented by a central image moment search to deal with symmetries. To be

precise, for every point cloud in the training set, we preliminary compute the best-fit

plane (see Figure 4.4) using orthogonal distance regression [140] and store its normal.

Let N c
i be the normal to the best-fit plane computed for P c

i . At run time, given Pg,

we compute its best-fit plane using the same technique, and let Ng be its normal.

(a) (b)

Figure 4.4: Figure 4.4(a) shows two overlapping point clouds for an object (drill)

placed at two different orientations. Figure 4.4(b) shows the computed best-fit planes

that clearly differentiate the two orientations.

A set of 6 initial estimations for αg is determined as follows. We start with the

vector

S = sorti

(
arccos

(
NT
g N

M
i

||Ng||||NM
i ||

))
(4.3)

where NT
g is the transpose of vector Ng and the function sort orders the values in

increasing order, returning a vector of indices. In other words, αS[1] is the orientation

94

of the training point cloud PM
S[1], whose best-fit plane normal forms the smallest angle

with Ng. Similarly, αS[2] is the orientation of the training point cloud PM
S[2], whose

fitting plane normal forms the second-smallest angle with Ng, and so on... As such,

our six candidate orientations are αS[1], αS[2], αS[3], αS[4], αS[5], and αS[6]. The choice

of six candidates was made to add robustness under the assumption that the same

object rotated by 180 degrees would yield similar best-fit planes, along with objects

rotated by ±10 degrees. In other words, we try to accommodate ±10 degrees from

a rotation of 0 degrees (i.e., 3 candidates) and ±10 degrees from a rotation of 180

degrees (i.e., 3 candidates). In order to choose one of the six candidate orientations,

a comparison based on central image moments is performed. This central image

moment comparison is used to differentiate views rotated by 180 degrees, which

would generate similar planes. We first convert the camera image into a binary

image, B, where pixels that are part of the object are set to 1 and the rest are set

to 0 (see Figures 4.5(a) and 4.5(b)). This conversion is straightforward thanks to

the one-to-one correspondence between a point in the point cloud and a pixel in the

image. Image B is consequently composed of an object region, R (i.e., the set of

pixels equal to 1). We divide R into left and right segments each having their own

regions, RL and RR respectively as shown in Figures 4.5(c) and 4.5(d).

We calculate the central moments of order i, j using the formula

µi,j =
∑
X,Y

(X − x̄)i(Y − ȳ)j (4.4)

where x̄ and ȳ represent the centroid coordinate of the region, X, Y ∈ RL for the

central moment of the left region, and X, Y ∈ RR for the central moment of the right

region. For robustness, we use the first two central moments, namely µ0,0 and µ1,1.

Let L0 = µ0,0 and L1 = µ1,1 when X, Y ∈ RL and let R0 = µ0,0 and R1 = µ1,1 when

95

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: Figure 4.5(a) shows the cropped image of an object (drill). Figure

4.5(b) displays the equivalent binary image B, with the object region R in black.

Figures 4.5(c) and 4.5(d) show the left and right image segments with regions RL

and RR in black, respectively. Figures 4.5(e), 4.5(f), 4.5(g), and 4.5(h) show the

same information for the same object perfectly rotated by 180 degrees.

X, Y ∈ RR. Since we are trying to choose one of the six candidate orientations, we

introduce LC0 , LC1 , RC
0 , and RC

1 to indicate the various moments for each candidate

orientation, with C = 1, 2, 3, 4, 5, or 6. We finally choose one of the candidates C by

minimizing the Root Mean Square Error of the central moments:

arg min
C

(√
(LC0 − L0)2 + (LC1 − L1)2 + (RC

0 −R0)2 + (RC
1 −R1)2

4

)
. (4.5)

The central moment procedure allows the algorithm to differentiate between ob-

jects that have a 180 degree rotational difference, where plane fitting alone would

find they have the same rotation. Figure 4.5 shows a visual example of this phe-

nomenon. The drill in Figures 4.5(a) and 4.5(e) is rotated by 180 degrees and the

plane fitting process would mistakenly deduce that they have the same rotation. It

96

is clear from the image moments, in Figures 4.5(b) and 4.5(f), however, that the

objects’ orientations are different. Algorithmically, and as aforementioned, we are

essentially comparing RL (Figures 4.5(c) and 4.5(g)) and RR (Figures 4.5(d) and

4.5(h)).

4.2.4 Layer 3: Calculating End-Effector Rotation

The last layer determines the appropriate end-effector orientation in order to grasp

the object, and it is performed after the object to be grasped has already been as-

signed to one of the classes used during training (class M , layer 1), and its orientation

has been identified (orientation αg, layer 2). In order to compute the orientation in

this final step, the target pose in pg ∈ R3 is also used. This last stage is complicated

by the fact that, for every object class, positive grasping examples are available only

for poses spaced by 30-degree intervals (i.e., for 12 of the 36 views), whereas the

orientation has been determined within a 10-degree margin. Therefore, before look-

ing for the closest example in the training data concerning class M , it is necessary

to project pg to the right place in order to compensate for the possible difference in

rotation accuracy. The projected point pp is then obtained as follows

pp = Rz(αt)(pg − pm) + pm (4.6)

where pm is the mean of the point cloud and Rz(αt) encompasses a rotation of

αt about z, with αt being the smallest rotation that brings αg to one of the 12

grasping examples. Thanks to this projection, pp is then aligned with the closest set

of examples in the training set. At this point a nearest neighbor search is performed

among all the poses pEi with pp as target. Let TEi be the returned training instance

97

with the position pEi closest to pp. Then, the nearest neighbor search returns REi,

the end-effector rotation corresponding to the closest pose found. However, REi

needs to be back projected in order to compensate for the change made in Equation

4.6. Consequently, the algorithm returns

Rg = Rz(−αt)REi. (4.7)

4.3 Experimental Results

4.3.1 Classification Accuracy

We start by presenting an extensive set of results showing the validity of the proposed

SVM classification method using our feature space. In the first experiment, we train

our algorithm with all the training data except for one, and we try to classify the one

that was not included in our training phase. We repeat this process removing and

classifying a different view every time, until all views have been classified. Results are

shown as a confusion matrix in Table 4.2, with a classification accuracy of 97.69%.

The next batch of experiments is performed to test the algorithm’s scale, transla-

tion, and rotation invariance. We collected data for the same 6 objects used during

training at 30 random locations and orientations. More specifically, we train the

multi-class SVM on the full training data set (i.e., the 36 views for each of the 6

objects) and then classify the new images. Evidently, this is a more difficult ex-

periment due to the translation changes, different viewpoints from the robot’s per-

spective which create different scales for the objects, and various rotations. Results

are shown in Table 4.3 and outline the scale, translation, and rotation invariance

98

Actual

Predicted

Object # 1 2 3 4 5 6

1 35 2 1 0 0 0

2 1 34 0 0 0 0

3 0 0 35 0 1 0

4 0 0 0 36 0 0

5 0 0 0 0 35 0

6 0 0 0 0 0 36

Table 4.2: Confusion matrix for the experiment performed on trained objects from

the training data.

properties incorporated in our algorithm, with an overall accuracy rate of 90.00%.

Finally, since we focus on grasping novel objects, we test the classification layer

with novel objects that are not part of the training set. Novelty in this context can

be intended in two ways. The robot may be presented with objects that are similar

but not identical to those used during training (e.g., a different bottle or a different

drill). Alternatively, the robot may be presented with objects that are completely

new - objects that have no similarity to those used during training. Figure 4.6 shows

some of the novel objects we considered and we point the readers to the end of the

section for more experiments involving highly different novel objects.

The key observation in grasping novel objects is that different objects can be

grasped similarly based on shared geometry with trained objects. Therefore, the

SVM classifier should be capable of identifying an appropriate class to extract the

grasping information. To perform this test, we acquire 30 images of each novel object,

varying its position and orientation. The results of this experiment are shown in

99

Actual

Predicted

Object # 1 2 3 4 5 6

1 28 1 0 0 0 0

2 0 28 0 2 1 0

3 0 0 26 0 1 4

4 0 1 1 28 0 0

5 0 0 3 0 27 1

6 2 0 0 0 1 25

Table 4.3: Confusion matrix for the experiment performed on trained objects of

different scales, translations, and rotations.

Table 4.4, which shows an overall classification rate of 84.17%. Even though the

objects being classified are different from those used for training, we nevertheless

present the results in the form of a confusion matrix, but we need to clarify how

correct associations are inferred. For different instances of the same object (e.g., a

different bottle or a different mug), the correct association is easy to determine. For

truly novel object (e.g., DVD case, rectangular box), the association is less obvious.

For example, the DVD case and rectangular box are classified as a coffee can and a

drill 63.33% and 33.33% of the time, respectively. The association with the coffee

can is somehow natural, since the shapes are very similar, and can be considered

correct. After having analyzed instances where they are classified as a drill, we

verified that because of self-occlusions they feature a long edge parallel to the table,

and this is associated by the algorithm with the drill’s shaft. In these cases, however,

association with the drill still leads to a successful grasp. Indeed, even though our

overall classification rate is 84.17%, the grasping rate is better because misclassifying

100

Figure 4.6: A DVD case, a drill, a shampoo bottle, a mug, a detergent bottle, a

water bottle, a salt container, and a rectangular box were used as novel objects.

While discussing the results we will refer to them as object 1 to 8 (with 1 being the

leftmost one).

an object will not necessarily result in a poor choice of wrist orientation.

Actual (Trained)

Predicted (Novel)

Object # 1 2 3 4 5 6 7 8

1 19 2 0 2 0 0 1 19

2 10 28 0 2 0 0 0 10

3 0 0 27 0 3 3 0 0

4 0 0 0 26 0 0 29 1

5 0 0 0 0 27 0 0 0

6 1 0 3 0 0 27 0 0

Table 4.4: Confusion matrix for the experiment performed on novel objects of dif-

ferent scales, translations, and rotations.

4.3.2 Object Rotation Estimation

The next layer to be evaluated considers the object’s orientation about the z axis.

The method we embrace is analogous to the one presented in the previous section.

101

Specifically, for each object class, we remove one instance from the training data and

we determine the closest neighbor using the algorithm described for layer 2 in order

to estimate the object’s orientation. The method is repeated for each object in every

class. Before analyzing the results encompassed by the histogram displayed in Fig-

ure 4.7, we observe that different object symmetries will result in different outcomes.

Three different symmetries should be accounted for. Some objects, such as the water

bottle, are fully symmetric about the z axis. These objects are removed from the

current evaluation because the problem is ill posed for them (any z rotation will be

valid). Remaining objects can be either partially symmetric (e.g., coffee can, mouth

wash bottle, mug) or fully asymmetric (e.g., drill, mug, detergent bottle). For par-

tially symmetric objects, rotations that are 180 degrees apart will result in the same

object view, so these cannot be differentiated. Fully asymmetric objects, however,

never look the same under different rotations. The situation is in practice somehow

more complicated because some objects (e.g., the mug) can be partially symmetric

or fully symmetric, depending on whether or not some geometrical features (e.g.,

the handle) are self-occluded. Keeping this information in mind, Figure 4.7 shows

an 87.5% rate of finding the closest neighbor (the one within a 10 degree difference)

for completely asymmetric objects and a 75% rate of finding the closest neighbor for

partially symmetric objects (taking into account that a 180 degree rotation yields

the same object view).

4.3.3 Overall System Performance

We finally present the end-to-end performance of the system, where we evaluate the

success rate for the final grasping action based on the outcome of the three layers.

102

Figure 4.7: Histogram showing the results in finding the nearest neighbor, in terms

of rotation. The x-axis measures how far, in degrees, the closest neighbor is from

the actual value (i.e., depending on object symmetry, it should be 10 or 180 degrees

for the algorithm to work). The y-axis is the number of trials for which that value

occurred (36 is the maximum value).

In all experiments, we exploit IK to place the end-effector to the configuration deter-

mined by the algorithm and we close the fingers, attempting a power grasp. Similarly

to the experimental section of Chapter 3, the grasp is deemed to be successful if the

robot is capable of lifting the object above the table by at least 10 centimeters for at

least 30 seconds. In the first experiment, shown in Figure 4.8, we place each of the 6

trained objects at 10 random locations and rotations and let the algorithm determine

the end-effector’s pose and orientation. The overall success rate is 81.66%, where the

bottle, drill, and coffee had the highest (90%) and the mug and mouth wash bottle

had the lowest (70%). This success rate is competitive with other algorithms (e.g.,

[135, 15]) that are incapable of running in real-time.

We repeat the same experiment with novel objects that are fairly similar to those

we trained on (i.e., 10 trials are performed for each of the 6 novel objects). Some

103

Figure 4.8: Robot grasping trained objects with camera view in each left-hand corner.

The cursor in each camera view shows pg in image-space.

examples are shown in Figure 4.9. In this case, the accuracy drops to 76.66%, with

the highest accuracy of 100% achieved by the drill and the lowest accuracy of 60% for

the shampoo bottle and the DVD case. Once again, this success rate is competitive

with other publications capable of handling novel objects (e.g., [135]), although our

method is much faster, as shown in Table 4.5.

Finally, we also performed some experiments with objects that are completely

different than those we trained on, as seen in Figure 4.10. These objects varied from

bottles of different sizes to cups, office boxes, and toys. We ran 4 trials for each

object and obtained an overall success rate of 83.33%.

104

Figure 4.9: Robot grasping novel objects with camera view in each left-hand corner.

The cursor in each camera view shows pg in image-space.

Last but not least, and as a proof of concept, we ran the same system acting on

the left arm rather than the right arm. In this experiment, the algorithm was trained

with the right arm and used to grasp objects with the left arm. Examples are shown

in Figure 4.11, yielding a success rate of 80%.

Table 4.5 describes the speed of the algorithm, where each part of the algorithm

has been timed individually. The speeds presented in the table refer to a MatLab

implementation running on a 3.0GHz desktop computer. We note that, while the

algorithm is already very fast, it can be made even faster simply by porting our

MatLab implementation to C++.

105

Figure 4.10: Robot grasping completely novel objects with camera view in each

left-hand corner. The cursor in each camera view shows pg in image-space.

We conclude this section by discussing the scalability of the algorithm, where

we want to study the effect of an increased number of training objects on the time

complexity of the algorithm. For what concerns the object classification layer, which

exploits a multi-class one-against-one SVM methodology, adding an object to a train-

ing database of n already-trained objects will result in having to train an additional n

SVMs (i.e., one for each of the classes already in the training set). Consequently, the

training stage of the object classification layer will become progressively slower as the

number of trained objects increases. A benefit of this multi-class SVM methodology

comes from that it is extremely easy to make incremental updates to the training

106

Figure 4.11: Left arm grasping objects with camera view in each right-hand corner.

The cursor in each camera view shows pg in image-space.

set and that the system does not need to be re-trained from scratch when adding

new object classes. The classification stage of the object classification layer will also

be more time intensive, requiring an additional n individual SVM classifications for

each object class added. Since a single SVM classification is very efficient, however,

the increase in computation time would be insignificant. For example, we have com-

puted that the total algorithm’s time would still take under one second if a total of

50 objects were used for the training data. Conversely, the time complexity of the

nearest neighbor search would not increase at all, since it depends on the number

of kinesthetic examples provided for each object. For the objects presented in this

chapter, the kinesthetic examples, and, as a result, the nearest neighbor search space,

varied from 126 to 525, depending on the size of the object class being considered.

The nearest neighbor search space could increase (e.g., if a significantly bigger object

class is added to the training data, resulting in a higher number of kinesthetic ex-

amples), but would still be so small that the nearest neighbor search’s time increase

would be insignificant. As an example, we would only expect a 12ms time increase

107

Algorithmic Part Average Time (ms)

Image Processing 212

Object Classification 103

Nearest Neighbor Search 7

Wrist Calculation 4

IK 20.0

Total Time 346

Table 4.5: Algorithm speed, divided by parts.

for an object twice as big as those used during the training stage of this chapter.

4.4 Conclusions

In this chapter, we have presented a method to compute end-effector orientations

in order to determine how to grasp an object based on a single image and point

cloud provided by a stereo camera. The method is feature-based and complements

the presented approach from Chapter 3 that determines the pose only. Kinesthetic

learning is exploited to extrapolate information from examples provided offline by

a human. At run time, less than half a second is needed in order to determine

the end-effector’s configuration in order to grasp the object. We have described the

three layers composing the algorithm, namely classification, rotation estimation, and

wrist orientation computation. The proposed algorithm has been implemented on a

humanoid torso and extensive experimental results corroborate the effectiveness of

the method presented.

108

CHAPTER 5

Bimanual Regrasping

Similarly to the work presented in the previous two chapters, the robotics community

has historically solved pick-and-place operations using unimanual grasping, where a

single manipulator is used to perform the task. The assumption that a pick-and-

place operation can be performed with a single manipulator tends to be, however, a

simplification of a more general problem. Indeed, a pick-and-place task could easily

require a robot to pick up an object and place it in a location not directly accessible

by the manipulator holding the object. Consequently, we extend the work presented

in the previous two chapters to bimanual pick-and-place actions, where a human-

like humanoid torso exploits two manipulators to solve a particular task. More

specifically, we focus on pick-and-place scenarios requiring an object to be placed

outside of the manipulator’s current reach. These scenarios have traditionally been

managed by exploiting mobile manipulation, where the robot’s mobile platform (e.g.,

legs, wheels) is used to move the robot (and the grasped object) into an adequate

position, before the object is placed to an appropriate location. Humans are, however,

very adept at using both of their arms to efficiently interact with objects. The

goals of these human bimanual object interactions vary from changing an object’s

configuration to repositioning it to a more efficiently accessed location. We note that

humans exploit these bimanual repositioning actions for efficiency (e.g., it would

109

be inefficient to transfer a stack of plates one by one by walking when the final

location is within reach of an arm). These bimanual object interactions require a

regrasping configuration, where both hands are concurrently in contact with the

object. Possessing this bimanual regrasping skill is important for humanoids to

successfully enter the realm of home robotics, not only as an efficient pick-and-place

solution but also as a way to introduce more human-like robotic coworkers.

Compared to other topics, regrasping has seen little attention from the robotics

community and can generally be divided into three approaches. The first, in-hand

regrasping, has experienced more interest than the others and consists of relying

on one end-effector to regrasp the object. In-hand regrasping does not solve the

problem of getting the object into a location reachable by only one arm, but rather

addresses the problem of changing the object’s configuration (e.g., rotating a pen in

your hand). This approach is not only dependent on the robot’s end-effector, but

also requires a dexterous hand with many degrees of freedom and, as such, cannot

be used with simple or under-actuated end-effectors. The second, which we call on-

surface regrasping, consists of running a unimanual grasping algorithm two or more

times, depositing the object on a surface (e.g., table) between each grasp. Even

though on-surface regrasping works in practice, it requires an inefficient number of

manipulator movements, resulting in a long and ineffective process that defeats the

efficient purpose behind human regrasping. The third method, which we call bi-

manual regrasping, is the one used most frequently by humans where the object is

regrasped in the air using both arms. Bimanual regrasping is exploited when an ob-

ject in one of the manipulator’s reachability space needs to be moved to a location in

the other manipulator’s reachability space (e.g., putting a cup from a table to a cup-

board). Even though bimanual regrasping has seen little attention, it is a crucially

110

beneficial behavior for service robots since it not only saves time performing certain

pick-and-place tasks but also mimics human behavior. Additionally, robotic biman-

ual regrasping does not require complex end-effectors, nor does it impose restrictions

on the manipulators being used.

We specifically solve the problem of bimanual regrasping with an emphasis on

minimizing execution time and propose an algorithm that builds upon the image

processing procedure introduced in Chapter 3 and the grasp synthesis algorithm de-

scribed in Chapter 4. After modifying the aforementioned algorithms to account

for two cooperative manipulators, we cast bimanual regrasping as an optimization

problem and solve it as such. The optimization framework is introduced based on

the observation that humans utilize bimanual regrasping to accomplish specific pick-

and-place tasks more quickly. In some sense, we are trying to formulate the intuition

behind human bimanual regrasping (i.e., when and why humans decide to use bi-

manual regrasping) in a structured optimization framework. Evidently, given the

aforementioned information, solving the optimization framework equates to solving

the robotic bimanual regrasping problem.

5.1 Algorithm Overview

Our problem definition is as follows. Given an object in the right manipulator’s

reachability space and out of the left manipulator’s reach, transfer the object into an

area only accessible by the left manipulator using bimanual regrasping. Considering

the nature of human regrasping, we are primarily concerned with efficiency, both from

a computation and execution perspective, as well as the potential for generalization

and the replication of human-like motions. Throughout the chapter, we describe our

111

algorithm and provide examples for the case when the object is reachable by the

right manipulator and needs to be transferred to the left manipulator. We purposely

present our work this way in an attempt to simplify and shorten the discussion, but

we note that the algorithm works regardless of how the object needs to be transferred

(i.e., independent of the starting configuration and transfer direction).

Figure 5.1: High-level overview of proposed bimanual regrasping algorithm. It is

composed of three components, two of which are modified versions of the algorithms

presented in Chapters 3 (i.e., Image Processing) and 4 (i.e., Grasp Synthesis).

As shown in Figure 5.1, the algorithm is composed of three components: Image

Processing, Grasp Synthesis, and Optimization. The Image Processing and Grasp

Synthesis components have already been discussed in Chapters 3 and 4, respectively,

but some changes are made to each so that they can take into account two manipu-

lators as opposed to one. The purpose of the Image Processing component is to find

two good grasping points in image space. The two points correspond to the points on

the object that each manipulator will use during the regrasping configuration (i.e.,

when both manipulators hold the object simultaneously). Mathematically, we use

112

a single stereo image as input, IR, from which we can calculate the corresponding

point cloud, CG, thanks to stereo vision. Using the image, a modified version of

the machine learning algorithm presented in Chapter 3 assigns two good grasping

points to the right and left manipulators, and converts them to initial Cartesian

coordinates, PG
Rini and PG

Lini, respectively. The Grasp Synthesis component takes IR,

CG, PG
Rini, and PG

Lini as input and outputs appropriate orientations for the right and

left end-effectors, RG
Rini and RG

Lini, to grasp the object at the points PG
Rini and PG

Lini.

This process is based on the efficient supervised learning unimanual grasp synthesis

algorithm presented in Chapter 4, with a simple but efficient modification to account

for bimanual grasps. Last but not least, the Optimization component searches the

reachability spaces of the arms to find the most efficient transfer configuration and

outputs the right and left manipulators’ configuration, qRopt and qLopt, to achieve the

regrasping configuration.

In some sense, we first find, using the Image Processing and Grasp Synthesis

components, a couple of appropriate regrasping holds as if the object were in both

manipulators’ reachability spaces. Then, in the Optimization component, we seek a

transfer configuration minimizing the execution time required to perform the entire

pick-and-place task. We note that the algorithm is modular by design since each

component can be replaced by different algorithms, potentially relying on different

sensors that provide the same outputs. For example, the Image Processing and Grasp

Synthesis algorithms could be replaced by a model-based grasping algorithm driven

by a laser range finder. The components presented are designed, however, to be

extremely efficient and result in real-time performance.

113

5.2 Algorithm Details

5.2.1 Image Processing

The Image Processing component is a modified version of the one presented in Chap-

ter 3. More specifically, the original algorithm was built for a unimanual grasper, but,

for bimanual regrasping, we need to compute two good grasping points as opposed

to one. We select two good grasping points by using the formula

arg max
i,j

(
|P (zi) + P (zj)|

2
‖pi − pj‖

)
∀i, j ∈ R (5.1)

such that P (zi),P (zj) > 0.90 and PG
i (z),PG

j (z) ≥ 5cm, where PG
i and PG

j are the

Cartesian coordinates for pixels pi and pj, acquired using the stereo vision process

(see [7] for more information on the stereo vision process). This criterion chooses two

grasping points that have a classification rate higher than 90% and for which points

have a 5cm clearance from the table. The distance term, ‖pi − pj‖, is introduced to

make sure that as much spacing as possible exists between the two end-effectors, to

stay away from potentially colliding solutions. The pixel selection process is shown

in Figure 5.2. Finally, out of the two good grasping points converted to Cartesian

coordinates, PG
1 and PG

2 , we assign the point further away from the left manipulator

to the right manipulator and vice-versa, yielding the points PG
Rini and PG

Lini. This

assignment process assumes that both points are reachable by the right manipulator.

Evidently, if only one point can be reached by the right manipulator, that point has

to be assigned to it, with the other point automatically being assigned to the left

manipulator. This relatively simple selection process works extremely well in practice

while being very efficient. The modification of the Image Processing component that

extends its application from unimanual to bimanual regrasping does not significantly

114

change the time complexity of the algorithm. Indeed, the exact same process needs

to be performed, with the only difference coming from Equation 5.1, which can be

computed very efficiently.

Figure 5.2: Example of the Image Processing component, showing the edge detection

(grey pixels), pixels with a 90% probability or higher of being good grasping points

(black pixels), and the two points selected for the regrasping configuration (circles).

5.2.2 Grasp Synthesis

Having found a grasping point for each manipulator, PG
Rini and PG

Lini, along with

the object’s image and point clouds, IR and CG, the Grasp Synthesis computes

appropriate end-effector orientations, RG
Rini and RG

Lini, to correctly grasp the object.

This component is based on our formerly-developed unimanual grasping algorithm

presented in Chapter 4 that we modify to accommodate bimanual grasping. As

can be seen in Figure 5.3, the extension from unimanual to bimanual grasping is

very efficient since the two most time consuming processes, the Classification and

Orientation Estimation (101ms), only need to run once, whereas the most efficient

process, the Nearest Neighbor Search (6ms), needs to run twice. This seemingly small

observation is actually a very powerful one, since it not only allows the extension from

115

unimanual to bimanual grasping to be extremely efficient (i.e., the algorithm is only

slower by 6ms), but also demonstrates that the original Grasp Synthesis algorithm

presented in Chapter 4 is relevant beyond its original intended objective.

Figure 5.3: Flowchart of the Grasp Synthesis component (bold), with inputs from

the Image Processing (grey).

5.2.3 Optimization

By providing grasping information for both manipulators, in the form of PG
Rini, P

G
Lini,

RG
Rini, and RG

Lini, the Image Processing and Grasp Synthesis components have es-

sentially found a regrasping configuration for the object, as if it was located in both

manipulators’ reachability spaces. Since, however, the object is out of the left ma-

nipulator’s reach, we need to find the best object configuration, located in both

manipulators’ reachability spaces, for the regrasping configuration to occur. The

object configuration will be attained by being grasped and moved by the right ma-

nipulator. We note that, since we are dealing with rigid objects, the object’s config-

uration, when grasped, can be determined by the right manipulator’s configuration.

Consequently, we search the configuration space of the right manipulator. The Op-

116

timization process can be thought of as trying the regrasping configuration found in

the Image Processing and Grasp Synthesis components under different right manip-

ulator configurations (and, consequently, object configurations) until an optimized

result is found. We define an optimized result as one that minimizes the execution

time of the regrasping task.

We exploit the Nelder-Mead optimization algorithm [111], whose pseudo-code is

shown in Algorithm 2, thanks to its beneficial properties. Indeed, the algorithm

does not require an objective function with a corresponding derivative (i.e., only a

cost function is needed) and is computationally efficient. The algorithm works on a

multi-dimensional triangle, a simplex, with each vertex corresponding to a potential

solution to the optimization problem. For an n-dimensional optimization problem,

the vertices are labeled x1, x2, . . . , xn+1, where xi ∈ Rn. A function f is used

to calculate the vertices’ cost (line 2), which are manipulated thanks to a series of

four geometrical operations: reflection (line 4), expansion (line 6), contraction (line

11), and deflation (line 13). The reflection operation, which yields a new vertex xr,

mirrors the worst vertex, xn+1, across the centroid of the n best vertices, x̂ (line 3).

The expansion operation finds a new vertex, xe, that is farther than the reflection

vertex, xr, but in the same direction. Alternatively, the contraction operation finds a

point, xc, between x̂ and xn+1, still along the same direction. The deflation operation

is performed when everything else fails and shrinks all the simplex vertices by a

factor of 2 towards the best solution, x1. The reflection, expansion, and contraction

operations are influenced by a set of coefficients (γr, γe, and γc, respectively) that

dictate the operations’ influence on the simplex. We empirically determined that

γr = 1, γe = 2, and γc = 0.5 provide the best results, a finding corroborated by

the authors of the original algorithm [111]. At each iteration, the algorithm tries

117

to replace the worst vertex (line 7,8,10,12,15), in terms of cost, with one of the

results from the geometrical operations. The geometrical operation used is based on

simple comparisons of cost values (line 5,7,9,10,12). The algorithm iterates until the

average distance from the geometrical center of the simplex to all its vertices falls

below threshold ε = 0.01 (line 17). When the stopping condition is met, the best

solution, x1, is returned (line 18).

The Optimization algorithm runs in the 6-dimensional optimization space of the

right manipulator configuration defined by xi. Specifically, xi encompasses the end-

effector’s Roll (ϕ = x1
i), Pitch (ϑ = x2

i), Yaw (ψ = x3
i), and X = x4

i , Y = x5
i ,

and Z = x6
i coordinates, which accounts for the minimum representation in SE(3).

The conversion from xi to a position vector, PG
Ropt, and a rotation matrix, RG

Ropt, is

performed as follows:

PG
Ropt = [XY Z]T (5.2)

RG
Ropt =


cosϕ cosϑ cosϕ sinϑ sinψ − sinϕ cosψ cosϕ sinϑ cos + sinϕ sinψ

sinϕ cosϑ sinϕ sinϑ sinψ + cosϕ cosψ sinϕ sinϑ cos− cosϕ sinψ

− sinϑ cosϑ sinψ cosϑ cosψ

 .

(5.3)

Once PG
Ropt and RG

Ropt have been computed, the manipulator’s configuration, qRopt,

can be deduced by using IK. With a 6-dimensional optimization space, we need a set

of 7 vertices x1, x2, . . . , x7 to bootstrap the algorithm. The first vertex is set as a

guess estimate, xg, with the six remaining vertices encompassing offset values from

the guess estimate, which we set to 5 degrees for ϕ, ϑ, ψ, and 5 centimeters for X, Y ,

Z. In other words, x1 = xg = [ϕg, ϑg, ψg, Xg, Yg, Zg], x2 = [ϕg + 5, ϑg, ψg, Xg, Yg, Zg],

x3 = [ϕg, ϑg+5, ψg, Xg, Yg, Zg], . . . , x7 = [ϕg, ϑg, ψg, Xg, Yg, Zg+5]. Evidently, a good

118

Algorithm 2 Optimization(x1, x2, . . . , xn+1)

1: repeat

2: Order Vertices: f(x1) ≤ f(x2) ≤ . . .≤ f(xn+1)

3: x̂← 1
n

∑n
i=1 xi

4: xr ← (1 + γr)x̂− γrxn+1

5: if f(xr) < f(x1) then

6: xe ← (1− γe)x̂+ γexr

7: if f(xe) < f(x1) then xn+1 ← xe

8: else xn+1 ← xr

9: else if f(xr) > f(xn) then

10: if f(xr) ≤ f(xn+1) then xn+1 ← xr

11: xc ← (1− γc)x̂+ γcxn+1

12: if f(xc) ≤ f(xn+1) then xn+1 ← xc

13: else xi ← 1
2
(xi − x1) ∀i

14: else

15: xn+1 ← xr

16: end if

17: until 1
(n+1)

∑n+1
i=1 ‖xi − x̄‖ < ε

18: return x1

119

result is dependent on a good starting seed, which is itself dependent on our initial

guess estimate, xg. We create an automated guess estimate selection process using

a nearest neighbor search on trained data that is acquired offline. Given a set of

manually selected example regrasping configurations for various objects, the training

data is obtained by running a sparse grid search on each example to determine the

best configuration, as dictated by a cost function f . In order to find a good guess

estimate, we can then make a quick Euclidean-based nearest neighbor search query in

the training space of regrasping configurations. This approach, which can be thought

of as a simplistic learning algorithm, works very well in practice and can be extended

to any optimization algorithm for which it is easy to get training data.

Our cost function, f , minimizes the manipulators’ execution time by minimizing

the amount of joint movements that the manipulators undertake. In order to compute

the cost, we first need to compute the arms’ configurations, qRopt and qLopt. A

visualization of the process is shown in Figure 5.4. We have already found, in the

Image Processing and Grasp Synthesis components, a regrasping configuration for

the initial object’s configuration, defined by PG
Rini, P

G
Lini, R

G
Rini, and RG

Lini. For each

vertex xi of the optimization’s simplex, we determine PG
Ropt and RG

Ropt, using Equation

5.2, from which we can determine qRopt, using IK. Given this information, we calculate

the left arm transformation (PG
Lopt and RG

Lopt):

PRini
Lini = (RG

Rini)
T (PG

Lini − PG
Rini) (5.4)

V G = (RG
Ropt)(P

Rini
Lini) (5.5)

PG
Lopt = PG

Ropt + V G (5.6)

RG
Lopt = (RG

Ropt)[(R
G
Rini)

T (RG
Lini)] (5.7)

The cost, c, of the function, f , is determined by finding, for each manipula-

120

Figure 5.4: Diagram representation showing the geometrical computation of PG
Lopt

and RG
Lopt, given PG

Rini, P
G
Lini, R

G
Rini, and RG

Lini. The unknown parameters calculated

from Equations 5.4, 5.5, 5.6, and 5.7 are boxed.

tor, the joint that experiences the maximum rotational change, which dictates the

speed of the manipulator (see Equation 5.8). Indeed, the amount of time that a

manipulator spends moving to a configuration is dictated by the maximum joint’s

rotational change between the initial configuration qi and the goal configuration qg.

We can consequently compute a formula that will exploit this observation to create a

cost function that will minimize the manipulators’ execution time for the regrasping

configuration. In addition to the presented variables, we introduce qLstr as the left

arm’s configuration before a regrasping configuration is initiated. This new variable

is necessary to take into account the execution time of the left manipulator. Put

differently, although we have computed where the left manipulator will regrasp, we

need to know where it is before the regrasping configuration is initiated in order to

compute how long its movement will take. The cost function can then be written as

follows:

f(x)=c= max(|qRini−qRopt|)+ max(|qLstr−qLopt|). (5.8)

121

5.3 Experimental Results

In our first set of experiments, we compare the optimization portion of our algorithm

against potential substitutes. These experiments are performed offline, since the

quality of a solution is inversely proportional to the cost function f(x) given in

Equation 5.8 (i.e., the lower f(x), the higher the solution’s quality). In other words,

the solution’s quality can be determined without running experiments on a real robot.

As is done for the Optimization component, each algorithm performs a search over a

6-dimensional grid in the manipulators’ reachability space with parameters ϕ, ϑ, ψ,

X, Y , and Z. The grid resolution is set to 10 degrees for the angles and 5 centimeters

for the Cartesian coordinates. The algorithms are as follows.

Brute Force: an exhaustive search where each cell is explored successively. This

algorithm is complete with respect to the grid resolution.

Random Grid Search: an anytime algorithm similar to Brute Force, except

that it randomly picks cells from the aforementioned grid. We stop the algorithm

at multiple iterations and present in this section results for the iteration that yields

the highest quality-to-computation time ratio. Due to the random nature of this

process, we average the results over 10 trials.

Reachability Space: we use the robot’s reachability space, where the points

in the grid are ranked in decreasing order based on the number of manipulator

configurations that can reach them. The idea behind this algorithm is that a position

on the grid with many ways to get there by the manipulator will have more chances

of finding a good solution. This is another anytime algorithm, the results of which

are presented for the iteration yielding the highest quality-to-computation time ratio.

122

Hierarchical Search: a three-layer grid search, where each layer represents a

smaller grid resolution. For each layer, the best solution is found and the area around

that solution is explored, using a finer grid resolution. The first layer’s grid size is

set to 60 degrees for the angles and 25 centimeters for the Cartesian coordinates.

The grid size is divided by 2 for each subsequent level.

20

40

60

80

100

Algorithm

So
lu

tio
n

Q
ua

lit
y

(%
)

Optimization
Brute Force
Random Grid Search
Reachability Subspace
Hierarchical Search

(a)

Algorithm

1

2

3

4

Ti
m

e
(s

)

(b)

Figure 5.5: Comparison of Solution Quality (Figure 5.5(a)) and Computation Time

(Figure 5.5(b)) across different algorithms.

The algorithms are run on 10 varying configurations of 4 different objects (e.g., a

water bottle, a spray bottle, a coffee can, and a drill), the results of which are shown in

Figure 5.5 in terms of the solution’s quality and algorithm’s computation time. The

Brute Force algorithm is strictly used as a baseline for comparison and is not a viable

solution because it takes 72.5 hours on average. Similarly, the Hierarchical Search

terminates in an average of 66 seconds, which is much too long for our application.

Given these observations, we omit these two algorithms in Figure 5.5(b). In Figure

123

5.5(a), the solutions’ qualities are normalized and displayed in terms of percentages

(i.e., the best solution, with the lowest cost, is set as 100% and the remaining solutions

are normalized accordingly). It is clear that the optimization algorithm is not only

extremely efficient, providing solutions more than 6 times faster than the second-

fastest algorithm, but also competitive with the Brute Force approach. In fact,

the Optimization algorithm provides better solutions, on average, than Brute Force.

This seemingly-surprising observation is however easily explained by the fact that the

Brute Force algorithm searches a discrete grid, whereas the Optimization operates

in continuous space. Specifically, the Optimization algorithm finds a better solution

than Brute Force 84.61% of the time. For the remaining 25.39%, the optimization

algorithm is within 4.08% of the grid search solution on average. The optimization

algorithm finds better solutions than all of the other algorithms 100% of the time.

The same 10 varying configurations of the 4 objects were executed on our robotic

platform. We approach the object using the direction dictated by the orthogonal

vector to the best-fit plane [140] acquired from neighbors around the grasping point

and the orientation dictated by the Grasp Synthesis component of the algorithm.

Additionally, we utilize a manually-generated roadmap, along with a collision detec-

tor, to guide the arm through collision-free paths. We note that this motion planning

works for the experiments we present, but a better planner, based on RRTs [89] or

PRMs [74], should be utilized for more complex scenarios comprised of more objects

or furniture. In our first experimental setup, we manually dictate the grasping po-

sitions and orientations of the manipulators, consequently removing potential errors

from the Image Processing and Grasp Synthesis components and investigating the

Optimization component on its own. Being successful 87.5% of the time, with the

cause for every failure being mechanical errors from the manipulator, it is clear that

124

the Optimization component yields valid results. We then analyze the end-to-end

algorithm by incorporating the Image Processing and Grasp Synthesis components

back into the algorithm, a few snapshots of which are shown in Figure 5.6. of regrasp-

ing. Overall, the end-to-end algorithm performed very well, successfully completing

75% of the experiments. Unfortunately, we cannot compare these results with other

previously-published algorithms because of significant differences between operating

conditions and assumptions (e.g., using a motion capture system instead of vision or

only regrasping rectangular objects [14]). Comparing these results to those presented

in Chapter 4, however, shows that only a small drop in success rate is observed, even

though the regrasping behavior is a lot more complicated. The majority of unsuc-

cessful regrasps were attributed to the Grasp Synthesis component failing to provide

a good orientation for one of the manipulators. These orientation failures were ap-

proximately evenly divided between the two manipulators (i.e., the right and left

manipulators accounted for 40 and 60 percent of the failures, respectively).

Figure 5.6: Screenshots of our robot performing a regrasping configuration for a

spray bottle (left), drill (center), and water bottle (right).

125

We conclude this section by providing, in Table 5.1, a categorized decomposition

of the computation time spent by the end-to-end algorithm. As can clearly be seen,

the algorithm is very fast, being capable of running in real-time on a standard 3.0GHz

computer.

Component Part Time(ms)

Image Processing

Acquisition 40

Denoising 42

Pixel Selection 130

Grasp Synthesis

Classification 80

Orientation Estimation 21

Nearest Neighbor 16

Optimization - 366

Total 695

Table 5.1: Algorithm computation time, divided by parts.

5.4 Conclusions

In this chapter, we have presented a bimanual grasping algorithm specifically de-

signed to efficiently solve the problem of bimanual regrasping for pick-and-place tasks

that need to move an object from an area accessible by one manipulator to an area

accessible by the other manipulator. The algorithm possesses important properties

such as its computational speed, small sensory requirements, generalization, modu-

larity, manipulator-independence, and relevance to under-actuated end-effectors. As

shown in the experimental section, we were unable to find a close rival algorithm

126

both in terms of computational speed or solution quality. An extensive set of exper-

iments have shown the algorithm’s applicability to a real world platform composed

of standard manipulators and under-actuated hands.

A few interesting directions can be taken to extend this work. Allowing the al-

gorithm to regrasp the object multiple times would be a useful addition, requiring

slight modifications to the presented components. Although the heuristic nature

of the Image Processing’s good grasping point selection worked well, it could be

improved with learning or optimization, with the potential detriment of increased

computational time. Similarly, the process that acquires the initial starting seed

for the optimization algorithm could be improved with a supervised learning algo-

rithm, as opposed to performing the nearest neighbor search. Lastly, in order for

the algorithm to operate in more complex environments, a better motion planning

algorithm should be exploited to find appropriate paths for the manipulators. All of

these potential improvements are relatively straightforward to implement but would

allow the algorithm to work for a greater range of practical applications.

127

CHAPTER 6

Deformable Object Manipulation

So far, we have focused on the fundamental task of grasping by concentrating on

pick-and-place actions involving both unimanual (Chapters 3 and 4) and bimanual

(Chapter 5) configurations. It is important to note, however, that the popularity of

service robotics has unveiled a multitude of novel challenges that researchers need

to undertake before “a robot in every home” [48] can become a reality. Specif-

ically, research involving highly deformable object manipulation with cooperative

manipulators is still in its infancy. The inadequacy of deformable object models for

robotic applications [50], the absence of high-fidelity simulation tools for deformable

objects, and the lack of literature on the subject are all factors delaying the develop-

ment of robots capable of performing a variety of tasks involving deformable objects.

Moreover, the ability to grasp, manipulate, and interact with deformable objects are

essential behaviors for robots to be part of our everyday lives, since a lot of objects we

use daily are deformable (technically, every object is deformable if the right amount

of pressure or heat is applied to them). The types of objects we are interested in,

such as clothes, towels, and napkins, are highly deformable and cannot be handled

by assuming that they are rigid objects as is done, for example, with water bottles.

In this chapter, we undertake the specific problem of folding rectangular towels or

napkins using two manipulators working cooperatively.

128

Similarly to the previous chapters, we exploit machine learning techniques to

discard the need for a deformable object model, one of the major obstacles when

working with deformable objects. Consequently, we explore reinforcement learning,

so that the robot is given the opportunity to explore the space of solutions on its

own and find a correct one. Even though reinforcement learning has been shown to

solve diverse robotic tasks ranging from controlling a quadruped robotic dog [152] to

playing the ball-in-a-cup game [80], flipping pancakes [82], weightlifting [129], and

performing archery [83], towel folding offers different, yet interesting, research chal-

lenges: learning for two independent manipulators working cooperatively; exploiting

a temporally incoherent parameter space (i.e., two or more successful folds can take

a different amount of time to perform); dealing with an action-to-reward function

composed of many-to-one mappings (i.e., there are many different ways to appropri-

ately fold a towel). Due to the wide range of possible manipulator movements that

yield correct folds, we combine human-to-robot imitation learning with reinforcement

learning to not only converge faster to a solution, but also explore a wider range of

the parameter space and find the action most replicable on the robot platform.

6.1 Problem Definition

The problem we aim to solve is to fold a towel symmetrically, where one half of the

towel is folded on top of the other. There are many ways that such a task can be

performed. We choose to follow what we refer to as a momentum fold, where the force

applied to grasping points on the towel is used to give momentum to the towel and lay

half of it flat on the table (see Figure 6.1 and the experimental section of the chapter

for examples). We note that the momentum fold is used to make sure that half of

129

the towel lays flat on the table and, as such, this is the motion we are trying to learn.

Once that state is achieved, we can straightforwardly apply motion planning to finish

the fold, as will be described in Section 6.4. Although most previous works utilizing

reinforcement learning involves bootstrapping learning algorithms using kinesthetic

teaching (i.e., having a human perform actions directly on a gravity-compensated

robotic manipulator and recording the parameters from the robot), the fact that we

are dealing with two manipulators renders this method impractical, if not impossible.

Consequently, in our approach, a human demonstrates an appropriate folding motion

to the robot, two examples of which are shown in Figure 6.1. We assume that the

towel can be picked by the robot and put into a starting position similar to the one

in the first frame of Figure 6.1, a preliminary step previously solved in [39].

Figure 6.1: Two different, yet successful, momentum folds demonstrated by a human

to the robot.

We designed and implemented a hybrid method that incorporates imitation and

reinforcement learning. There are two reasons for incorporating imitation learning.

First, from an algorithmic standpoint, exploiting knowledge acquired from human

imitations can drastically reduce the parameter search space that the reinforcement

130

learning algorithm has to explore, as will be shown in subsequent sections. In other

words, we harness the power of imitation learning to make the reinforcement learning

search more efficient. Second, from a more practical perspective, it is very difficult

to use kinesthetic teaching for folding applications because it entails a human op-

erator moving two heavy manipulators at the same time. Since we have to use a

human demonstrator and not all motions performed by a human will be replicable

on the robot due to mechanical constraints, it is beneficial to acquire multiple hu-

man demonstrations and to learn which one will be most replicable on the robot.

Once the best human demonstration has been learned by the robot (i.e., the most

replicable human action), we can use it as a starting seed to explore the action space

of the folding task, which will be solved using reinforcement learning.

We conclude this section by introducing the principal symbols we will use in

subsequent sections:

• Oi: i-th observation. The trajectory followed by k points on the towel during

one fold motion. Each point, sampled at a constant frequency, is in three-

dimensional Cartesian space. Oi essentially describes the movement of the

towel.

• θi: i-th action sequence. The trajectory followed by the pinch grasp of the

robot, expressed in Cartesian space and sampled at a constant frequency. θi

describes the movement of both manipulators that generated Oi.

In essence, we are trying to learn the relationship between θi and Oi in order to be

able to reproduce desired action sequences leading to successful folds.

131

6.2 Training Data

We start by describing the procedure used to gather training data for imitation

learning, whose goal is to acquire action-observation pairs that produce good folding

motions. We view the demonstrator as giving perfect examples of how to accomplish

the task and, as such, implicitly have maximum rewards for any action-observation

pairs produced during the training data acquisition. The demonstrator performs

momentum folds, as exemplified in Figure 6.1, trying to cover as much of the action

space as possible. The more the action space is encompassed by the training data,

the easier it will be for the robot to find a good solution. We only gather positive

examples due to the fact that the action space for negative examples is too large and

unstructured. In order to facilitate the collection of actions and observations, we use

a motion capture system with eight infrared cameras along with a towel comprised

of reflective markers that can be tracked by the system. Specifically, we use k = 28

markers uniformly spaced around the towel’s four edges. The motion capture system

is capable of sub-millimeter precision and records data up to 120Hz.

Motion capture is prone to both false positives and negatives. As is the case with

many machine learning algorithms, our method necessitates fixed-size vectors (i.e.,

it needs to constantly track all 28 points at every time step). Therefore, it is crucial

that both false positives and negatives are handled correctly. False positives often

occur due to changes in illumination, reflective objects or materials, and movements

that are too close to the motion capture’s infrared cameras. To find and remove

false positives, we exploit the fact that, with a sampling rate of 120Hz, points do not

move a lot between two consecutive frames. Consequently, we compute the nearest

neighbors between time frames t and t−1, as shown in Figure 6.2(a). The Euclidean

132

distance between the points in frame t and their respective nearest neighbors in frame

t− 1 are computed. Any point whose distance is above a threshold ε (we set ε to 1

centimeter) is labeled as a false positive and removed from the data set at time t (see

Figure 6.2(b)). This process assumes that the first frame at time t = 0 contains all

markers, a fair assumption since the human demonstrator can make sure all markers

are correctly detected before starting a folding motion. This simple false positives

removal method is efficient and successfully removes 100% of the false positives in

our data sets.

375575 250

650−200

0

Y (mm)X (mm)

Z
(m

m
)

(a)

375575 250

650−200

0

Y (mm)X (mm)

Z
(m

m
)

(b)

Figure 6.2: Figure 6.2(a) shows the data before rectification (X marks) and the

nearest neighbors computed based on the previous time frame (O marks). Figure

6.2(b) shows the resulting data points, after false positives have been removed.

False negatives take place when a marker on the towel is not registered by the

motion capture system. These events mainly occur due to occlusions. They are

more frequent and more challenging to deal with since we need to recover where

the data points should be on the towel. We start by automatically labeling each

marker on the towel as being part of the upper, lower, left, or right edge. This

process can be implemented by exploiting the towel’s rectangular shape at the first

133

time step and using nearest neighbor distances for each subsequent time step. We

take advantage of the fact that all of the points forming an edge roughly exist in

a two-dimensional plane and we reconstruct the false negatives in that plane. By

knowing the number of points along each edge, we can deduce which edges of the

towel are missing markers, as shown in Figure 6.3(a), indicating that false negatives

have occurred. For each data point on a towel’s edge containing false negatives, we

compute the best-fit plane using orthogonal distance regression [140], an example of

which is shown in Figure 6.3(b). We then project all of the points forming the edge

onto the plane using QR decomposition [54], consequently reducing the dimensions

of the reconstruction problem from three down to two. In two-dimensional space,

we find the best-fit 3rd-degree polynomial using the Vandermonde matrix [61] to

establish a least-squares problem. It is then possible to reconstruct the missing data

points, in two-dimensional space, using interpolation, along with the polynomial’s

equation and the location of the current data points, as demonstrated in Figure

6.3(c). We finally reconstruct the false negatives by projecting the two-dimensional

points back into three dimensions, the final results of which can be seen in Figure

6.3(d). While being more complicated than the process used for false positives and

having the implicit assumption that enough data points must be present for the

polynomial construction, the proposed method is very efficient (since we are working

with few data points in low dimensions) and accurate. In fact, the reconstruction

only failed 11.11% of time, each due to a lack of data points resulting in a poor

polynomial function. Any imitation example for which the reconstruction failed is

discarded from the training data. We note that observers could not distinguish

between data points that were acquired directly through motion capture and those

that were reconstructed. With the aforementioned process, we are guaranteed to

134

have data for all of the 28 markers at 120Hz (after having discarded the ones who

could not be reconstructed correctly).

(a)

(b)

−200 200 600

−800

−400

Projected X (mm)

Pr
oj

ec
te

d
Y

 (m
m

)

(c)

200

600
200

600

−300

−100

100

Y (mm)X (mm)

Z
 (m

m
)

(d)

Figure 6.3: Figure 6.3(a) shows a time frame with two false negatives. Figure 6.3(b)

shows the best-fit plane applied to the lower edge. Figure 6.3(c) illustrates the

polynomial curve fitting, which is built from the markers shown as X and used to

recover the false negatives marked as O. Figure 6.3(d) reveals the reconstructed towel.

We are now faced with the problem of temporally incoherent motion sequences.

This means that multiple equally valid folding motions will take different amounts

of time to execute. This issue is evidenced by the two examples in Figure 6.1, where

one folding motion is finished before the other one. While this is an additional

issue that needs to be addressed, it brings up the additional benefit of covering a

greater range of the action space during imitation learning. More formally, the i-th

observation sequence, Oi, is comprised of the observation’s time and of the Cartesian

135

coordinates for the 28 markers at each time step of the motion. Similarly, the i-th

action sequence, θi, contains the trajectories of the two control points, one for each

pinch grasp location of the demonstrator, for each time step of the motion. Example

folding motions each take different times to execute (between approximately 3.5 and

5.5 seconds). Consequently, each observation sequence lies in spaces of different

dimensions ranging from R35700 to R56100. Similarly, each action sequence ranges

from R2940 to R4620. Working with fixed-sized feature vectors is required for most

learning techniques and, as such, we convert our training data to fixed-sized vectors.

Moreover, we down-sample training data from 120Hz to 30Hz, implicitly reducing the

complexity of the problem. The reduction from 120Hz to 30Hz was chosen because

we have empirically determined, using PCA, that the same amount of variance was

captured, as shown in Figure 6.4. By using 30Hz, along with an average folding length

of approximately 5 seconds, we dictate the number of time frames in our sequences

(30× 5 = 150). In other words, every sequence is now composed of 150 samples, but

the time step between two samples will be different for each sequence. For example, a

folding sequence that takes 6 seconds will be comprised of 150 samples each separated

by 40ms whereas a folding sequence that takes 4 seconds will also be comprised of

150 samples but each sample will be separated by 26ms. The number of time frames

(150), along with the data recorded for each observations and actions, determines

the size of our vectors, namely Oi ∈ R12750 (i.e., 150 samples, each comprised of

28 three-dimensional points and a time stamp) and θi ∈ R1050 (i.e., 150 samples,

each comprised of 2 three-dimensional points and a time stamp). We conclude this

section by mentioning that we collect 80 different folding sequences for our training

data, which, when oriented as the rows of a matrix, create a training data set where

Ot ∈ R80×12750 and θt ∈ R80×1050.

136

15 30 45 60 90 120
0

5

10

15

20

25

30

Speed of Data Acquisition (Hz)

N
u

m
b

e
r

o
f

P
ri

n
ci

p
a

l C
o

m
p

o
n

e
n

ts

90% Eigenvalue Conservation

95% Eigenvalue Conservation

99% Eigenvalue Conservation

Figure 6.4: The number of principal components that account for 90%, 95%, and

99% of variance after down-sampling the data from 120Hz to 15Hz. The bar graph

shows that an equivalent amount of information is retained when down-sampling

from 120Hz to 30Hz.

6.3 Proposed Approach

6.3.1 Reward Function

As for any reinforcement learning algorithm, it is necessary to evaluate the algo-

rithm’s exploration of the action space and guide its search. We start by defining a

reward function used in both the imitation and reinforcement learning phases of the

algorithm. The reward function R(Ot, Oc) computes the reward for a new observa-

tion Oc based on all the observations in Ot acquired during training. Its pseudo-code

is shown in Algorithm 3. We note that Ot ∈ R80×12750 whereas Oc ∈ R12750 and we

use Oi ∈ Ot, in line 2 of the algorithm, to indicate that we pick the i-th sequence

from Ot, such that Oi ∈ R12750. In line 3 and 4 of the algorithm, we extract the

137

three-dimensional data points of the last time frame for the training sample and

current observation, respectively. In line 5, we run the Iterative Closest Point (ICP)

algorithm [161] to compute the translation- and rotation-invariant average error, in

millimeters, between the points. We repeat these steps for each sample in our train-

ing data and retain the smallest average error (lines 6-8). Our reward is then set as

the exponential function of the negative smallest average error in decimeters. We use

the average error in decimeters (as opposed to millimeters or meters, for example)

in the exponent in order to have well-behaved and human-readable rewards (i.e.,

pseudo-probabilities between 0 and 1).

Algorithm 3 Computation of R(Ot, Oc)

1: minAvgError ← 1000

2: for all Oi ∈ Ot do

3: Training ← LastFrame(Oi)

4: Current← LastFrame(Oc)

5: AvgError ← ICP(Trainning, Current)

6: if AvgError ≤ minAvgError then

7: minAvgError ← AvgError

8: end if

9: end for

10: return exp(−minAvgError/100)

The reward function finds the best match between the current observation and

any observation that has been recorded during training. According to our previous

hypotheses, the reward function assumes that any motion in the training set gets the

highest possible reward and, consequently, we consider every training sample when

138

calculating a reward. An exponential function is used to generate rewards between 0

and 1. We note that, while the training motions look similar, they can yield rewards

with variations of up to 15% when compared amongst each other. Since we are

only trying to match 28 points in three-dimensional space, ICP is very efficient and

provides the additional benefit of making the reward function translation and rotation

invariant. In other words, the reward function would work even when the training

data was acquired at different orientations or in a different frame of reference than the

ones which the robot will operate in. This is a powerful property of the algorithm that

permits the robot to learn in a completely different environment (e.g., in a laboratory)

than the one it is expected to operate in (e.g., in a house) and allows the transfer of

training data from one robot to another. We conclude this section by mentioning an

interesting tradeoff to be considered with the proposed reward function. Instead of

using the last time frame of the observations, one could run ICP for every time frame.

By only using the last time frame, we are rewarding the robot for reaching a good

final towel configuration, regardless of how it got there. By introducing more time

frames into the reward function, one could potentially influence the robot’s behavior

so that it more closely mimics human behavior. Evidently, the addition of more time

frames would increase the time complexity of the reward function’s computation.

6.3.2 Imitation Learning

We use imitation learning as a two-layered hierarchical approach to reduce the search

space of the reinforcement learning algorithm. In the initial exploratory layer, we

use training data to let the robot execute a set of diverse folding sequences. Next,

in the expansion layer, we expand the search to motions similar to the best one

139

found during the exploratory layer. The idea behind the two-layer imitation learning

procedure is to explore the action space based on human demonstrations, the best

results of which will be used as seeds for the reinforcement learning algorithm. Since

we have acquired training data using human demonstrations, the exploratory layer is

crucial in eliminating, based on our reward function, motions that the robot cannot

replicate successfully or that do not yield good folding motions. Indeed, there is

no guarantee that the motions generated by a human will be reproducible by the

robot due to, among others, mechanical constraints and joint or torque limits. In

the unlikely case that none of the human-demonstrated motions are replicable by the

robot, the reinforcement learning will start from a very bad seed, requiring a lot of

exploration and converging very slowly.

As the name suggests, the aim of the exploratory layer is to explore and find

different motions in the trained action space, θt. It will give the algorithm an idea

of what motions, acquired by a human and imitated by the robot, provide the best

momentum folds, as dictated by our reward function. Since it would be too time

consuming to execute all the motions in the training data and there is some redun-

dancy in the trained action space, we apply Lloyd’s k-means clustering algorithm [92]

to find a representative subset of actions that the robot should try. The clustering

algorithm works by optimizing the following function, where Cj, θi, and µj represent

the j-th cluster, i-th training action, and j-th cluster’s mean, respectively.

arg min
C

M∑
j=1

∑
θi∈Cj

||θi − µj||

We use M = 10 clusters, implicitly trying to find the most diverse set of 10 fold-

ing motions. M is a parameter that dictates how much initial exploration the robot

should perform. Evidently, M dictates a tradeoff between time and amount of explo-

140

ration, since more clusters will result in more exploration of the action space, but will

take longer to execute on the robot. Each cluster Cj is represented by its mean, µj.

When imitating the motions on the robot, we cannot use the cluster’s mean directly

since it is simply a mathematical average and might end up producing a bad folding

motion very different from any sequences in the training data. Consequently, for each

cluster Cj, we find the Euclidean nearest neighbor between θi and µj where θi ∈ Cj.

In other words, we guarantee that the M different actions are part of our training

data. As a result, we have a set of M actions, θExplore = [θExplore1 θExplore2 . . . θExploreM]

with θExplorei ∈ Ci ∈ θt. We let the robot execute each encoded trajectory, θExplorei ,

record its corresponding observation, OExplore
i , and calculate the motion’s reward us-

ing RExplore
i = R(Ot, OExplore

i). We note that theM actions are temporally incoherent

and will yield different execution times.

In the expansion layer, the action space is further explored, starting with the

best folding motion that the robot produced. Formally, we find the best folding

motion, θExploreBest , based on the collected rewards in the exploration layer, where

Best = arg maxi(R
Explore
i). In the expansion layer, we exploit imitation learning

to expand the search space around θExploreBest . In other words, we have already deduced

that θExploreBest provides the best folding motion in the exploration layer and want to

explore the action space around it. Consequently, we need to generate new actions.

With the action space being so large and encompassing a relatively small region of

valid folding motions, randomly exploring the space or sampling directly from a dis-

tribution will in all likelihood be inefficient. Instead, we train a learning algorithm

using our training observations, Ot, and actions, θt, to learn the function f : Oi → θi.

In other words, given an observation sequence, Oi, we want to find its corresponding

action, θi. Evidently, the data stored inside Oi is highly correlated and a lot of redun-

141

dancy exists between both the data points and the successive time frames. Keeping

this remark in mind, we apply PCA to our observation data, Ot, which leads to a new

observation data set, Ôt, projected in a lower-dimensional space where Ôt ∈ R80×29.

The 29 dimensions were chosen by maintaining 99% of the data’s variance (see Figure

6.4). Learning is achieved by using Ôt with Radial Basis Functions (RBF) [23], since

we empirically determined that it yielded better accuracy and trained faster than a

Neural Network (NN) trained according to Levenberg-Marquardt optimization [17], ν

Support Vector Regression (ν-SVR) [29], and ε Support Vector Regression (ε-SVR)

[86], as shown in Figure 6.5. The accuracy measures were calculated by training

with 90% of the data and classifying the remaining 10%. We note that using the

dimensionally-reduced data, Ôt, provides slightly better results due to the fact that

potential noise has been removed from the data and a simpler problem needs to be

learned. Additionally, the average error is very low, 0.6767cm, which is much less

than the mechanical inaccuracy of the manipulators we use. Last but not least, RBF

training is very efficient, taking 181.6ms, which would easily allow for unsupervised

online learning as the robot performs new motions.

The RBF requires an observation as input and will output the action matching

that observation. Consequently, we need a process that generates a new observation,

which is then fed to the RBF. The entire process generates a new action, θExpands ,

using the Expand function shown in Algorithm 4. In line 3 and 4 of the algorithm,

we fit a multivariate Gaussian distribution to the training data. The dimensionality

of the multivariate Gaussian (line 1) is 29, as dictated by the dimensional reduc-

tion through PCA. In line 6, we sample an observation, Ôs, from the multivariate

Gaussian distribution and compare, in line 7, the time of the sampled observation,

Ôs, and best action executed during the exploration stage, θExploreBest . The sampling

142

29 127500

0.5

1

1.5

2

2.5

Number of Dimensions

A
ve

ra
ge

 E
rr

or
 (c

m
)

NN
RBF
ν−SVR
ε−SVR

(a)

29 127501

1e2

1e4

1e6

Number of Dimensions

T
im

e
(m

s)

NN
RBF
ν−SVR
ε−SVR

(b)

Figure 6.5: Figures 6.5(a) and 6.5(b) show the accuracy and training time for the

NN, RBF, ν-SVR, and ε-SVR algorithms for both the dimensionally-reduced (29)

and full (12750) data. The reader shall note the log-scale for the Y-axis of Figure

6.5(b).

process is repeated until the time difference between the two is less than threshold

ε, which we set to 0.2 seconds. We finally generate a new action, θExpands , by feeding

our sampled observation, Ôs, into the trained RBF (line 8).

The time check in line 7 of the algorithm is performed to compensate for the

temporal incoherencies inherently encoded by our training data, where two valid

folds can take a different amount of time to execute. We use the motion’s execution

times to increase the likelihood that the generated actions from Algorithm 4 will

be similar to θExploreBest , since two folding motions that take a significantly different

amount of time are very likely, if not guaranteed, to be very different. Similarly to

the exploratory layer, there is no guarantee that the robot will be able to successfully

execute the generated actions or that it will receive a good reward, in which case the

reinforcement learning will require more exploration and take longer to converge.

143

Algorithm 4 Expand(Ôt, θExploreBest , RBF, ε)

1: n = NumColumns(Ôt) // n = 29 in our case

2: Ôt ∼ [Ôt
1 Ôt

2 . . . Ô
t
n]

3: µ = [E[Ôt
1] E[Ôt

2] . . . E[Ôt
n]]

4: Σ = [Cov(Ôt
i , Ô

t
j)]i=1,2,...,n;j=1,2,...,n

5: repeat

6: Sample Ôs from f(x)

s.t. f(x) = 1
(2π)n/2|Σ|1/2 e

(− 1
2

(x−µ)T Σ−1(x−µ))

7: until |Time(Ôs)-Time(θExploreBest)| ≤ ε

8: θExpands =RBF(Ôs)

9: return θExpands

We run Algorithm 4 l times, resulting in a set of l new actions

θExpand = [θExpand1 θExpand2 . . . θExpandl].

For all of the experiments in this chapter, l = 5, expanding θExploreBest to five new,

yet similar, actions. We let the robot execute each encoded trajectory, θExpandi ,

record its corresponding observation, OExpand
i , and calculate the motion’s reward

using RExpand
i = R(Ot, OExpand

i). The best folding motions acquired from both the

exploration and expansion layers of our imitation algorithm will provide a good seed

for reinforcement learning, allowing it to converge quickly.

6.3.3 Reinforcement Learning

We finalize our algorithm using a modified version of the state-of-the-art reinforce-

ment algorithm PoWER [80]. PoWER tries to find new actions in such a way that

144

the expected rewards of the trials are maximized. The process is iterative and the

action performed at time n is updated to produce a new action θn+1 for the next

trial. The process is repeated until convergence, which we choose to be when the

last three trials’ rewards are within 0.1% of each other. PoWER’s original update

function does not work for our application, so we modify it to be

θRLn+1 = θRLn +
(
θTop − θRLn

) [
R(Ot, OTop)−R(Ot, ORL

n)
]

where Top is the index of the action that resulted in the best reward among the

actions [θExploreBest θExpand1 . . . θExpandl θRL1 . . . θRLn−1]. The update function is modified to

account for two major issues that occur when using PoWER’s unmodified update

function for our folding task. Our first modification is to only use the best action,

as designated by Top, rather than employing importance sampling, which takes into

account the best σ actions (i.e., σ is 1 in our case). The problem with importance

sampling with our folding motions comes from the fact that very different folds lying

in different regions of the action space can yield similarly high rewards (see Figure 6.1

for an example). Small potential time incoherencies between multiple high reward

actions can quickly lead the exploration into an action space region that is either not

executable by the robot or does not resemble a folding motion. The more actions are

considered with importance sampling (i.e., the greater the σ), the higher likelihood

for this phenomenon to take place. In our second modification, we include the

reward of the last trial, R(Ot, On), to influence the speed of the exploration. More

specifically, the term [R(Ot, OTop)−R(Ot, ORL
n)] in the update function allows for a

fine-grain search when the current action’s reward, R(Ot, ORL
n), is close to the best

action’s reward, R(Ot, OTop). Conversely, the further our current action’s reward is

from the best action’s reward, the more space we cover during the update step.

145

6.4 Finishing the Fold

As shown in the last frames of Figure 6.1, the folding motion we have learned places

the towel in an L-shaped configuration. We learn this motion, as opposed to the

full folding motion, to alleviate potential problems with occlusions from the motion

capture and reduce the motions’ time to simplify and speed up the learning pro-

cess. Evidently, once we have learned the folding motion, we still need to change

the object’s configuration from its L-shape to its final folded configuration, a motion

planning process that we describe in this section. More specifically, the method we

propose is based on the explicit solution of IK to produce coordinated smooth tra-

jectories that comply with manipulator constraints and that do not impose excessive

stress on the object being manipulated. We assume that the towel’s length, width,

rotation with respect to the robot, and one corner point is known; values that can

all easily be calculated with some simple image-processing or acquired directly from

the motion capture system.

6.4.1 Trajectory Generation in Configuration-Space

Thanks to the model-less nature of the learning process we had the opportunity to

circumvent the use of a specific deformable object model. However, relying on a

simple deformable object to finish the fold is crucial in order to implement a mo-

tion planning algorithm. Evidently, finding trajectories for both manipulators is

intimately tied to the choice of deformable object model. We choose a simple geo-

metrical approach specifically invented for robot folding applications where a fold is

represented as a kinematic chain comprised of a joint (i.e., the folding crease) con-

nected to two rigid links (i.e., the folding faces) [147, 94, 59]. Given the knowledge of

146

the length S, width W , object angle A, and right-most corner point R = Rx,Ry,Rz

in global Cartesian coordinates, we can produce mathematical equations for the two

trajectories in global Cartesian coordinates. We uniformly sample data points from

the trajectory by using a variable V , which ranges from 90 to 0 degrees with a prede-

fined step size. We have chosen -5 degrees as our step size and have found it to be a

good tradeoff between speed and the density of data points. The geometrical process,

highlighted in Figure 6.6, is governed by the following equations for the right-most

trajectory. Please note that the equations and geometrical representation are general

and apply to a deformable object in any configuration of V ranging from 180 to 0

degrees. Since the learning algorithm has already placed the object in an L-shaped

configuration (i.e., V = 90), we specifically apply the motion planning algorithm

with V ranging from 90 to 0 degrees.

Figure 6.6: Geometrical diagram used to derive the manipulators’ trajectories in

Cartesian space, showing each mathematical variable.

147

XR =
S

2
cos(V) cos(A) +

S

2
cos(A) +Rx

YR =
S

2
cos(V) sin(A) +

S

2
sin(A) +Ry

ZR =
S

2
sin(V) +Rz

The same equations can be used for the left-most trajectory, by generating a new

point P = Px, Py, Pz and substituting it for R.

Px = −W sin(A) +Rx

Py = W cos(A) +Ry

Pz = Rz

XL =
S

2
cos(V) cos(A) +

S

2
cos(A) + Px

YL =
S

2
cos(V) sin(A) +

S

2
sin(A) + Py

ZL =
S

2
sin(V) + Pz

The aforementioned equations provide the foundations for the motion planning

algorithm. In the remainder of this section, we will describe the algorithm for

a single manipulator, although the equations and algorithms provided apply and

need to be executed for both manipulators. The data points generated in global

Cartesian coordinates need to be converted to the robot’s configuration space. Let

L =
[
L1L2L3 · · ·LN

]
be the set of data points for one trajectory, with Li ∈ R3 en-

compassing the three variables X, Y , and Z. Put differently, L represents, in Global

Cartesian coordinates, the path to be followed by one of the robot’s manipulators.

The conversion from Cartesian to configuration space is achieved by using an IK

148

solver. Even though any manipulator-dependent IK solver will work, we briefly de-

scribe the IK algorithm we created for our specific platform. In [7], we provide a

more detailed mathematical derivation of our IK solver.

The Barrett WAM arm can be described as an anthropomorphic arm with a

redundant degree of freedom and a spherical wrist. Given a wrist orientation, we

solve the IK problem analytically by treating the redundant joint as a free parameter.

Changing the free parameter effectively allows the sampling of multiple configurations

for a given data point in global Cartesian space (i.e., a given Li). Rather than

randomly sampling, as is done in [155], we sample uniformly between the redundant

joint’s upper and lower limits with a step size of four degrees. Evidently, choosing

the step size involves a tradeoff between speed and the density of solutions and we

found a four degree step to yield a good amount of different solutions (i.e., setting

the step size too low will yield solutions that are too similar). For simplicity, we force

the wrist orientation to be constant, constrained to be at the same orientation as

what it was when the robot finished executing the L-shape motion learned using the

algorithm described in the previous sections. Analyzing the diagram in Figure 6.6,

it would be equally easy, although unnecessary, to match the end-effector orientation

with the folding edge of the deformable object. As a last step, the IK solutions

in configuration space are pruned by removing any configurations not within the

manipulator’s joint limits. Each data point in the vector L is replaced by a set of

manipulator configurations C, as follows (note that the number of configurations is

not guaranteed to be the same for each data point)

149

L =
[
L1 L2 · · · LN

]

C =


C1,1 C2,1 · · · CN,1

C1,2 C2,2 · · · CN,2
...

...
. . .

...

C1,A C2,B · · · CN,C

 .

Ci,j ∈ RDOF , where DOF is the manipulator’s number of DOFs, and that the no-

tation Ci,j(k) refers to the kth joint value of configuration Ci,j. Using this trajectory

generation method, we are implicitly imposing two constraints on the manipulators

and their trajectories. First, the distance between the two grasping points (i.e., the

width) will remain the same during the entire motion. Second, at any given point

in the trajectory, the relative height between the two contact points will remain

the same over time. These valid and beneficial constraints come directly from our

deformable object model.

6.4.2 Roadmap Creation

Having generated a set of robot configurations for each data point in the trajectory,

we now focus on building a graph to be used for motion planning. We take a similar

approach to [49] by generating two separate graphs, one for each manipulator, as

opposed to generating a single graph representing both manipulators. Each vertex

of the graph represents a robot configuration and each edge represents a connection

(i.e., path) from one configuration to another. Similarly to a tree representation,

we introduce the notion of levels, where each level of the graph corresponds to a

distinct global Cartesian coordinate, Li. In other words, each level is comprised of

150

numerous vertices, all representing the same Cartesian coordinate. The vertices are

connected such that each vertex at any given level is connected to all the vertices of

the next level. A path that follows the trajectory can then be generated by moving

from one level to the next (i.e., moving from one trajectory data point to the next).

In an attempt to make path selection easier, an initial vertex, CI , is added as the

first level of the graph and a final vertex, CF , is added as the last level of the graph.

Choosing CI is straightforward, since it is simply the manipulator’s configuration

after the learned L-shape motion has been executed. Selecting CF is, however, more

difficult since it can be any configuration from the last level of the graph. Since we

are interested in fast execution time, we choose CF to be the configuration taken

from the graph’s last level closest, Euclidean-wise, to the initial configuration CI . A

graphical representation of one roadmap is shown in Figure 6.7.

Since we want to find the best path within this highly interconnected graph,

we associate weight functions to edges. More specifically, we have defined time,

boundary singularity, and collision weights as possible representations for what would

describe a best path. The collision weight, which requires calls to a collision detector,

is implemented as part of the path selection process (see next section) in order to

minimize the number of calls to the collision detector. Consequently, the edge cost

is represented as Ec = α ×Wt + β ×Wb, with α + β = 1 and where Wt and Wb

represent the time and boundary singularity weights, respectively. Users can scale

the weights based on what their definition of what a best path is. For example, for

a fast execution time α would be increased, whereas for a safe execution β would be

increased. To compute the time weight, we assume that the joints rotate at a constant

velocity. This reduces the problem to minimizing the amount of rotations performed

by the joints. More specifically, given an edge between two configurations, Cx,y and

151

Figure 6.7: Graphical representation of a roadmap.

Cx+1,z, we are interested in finding the joint with the maximum amount of rotational

change, which will take the longest to rotate into position. The maximum difference

between the positive and negative joint limits, labeled pL and nL respectively, is

used to scale the weight between 0 and 1.

Wt =
maxi[Cx,y(i)− Cx+1,z(i)]

maxi[pL(i)− nL(i)]

Provided that α is set relatively high, we note that the time weight induces an

interesting consequence of its implementation. Since the best paths will be the ones

with the minimum amount of rotation, the paths will try to stay as close as possible

to the starting configuration, CI .

152

The boundary singularity weight is similarly calculated except that we want to

penalize more severely joint rotations that are close to the joint’s limits and that we

take into account all the joints. Consequently, we use an exponential function, which

we scale to be between 0 and 1.

M = pL(i)− pL(i)− nL(i)

2

Wb =
DOF∑
i=1

e|Cx+1,z(i)−M | − 1

DOF × (e(pL(i)−M) − 1)

The boundary singularity weight is to be used for safe execution and to steer the

manipulator away from potential boundary singularities. Moreover, and similarly to

the time weight, an implicit characteristic of the weight function can be deduced.

Joints with limits ranging from -180 to 180 degrees can generate invalid paths as

they approach one of the limits. Indeed, and as an example, as the joint approaches

-180 it will, at some point, switch over to 180, resulting in a 360 degree rotation of

the joint. This phenomenon is undesirable, especially if the manipulator is holding

the deformable object. The boundary singularity weight helps the manipulators to

stay away from these incorrect behaviors.

6.4.3 Path Selection

Conversely to [49], we find the best paths in each manipulator’s roadmap and merge

the paths rather than merging the two roadmaps. This procedure limits the number

of calls to a collision detector, an important feature of our algorithm, especially

considering the high connectivity between the vertices. More specifically, we have

two weighted graphs and wish to find the best combination of collision-free paths.

To that effect, we start by finding the best t paths of the first graph and the best u

153

paths of the second graph. The paths are found by running Dijkstra’s shortest path

algorithm [37] on the graph, with the initial configuration CI and goal configuration

CF . Every time a path is found, we remove all of the path’s edges from the graph and

repeat the process until no more paths are found (i.e., until two levels are completely

disconnected from each other). While we acknowledge that there are different ways

of pruning the graph to generate new paths, we have found this technique to be quite

successful in finding paths that are different from each other. Simply removing one,

or a few, edges would result in paths that are too similar from each other. Once

again, we have a tradeoff between speed and solution density but we have found that

our pruning method provides a good balance between the two, generating anywhere

between 20 and 50 paths per graph, depending on the object’s geometry. Running

the process on each graph results in two sets of paths, the permutation of which gives

the total number of potential solutions. We then propose two methods to choose a

path from this set. In the first, the set of solutions is ranked by ascending costs and

calls to a collision detector determines the first collision-free path, which is, evidently,

the best one. In the second method, we include a new weight, Wc, which takes into

account the distance between the two manipulators. Calls to the collision detector

are made, returning the minimum distance, d, between the two manipulators. Since

we want to penalize close manipulators more heavily, we use an exponential function.

We introduce two new variables, dRate and Margin, that dictate the rate of descent

of the exponential function and the safety margin, respectively. As a reference, we

used 0.8 as the rate of descent and 0.1 (i.e., 10 centimeters) as the safety margin.

Wc = exp

(
−d

dRate×Margin

)

154

The weight, Wc, is calculated for each pair of configurations in the path and can

be incorporated into the cost function by multiplying a factor γ to it and adding

the result to the total path cost. Effectively, this means that our new cost function

becomes Ec = α×Wt+β×Wb+γ×Wc, with α+β+γ = 1. Once the costs have been

updated, the paths can be sorted in ascending order and the best one is selected. As

will be shown in the experiments, the collision weight provides little improvement

and suffers from a huge performance hit due to time-consuming distance calculations

made by the collision detector. Consequently, we recommend using the first method

described.

6.5 Experimental Results

6.5.1 Motion Planning

Before presenting results for the learned folding motions, we focus on the validation

of the motion planning component, whose experiments are independent with respect

to the learning process. For the experiments that we present in this section, we

run our algorithm with a set of two different deformable objects, a napkin and a

small towel. The napkin is 30cm (length) by 30cm (width) and the small towel is

48cm (length) by 28cm (width). While we have attempted to perform additional

experiments on the real robot with differently-sized planar deformable objects, we

omit them in this section due to a limitation of our system. Since the robotic arms

are statically mounted and are fairly high relative to the table, they have a limited

workspace. Larger deformable objects would quickly extend past the reachability

space of our robot and, consequently and legitimately, our algorithm would not find

155

any paths to execute the motion. This drawback is strictly due to our manipulator

configuration and could be avoided by a better manipulator placement that would

maximize the reachability workspace. The objects are manually placed in front of

the robot in such a way that they are within the robot’s operating workspace. For

each experiment, the deformable objects are rotated by different angles (from -90 to

90 degrees) to come up with a diverse set of test cases, resulting in many distinct

motions.

We choose to run an extensive amount of tests on a virtual representation of

our system, simulated in USARSim [25], since it allows to continuously apply the

different motions without having a human-in-the-loop, thus greatly facilitating the

amount of motion-dependent data that can be acquired. The simulated robot model

faithfully mirrors the real robot, as can be seen visually in Figure 6.8. There are

only two, negligible, differences between the simulated and real robots. First, the

simulated robot is not mounted exactly the same way. More specifically, it is 10

centimeters closer to the table thus giving a larger reachable space. Second, and less

importantly, the rotational speed of the joints do not match those of the real robot.

It is worthwhile to note that the code implementing the aforementioned algorithm

is impervious to the type of robot used (i.e., simulated or real) and that the only

difference is the slightly modified robot configuration file.

6.5.1.1 Path Generation

In this experiment, we look at the number of collision-free paths that our algorithm is

capable of generating. Since the number of paths is highly dependent on the object’s

configuration and placement relative to the robot, we run experiments using the two

156

Figure 6.8: Juxtaposition of the simulated (left) and real (right) robots at the begin-

ning of the same folding motion. The object is the small towel and is not rotated.

objects, the small towel and the napkin, rotating each from -90 degrees to 90 degrees

with 5-degree increments. Consequently, we have two sets of 37 experiments. We

use 0.5, 0.5, and 0 for α, β, and γ, respectively. While we have run the experiment

for both the simulated and real platform, we only show the results of the simulated

data in Figure 6.9. The real platform’s results followed the same shape but yielded,

in general, a lower number of collision-free paths, a fact that can be attributed to the

manipulators’ higher mounting point, reducing their workspaces. The figure shows

an almost symmetric pattern between the positive and negative rotations. Even

though one might expect the graph to be perfectly symmetric around the 0 degree

rotation (e.g., the same series of configurations should be used by the left arm at

10 degrees than the ones used by the right arm at -10 degrees), the arms are not

mounted symmetrically from each other (i.e., one is rotated by 90 degrees while the

other by -90 degrees) and their joint limits are not necessarily symmetric (e.g., joint

4 is capable of rotations from 180 to -50 degrees). The figure also shows, as expected,

157

a significant difference between the two objects. Generally speaking, the small towel

has a greater number of collision-free paths than the napkin, an outcome explicitly

explained by their sizes. The napkin being smaller than the small towel forces the

manipulators to be positioned closer together when executing the trajectory, resulting

in a lot more collisions. Last but not least, the algorithm generates a huge amount of

collision-free paths (i.e., between 100 and 1000), which allows for either a fine grain

selection of the best one or opens the door to make the algorithm faster by reducing

the number of chosen paths.

Figure 6.9: Number of collision-free paths generated by the algorithm as a function

of object rotation angle for the small towel and the napkin.

6.5.1.2 Time Weight Effect

The proposed motion planning algorithm uses weights to dictate how the fold will

be executed. In this experiment, we evaluate the effect that the time weight factor,

α, has on the overall execution time of the motion plan. For the same reasons as the

previous experiment, namely that running many consecutive motions is faster and

158

less human intensive in simulation than on a real robot, the data presented in this

section refers to the simulation. We did run, however, similar motions on the real

robot and have noticed similar patterns to those presented. For a given object and

rotation, the time weight factor, α, is changed from 0 to 1 with increments of 0.05,

each time running the best motion in simulation and recording the total execution

time. The collision weight factor, γ, is set to 0 and the boundary singularity weight

factor, β is set to 1 − α. Figure 6.10 shows a few representative examples of the

results gathered from this experiment. The graph shows that increasing the time

weight factor reduces the overall execution time of the motion by a factor of 18-22%

for the napkin and 30-38% for the small towel. Folding the napkin takes less time

than folding the small towel, a logic observation since the napkin is smaller. As a

result, the execution times of the small towel can be improved more significantly

than those of the napkin.

Figure 6.10: Motion execution time as a function of the time weight factor, α. Data

is shown for the small towel rotated by 15 and -90 degrees and the napkin rotated

by 60 degrees.

159

6.5.1.3 Collision Weight Effect

In this experiment, we focus our attention on the collision weight factor, γ, to see if

it forces the manipulators to keep a safe distance from each other. Similarly to the

previous experiment, for a given object and rotation, the collision weight factor, γ,

is changed from 0 to 0.95 with increments of 0.05, each time recording the minimum

distance between the two manipulators, as given by the collision detector. The time

weight factor, α, and the boundary singularity weight factor, β, are both set to

(1− γ)/2. We note that we cannot increase the collision weight factor all the way to

one since the other two weight factors will be 0, resulting in a cost of 0 for every edge

of the graph. Figure 6.11 shows a few representative results from this experiment.

Counter-intuitively to what one might expect, the minimum distance between the two

manipulators does not change significantly as the collision weight factor increases.

This otherwise peculiar observation can be explained by the manipulators’ starting

position that affects the rest of the motion when using the time weight (i.e., rewarding

minimum rotations). Put differently, the manipulators’ starting position happens to

be set in such a way that the time weight produces motions that, indirectly, maximize

the arms’ distances from each other (e.g., the elbows are forced to face away from

each other).

Readers might wonder why, irrespectively of the object, motions perpendicular

to the robot (e.g., 80 and -90 degrees in Figure 6.11) result in closer manipulators

than motions more parallel to the robot (e.g., -55 and 60 degrees in Figure 6.11).

This difference is explained by the fact that, for perpendicular motions, the elbow

of the manipulator closest to the robot has to point away from the robot’s torso, in

the direction of the other manipulator and, as a result, the manipulators are very

160

Figure 6.11: Minimum distance between the two manipulators as a function of the

collision weight factor, γ. Data is shown for the napkin rotated by -55, 60, and -80

degrees and the small towel rotated by -90 degrees.

close to each other (see Figure 6.12). Conversely, more parallel motions allow the

manipulator’s elbow to stay away from the other manipulator.

6.5.2 Learning Algorithm

After verifying, in the previous section, that the proposed motion planning algorithm

works correctly, we turn our attention to the real-world evaluation of the learning

algorithm on our robotic platform. The task of the robot is to successfully symmet-

rically fold a thin hand-towel that is both light and highly susceptible to air flow

resistance. As previously mentioned, the training data is comprised of 80 folding

motions performed by the human demonstrator and each action is encoded as timed

Cartesian coordinates for both manipulators. In order to play actions on the robot,

we convert the Cartesian coordinates to robot configurations, for each manipulator,

using IK. As is done for the motion planning algorithm, our IK solver analytically

161

Figure 6.12: Pictures showing the difference between perpendicular motions (right)

and more parallel motions (left). The perpendicular motion forces the manipulators

to be closer to each other.

solves for six DOFs by uniformly sampling possible joint values for the 7th, and

redundant, DOF. This yields a large space of solutions, which is dependent on the

sampling step. We select the IK solution that is both collision-free and minimizes

the joints’ movement from the previous time frame, in order to reduce the amount of

torque that the joints will experience. A starting robot configuration was manually

selected and the towel is grasped using a pinch grasp. Figure 6.13 shows some trials

performed by our robotic platform.

The exploratory and expansion layers of the algorithm operate in constant time,

since they always yield the same number of actions to be performed by the robot.

Specifically, we always run the exploratory layer 10 times and the expansion layer 5

times. Once all 15 motions have been played back on the robot, the reinforcement

learning iterates until convergence (when the last three rewards are all within 0.001

of each other). Once the folding motion converges, the towel is folded using the plan-

ning algorithm described in Section 6.4. Figure 6.14 shows the resulting rewards for

162

Figure 6.13: Trials producing rewards of 0.57391 (top) and 0.93905 (middle), along

with final folding motion (bottom).

a learning session. In the exploratory and expansion stages of the algorithm, the re-

wards oscillate, in no particular order since the actions are acquired independently of

each other, as the robot tries to find a good starting seed for the reinforcement learn-

ing algorithm. The reinforcement algorithm converges in 4 steps since high-quality

motions were found during the exploratory and expansion stages of the algorithm.

Overall, only 19 trials are required to converge to a good solution for this complex

dynamic task, as opposed to 50 or 75 trials for similar tasks [80, 82]. We note that

the fast convergence is entirely due to the very good starting seed acquired through

the first 15 trials, thus the benefit of combining our imitation learning algorithm

with reinforcement learning. Even though reinforcement learning is not necessary

for the application presented, since a couple of very high quality actions were found

in the exploratory layer, the algorithm is built for applications when that might not

be the case, thus requiring the expansion and reinforcement learning layers.

163

5 10 15 190

0.2

0.4

0.6

0.8

1

 Trial Number

R
ew

ar
d

Exploration RLExpansion

Figure 6.14: Rewards given to the robot for each trial performed.

6.5.3 Algorithm Time

We conclude this experimental section with information about our algorithm’s run-

ning time under two different conditions, the result of which can be found in Table

6.1. The algorithm times were recorded on a standard 3.0GHz desktop computer and

include the time spent on allocating space for all the data structures. Generating

new motions for the imitation or reinforcement learning components is extremely

fast, taking an average of 14ms to compute. After the reinforcement learning con-

verges to a valid motion, the motion planning is initiated and decomposed into five

subparts: generating the trajectory, computing IK, creating the graph, generating

paths by making multiple calls to Dijkstra’s algorithm, and selecting the best path.

When γ 6= 0, the algorithm is about five times slower since a lot more calls to the

collision detector are required in order to find the minimum distance between the

two manipulators. However, as we have shown, using the collision weight did not

164

provide any significant improvements. Consequently, we recommend setting γ to

0, unless safety is of outmost importance for the task at hand, to produce a much

faster algorithm. The other parts of the algorithm are constant with respect to γ

and relatively fast.

Algorithmic Part γ = 0 γ 6= 0

Learned Motion Generation 14ms 14ms

Trajectory Generation < 1ms < 1ms

IK 95ms 96ms

Graph Creation 290ms 289ms

Path Generation 136ms 136ms

Path Selection 21ms 2000ms

Total 556ms 2535ms

Table 6.1: Average computing time for each part of the algorithm.

We note that the majority of time is spent on the motion planning rather than the

learned motion generation. Indeed, out of the 556ms of time computation necessary

for the end-to-end algorithm, 542ms are spent on the motion planning component.

We note that the motion planning needs to only be executed once, whereas the

motion generation needs to be executed as many times as necessary for the rein-

forcement learning algorithm to converge. This brings an interesting parallelization

procedure to speed up the entire process, where the motion planning component is

executed while the robot is performing imitation or reinforcement learning actions.

This process essentially removes 542ms away from the algorithm’s time complexity,

rendering the computation time negligible.

165

6.6 Conclusions

We have shown that the combination of imitation and reinforcement learning pro-

vides a notable benefit to learning complex tasks. Indeed, once the exploratory and

expansion steps are completed with the help of imitation learning, the reinforcement

learning algorithm converges extremely quickly thanks to a very good starting seed.

The approach is especially well suited for tasks with different but equally-appropriate

ways of solving them, where human-like motions are desirable, or where kinesthetic

learning is impractical or impossible (e.g., when using two or more manipulators).

These tasks range from folding towels or clothes to opening letters or boxes, ty-

ing knots, and loading or unloading grocery bags. The absence of an object model

is a welcomed benefit, especially when dealing with deformable objects. We have

demonstrated that the problem of time incoherencies in the training data, which are

notoriously difficult to deal with, can be circumvented with our imitation learning

algorithm. The motion planning component, whose goal is to finish the fold, pos-

sesses its own strengths, coming from its speed, the notion of fold quality that can

be parameterized to one’s own definition, the easy extendibility to different manip-

ulators, and the fact that it can be parallelized effortlessly. Last but not least, the

end-to-end algorithm runs in real time.

There are a few directions for future work. From a practical standpoint, the data

acquisition using the motion capture system needs to be replaced by a user-friendly

and cost-effective solution. Based on our data, only 29 dimensions were required

to successfully interpret a 3- to 5-second towel motion, leading us to believe that

some simple image processing with stereo vision or an inexpensive sensor such as

Microsoft’s Kinect [146] might be sufficient for similar tasks. Evidently, new feature

166

vectors would have to be acquired (e.g., SIFT features, corner or edge detection)

and the algorithm would learn a different function. We note that this extension is

entirely dependent on the learning algorithm and, as such, the camera viewpoint

would not affect the results. An interesting algorithmic extension would be to add

online learning to the approach. As we perform more actions using reinforcement

learning and get an idea of how good they are with the reward function, we might not

want to discard that information especially if it is likely that the task or operating

conditions are very different from those during training.

167

CHAPTER 7

Conclusions

In this dissertation, we have solved some of the major stumbling blocks on the way

to a massive use of robotic devices assisting humans in a variety of daily tasks. We

have focused on application-oriented tasks with a wide range of applications and have

considered both rigid and deformable objects. Although the tasks and algorithms

are presented with a specific application in mind, the techniques described apply to

a wide range of topics, extending beyond the robotics community. More specifically,

we have shown how feature-based, machine learning, dimensionality reduction, and

optimization techniques can jointly be exploited to produce an efficient rigid object

grasp planner, composed of an image processing and a grasp synthesis component,

which is capable of generalizing beyond its a priori training data. The modular

nature and intelligent design of the rigid object grasp planner translated into an

effortless and efficient extension for bimanual manipulators, which we demonstrate

through our bimanual regrasping planner. The bimanual regrasping planner is cast

as an optimization problem so that the best regrasping solution can be computed

mathematically. In addition to rigid object manipulation, we present work on de-

formable objects by focusing on the task of folding towels. More specifically, we

designed a novel learning framework where imitation and reinforcement learning are

combined to reduce the amount of trials that the robot has to perform before learn-

168

ing a behavior. This novel learning framework has the advantages of not relying on a

specific deformable object model and works very well with cooperative manipulators

and temporally incoherent manipulation behaviors.

Given the fundamental nature of the work in this dissertation, a few interesting

potential future directions can be envisioned. The first and most important comes

from the fact that all the techniques presented are supervised, in the sense that they

necessitate a human-in-the-loop. Although it is not yet realistic to hope for a fully

autonomous system (i.e., a system that does not require any a priori information),

unsupervised learning with some starting knowledge or training data for the robot has

great future potential. A robot controlled with an unsupervised learning algorithm

would be capable of increasing its knowledge-base online as it performs successful or

unsuccessful manipulations. In order for unsupervised learning to take place in real-

world scenarios, two major obstacles need to be circumvented. First, an automatic

process allowing the robot to tell whether or not an attempted manipulation task

was successful needs to be implemented. By knowing if the attempted manipulation

was successful, the robot will be able to add this experience into its knowledge-base

and become better over time. This process can be relatively simple to implement

as a binary classifier (e.g., was the manipulation successful or not) or complicated

if the manipulation’s quality needs be calculated (e.g., how good or bad was the

manipulation). Second, the learning process from the data needs to either be fast

or accept incremental updates, since the algorithm will need to train every time

new data is available. A different direction to solve this problem would be to use

adaptation learning, where a model is trained with a lot of data (e.g., initial a priori

information given to the robot) and subsequently adapted only using the new data.

169

References

[1] C. Anderson, B. Axelrod, J. Case, J. Choi, M. Engel, G. Gupta, F. Hecht,
J. Hutchison, N. Krishnamurthi, J. Lee, H. Nguyen, R. Roberts, J. Rogers,
and A. Trevor. A new mobile manipulation platform for automatic coffee
retrieval. In Workshop on “Manipulation: Sensing and Adapting to the Real
World” at the Robotics: Science and Systems Conference, 2007.

[2] A. Anglani, F. Taurisano, R. de Giuseppe, and C. Distante. Learning to grasp
by using visual information. In Computational Intelligence in Robotics and
Automation, pages 7–14, 1999.

[3] M. Arbib, T. Iberall, and D. Lyons. Coordinated control programs for move-
ments of the hand. In Hand Function and the Neocortex, pages 111–129, 1985.

[4] S. Arimoto, K. Tahara, J. Bae, and M. Yoshida. A stability theory of a mani-
fold: Concurrent realization of grasp and orientation control of an object by a
pair of robot fingers. Robotica, 21(2):163–178, 2003.

[5] P. Azad, T. Asfour, and R. Dillmann. Combining appearance-based and
model-based methods for real-time object recognition and 6D localization. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5339–5344, 2006.

[6] P. Azad, T. Asfour, and R. Dillmann. Accurate shape-based 6-DoF estimation
of single-colored objects. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2690–2695, 2009.

[7] B. Balaguer and S. Carpin. Kinematics and calibration for a robot comprised
of two Barrett WAMs and a Point Grey Bumblebee2 stereo camera. Technical
Report 2012001, University of California, Merced, 2012.

[8] D. Balkcon. Robotic Origami Folding. PhD thesis, Carnegie Mellon University,
2004.

[9] D. Baraff and A. Witkin. Large steps in cloth simulation. In ACM Inter-
national Conference on Computer Graphics and Interactive Techniques, pages
43–54, 1998.

[10] A. Barr. Superquadratics and angle-preserving transformations. IEEE Com-
puter Graphics and Applications, 1(1):11–23, 1981.

170

[11] H. Bay, T. Tuytelaars, and L. Gool. SURF: Speeded up robust features. In
European Conference on Computer Vision, pages 404–417, 2006.

[12] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman. Eigenfaces vs. Fisher-
faces: Recognition using class specific linear projection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(7):711–720, 1997.

[13] M. Bell and D. Balkcom. Grasping non-stretchable cloth polygons. Interna-
tional Journal of Robotics Research, 29(6):775–784, 2010.

[14] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and J. Kuffner. Grasp
planning in complex scenes. In IEEE/RAS International Conference on Hu-
manoid Robots, pages 42–48, 2007.

[15] D. Berenson, S. Srinivasa, D. Ferguson, A. Collet, and J. Kuffner. Manipula-
tion planning with workspace goal regions. In IEEE International Conference
on Robotics and Automation, pages 618–624, 2009.

[16] D. Berenson, S. Srinivasa, and J. Kuffner. Addressing pose uncertainty in
manipulation planning using task space regions. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1419–1425, 2009.

[17] C. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
1995.

[18] C. Bishop. Pattern analysis and machine learning. Springer, 2006.

[19] K. Bitsakos, C. Fermuller, and Y. Aloimonos. Real-time shape retrieval for
robotics using skip tri-grams. In IEEE/RSJ International Conference on In-
telligent Robots and Systems, pages 4731–4738, 2009.

[20] D. Bowers and R. Lumia. Manipulation of unmodeled objects using intelligent
grasping schemes. Transactions on Fuzzy Systems, 11(3):320–330, 2003.

[21] M. Bro-Nielsen and S. Cotin. Real-time volumetric deformable objects models
for surgery simulation using finite elements and condensation. In Conference
of the European Association for Computer Graphics, pages 57–66, 1996.

[22] M. Brown, A. Kellner, and D. Raggett. Stochastic language models (N-Gram)
specification. Technical report, World Wide Web Consortium (W3C), 2001.

[23] M. Buhmann. Radial Basis Functions: Theory and Implementations. Cam-
bridge University Press, 2003.

171

[24] J. Canny. A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 8(6):679–714, 1986.

[25] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper. USARSim: a
robot simulator for research and education. In IEEE International Conference
on Robotics and Automation, pages 1400–1405, 2007.

[26] M. Carreira-Perpinán. A review of dimension reduction techniques. Technical
Report CS-96-09, University of Sheffield, 1997.

[27] U. Castiello. Arm and mouth coordination during the eating action in humans:
a kinematic analysis. Experimental Brain Research, 115(3):552–556, 1997.

[28] U. Castiello. The neuroscience of grasping. Nature Reviews Neuroscience,
6(9):726–736, 2005.

[29] C. Chang and C. Lin. Training nu-support vector regression: Theory and
algorithms. Neural Computation, 14(8):1959–1977, 2002.

[30] D. Chen and D. Zeltzer. Pump it up: Computer animation of a biomechanically
based model of muscle using the finite element method. In ACM International
Conference on Computer Graphics and Interactive Techniques, pages 89–98,
1992.

[31] J. Choi, H. Takahashi, Y. Mae, K. Ohara, T. Takubo, and T. Arai. Interop-
erable RT component for object detection and 3D pose estimation for service
robots. In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 2710–2715, 2009.

[32] A. Churchill, S. Vogt, and B. Hopkins. The coordination of two-effector ac-
tions: Spoon-feeding and intermanual prehension. British Journal of Psychol-
ogy, 90(2):271–290, 1999.

[33] M. Ciocarlie and P. Allen. Hand posture subspaces for dexterous robotic grasp-
ing. International Journal of Robotics Research, 28(7):851–867, 2009.

[34] M. Ciocarlie, C. Goldfeder, and P. Allen. Dimensionality reduction for hand-
independent dexterous robot grasping. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3270–3275, 2007.

[35] D. Cook, P. Dixon, W. Duckworth, M. Kaiser, K. Koehler, W. Meeker, and
W. Stephenson. Beyond Traditional Statistical Methods, chapter 3. NSF, 2000.

172

[36] S. Coquillart. Extending free-form deformation: A sculpting tool for 3D ge-
ometric modeling. In ACM International Conference on Computer Graphics
and Interactive Techniques, pages 187–196, 1990.

[37] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms,
chapter 24.3, pages 595–601. MIT Press and McGraw-Hill, 2001.

[38] J. Craig. Introduction to robotics – Mechanics and control. Prentice Hall, 2005.

[39] M. Cusumano-Towner, A. Singh, S. Miller, J. O’Brien, and P. Abbeel. Bringing
clothing into desired configurations with limited perception. In IEEE Interna-
tional Conference on Robotics and Automation, pages 3893–3900, 2011.

[40] E. Davies. Handbook of Texture Analysis, chapter 1, pages 13–16. Imperial
College Press, 2009.

[41] M. Desbrun, P. Schroder, and A. Barr. Interactive animation of structured
deformable objects. In Graphics Interface, pages 1–8, 1999.

[42] B. Dizioglu and K. Lakshiminarayana. Mechanics of form closure. Acta Me-
chanica, 52(1):107–118, 1984.

[43] A. Dobson. An Introduction to Generalized Linear Models. Chapman & Hall,
New York, 1990.

[44] A. Edsinger and C. Kemp. Human-robot interaction for cooperative manipu-
lation: Handing objects to one another. In IEEE International Symposium on
Robot and Human interactive Communication, pages 1167–1172, 2007.

[45] A. Edsinger and C. Kemp. Two Arms Are Better Than One: A Behavior Based
Control System for Assistive Bimanual Manipulation, chapter Recent Progress
in Robotics: Viable Robotic Service to Human, volume 370 of Lecture Notes
in Control and Information Sciences, pages 345–355. Springer, 2008.

[46] D. Ferguson, N. Kalra, and A. Stenz. Replaning with RRTs. In IEEE Inter-
national Conference on Robotics and Automation, pages 1243–1248, 2006.

[47] J. Flanagan and A. Wing. Modulation of grip force with load force during
point-to-point movements. Experimental Brain Research, 95(1):131–143, 1993.

[48] B. Gates. A robot in every home. Scientific American Magazine, December:58–
65, 2006.

173

[49] M. Gharbi, J. Cortes, and T. Siméon. Roadmap composition for multi-arm
systems path planning. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2471–2476, 2009.

[50] S. Gibson and B. Mirtich. A survey of deformable modeling in computer graph-
ics. Technical report, Mitsubishi Electric Research Laboratories, 1997.

[51] J. Glover, D. Rus, and N. Roy. Probabilistic models of object geometry
with application to grasping. The International Journal of Robotics Research,
28(8):999–1019, 2009.

[52] C. Goldfeder, P. Allen, C. Lackner, and R. Pelossof. Grasp planning via decom-
position trees. In IEEE International Conference on Robotics and Automation,
pages 4679–4684, 2007.

[53] C. Goldfeder, M. Ciocarlie, J. Peretzman, H. Dang, and P. Allen. Data-driven
grasping with partial sensor data. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1278–1283, 2009.

[54] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins, 1996.

[55] M. Goodale, A. Milner, L. Jakobson, and D. Carey. A neurological dissociation
between perceiving objects and grasping them. Nature, 349(6305):154–156,
1991.

[56] A. Gribova. Bimanual Coordination: Electrophysiological and Psychophysical
Study. PhD thesis, Hebrew University of Jerusalem, 2001.

[57] H. Griffiths. Treatment of the injured workman. Lancet, pages 729–733, 1943.

[58] E. Grosso, G. Metta, A. Oddera, and G. Sandini. A tutorial on visual servo
control. IEEE Transactions on Robotics and Automation, 12(5):732–742, 1996.

[59] S. Gupta, D. Bourne, K. Kim, and S. Krishnan. Automated process planning
for robotic sheet metal bending operations. Journal of Manufacturing Systems,
17(5):338–360, 1998.

[60] V. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial
Intelligence Review, 22(2):85–126, 2004.

[61] R. Horn and C. Johnson. Topics in Matrix Analysis. Cambridge University
Press, 1991.

174

[62] C. Hsu and C. Lin. A comparison of methods for multiclass support vector
machines. Transactions on Neural Networks, 13:1045–1052, 2002.

[63] W. Hsu, J. Hughes, and H. Kaufman. Direct manipulation of free-form defor-
mations. Computer Graphics, 26(2):177–184, 1992.

[64] S. Hutchinson, P. Corke, and G. Hager. A tutorial on visual servo control.
IEEE Transactions on Robotics and Automation, 12(5):651–970, 1996.

[65] T. Iberall. Human prehension and dexterous robot hands. International Jour-
nal of Robotics Research, 16(3):285–299, 1997.

[66] T. Iberall, G. Bingham, and M. Arbib. Opposition Space as a Structuring Con-
cept for the Analysis of Skilled Hand Movements, pages 158–173. Generation
and Modulation of Action Patterns, H. Heuer and C. Fromm (Eds). Springer,
1986.

[67] L. Jaillet and T. Siméon. Path deformation roadmaps: Compact graphs with
useful cycles for motion planning. International Journal of Robotics Research,
27(11-12):1175–1188, 2008.

[68] M. Jeannerod. Intersegmental coordination during reaching at natural visual
objects. In Attention and Performance, pages 153–168, 1981.

[69] M. Jeannerod. The timing of natural prehension movements. Motor Behavior,
16(3):235–254, 1984.

[70] I. Kamon, T. Flash, and S. Edelman. Learning visually guided grasping: a
test case in sensorimotor learning. IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, 28(3):266–276, 1998.

[71] Y. Kang and H. Cho. Complex deformable objects in virtual reality. In ACM
Symposium on Virtual Reality Software and Technology, pages 49–56, 2002.

[72] A. Karatzoglou, D. Meyer, and K. Hornik. Support vector machines in R.
Journal of Statistical Software, 15(9):1–28, 2006.

[73] H. Kardestuncer. Finite Element Handbook. McGraw-Hill, 1987.

[74] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions
on Robotics and Automation, 12(4):566–580, 1996.

175

[75] A. Kawamura, K. Tahara, R. Kurazume, and T. Hasegawa. Simple orientation
control of an object by regrasping using a dual-arm manipulator with multi-
fingered hands. In International Conference on Advanced Robotics, pages 1–6,
2009.

[76] S. Khoury and A. Sahbani. On computing robust N-finger force-closure grasps
of 3D objects. In IEEE International Conference on Robotics and Automation,
pages 2480–2486, 2009.

[77] H. Kim and S. Araújo. Grayscale template-matching invariant to rotation,
scale, translation, brightness and contrast. In Pacific-Rim Symposium on Im-
age and Video Technology, pages 100–113, 2007.

[78] H. Kim, E. Murphy-chutorian, and J. Triesch. Semi-autonomous learning of
objects. In Conference on Computer Vision and Pattern Recognition Work-
shop, pages 145–150, 2006.

[79] M. Kirby and L. Sirovich. Application of the karhunen-loéve procedure for the
characterization of human faces. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12(1):103–108, 1990.

[80] J. Kober and J. Peters. Learning motor primitives for robotics. In IEEE
International Conference on Robotics and Automation, pages 2112–2118, 2009.

[81] Y. Koga, K. Kondo, J. Kuffner, and J. Latombe. Planning motions with
intentions. In Computer graphics and interactive techniques, pages 395–408,
1994.

[82] P. Kormushev, S. Calinon, and D. Caldwell. Robot motor skill coordination
with EM-based reinforcement learning. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3232–3237, 2010.

[83] P. Kormushev, S. Calinon, R. Saegusa, and G. Metta. Learning the skill of
archery by a humanoid robot iCub. In IEEE/RAS International Conference
on Humanoids Robots, pages 417–423, 2010.

[84] D. Kragic and H. Christensen. Survey on visual servoing for manipulation.
Technical report, Royal Institute of Technology Centre for Autonomous Sys-
tems, 2002.

176

[85] O. Kroemer, R. Detry, J. Piater, and J. Peters. Active learning using mean
shift optimization for robot grasping. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2610–2615, 2009.

[86] J. Kwok and I. Tsang. Linear dependency between ε and the input noise in ε-
support vector regression. IEEE Transactions on Neural Networks, 14(3):544–
553, 2003.

[87] J. Lang. Deformable Model Acquisition and Validation. PhD thesis, Univeristy
of British Columbia, 2001.

[88] J. Laurikkala, M. Juhola, and E. Kentala. Informal identification of outliers
in medical data. In Workshop on “Intelligent Data Analysis in Medicine and
Pharmacology” at the European Conference on Artificial Intelligence, 2000.

[89] S. LaValle and J. Kuffner. Rapidly-exploring Random Trees: Progress and
prospects. In Algorithmic and Computational Robotics: New Directions, pages
293–308, 2000.

[90] M. Levin. Textured object detection in stereo images using visual features.
Technical report, Stanford University, 2008.

[91] W. Li and L. Kleeman. Interactive learning of visually symmetric objects. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
4751–4756, 2009.

[92] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Infor-
mation Theory, 28(2):129–137, 1985.

[93] D. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004.

[94] L. Lu and S. Akella. Folding cartons with fixtures: a motion planning approach.
IEEE Transactions on Robotics and Automation, 16(4):346–356, 2000.

[95] R. MacCracken and K. Joy. Free-form deformations with lattices of arbitrary
topology. In ACM International Conference on Computer Graphics and Inter-
active Techniques, pages 181–188, 1996.

[96] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel. Cloth grasp
point detection based on multiple-view geometric cues with application to
robotic towel folding. In IEEE International Conference on Robotics and Au-
tomation, pages 2308–2315, 2010.

177

[97] A. Mason and C. MacKenzie. Grip forces when passing an object to a partner.
Experimental Brain Research, 163(2):173–187, 2005.

[98] E. McBride. Disability evaluation suggestions for the solution of some irksome
medicolegal perplexities. The Journal of Bone and Joint Surgery, 44(7):1441–
1447, 1962.

[99] M. McCarty, R. Clifton, D. Ashmead, P. Lee, and N. Goubet. How infants use
vision for grasping objects. Child Development, 72(4):973–987, 2001.

[100] A. Meltzoff. Infant imitation after a 1-week delay: Long-term memory for novel
acts and multiple stimuli. Developmental Psychology, 24(4):470–476, 1988.

[101] A. Miller and P. Allen. Graspit!: A versatile simulator for robotic grasping.
IEEE Robotics and Automation Magazine, 11(4):110–122, 2004.

[102] A. Miller, S. Knoop, H. Christensen, and P. Allen. Automatic grasp planning
using shape primitives. In IEEE International Conference on Robotics and
Automation, pages 1824–1829, 2003.

[103] S. Miller, M. Fritz, T. Darrell, and P. Abbeel. Parametrized shape models
for clothing. In IEEE International Conference on Robotics and Automation,
pages 4861–4868, 2011.

[104] A. Morales, P. Sanz, and A. del Pobil. An experiment in constraining vision-
based finger contact selection with gripper geometry. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems Conference, pages 1711–
1716, 2002.

[105] A. Morales, P. Sanz, and A. del Pobil. Vision-based computation of three-finger
grasps on unknown planar objects. In IEEE/RSJ International Conference on
Intelligent Robots and Systems Conference, pages 1693–1698, 2002.

[106] A. Morales, P. Sanz, A. del Pobil, and A. Fagg. Vision-based three-finger grasp
synthesis constrained by hand geometry. Robotics and Autonomous Systems,
54(6):496–512, 2006.

[107] P. Moreels and P. Perona. Evaluation of features detectors and descriptors
based on 3D objects. International Journal of Computer Vision, 73(3):263–
284, 2007.

178

[108] M. Munich, P. Pirjanian, E. Bernado, L. Goncalves, N. Karlsson, and D. Lowe.
SIFT-ing through features with ViPR. IEEE Robotics and Automation Maga-
zine, 13(3):72–77, 2006.

[109] K. Nagata and N. Yamanobe. Picking up a towel by cooperation of functional
finger actions. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1785–1790, 2009.

[110] J. Napier. The prehensile movements of the human hand. Journal of Bone
and Joint Surgery, 38B(4):902–913, 1956.

[111] J. Nelder and R. Mead. A simplex method for function minimization. The
Computer Journal, 7(4):308–313, 1965.

[112] R. Nevatia and K. Babu. Linear feature extraction and description. Computer
Graphics and Image Processing, 13(3):257–269, 1980.

[113] V. Nguyen. The synthesis of force closure grasps in the plane. Master’s thesis,
MIT Department of Mechanical Engineering, 1985.

[114] M. Olmos, J. Carranza, and M. Ato. Force-related information and exploratory
behavior in infancy. Infant Behavior and Development, 23(3):407–419, 2000.

[115] E. Oztop and A. Arbib. A biologically inspired learning to grasp system. In
EMBS International Conference, pages 857–860, 2001.

[116] E. Oztop, N. Bradley, and M. Arbib. Infant grasp learning: a computational
model. Experimental Brain Research, 158(4):480–503, 2004.

[117] R. Parent. A system for sculpting 3D data. Computer Graphics, 11(2):138–147,
1977.

[118] R. Pelossof, A. Miller, P. Allen, and T. Jebara. An SVM learning approach to
robotic grasping. In IEEE International Conference on Robotics and Automa-
tion, pages 3512–3518, 2004.

[119] J. Piater. Learning visual features to recommend grasp configurations. Tech-
nical Report 2000–40, University of Massachusetts, 2000.

[120] J. Piater. Learning visual features to predict hand orientations. In Workshop
on “Machine Learning of Spatial Knowledge” at the International Conference
on Machine Learning, 2002.

179

[121] J. Piater and R. Grupen. Toward learning visual discrimination strategies. In
IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, pages 410–415, 1999.

[122] S. Platt and N. Badler. Animating facial expressions. Computer Graphics,
15(3):245–252, 1981.

[123] D. Prattichizzo and C. Trinkle. Handbook of Robotics: Grasping, chapter 28,
pages 671–700. Springer, 2008.

[124] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng. ROS: an open-source Robot Operating System. In
Workshop on “Open-Source Software” at the IEEE International Conference
on Robotics and Automation, 2009.

[125] A. Remazeilles, C. Dune, E. Marchand, and C. Leroux. Vision-based grasping
of unknown objects to improve disabled people autonomy. In Workshop on
“Manipulation: Intelligence in Human Environments” at the Robotics: Science
and Systems Conference, 2008.

[126] N. Rezzoug and P. Porce. A multistage neural network architecture to learn
hand grasping posture. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1705–1710, 2002.

[127] G. Rizzolatti, R. Camarda, F. Fogassi, M. Gentilucci, G. Luppino, and
M. Matelli. Functional organization of inferior area 6 in the macaque mon-
key. Experimental Brain Research, 71(3):475–490, 1988.

[128] A. Romea, D. Berenson, S. Srinivasa, and D. Ferguson. Object recognition and
full pose registration from a single image for robotic manipulation. In IEEE
International Conference on Robotics and Automation, pages 48–55, 2009.

[129] M. Rosenstein, A. Barto, and R. Van Emmerik. Learning at the level of syner-
gies for a robot weightlifter. Robotics and Automation Systems, 54(8):706–717,
2006.

[130] B. Rossler, J. Zhang, and A. Knoll. Visual guided grasping of aggregates
using self-valuing learning. In IEEE International Conference on Robotics and
Automation, pages 3912–3917, 2002.

180

[131] R. Rusu, A. Holzbach, R. Diankov, G. Bradski, and M. Beetz. Perception for
mobile manipulation and grasping using active stereo. In IEEE/RAS Interna-
tional Conference on Humanoid Robots, pages 632–638, 2009.

[132] R. Rusu, I. Sucan, B. Gerkey, S. Chitta, M. Beetz, and L. Kavraki. Real-
time perception-guided motion planning for a personal robot. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 4245–4252,
2009.

[133] A. Sahbani and S. Khoury. A hybrid approach for grasping 3D objects. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
1272–1277, 2009.

[134] M. Santello, M. Flanders, and J. Soechting. Posture hand synergies for tool
use. Journal of Neuroscience, 18(23):10105–10115, 1998.

[135] A. Saxena, J. Driemeyer, and A. Ng. Robotic grasping of novel objects using
vision. International Journal of Robotics Research, 27(2):157–173, 2008.

[136] S. Schaal, A. Ijspeert, and A. Billard. Computational approaches to motor
learning by imitation. Philosophical Transaction of the Royal Society of Lon-
don: Series B, Biological Sciences, 358(1431):537–547, 2003.

[137] H. Scharr. Optimal Filters for Extended Optical Flow, pages 14–29. Lecture
Notes in Computer Science, B. Jahne, R. Mester, E. Barth, and H. Scharr
(Eds). Springer, 2004.

[138] A. Schneider, J. Sturm, C. Stachniss, M. Reisert, H. Burkhardt, and W. Bur-
gard. Object identification with tactile sensors using bag-of-features. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
243–248, 2009.

[139] T. Sederberg and S. Parry. Free-form deformation of solid geometric mod-
els. In ACM International Conference on Computer Graphics and Interactive
Techniques, pages 151–160, 1986.

[140] C. Shakarji. Least-squares fitting algorithms of the NIST algorithm testing
system. Journal of Research of the National Institute of Standards and Tech-
nology, 103(6):633–641, 1998.

[141] C. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 1948.

181

[142] M. Shubin. Laplace Operator. Hazewinkel, Michiel, Encyclopedia of Mathe-
matics. Springer, 2001.

[143] T. Siméon, J. Laumond, and C. Nissoux. Visibility-based probabilistic
roadmaps for motion planning. Advanced Robotics Journal, 14(6):477–494,
2000.

[144] M. Simoneau, J. Paillard, C. Bard, N. Teasdale, O. Martin, M. Fleury, and
Y. Lamarre. Role of the feedforward command and reafferent information in
the coordination of a passing prehension task. Experimental Brain Research,
128(1–2):236–242, 1999.

[145] D. Slocum and D. Pratt. Disability evaluation for the hand. Journal of Bone
and Joint Surgery, 28(3):491–495, 1946.

[146] J. Smisek. 3D with kinect. In IEEE International Conference on Computer
Vision Workshops, pages 1154–1160, 2011.

[147] G. Song and N. Amato. A motion planning approach to folding: From pa-
per craft to protein folding. IEEE Transactions on Robotics and Automation,
20(1):60–71, 2004.

[148] R. Spencer, R. Ivry, D. Cattaert, and A. Semjen. Bimanual coordination during
rhythmic movements in the absence of somatosensory feedback. Experimental
Brain Research, 94(4):2901–2910, 2005.

[149] B. Steder, G. Grisetti, M. Van Loock, and W. Burgard. Robust on-line model-
based object detection from range images. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 4739–4744, 2009.

[150] R. Suarez, J. Rosell, A. Perez, and C. Rosales. Efficient search of obstacle-free
paths for anthropomorphic hands. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1773–1778, 2009.

[151] R. Sutton and A. Barto. Reinforcement Learning: an Introduction. MIT Press,
1998.

[152] E. Theodorou, J. Buchli, and S. Schaal. Reinforcement learning of motor
skills in high dimensions: a path integral approach. In IEEE International
Conference on Robotics and Automation, pages 2397–2403, 2010.

182

[153] P. Tournassoud, T. Lozano-Perez, and E. Mazer. Regrasping. In IEEE Inter-
national Conference on Robotics and Automation, pages 1924–1928, 1987.

[154] Y. Tsai and H. Huang. Motion planning of a dual-arm mobile robot in the
configuration-time space. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 2458–2463, 2009.

[155] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R Dillmann. Hu-
manoid motion planning for dual-arm manipulation and re-grasping tasks. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2464–2470, 2009.

[156] J. van den Berg, S. Miller, K. Goldberg, and P. Abbeel. Gravity-based robotic
cloth folding. In International Workshop on the Algorithmic Foundations of
Robotics, 2010.

[157] C. von Hofsten. The structuring of neonatal arm movements. Child Develop-
ment, 64(4):1046–1057, 1993.

[158] Y. Wang, Y. Xiong, K. Xu, K. Tan, and G. Guo. A mass-spring model for
surface mesh deformation based on shape matching. In ACM International
Conference on Computer Graphics and Interactive Techniques in Australia and
the Southeast Asia, pages 376–380, 2006.

[159] P. Weir, C. MacKenzie, R. Marteniuk, and S. Cargoe. Is object texture a
constraint on human prehension?: Kinematic evidence. Journal of Motor Be-
havior, 23(3):205–210, 1991.

[160] F. Worgotter, N. Kruger, N. Pugeault, D. Calow, M. Lappe, K. Pauwels,
M. Hulle, S. Tan, and A. Johnston. Early cognitive vision: Using gestalt-laws
for task-dependent, active image-processing. Natural Computing, 3(3):293–321,
2004.

[161] Z. Zhang. Iterative point matching for registration of free-form curves and
surfaces. International Journal of Computer Vision, 13(2):119–152, 1992.

[162] O. Zienkiewicz and R. Taylor. The Finite Element Method. McGraw-Hill,
1991.

183

	Introduction
	Robotic Manipulation
	Machine Learning
	Dissertation Contributions
	Algorithmic Properties

	Robotic Platform

	Literature Review
	Grasp Planning
	Feature-Based Methods
	Dimensionality Reduction
	Regrasping

	Multi-Manipulator Motion Planning
	Machine Learning in Robotics
	Object Recognition and Pose Estimation
	Grasping
	Reinforcement and Imitation Learning

	Deformable Objects
	Models from the Computer Animation Community
	Models from the Robotics Community
	Folding
	Other Robotic Applications

	Human Manipulation
	Grasping Strategies
	Regrasping Strategies
	Learning

	Image Processing
	Finding Good Grasping Points
	Training Stage
	Classification Stage
	Algorithm Modifications
	Different Approaches

	Dimensionality Reduction for Efficiency
	Feature Selection
	Search Space Reduction

	Experimental Results
	Accuracy for Trained Objects
	Accuracy for Novel Objects
	Speed-Accuracy Tradeoff
	Robot Validation

	Conclusions

	Grasp Synthesis
	Problem Formulation
	Supervised Learning Algorithm
	Training Data
	Layer 1: Classification
	Layer 2: Determining Object Rotation
	Layer 3: Calculating End-Effector Rotation

	Experimental Results
	Classification Accuracy
	Object Rotation Estimation
	Overall System Performance

	Conclusions

	Bimanual Regrasping
	Algorithm Overview
	Algorithm Details
	Image Processing
	Grasp Synthesis
	Optimization

	Experimental Results
	Conclusions

	Deformable Object Manipulation
	Problem Definition
	Training Data
	Proposed Approach
	Reward Function
	Imitation Learning
	Reinforcement Learning

	Finishing the Fold
	Trajectory Generation in Configuration-Space
	Roadmap Creation
	Path Selection

	Experimental Results
	Motion Planning
	Learning Algorithm
	Algorithm Time

	Conclusions

	Conclusions
	References

