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Abstract

In the present day, we are collecting more information about our built and
natural environments than ever before, to enable an unprecedented level of
global prosperity. Additionally, we are relying on these insights to help
us manage our natural and human systems so that we can maintain them
sustainably for the foreseeable future. There still remains the motivation to
push further in efficiently managing our built and natural systems, by achieving
the gold-standard of intelligence — that is, systems that are able to reproduce
and/or exceed human-level ability in surveying and environmental modeling.
Such an ambitious task will either require a lot of labor or the strategic use of
intelligent autonomous systems.

For autonomous robots tasked with surveying the spatial and temporal
dynamics of a changing environment, there are a variety of (sometimes
conflicting) criteria that must be satisfied over the course of a surveying mission:
Where should the robot travel to? Which areas are worth observing? Does
it make sense to revisit a previous area? How should the task be divided if
there are multiple robots in the team? When should the mission stop? We can
view this objective through an information-theoretic lens, where the robot is
tasked with finding a path through a domain that maximizes the information
that it collects along the way. In the robotics literature, this objective is known
as informative path planning (IPP), which is NP-hard.

This dissertation explores a few dimensions of the IPP problem and presents
a few information-theoretic approaches of generating solutions that satisfy
various surveying criteria. The methods used in this dissertation are grounded
in geostatistics and explore different applications of a core motivation: from
surveying a scalar field at fixed monitoring locations with a team of robots, to
reconstructing a time-varying phenomena in a continuous planning space. By
specifying an information-theoretic utility function, it is possible to reconcile
prior knowledge about a system with new knowledge obtained by the robotic
surveyors. The reader will gain insights into the nuances embodied the practical
applications of this method in single-robot and multi-robot systems.

Finally, the reader will be presented with a collection of topics that serve
as points of departure from this dissertation into separate lines of further
inquiry. The methods explored in this dissertation can be applied to a variety
of environmental monitoring tasks, enabling a host of analyses from national
security objectives, to the analysis of trade flows, and other agricultural and
ecosystem management objectives.
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1

Introduction

“From Middle English surveyen, from Old French sourveoir, surveer (“to oversee”),
from sour-, sur- (“over”) + veoir, veeir (“to see”), from Latin videre.... ultimately, from
Proto-Indo-European *weyd- (“to know; see”), a stative verb.”

– anonymous contributors, wiktionary CC BY-SA

Surveys are essential to a variety of disciplines: from civil engineering, to
ecology, even social sciences and market research. If there is a desire to make
informed decisions, then it often comes with a desire to understand the lay of
the land by visiting some locations, making some observations, and recording
them for later analysis. Naturally, this leads to a question: “Where do we
go?” Or more precisely, “Where do we send our robot, so we don’t have to
go actually there?” A deep question that seems simple at first glance–within lies
nuance, complexity, and lines of investigation that span multiple disciplines.
This thesis explores these nuances and offers a few strategies for constructing
robotic systems that can perform autonomous environmental surveys.

Consider the task of modeling a soil property in an agricultural field with a
point sensor. Typically, samples are acquired at a certain number of locations
and a model is constructed to ”interpolate” between these point measurements,
so that the manager can make informed guesses as to what properties can be
found in the in-between spaces. Whether the sensor is wielded by a human or
an autonomous robot, the sensing agent (the surveyor) is tasked with deciding
where to capture observations in order to populate the model with training
data. If the environmental properties are dynamic and can change over the
course of the survey, the surveyor is also faced with the decision of measuring an
unvisited location, or re-visiting an old location whose state may have changed
since the last observation.

Now imagine that the surveyor is working under a constraint such as
remaining daylight or the amount of fuel left in the vehicle. Now, the surveyor
must be strategic about where to sample in order to arrive at the best estimate
of the state of the world. An ideal robotic system would incorporate all of these
competing objectives and produce an optimal surveying plan (with respect to
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this desire to arrive at the most accurate map of the world), or at least one that
has a known likelihood of being optimal.

With this framing in mind, we will now develop a more complete context
and motivation for the contents of this thesis.

1.1 Overview

Geospatial models of the environment can be built from observations collected
in a variety of ways, including: from physical sensors deployed at different
locations, remote sensors which can observe a larger area from a given vantage
point, or even from physically-realistic models of larger systems. Robots
are attractive platforms for deploying physical and remote sensors, in part
due to their ability to acquire observations in situations where it would be
physically hazardous or costly for human operators, and where operational
challenges exist (such as performing surveys at night or on a continuous basis).
Additionally, multi-robot systems can multiply the effectiveness of a sampling
campaign, both on a cost basis and in the potential area covered in a single
setting.

Admittedly, this claim might be met with skepticism by scientists who are
familiar with the current state of earth science and surveying. NASA has
eighteen robotic spacecraft currently active in its Earth science fleet [1] and
hundreds more robotic earth observation (EO) satellites are currently gathering
data every day, maintained by governmental agencies and commercial entities
across the world. In some ways, we are no longer limited by data when it comes
to Earth observation. Figure 1.1 and Figure 1.2 describe a paradigm where the
most effort no longer lies in data acquisition–instead it lies in the ability to create
meaningful insights from the information that we have.



1. Introduction 3

Figure 1.1: Remote sensing analysis challenges. 15 years ago we less limited by the
availability of EO data than our ability to analyze the wealth of data. Figure by Prof.
Qinghua Guo from my first GIS course 10 years ago.

Figure 1.2: Was this a good prediction 15 years ago? I’d argue that our ability
to analyze large amounts of spatial data has been greatly bolstered by “big data“
management tools and other hardware and software infrastructure. When the Landsat
archive went online in 2008, you still had to download tiles and perform a lot of pre- and
post-processing on your local machine. With Google Earth Engine, mosaicking, color
mapping, and zonal statistics can be performed on a data set that is /already/ prepared
with atmospheric corrections. Time-series for decades of observations can be calculated
in seconds! Figure by Prof. Qinghua Guo (modified from Ronald Briggs) from the same
introductory GIS course.

Underpinning the modern “art” of satellite remote sensing are algorithms
that allow scientists to retrieve information about the state of earth systems
from the wavelengths of reflected light that are observed by satellites hundreds
of kilometers above the Earth’s surface. Many of these retrieval algorithms
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are physics-based and are grounded in the optical/emissive properties of
matter. Other algorithms are model-driven, enabled by statistical analysis
(read: machine learning) that relate conditions observed on the ground with
observations at the satellite. Even for the physically-based algorithms, there
is still the motivation to continuously test the effectiveness of these retrieval
algorithms through validation through co-located observations.

In spite of the terabytes of satellite images being collected each day, there
continue to be new satellite constellations and drone-based tools that enable us
to acquire more precise observations at a faster operational cadence–and with
this, comes a never-ending desire to derive increasingly precise insights from
these new tools. Ultimately, the gold standard for data acquisition is direct-
observation, that is actually going there and acquiring a sample. It is the reason
why we send technicians to the field and rovers to other planets. There will
always be a role for ground surveys and arguably, in a world with a growing
amount of remote sensing, it more essential than ever to verify and validate
with direct surveying. However, the logistical difficulty and expense of actually
going to some locations create a dearth of the “expensive” sorts of data that are
very useful for a variety of observation tasks. This is a need that can be uniquely
met by mobile robots, as long as the right balance is attained between usefulness
and operational cost.

1.2 Field robotics for surveying

When applied to field robotics, surveying can be understood as a robotic
exploration task. Specifically, sensors can be deployed on a robotic platform,
which in turn is tasked with traveling across a territory. Observations of the
environment obtained by the sensors are used to create a map of the territory.
Choices of physical platform, sensors, and sampling frequency all affect the
performance of the robotic survey. Regardless of the platform and sensing
modality, all autonomous surveys depend on a system for planning the path
taken by the autonomous system during the survey execution.

There are different approaches to robotic planning in general. In the simplest
case, a system may be tasked with navigating toward a goal. In more realistic
scenarios, the robot may find the most efficient path toward some goal while
avoiding hazards and obstacles. In the surveying task, there may not be a
final destination to navigate toward per se, and there may be other practical
constraints on navigation, such as a fuel or energy limit that restricts the total
possible distance traveled.

The main contributions of this work are:
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1. Quantifying how some planning approaches are ”better” than others for
the task of conducting environmental surveys with sensors on mobile
robots.

2. Demonstrating how the meaning of ”better” also depends on the modeling
approach used in constructing the model of an environment and on the
choice of objective function(s).

3. Showing how given combinations of sensing modalities and modeling
approach, there exists a best or most optimal approach for planning a path
for sample collection.

This dissertation is organized into chapters that build upon this core
theme with different dimensions to the robotic surveying problem. Chapter 2
presents a brief overview of related literature in field robotics and adjacent
disciplines. Chapter 3 presents core concepts and theory, from the geostatistical
underpinnings of certain classes of environmental models, to the information-
theoretic framing that underpins the sampling strategy explored in this
dissertation. This chapter also contains an exploration of a prototype planning
algorithm, variants of which will be explored in the subsequent chapters.
Chapter 4 presents a study that demonstrates an example of how to augment
a path planning algorithm with a utility function suited to the environmental
surveying task. Chapter 5 extends the planner introduced in Chapter 3 to
consider the more realistic scenario of monitoring dynamic environments that
change in space and time. Chapter 6 completes this planning framework with
extension that can be used by a multi-robot, distributed team-surveying mission,
that is able to adapt the planning strategy to changing conditions. Finally,
Chapter 7 concludes by identifying avenues for further extension of this work
and investigation of alternate experimental scenarios.
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2

Related Work

Consider the practical motivation poised in the introduction: “We want to survey
an environment, but we don’t want to have to actually go there ourselves. So, where
do we send our robot, so get the best survey?” We made the claim that this
deep question holds nuanced complexity that lies across multiple disciplines.
This section will explore the previous work that has been accomplished along
different lines of investigation. By the end of this chapter, the context will be
established for framing this thesis within the current state of the art.

2.1 Mapping, planning, and surveying

Figure 2.1 presents a conceptual overview of a typical robotic system
represented as a rotated Sierpiński triangle (S1). Starting from the top right
(S1, 2), mobile robots are typically equipped with sensors that allow it to create
some sort of representation of the environment in the process of perception
(although not always, see the eponymous vehicle by Braitenberg[2]). This
representation can be a map, such as an occupancy grid, which identify which
areas in the world are traversable vs occupied (with an obstacle). Next, the robot
can establish where it is in the map through localization. Finally, a path planner
can issue a trajectory to a destination and motor controllers can move the robot
toward its prescribed goal. Many robots perform simultaneous localization and
mapping (SLAM) and these processes typically are performed on a continuous
basis as a mobile robot maneuvers through the world.

When a map has been constructed (or is previously known), mobile robots
are often tasked with safely traversing an environment from a starting location to
a destination. Here, safety can be defined a variety of ways, including: physical
constraints (eg. static obstacles like walls or moving obstacles like vehicles and
people) and vehicle constraints (eg. kinodynamic limits regarding how fast
a robot can turn without flipping over). A low-level planning algorithm can
produce a series of obstacle-free paths satisfying desired safety requirements,
and there is a rich literature of different approaches to robotic path planning [3].
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If one were to search the literature for “robotic mapping”, most studies
would relate to this task central to perception and state estimation, which is
core to modern mobile robotics. From now on, we will concentrate on the case
where the mobile robot is tasked with a surveying task. That is: the robot is tasked
with building a model (or map) of an environment separate from that which is
required for safe navigation (path planning).

Mobile
Robotics

Motion
Control Perception

State
Estimation

high level:  
path planner   

low level:  
motor controller

localization

sensors
      &
mapping

Figure 2.1: When considering a mobile robotic system, there are three central pillars.
Perception (“What do I see?”) feeds into state estimation (“Where am I?”), which feeds
into motion control (“Now, where do I go?”) in a loop (“Now, what do I see?”).

2.2 Autonomous surveying is constrained optimization

Let us further refine the surveying task and consider a particular motivation,
where:

1. We desire to gain insight about some unknown spatial environment (eg.
to create a model of the environment)

2. We desire to attain insights through limited observations of the
environment
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Consider the motif presented in Figure 2.2. Each observation has a few
components, namely: the outcome that the agent has witnessed (eg. the output
of a function) and the context of the observation (eg. the input of a function).

Naturally, for observations that have a spatial context, we can assign an
index corresponding to:

• The location of the observation in space (where did we acquire this
observation?)

• The location of the observation in time (when did we acquire this
observation?)

It is important to add that in the real-world, all observations and state
estimations will be clouded with noise, as most of the sensors that we
commonly use are not perfect and obtain noisy measurements. This is
especially relevant for mobile robots, as environmental factors (eg. heat,
dust, vibration, impact, water exposure) can introduce noise to sensors
which may produce accurate readings on the bench. Even worse, we can’t
rely on our actuators to reliably reach desired states. For example, if a
robot is commanded to move a meter to the north-west, any number of
factors could cause the robot to miss the target including: wheel slippage
on dirt and inaccuracies in wheel movement due to under-inflated tyres.
Therefore, our planning algorithms have to be able to cope with uncertainty
in the state of the robot and the environment it operates in. In the broader
literature of decision theory (and robotics), this is known as decision making
under uncertainty [4]. In robotics, this is often achieved using probabilistic
methods [5] such as Markov decision processes (MDPs), which consider
uncertainty in the evolution of a system. When coupled with uncertainty
in the state of a system due to observational uncertainty, this becomes a
Partially-Observable Markov Decision Process (see subsection 2.4.2).
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Environment

Agent

reward

reward

action

Figure 2.2: Kracko wants to get the lay of dreamland in order to find Kirby and deliver
his thunderbolts of love. He can either stay where he is, hoping Kirby will come or go
looking for him. Where does he decide to go? Image assets: ©Nintendo Co., Ltd.

Thus, if we are tasking a robot with autonomously gathering observations,
for our surveying task, we can frame our objective as an optimization:

We want to acquire the best observations with regard to the criteria of our
surveying objective and the hand that we were dealt.

For different definitions of the italicized words, we can conjure different
approaches, theories and methodologies. For example:

• the objective: Is our goal to build a complete model of a spatial system?
Are we trying to reconstruct some variable from sparse observations
(interpolation)? Or, are we just monitoring for the presence/absence of
some item of interest?

• the criteria: If we are making a model, are we trying to maximize its
accuracy? Or minimize the effort required to gather observations?

• the hand that we are dealt: What is constraining our operation? Are
limited by how much time we have? By how much distance we can travel
in total? By how far we can travel from a base of operation?

• the best observations: Relative to what? A counterfactual “oracle” that
allows us to compare against the true optimum? Or, relative to what a
human surveyor would traditionally do, given the current best practices?

Let us now concentrate on a specific application: where we wish to construct
a model of a physical environment, via observations collected from sensors
on a robotic platform. We desire a methodology that guides where those
observations should be collected.
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2.3 Optimal sensor placement

One approach considers the task of monitoring a spatial phenomena using a
limited number of static sensors. This problem of optimal sensor placement, refers
to the question of deciding where to place these sensors (eg, thermometers in a
refrigerated warehouse) in order to best accomplish the monitoring task.

Geometric approaches: This task can be formulated as an instance of the art-
gallery problem, where sensors are assumed to have a fixed sensing radius and
the algorithm must find an optimal arrangement of these sensing “disks”. As
this is an NP-hard problem, different solutions have been proposed including
polynomial-time approximation schemes [6] and other greedy algorithms [7].

Inferential approaches: The task can also be considered from the perspective of
knowledge, or information. If the goal is to construct a model of the environment,
then we desire observations that improve our model’s predictive ability in
some statistically quantifiable way. More abstractly, we can specify a goal
of gaining information per se, which can be used to establish a information-
theoretic criterion as to how beneficial it is to sample/observe at a given location.
In fact, these are two ways of describing the same overall objective, and this
framing is especially applicable to the field of spatial statistics, where models
must account for the probability that phenomena that are physically proximate
are more likely to be correlated than phenomena that are distant (an insight that
is known as Tobler’s First Law of Geography [8]).

From this framing, different approaches have been used to model spatial
correlations in multivariate systems, where observations are considered to be
realizations of a spatially-distributed random variable. A popular approach is
to use prior knowledge of a system to construct a Gaussian process (GP) model,
which allows for predictions of model uncertainty to be made across a spatial
field [9]. From this, sensor placement strategies include: sampling at locations
with the highest model variance (maximum entropy) [10] [11] and sampling
according to an optimal design analysis [12].

However, as identified by several investigators ([14], [15], [13]), entropy-
based placement criteria usually result in a maximally dispersed placement
of sensors, causing an undesirable effect where sensors are placed along the
borders of the sampling area of interest. If we model the sensors as having a
circular sensing radius, then half of the sensing area would fall outside of the
region of interest, for these sensors placed on the border.

[12] proposed mutual information as a preferred information-theoretic
criterion. In their formulation, sensors are placed at locations that result in the
greatest expected reduction of undertainty across the entire region of interest.
[13] applied this principle to the case where an environment is modeled as
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Figure 2.3: Objective functions for optimal sensor placement: Here, an example is
shown for sensor placement using different information criteria. Positions determined
using entropy are marked by diamonds and positions chosen using mutual information
are marked by squares. Note that while entropy results in the most even coverage of
sensing stations, there is “wasted information” for all of the sensors placed at the edge
of the survey domain, as the only half of a sensor’s observation window falls within the
sensing domain. From: Krause et al. 2008 [13]

a GP and they proposed a polynomial-time approximation algorithm that is
optimal to within a constant-factor. More recently, there have been attempts
to balance between optimal and efficient sensor placement for surveying and
monitoring objectives, including heuristic [16] and reinforcement learning-
based approaches [17].

When it comes to robotic surveying, we typically concern ourselves with a
robotic sensing agent as a surface vehicle (a boat, a plane, a rover) that moves in
R2 and whose observations are used to construct a model in the same domain.
However, this task can be reduced or extended (caveat emptor) to an arbitrary
number of dimensions. For example, in [18] entropy-based sampling method
was used to reconstruct a 1-dimensional model of river pH along a transect,
based on a GP regresion.

Wireless sensor networks Once sensors have been placed, there remains
the additional task of retrieving observation from a deployment of sensors.
Studies in this domain operate under different assumptions regarding the ability
to communicate sensor observations to the surveyor. For networked sensors,
communication distance may serve as a constraint in determining where sensors
can be located [19] and there exists a large domain of research, conferences, and
publications devoted to the study of wireless sensor networks (eg. IPSN, SenSys,
and MobiCom).
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2.4 Informative path planning

We can consider some alternate scenarios where sensors are deployed statically,
but are unable to communicate their observations unless visited by a mobile
sensing agent (such as a robotic platform). Alternatively, the sensors can be
deployed on the mobile robot. In both scenarios, one can conceive of an
algorithm that commands the mobile robot to travel to locations that are optimal
with regard to a surveying objective (see section 2.2).

Figure 2.4: An early example of informative path planning for environmental
monitoring. On the left, the informative planner operated on a aquatic sensing platform
towed across a transect (indicated with the arrow) at a river confluence. On the right,
the authors performed IPP on a data set acquired from an existing network of aquatic
sensors. From: Singh et al. 2009 [20]

Generally, Informative Path Planning (IPP) [21], [22] describes a high-level
planning procedure, where plans are generated for mobile robots according to
an information objective. For surveying, this information objective is typically
related to the accuracy of the resulting survey, collected from the robot’s
observations. Depending on the planning space, informative paths can be
constructed in free space , or paths can be constructed from a set of measurement
locations that may correspond to waypoints or sensor locations.

[20] introduced the Multi-robot Informative Path Planning (MIPP) problem,
where: a spatial domain is partitoned into a finite number of sensing locations
(eg. monitoring stations) and the robot must traverse a path in this space.
The robot incurs traveling costs as it moves from location-to-location and the
robot gathers information as it visits different sensing locations. The authors
presented a recursive-greedy algorithm for solving the MIPP problem, by
leveraging the submodular information function presented in [13].
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2.4.1 Orienteering Problem

If each node has a fixed reward and the objective for the robot is to find a path
that maximizes the sum of these rewards, then the problem can be formulated as
the Traveling Salesman Problem With Profits (TSP-WP), more commonly known
as the orienteering problem [23]. Along with the TSP, this is a well-studied
problem in operations research and it is known to be NP-hard [24]. The OP
can be classified into cases where the robot is rooted (that is, starts and finishes at
a pre-specified location) and extended to consider teams of robots (TOP), where
multiple tours must be computed [25]. If the cost of movement to a node is
not known a priori, then the problem is known as the Stochastic Orienteering
Problem (SOP) [26] (see [27, 28, 29] chapter 3 for an extension of this concept).
When applied to environmental monitoring tasks, correlations can be leveraged
between observation locations to provide a utility that is quadratic with respect
to the size of the node network [30]. Variants of the OP have also been applied to
scheduling tasks, such as the Optimal Tourist Problem, where a robot is tasked
with visiting n spatially-distributed points of interest for a surveillance objective
[31].

2.4.2 Planning under uncertainty

As with many NP-hard tasks, there is an incentive to find approximate solutions
to problems such as the OP that are approximate (ideally with a guarantee over
a set of conditions). Alternatively, researchers explore heuristics that provide
a desirable trade offs between accuracy and computational complexity. One
method that has found a great deal of success in both planning and robotic
control tasks is reinforcement learning (RL) [32]. The problem of RL is typically
formulated as the optimal control of an incompletely-known Markov decision
process (MDP). This framing is sufficiently general so as to describe a variety
of planning tasks: from board games like chess and Go [33] (which led to the
well-known AlphaZero search algorithm [34]) to energy grid modeling and
optimization [35] and other robotic control tasks, such as balancing an inverted
pendulum [36]. It is also possible to frame IPP as an incompletely-known
MDP, specifically a Partially-observable Markov decision process (POMDP).
This formulation and RL methods in general have guided a host of learning-
based approaches to solving IPP problems and we will briefly describe the main
thrusts of investigation in this domain.

MDPs are a mathematical framework for modeling sequential decision
making in situations where the probability of reaching a state by a given action
is modeled as samples from a known transition probability kernel (this can
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incorporate random perturbations by unknown factors in the environment). The
goal of an MDP is is to find a strategy (policy) that maximizes the cumulative
reward, typically through techniques like value iteration and policy iteration,
which iteratively evaluate and improve policies. An example of a typical MDP
framing is presented in Figure 2.2. At each time step t, an agent receives
feedback about the state of an environment (St). From this information,
the agent selects an action to perform (At). One time step later, the agent
receives feedback corresponding to a numerical reward of its action Rt+1, the
environment proceeds to a new state (St+1), and the process repeats [32].
When the environment is not completely known by the agent, the scenario
is termed a Partially Observable Markov Decision Process (POMDP) [37]. As
one can imagine, it is impractical to store and compute all of the possible
states and actions of a POMDP, even when the possible states (eg. waypoints
corresponding to sensor deployments). Planning in a gridworld (eg. Cartesian
grid in Zn) or in a continuous space faces an even larger explosion in the size
of the state-space (see the remark on the next page). Many approaches that
build from the POMDP formulation use tree and graph search algorithms to find
rewarding paths through the decision space, such as Monte-Carlo Tree Search
(MCTS) [38] [39].

In [40], the authors partition approaches to planning under uncertainty into
three main categories: simulation-based approaches, infinite-horizon strategies,
and receding-horizon strategies. In their taxonomy, simulation-based approaches
generate a few candidate paths and simulate their performance relative to some
information metric (eg. [41]), receding-horizon approaches compute a policy
over a finite number of control actions into the future (eg. EKF-SLAM in [42]),
and infinite-horizon approaches compute a policy over the entire planning space
of the vehicle (which may be constrained by a movement budget), with IPP
approaches falling under this last category.

A finite MDP is generally defined by a 5-tuple (S, A, T, R), comprising:

• S: A finite set of states (the state space).

• A: A finite set of actions available to the agent (the action space).

• T: A function T : S × A × S → [0, 1] that defines the probabilities
of transitioning between states, i.e., T(s, a, s′) = P(s′|s, a) (the state
transition probability function).

• R: A function R : S × A → R that assigns a scalar reward for taking
action a in state s (the reward function).

Some formulations also add a term γ to form a 5-tuple, with:
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• γ: A scalar in the range [0, 1] that determines the present value of future
rewards (the discount factor).

A POMDP extends this into a 7-tuple (S, A, T, R, Ω, O, γ), adding:

• Ω A finite set of observations o ∈ Ω (the observation space).

• O A function O(o | s′, a) that establishes the likelihood of observing
a particular state given the new environmental state and the previous
action(the observation model).

The advantages of an MDP formulation is that we can craft robust
strategies to guide a robot at any moment. Like a game of chess, we only
need to know the current state of the board in order to reason about the
next best move. However like a game of chess, there are far too many
combinations of moves and future game states to calculate what the best
next-move is. Unlike chess, the dynamics of a robot and its environment
mean that there is no guarantee that a expected state will actually be
achieved after a given action. Also unlike chess, we often do not have
visibility of the entire state of the world when deciding where to go. This
“partial-observability” adds an additional layer of stochasticity to the inputs
of our planning algorithms.

2.4.3 Single-robot IPP

IPP methods that focus on modeling hotspots encompasses objectives that aim
to understand regions where a spatial field deviates significantly from average
values. For example, in a temperature field a literal hot spot is a region where
the temperature is unusually higher than the rest of the field. Hot spots do not
have to be regions where the expected value differs from the norm, it can also
include regions with unusually high variability. In [38], a planning algorithm is
designed to maximize the amount of time a USV remains in a hot-spot region,
defined as a zone above some threshold.

A special case describes efforts where the hotspot region is one where the
spatial field exceeds (or falls below) some threshold value. Here, the goal is to
acquire information about this “front” (the boundary region where the transition
occurs). This task can include: determining if a front is present, modeling where
it is, and dynamically tracking its movement and evolution [43] [44].

Sometimes, the hotspot corresponds to the physical processes of a plume
of a high-concentration substance that advects and diffuses in a fluid medium
(liquid or gas). In these scenarios, it may be desirable to obtain the source of the
plume and/or its extent. A large body of works leverage the physical equations
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that govern the evolution of fluid plumes to identify “plume source” and/or a
“plume characterization” based on measurements from an autonomous robot
[45] [46] [47]. Some of these efforts leverage biologically-inspired algorithms
[48] or very simplistic heuristic behaviors [49].

2.4.4 Adaptive sampling

In [40], the authors categorized IPP methods as planning within an infinite-
horizon, or more accurately the entire time horizon that the robot is able to
operate within. These approaches can involve the calculation one path plan for
the entire surveying task, or one path plan per episode, where the surveying
occurs over several episodes. In this later case, there is an opportunity to
incorporate the information learned in the previous surveying runs and adapt
future surveying runs based on an updated prior. These adaptive sampling
planners can include algorithms that update after each measurement or those
that employ an episodic planning strategy that alternates between planning,
execution and re-planning (in a receding horizon). Adaptive sampling methods
are limited to robotics path planners and [50] provides a review of different
strategies used for Kriging interpolation. More recently, reinforcement learning
approaches have been applied toward adaptive IPP [51] [52].

Another scenario where adaptive sampling has been well-studied is multi-
robot sampling. In these scenarios, each robot can adapt to the presence of
and/or the observations from another robot in a surveying deployment. In
the next section, we will explore multi-robot IPP in more detail, however as a
domain of study path planning for multi-robot mapping has been investigated
[53] even before the IPP problem emerged as a common motif in the literature
[54]. A common scenario aims to establish strategies to partition an environment
among a set of sensing vehicles. These coverage control planning algorithms may
direct robots toward a static sampling location, achieving something akin to a
space-filling Voronoi partitioning of the environment [20] or it may establish
paths within a partitioning [55] [56]. Coverage algorithms may operate in
free space or over a topology informed by the structure of the environmental
parameter of interest [57].

2.4.5 Multi-robot surveying

IPP with multiple sensing agents has been accomplished with sequential-
allocation, where the path planning algorithm is executed k times for k-number
of robots [20]. Other approaches include merging observations from different
robots to form a distributed consensus [58] and splitting the sensing space into
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tours [59] or Voronoi partitions [60, 61, 56]. Planning approaches for different
sensing modalties typically distinguish between the area that can be observed
by one measurement [62]. Altitude-dependent sensor and noise models have
been incorporated into IPP approaches for unmanned aerial vehicles [63]. IPP
can also be considered over networks of static sensing nodes, where movement
is performed between discrete locations [20, 64, 21, 65]. Different modeling
objectives also guide different IPP approaches. For example, cross-entropy-
based optimization techniques have been used to identify the most informative
trajectory en route to a fized goal [66]. Myopic planning routines have been
used for robots tasked with identifying the source and characterizing chemical
plumes using the Gaussian plume model [67]. In aquatic environments,
modeling approaches often involve locating and/or characterizing hot spots
or frontal regions of interest (not to be confused with frontiers) [44]. Finally,
adaptive planners are able to improve the environmental model and have been
used to update the informative planner during the course of a survey [68], [52],
[69].

Figure 2.5: The author (foreground) engaged in a traditional environmental survey
task assisted by a colleague and a robot (background).
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3

Principal Concepts and Theory

In this work, we consider the problem of reconstructing an environmental
phenomenon given a limited number of observations, collected along a path
collected by a mobile sensing agent. The phenomenon is represented as a value
that varies in space (a scalar field) and/or space and time (scalar or vector field).
*The objective is to produce an algorithm that can solve this problem, optimizing
for the best reconstruction of the environmental field, with the lowest costs
incurred while traveling.

It necessary to specify a few assumptions about objective and operating
environment as these are foundational to the methodologies employed in this
thesis. For the environmental field:

• ”Modeling” the environmental field is the same as being able to
reconstruct the entire field at arbitrary locations in our region of interest.

• While the environmental phenomena being modeled may arise from
deterministic, physical processes, the number of interactions are so
numerous and complex that it is impossible or impractical to produce a
analytic solution that can reliably calculate what can be expected at a given
location in space and time.

• This complexity makes it appear that the environmental phenomenon is
a stochastic process. That is, it can be modeled as randomly varying in
space and/or time. Therefore, we can use statistical methods to arrive at a
”likelihood” for the field given a set of input parameters.

The robotic path planner is tasked with producing a path through an
environment for a mobile robot with a sensor to travel and collect observations.
This is yet another instance of the exploration-exploitation dilemma [70], where
at any give moment a decision must be made to incur resources traveling
and exploring a domain, or adopt a satisficing strategy and use the existing
set of observations for the modeling task. Section 3.3 will present a formal
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mathematical description of this task. Now, let us consider the modeling
objective.

3.1 Kriging: as a framework for modeling environmen-

tal fields

In geostatistics, practitioners are often faced with interpolating between sparse
measurements obtained over a spatial domain. For example, a prospector
may want to predict a mineral fraction of a soil (say, % clay) from a set of n
samples obtained randomly across a plot of land. A reasonable (albeit naı̈ve)
approach would be to apply a simple regression to the data, with parameters
chosen by minimizing the sum of squared deviations between the regression
and the measured values. For example, the prospector may perform a bilinnear
interpolation, (linear interpolation in the x and y component axes), using the
method of ordinary least squares (OLS) to estimate the values of the linear model
[71].

However, there exist better-performing models that have better predictive
accuracy due to their ability to leverage knowledge that we know about the
environment (see: Tobler’s First Law in section 2.3). For example, OLS does
not take into account spatial correlations–if we find a streak of high-clay
corresponding to an ancient alluvial deposit, then we would expect all of the
measurements within this deposit to also have a high clay content. However a
simple linear interpolation may smooth out these ”outliers” caused by natural
features.

Kriging is a method of spatial interpolation that overcomes many of the
shortcomings of these least-square methods. It is a multi step process,
where samples of the environment are used to create a distance-dependent
correlation function, and then this function is applied to make predictions.
From [72], we will establish the Kriging paradigm. Following from the
framing in the introduction of this chapter, our environmental phenomenon
Z ≡ (Z(x1), . . . , Z(xn))T is thought as arising from a process with a significant
random (stochastic) component. The process Z is modeled as follows:

Z(x) = m(x)Tβ + ε(x), (3.1)

where:
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• m is a smoothly-varying deterministic function that models the phe-
nomenon Z. It is parameterized by β, a vector of p unknown coefficients
and has values in Rp.

• ε(x) is a random component with a known covariance structure that
represents small-scale processes that are unobserved or not quantified.
This term can also include observation errors and is often represented as a
Gaussian noise that is independent of the random vector β

We observe Z = (Z(x1), . . . , Z(xn))T and want to make a prediction for
Z(x0). If we know β (the coefficients of the model), then we can perform
a straightforward evaluation of Equation 3.1 to obtain the expected value for
Z. If we do not know β, then we are tasked with finding a linear predictor,
usually of the form λ0 + λTZ, where λ0 is the intercept term and λTZ is a
vector of coefficients corresponding to the parameters of β. The goal then

is to minimize E
{

Z (x0)− λTZ
}2

subject to an unbaisedness constraint. If

we solve this constrained optimization for λ, we obtain λTZ, which is called
a best linear unbiased predictor (BLUP) for Z (x0). It is also known as the
kriging estimator in ordinary kriging or the spatial BLUP and its form depends
on the model m adopted for the random variable Z. These weights can also be
obtained empirically by fitting a variogram model to observed data (see [9] for
an extended history and treatment of variogram analysis in spatial statistics).

Figure 3.1: Screenshot from a Kriging interpolation model construction in Arc Pro
(Image Credit: @TheGeomatician).

Kriging is named after the technique first used by South African mining
engineer Danie G. Krige in his 1951 Master’s thesis and formalized by French
mathematician Georges Matheron in 1963 (who is known as the “Father of
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Geostatistics”) [73] [74]. For a complete treatment of the theory and history, the
reader is highly encouraged to read this short 2004 article on Matheron and the
history of spatial statistics [74] and this short 1990 article on The Origins of Kriging
[75]. The reader is also encouraged to examine Geostatistics for Natural Resources
Evaluation, which presents a rigorous yet accessible treatment of Kriging and all
of its variants through a context of the types of data characteristic to the earth
sciences, and Interpolation of Spatial Data, Some Theory for Kriging which unifies
the mathematical basis of Kriging and Gaussian process regression, while
situating some of the techniques commonly used by geostastics practitioners
within a broader statistical theory [72].

Independently, various scientific disciplines have found the need for a
principled approach to model refinement and have “discovered” variations
of the BLUP (eg. objective analysis and optimum interpolation in meteorology,
see [75]). Within the context of optimal design, the technique emerged as a
general regression methodology, especially for time-series analysis [76]. With
the emergence of various machine learning methods for the analysis of large
data sets, so came techniques and frameworks that are well-suited for the
operations and the data structures used by computers. [77].

3.2 Gaussian process regression: as a basis to inform

sampling

The BLUP has a Bayesian interpretation (see [9] Chapter 3.4.4 for an extended
treatment of Bayesian Kriging) that becomes especially elegant if we introduce a
couple of additional assumptions:

• The random field ε is Gaussian and independent of the random vector β.

• The realization stochastic process Z = f (x) consists of a collection of
random variables Z = (Z(x1), . . . , Z(xn))T which have a joint Gaussian
distribution.

• This allows both the random term ε and the model term mathb f m to be
fully specified by a mean and a variance, or in the case column vectors, a
mean function m(x) and a covariance matrix k(x, x′).

With a slight change of notation, let us define these terms:

m(x) = E[ f (x)]

k(x, x′) = E[( f (x)−m(x))( f (x′)−m(x′))]
(3.2)
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If a function can be defined by the composition of these two functions, we
can call it a Gaussian process, using the following representation:

f (x) ∼ GP
(
m(x), k(x, x′)

)
(3.3)

Given the same objective of making a prediction at Z(x0) = f (x∗), we obtain
the conditional distribution of this joint Gaussian as:

f∗|f, x, x∗ ∼ N (µ f∗ , Σ f∗)

This stems from the definition of the marginalization property of a
multivariate Gaussian distribution, and will be revisited in greater detail in the
next section. The important thing to note here is that with access to the full
distribution, we are able understand both the average-case value of this posterior
and we have access to the covariances Σ, which specifies the variability of the
prediction of the value of f at x∗. If we are able to evaluate this modeled variance
anywhere in our survey area, then we can quantify how this modeled variance
changes, depending on what observations are obtained. This can be used to
guide a sampling strategy for an environmental modeling task.

3.2.1 Gaussian process regression

Gaussian processes are a collections of random variables, which have useful
statistical properties that allows for supervised machine learning. They are non-
parametric insofar as they to not explicitly specify a functional relation between
the input and the output, and instead describe a space of functions that reflect
the observed data.

Let X ⊂ R2 be the environment where measurements are taken. We wish
to describe the spatial distribution of an unknown parameter, modeled as a
function f that is continuous in this environment: f : X → R. This function
f describes our observed data points yi plus some measurement noise εi in the
following relation: yi = f (xi) + ϵi, where we assume that this noise follows an
i.i.d. Gaussian distribution with zero mean and variance σ2

n: ε ∼ N
(
0, σ2

n
)
. The

Gaussian process assumption is to model f as a random probability distribution
over a set of functions, and that the value of f for arbitrary inputs x and x′ ( f (x)
and f (x′) respectively) has a jointly-Gaussian distribution.

We assume that f is a realization of a Gaussian process, which is completely
defined by a mean function m(x) and a covariance function k(x, x′) with input
vector x: [77]
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f (x) ∼ GP
(
m(x), k(x, x′)

)
(3.4)

The joint distribution of observations (the explanatory variable) y, { f (x1) +

ε1, . . . , f (xn) + εn} at a set of inputs X, {x1, . . . , xn} and function value (the
response variable) at an arbitrary test input x⋆, f, { f⋆, . . . , f⋆n} can be written
as:


f (x1)

...
f (xN)

f (x⋆)

 ∼ N



m(x1)
...

m(xN)

m(x⋆)

 ,


k(x1, x1) + σ2

1 · · · k(x1, xN) k(x1, x⋆)
...

. . .
...

...
k(xN , x1) · · · k(xN , xN) k(xN , x⋆)
k(x⋆, x1) · · · k(x⋆, xN) k(x⋆, x⋆)



(3.5)

Typically, it is assumed that the mean function is equal to zero: m(x) = 0.
This is for notational simplicity and to make these usually-didactic formulations
interpretable. Alternative mean functions include a scalar, linear or nonlinear
offset from the mean e.g.: m(x) = c⊤ · x, where c is some predetermined vector
of numbers.

(3.5) can be re-written in block form as:[
y

f (x⋆)

]
∼ N

(
0,

[
k(X, X) + σ2 IN k(X, x⋆)

k(x⋆, X) k(x⋆, x⋆)

])
(3.6)

where y is a column vector of scalar outputs y, from a training set D of n
observations, D = (X, y) = {(xi, yi) | i = 1, . . . , n}. k is the covariance function,
σ2

n is the variance of the observation noise, and input vectors x and query
points x⋆ of dimension D are aggregated in the D × n design matrices X and
X⋆ respectively.

Through the marginalization of jointly Gaussian distributions, we can derive
the following predictive conditional distribution at a single query point f⋆ |
D, x⋆ ∼ N (E [ f⋆] , V [ f⋆]) as [77]:

µ = E [ f⋆] = k (x⋆, X)
[
k(X, X) + σ2

nIn

]−1
y (3.7)

σ = V [ f⋆] = k (x⋆, x⋆)− k (x⋆, X)× (3.8)[
k(X, X) + σ2

nIn

]−1
k (X, x∗)



3. Principal Concepts and Theory 24

where k(X, X) is a matrix containing the joint prior distribution of covariances
of the function f at inputs X and k (x⋆, X) is a matrix containing the covariances
between the function at query points and training inputs.

Figure 3.2: Visualization of the model posterior covariance matrix. In this example,
10 training points are used to make interence across a 5x5 grid of 25 total test (or query)
points. Note that values range from [0, 1].

The covariance function k (or kernel) captures prior knowledge about the
function of interest, including properties such as stationarity and smoothness.
This can be expressed in both the form of the function and the parameters of the
function. In essence, this kernel encodes a prior that can be updated through
subsequent observations.

It is important to note that the variance in (3.8) depends only on the inputs
X as opposed to the value of the underlying function y. This allows us
to reason about uncertainty at unobserved locations. If we model a spatial
phenomenon as a Gaussian process, this allows us to optimize the locations
of where observations are collected (i.e. sampling locations) before traveling to
collect the observation.

3.2.2 Spatial prior

As mentioned earlier, the kernel k establishes a prior likelihood over the space
of functions that can fit observed data in the regression task. Throughout
this work, we will use the Matérn 3/2 kernel, which is a finitely-differentiable
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function with broad use in the geostatistical literature for modeling physical
processes. The Matérn covariance function takes the form [72]:

KMatern(X, X⋆) = σ2 21−v

Γ(v)

(√
2v
l

r

)v

Kv

(√
2v
l

r

)
(3.9)

where Kv is a modified Bessel function , Γ(·) is the Gamma function, and r
is the Euclidean distance between input points X and X⋆. v > 0, l > 0,
and σ2 > 0 are hyperparemeters representing smoothness, lengthscale, and
observation variance respectively. v = 3/2 is a shape parameter for the Matérn
3/2 kernel that regulates the smoothness and differentiability of the random
process. The kernel function and hyperparemeters contain a priori knowledge
about the distribution of y and a variety of different functions can be substituted
for (3.9) depending on the modeled system. See Stein [72] for discussion of
why the Matérn kernel is preferred for geostatistics and modeling physical
processes. The set of hyperparameters θ = {σ2, σ2

n, l} are set to fixed values in
this preliminary work, however they can be trained using various optimization
methods to match the properties of environment, however care must be taken
to avoid overfitting [77].

3.3 Problem statement: Informative Path Planning

So far, we have explored methods for constructing spatial models of the
environment through regression. In particular, we have focused on Gaussian
process regression, which is a technique that can be used to both create models
of a variable of interest and a measure of the expected uncertainty of the model
for the variable of interest. We will now briefly explore how this can be used
to guide where a robot should travel for sample collection in an autonomous
surveying objective.

This information-gathering task can be formulated as a constrained
optimization problem, where information quantity is to be maximized subject to
an observation cost. In [78], the task of informative path planning (IPP) is specified
follows:

P∗ = argmax
P∈Ψ

I(P) s.t. c(P) ≤ B (3.10)

where P∗ is an optimal trajectory found in the space of possible trajectories
Ψ, for an individual or set of mobile agents such that the cost of executing
the trajectory c(P) does not exceed the movement budget, B. I(P) is the
information gathered along the trajectory P and the movement budget can



3. Principal Concepts and Theory 26

be any cost that constrains the effort used to collect observations (e.g., fuel,
distance, time).

From the perspective of our surveying objective, the goal of IPP is to produce
a trajectory for a surveying robot that minimizes the error between the model
generated by the collected observations and the true values of the modeled
variable.

measurementsProcessing
unit

raw
dataSensor

odometry /
localizationState estimator

map
data

Map
estimator

trajectory

Planning
algorithm

information Utility
calculation

action Vehicle controller

Spatial prior

reward

state

Environment

IPP Routine

Figure 3.3: Schematic overview of a complete surveying system.
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3.4 Sampling-based path planning

In order to accomplish the aforementioned objective, we first need a strategy
for producing a series of movements for the mobile robot to move from a
starting location to a goal destination, while satisfying basic safety criteria such
as avoiding collision with known obstacles.

Depending on the context, this task is known as motion planning or path
planning. The most simple applications can be found in the planning algorithms
present on toy drones, that simply compute the shortest straight-line trajectory
to a goal waypoint, even if a tree happens to be in the way. They can be
as sophisticated as the algorithms present in self-driving cars, which consider
kinodynamic constraints such as a vehicle’s turning radius and motor torque
limits, along with environmental constraints such as the traction available to
a vehicle’s wheels in a given road condition, and safety constraints such as
forces experienced by occupants (for comfort) and anticipating the movement
of mobile obstacles (other vehicles, pedestrians, and animals).

There are a variety of efficient and optimal path planning algorithms
typically used when a navigation system is tasked with finding the shortest
obstacle-free path to a destination. However, as discussed in section 3.3, the
goal is not to find the shortest path to a goal destination, but to find the most
informative path for sample collection. Arguably, there does not even need to be
a particular goal destination in the first place. Therefore, an ideal path planner
would generate candidate trajectories for exploration that is not necessarily goal-
oriented. Chapter 5, explores a goal-oriented objective in that selects among pre-
defined waypoints, including an origin waypoint and a destination waypoint.
Chapter 6 and Chapter 7 focus on an exploratory objective, that uses a sampling-
based path planner as the basis of path planning and we will briefly cover the
theory behind the planner in the next section.

3.4.1 Rapidly-exploring Information Gathering (RIG) algorithms

In chapter 6 and chapter 7, the IPP task (3.10) is accomplished with a sampling-
based planner with an information-theoretic utility function and convergence
criterion. The planner is derived from the family of Rapidly-exploring
Information Gathering (RIG) algorithms, which maximize an information
quality metric subject to a travel constraint [78]. In turn, RIG inherits the
asymptotic cost-optimality of the RRT⋆, RRG, and PRM⋆ algorithms [79] and
a conservative pruning strategy from the branch and bound technique [21].
RRT⋆, RRG, and PRM⋆ optimize for a cost objective subject to a local movement
constraint (avoiding obstacles). RIG instead optimizes for an information
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objective, subject to a cost constraint [78]. When not given a goal destination,
the RRT algorithm produces a space-filling random tree, with the probability
of covering every reachable point in the movement space approaching unity as
t → ∞. When not given a goal destination, the RIG algorithm will similarly
add nodes to a space-filling tree until stopped or until there is no free space
to expand into. The graph-variant (building upon RRG [80]) is outlined in
Algorithm 1. It is worth highlighting a details of this algorithm and a few
practical implementation notes:

• Like the RRT-family algorithms, RIG plans in a continuous space.
In practice, we model the environment as a grid-world, where the
environmental phenomenon is defined on a unit grid. This aligns with
how most physical models of the environment are developed. That is,
there is some finite simulation resolution for which we subdivide the
world into spatially and temporally when computing things like fluid
dynamics models. For example, in the atmospheric sciences, ”microscale”
meteorological phenomena have < 2 km horizontal extent. If the
environmental model has a 2 km spatial resolution, then samples would
be indexed to the nearest 2-km grid cell, and all nodes in the movement
tree could be indexed to the nearest cell. In this scenario, the RRT would
expand not t → ∞, but it would expand until |V| = |G|, where |V| is the
cardinality of the random tree and |G| is the number of cells in the modeled
world where movement is permitted.

• RIG is designed to be run in an “anytime fashion”, where the paths
discover approach the optimal path as t → ∞ in the continuous case,
or as |V| → |G| in the practical case, with a discretely-defined finite
environment. If we are able to specify some optimality threshold,
then we can interrupt the algorithm once that condition is reached (see
Equation 3.15).

• A termination criteria can also be set based on proximity to a goal.

• In a manner similar to the ”re-wiring” procedure of RRT∗, RIG performs
a pruning operation, based on a partial ordering for co-located nodes.
During the tree/graph expansion step, a new node is considered to be
”co-located’ with an existing node if it exists within a step size of the
Near) function. These co-located nodes are ranked according to the partial
ordering na > nb defined in (3.11):

[H]na > nb ⇒ I(pg
a) + I(na) > I(pg

b) + I(nb) (3.11)
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The authors in [78] prove that RIG-Graph is asymptotically optimal if the partial
ordering condition holds.

RIG inherits some assumptions of prior sampling-based motion planning
literature [78], [80] namely:

1. Robots are modeled using discrete time dynamics

2. A trajectory is deterministic given the environment and contol inputs

3. The cost function is strictly positive, monotonically-increasing, bounded
and additive.

While different planers consider information functions that are modular,
time-varying modular, or submodular, we concentrate on the class of
submodular information functions. Submodularity is a property that
encapsulates a notion of diminishing returns and is a useful property of
functions for optimization problems. In [81] the properties of submodular
information functions are discussed at length and in [82] the property is
leveraged for an near-optimal sensor placement algorithm using mutual
information. For these objective functions, the information gathered along a
trajectory is dependent on the prior trajectories. Hollinger and Sukhatme [78]
show a sampling-based informative planner is asymptotically optimal for the
three aforementioned classes of information functions. From these assumptions,
it follows that the cost and information functions are known a priori.

Two implementation details remain:

1. How do we compute the information content of a node (what is the
function I?)

2. How do we determine when to stop expanding the RIG graph?

For the answer to question 1, we use an information function that quantifies
the value of a new proposed observation at the location of nnew during the tree
expansion step (L21 in Algorithm 1). This information function will be covered
in detail in the following section. For the answer to question 2, in chapter 5, we
explore two approaches, one based on a heuristic stopping criterion developed
by the authors in [83] and one based on the expected accuracy of a model
constructed from observations at locations proposed by the planner.

3.4.2 Mutual information as a utility function for informative

planning

To establish if a trajectory contains informative sampling locations, we employ a
utility function that optimizes for a reduction in the posterior variance of the GP
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Algorithm 1 Rapidly exploring information gathering graph (RIG-graph)

Input: Step size ∆, Budget B, Workspace Xall , Free space Xfree , Environment
E , Start configuration xstart , Near radius R

1: ▷ Initialize cost, information, starting node, node list, edge list, and graph ◁
2: Iinit ← InitialInformation (xstart , E) , Cinit ← 0,
3: n← ⟨xstart , Cinit , Iinit ⟩
4: V ← {n}, Vclosed ← ∅, E← ∅
5: while not terminated do do
6: ▷ Sample configuration space of vehicle and find nearest node ◁
7: xsamp ← Sample (Xall ) , nnearest ←
8: Nearest(xsamp , V\Vclosed )
9: xfeasible ← Steer (xnnearest , xsamp , ∆)

10: ▷ Find near points to be extended ◁
11: Nnear ← Near (xfeasible , V\Vclosed , R)
12: for all nnear ∈ Nnear do
13: ▷ Extend towards new point ◁
14: xnew ← Steer (xnnear , xfeasible , ∆)
15: if NoCollision(xnnear , xnew ,Xfree ) then
16: Q← {xnew }
17: while Q ̸= ∅ do
18: xq ← Pop(Q), Nqnear ← Near

(
xq, V\

19: Vclosed , R)
20: for all nqnear ∈ Nqnear do
21: Iq ← Information

(
Ingnear , xq, E

)
,

22: c
(
xq
)
← EvaluateCost

(
xnqnear , xq

)
23: Cq ← Cnqnear + c

(
xq
)

, nadded ←
〈
xq, Cq, Iq

〉
24: if PRUNE ( nadded ) then
25: Delete nadded

26: else
27: ▷ Add edges and node ◁
28: E← E ∪ {(nqnear , nadded )} , V ← V∪
29: {nadded }
30: ▷ Add to closed list if budget exceeded ◁
31: if Cq > B then
32: Vclosed ← Vclosed ∪ {nadded }
33: else
34: Q← Q ∪ {nadded }

return G = (V, E)

used to model the environment. This follows from considering the information
gain of an observation as a reduction of map entropy. In [53], the authors present
an approach for quantifying the information content of a map M as its entropy
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H and the information content of a new observation Z as the mutual information
between M and Z, denoted as I(M; Z), defined as follows:

I(M; Z) = H(M)− H(M | Z) (3.12)

If the map is modeled as a Gaussian Process where each map point (or query
point) is a Gaussian random variable, we can approximate mutual entropy
with differential entropy. For a Gaussian random vector of dimension n, the
differential entropy can be derived as h(X) = 1

2 log ((2πe)n|Σ|). If we let

X ∼ N (µX, ΣX) and X | Z ∼ N
(

µX|Z, ΣX|Z

)
be the prior and posterior

distribution of the random vector X, before and after incorporating observation
Z, then the mutual information becomes:

I(X; Z) =
1
2

[
log (|ΣX|)− log

(
|ΣX|Z|

)]
(3.13)

where Σ is the full covariance matrix. Again, note that the information content
of a new observation depends only on the posterior variance, not the expected
value of the random vector. To calculate the information gain, we use the
posterior variance of the Gaussian process trained on waypoints in the RIG-
Tree graph in a procedure based on Algorithm 5 in [83]. We modify the
procedure (Algorithm 2) to consider the posterior variance of the entire modeled
environment, whereM contains the set of query (test) points defined in the GP
and the set of training points established as waypoints in the RIG-Tree node list.
Algorithm 5 details the procedure for updating a node’s information content. In
lines 6-8, the location of a future measurement z at pose p, is added to the set
of past observations (training points) from the entire node graph. This is used
to create a new map state containing the previous training points plus the new
measurement and the preexisting query points where the GP is evaluated. Next,
the posterior variance is calculated (lines 10-14) and the information content of
the entire posterior map is updated accordingly.

It is also possible to approximate the mutual information using marginal
variances of the Gaussian random variables by leveraging the marginalization
property of normal distributions. (3.13) becomes:

Î(X; Z) =
n

∑
i=1

1
2

[
log
(
σXi

)
− log

(
σXi|Z

)]
(3.14)

which can be calculated from the trace of the GP covariance matrix. See [83]
for a derivation and [84] for an example where a similar method is used to
approximate Rényi entropy. Borrowing terminology from optimal design we
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Algorithm 2 InformationGPVR()

Require:
Robot pose or desired location p, current map/state estimate M,
covariance function k(·, ·), sensor noise σ2

n, prior map varianceσ, near
node information Inear;

1: σ̄← σ ▷ Initialize updated map variance as the current map variance
2: if Inear is not empty then ▷ Initialize information gain
3: I ← Inear
4: else
5: I ← 0
6: z← Predict a future measurement at location p and mapM
7: ▷ Construct new map state using z and p ◁
8: MD ←M∪ {xz}
9: ▷ Calculate self-covariance and cross-covariance matrices ◁
10: C ← K(X, X), C∗ ← K (X, X∗) //X and X∗ ∈ MD
11: ▷ Calculate posterior map variance at training and query points ◁
12: c∗∗ ← diag (K (Xw, X∗))
13: L← Cholesky

(
C + σ2

n I
)

, V ← L\C∗
14: v← c∗∗ − dot(V, V)T ▷ dot product
15: for all i ∈ MD do

16: I ← I + log
(

σ[i]
)
− log

(
σ̄[i]
)

17: return I (total information gain), σ̄ (updated map variance)

distinguish between the utility formulation that uses the full covariance matrix
(d-optimal) and the covariance matrix trace (a-optimal) in the following section.

3.4.3 Comparison of sampling routines

Our objective is to model a continuously-distributed spatial phenomenon, such
as the surface of a landscape or a conservative, spatially-distributed process at
steady state. As an analogue, we use the Branin-Hoo function, a continuous
smooth function of class C∞ that is among many test functions used for Kriging
prediction or other optimization benchmarks [50]. The function is applied over
a 500 x 500 map-unit environment, to comprise the ground truth of a synthetic
scalar field.
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parameter value
expand distance 70.0
path resolution 20.0
search radius 200.0
max iterations 500
model scale 1:25

Table 3.1: RIG parameters used for scalar field experiments. Note that the first three
parameters are inherited from RRG/RRT∗.

(a) Example graph and path (b) Branin function scalar field

Figure 3.4: Experimental setup for informative planning over a 2D scalar field. The
panel on the left shows an example graph and final path selected using the longest-
path selection criterion. The right panel shows the underlying scalar field, used as the
modeling target.

The spatial model is evaluated using a GP regression model at a 1/25 scale
resolution, for a total of 400 query points (20 x 20). Posterior variance is also
calculated at the same query points as the final map prediction. The model
uses a constant mean function, Matérn (ν = 3/2) covariance function and
fixed hyperparameters. Training observations are obtained from a point sensor
model, where the a ”sample” is obtained by the simulated agent querying the
ground-truth scalar field at nodes established in the final trajectory. The RIG
planner was based on a RRT implementation by [85] and the GP regression
was performed using the GaussianProcessRegressor class in scikit-learn [86].
Parameters used by the RIG planner are summarized in Table 3.1

A survey is emulated in three steps: a planning state, where the planner
generates a trajectory as a series of waypoints, a sampling stage, where the
vehicle collects a point sample of the environmental field at each waypoint, and
an inference stage, where a prediction is made for the entire field at a uniform
grid of query points. Accuracy of the resulting model is compared to the ground
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truth via the Root Mean Squared Error statistic (RMSE), where lower values
indicate a more accurate model (see Table 3.2).

Due to the stochastic nature of RRT-family planners, trajectory statistics are
summarized for combinations of different planners, information functions, path
selection criteria, and movement budget. n = 25 executions of each approach
were performed, and the information gain, cost, and final map RMSE for the
collection are summarized in Table 3.2. Note that since the trace is not invariant
to the scale of the measured parameter, the value of the reward is not directly
comparable between the a- and d-optimal functions. From the movement
graph returned from the planner, three strategies are compared: a strategy
that greedily selects the trajectory with the highest cumulative information
gain (greedy), a strategy that selects the trajectory with the highest cumulative
path length (longest), and a strategy employed by [83] that balances between
exploration and exploitation with a vote-based heuristic. All sampling based
planners are allowed to run for 500 sample-iterations for the scenarios with
unlimited movement budgets.

approach size cost reward rmse

gpvr a (greedy) 8 (2) 390 (127) 2.33 (0.44) 0.264 (0.05)
gpvr a (longest) 10 (2) 600 (74.1) 1.08 (0.93) 0.235 (0.05)
gpvr a (vote) 8 (3) 370 (156) 2.01 (1) 0.283 (0.05)

gpvr d (greedy) 8 (3) 420 (146) 5.46 (1.5) 0.26 (0.06)
gpvr d (longest) 10 (1) 580 (71.5) 2.1 (1.3) 0.238 (0.05)
gpvr d (vote) 10 (3) 460 (143) 3.53 (1.4) 0.248 (0.05)

Table 3.2: Aggregated (n = 25) performance of different planning strategies run
without budget constraints, reported as ”mean (SD)”. Cost and reward are represented
as the values for the last waypoint in the final trajectory. Best values are bolded.

Out of 25 repetitions, the execution that is closest to the mean ending
reward (Table 3.2) is displayed in Figure 3.5. While the greedy path selector
tended to produce trajectories with the highest cumulative information gain, the
overall map accuracy was not as high as the algorithm that selected the longest
paths with more observations on average. The goal of the vote-based selection
heuristic was to balance between information gain and travel distance and in
practice it produced trajectories that were more informative than the longest
paths, with a superior final map accuracy.

As another basis for comparison, we calculate the relative information
contribution (RIC) (3.15) criterion that defines the amount of information gain
relative to a neighboring vertex in the RIG graph. This was introduced in
[83], where it was used as part of a heuristic stopping criterion for information
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gathering. In this benchmark demonstration, it is shown in 3.5 as an efficiency
metric, to establish the usefulness of acquiring an additional observation.

RIC ≜
Inew

Inear
− 1 (3.15)

Figure 3.5: A comparison of cumulative cost and information gain for the: (a) a-optimal
information function and the (b) d-optimal information function along with different
path selection strategies. IRIC is the penalized relative information contribution, which
expresses a tradeoff between information gain (here, reward) and path length.

In scenarios with a limited movement budget (Table 3.3), trajectories from
the informed planner are compared with a naive sampling scheme typical of
many environmental surveys–a uniform coverage of sampling locations. The
movement budget is defined as the maximum path length (in map units) that
the vehicle is allowed to travel for all waypoints in a trajectory. For the
coverage planner, this budget is the only varied parameter, as it does not make
use of any other information or path selection criteria. For the sampling-
based planners, the final trajectory may exceed the movement budget by RRT
expansion distance, which is a consequence of how the budget is used by the
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RIG planning routine. Specifically, nodes are marked as ”closed” when their
cost-to-arrive exceeds the movement budget. In every scenario the informed
planners produced higher accuracy models than a uniform sampling plan given
the same movement budget.

approach size cost reward rmse

coverage (coverage) 4 (0) 500 (0) NA 0.272 (0.00)
gpvr a (vote) 8 (2.1) 460 (133) 1.65 (0.8) 0.249 (0.05)
gpvr d (vote) 9 (2.2) 490 (140) 3.62 (2) 0.248 (0.04)

Table 3.3: Aggregated (n = 25) performance of different planning strategies run with
a movement budget of 500, reported as ”mean (SD)”. Cost and reward are represented
as the values for the last waypoint in the final trajectory.

(a) Survey path over the ground-truth scalar
field (b) Model generated from experimental run

(c) Error map, absolute error (d) Error map, squared error

Figure 3.6: Example survey generated by the baseline coverage path planner with a
survey path lengh set to 500 map units of distance.
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(a) Survey path over the ground-truth scalar
field (b) Model generated from experimental run

(c) Error map, absolute error (d) Error map, squared error

Figure 3.7: Example survey generated by informative planner using the a-optimal
utility funciton. The path length of the final path is ¡ 500 map units. The experiment in
this figure was one that prouced the lowest total model RMSE out of 25 executions.

For an understanding of how well this procedure might work in a real-
world scenario, we shall now consider an example where the objective is
reconstructing a bathymetric map of a reservoir.

Sonar observations were collected along a manually-defined coverage
surveying pattern with a SensePlatypus Lutra differential-propellor unmanned
surface vehicle (USV) in Fall of 2019. A navigable perimeter was established
from water boundaries obtained from OpenStreetMap, and the planner
generated a trajectory within this area [87]. Measurements from the field survey
were stored using a kd-tree data structure and training points were obtained
by querying the nearest measurement to a sampling location proposed by the
planner. Map error was calculated between the posterior field reconstruction
and the subset of ground- truth measurements that fell within the rectangular
extent of the final planned trajectory. The example pictured in 3 has a RMSE of
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70.1 over the entire extent of the lake and 3.6 over the bounding box containing
the surveyed path. A large map error outside of this region is to expected,
as the GP quickly regresses to the mean of zero for locations x far away from
observations xi.

Figure 3.8: Input dataset for lake experiment, collected with data from UC Merced
capstone team in 2019 with a SensePlatypus Lutra USV.

Most of the computational complexity lies in the calculation of the posterior
variance of the GP regression, which is O(n3) in runtime complexity (for
naive Gaussian elimination) due to matrix inversions, where n is the number
of training points (L17, Algorithm 2). The a-optimal information function
is desirable for its computational efficiency, as it avoids computing the
determinant of a matrix of size N , where N is the number of training plus query
points. For our d-optimal information function, computing the determinant
via LU Decomposition also has a complexity of O(n3) [88] [89] (although
more efficient approaches exist). For small values of n, this second step can
result in a significantly longer computation. In these scenarios, the trace is
an attractive approximation of the information content of the posterior model
covariance. However, unlike the determinant the trace is not invariant to the
scale of the parameters (in this case, the measured values) [90]. Further work
can characterize the degree to which this discrepancy is practically meaningful
for generating informative sampling trajectories for field reconstruction. For
example, in our experiments using the a-optimal information approximation
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resulted in generally worse final map predictions, however the difference was
small.

(a) Ground-truth map and trajectory (b) Paths and resultant map

Figure 3.9: Right subfigure: An overview of the candidate paths produced by the a-
optimal information function, with the highest-ranked final path in red (a) overlain on
OpenStreetMap imagery. The resulting GP posterior after executing the trajectory in
red is shown (b) with color fill units in meters of elevation from the vertical geodesic
datum. All map units are in UTM meters. Note the regression to the zero-mean for
locations distant from surveyed depths.

3.5 Conclusion

In this chapter, we reviewed a state-of-the-art approach to informative path
planning using a sampling-based planner and we explored how different
approximation approaches and path selection criteria affect the accuracy of
the final survey product. Due to the improved performance with respect to
map accuracy, subsequent chapters will use the vote-based heuristic for path
selection.

The main constraint in the practical application of the utility function in
Algorithm 2 is the runtime-performance of the posterior variance calculation.
To address this, we examined a few approximations and their effect on sample
selection and map accuracy. Reducing the complexity of this inference step
would allow planning over higher-dimensional belief spaces (including time).
This will be explored in chapter 5.

It is also worth considering how the utility function could be applied to a
multi-vehicle surveying objectives and whether any modifications would have
to be applied to enable distributed coordination between sensing vehicles. This
is the topic of the next chapter.
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4

Distributed estimation of scalar fields

with implicit coordination

4.1 Background

In this chapter we consider the problem of estimating a scalar field using a team
of collaborating robots. This problem is motivated by our ongoing research
in precision agriculture, where it is often necessary to estimate the spatial
distribution of parameters such as soil moisture, nitrates, or carbon dioxide flux
that can be modeled as spatially-varying scalars. As with the previous chapter,
we model this underlying field, using a Gaussian process (GP) [77], for all of the
practical benefits described in chapter 3.

In agricultural applications one is often faced with the problem of estimating
quantities over very large domains, therefore the use of multiple robots allows
for quicker coverage of the region of interest. In these conditions, robots
have to plan their motions with multiple objectives. When an exhaustive,
systematic coverage of the entire region is not feasible, it is important to collect
samples at the most informative places. It is also necessary to be aware of
the limited distance that can be covered before the robot must be refueled or
recharged. Therefore robots have to plan paths that will eventually terminate
at a designated end point before they run out of energy or fuel. Likewise, it is
also important to consider that in real world applications the energy consumed
to move between two locations is not deterministically known upfront; rather, it
is a random variable whose realization is only known at run-time. For example,
a robot may need to take a detour to reach a certain place, or it may move
through a muddy area causing wheel splippage, etc. Finally, in rural regions
communication infrastructures are often lacking or limited and therefore robots
can not assume the availability of broadband communication channels.

With these motivations in mind, in this section we present an algorithm to
solve this estimation problem with a team of robots. Coordination between the
agents is obtained with minimal information exchange and by leveraging the
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mathematical properties of GPs to promote dispersion. The approach is fully
distributed and each robot just broadcasts to the rest of the team the limited
information consisting of the locations where it has collected data, the value it
measured, and its unique identifier—no more than a handful of bytes at a very
low frequency. No other communication is required and robots never exchange
their individual plans or models. In addition, each robot uses a refinement of our
recently developed planner for stochastic orienteering to ensure that it reaches
the final location before it runs out energy. Through extensive simulations we
will observe that this approach ensures robots collect samples in areas leading
to a more accurate reconstructions of the underlying unknown scalar field.

Previous efforts: The problem considered in this chapter is related to the
orienteering combinatorial optimization problem where one has to plan a path
through a weighted graph to gather the maximum sum of vertex rewards while
ensuring that the length of the path does not exceed a preassigned travel budget.
Recently, we have extensively studied this problem in agricultural settings,
both for single agents [28] and multiple agents [91] , and we also considered
its stochastic variants [39]. In all these works however, rewards associated
with vertices were static and assigned upfront, while in this section rewards
associated with vertices are iteratively re-estimated based on the gathered
samples. Moreover, our former multi-robot solution [91] was centralized, while
we here propose a fully distributed approach.

The use of GPs for estimating scalar fields with robots has also been explored
in the past. The authors in [59] proposed an algorithm to reduce in minimal time
the variance of the scalar field being estimated with a GP. Their solution uses
a team of robots, but does not consider travel budgets, i.e., robots can travel as
much as needed. Similarly, [92] propose an estimation algorithm for GPs aiming
at reducing uncertainty under time and communication constraints. However,
their solution does not consider a travel budget.

This section is also related to Informative path planning (IPP) where
the emphasis is on planning paths to collect the most informative samples.
Examples of additional previous efforts are given in chapter 2. In IPP, however,
the set of candidate sample points is not given, but is rather determined by the
algorithm, and the travel budget is typically not explicitly considered.

The rest of the chapter is organized as follows. The problem formulation
is introduced in section 4.2 and our methods are discussed in section 4.3. In
section 4.4 we present extensive simulations to evaluate our proposal and in
section 4.5 we draw the conclusions 1 .

1This chapter is based on the accepted version of the following published article: Booth,
L., Carpin, S. (2024). Distributed Estimation of Scalar Fields with Implicit Coordination.
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4.2 Problem Statement

In this section we consider the problem of estimating a scalar function f :
X → R defined over a bounded region of interest X given a limited number
of observations collected by multiple robots. The goal is to determine where
robots should collect these samples. As commonly done in this domain, a
graph structure is used to model the navigable environment. We assume that
observations of the underlying scalar function can be collected at a limited
set of sampling locations, denoted as the set of vertices V in the graph. This
assumption holds in a variety of real-world agricultural applications, where
specific points of interest (e.g., sentinel trees that serve as early-indicators
of ecosystem health) have been pre-identified, or when the robots sense the
environment by leveraging pre-deployed infrastructure (such as soil sensors
implanted in the ground). This assumption is not restrictive; when prior sensing
locations are not specified, one can choose V arbitrarily, e.g. as a set of equally-
spaced points covering the region of interest, as is typical in naı̈ve surveying
schemes. We consider this navigable environment as a complete graph, with
edge set E = V × V. To each edge e ∈ E we assign a random variable c(e)
representing the movement cost (e.g. energy spent) when the robot traverses
the edge. We assume that the density functions characterizing these random
variables are known.

All robots must begin at an assigned start vertex vs and end at an assigned
goal vertex vg before they run out of energy. Each robot ri starts with a travel
budget Bi. When the robot traverses an edge e, its budget decreases by the
random value c(e). For simplicity, we assume that all Bis are the same, but this
is not a strict requirement. Each time the robot visits a location v ∈ V, using
its onboard sensor(s) it collects a sample of the underlying function f , obtaining
a noisy observation yv = f (v) + ε, where ε ∼ N(0, σ2

m) is measurement noise,
Gaussian-distributed with zero mean and variance σm.

With regard to communication, we make the following two assumptions:
When robots are collecting data, they can only anonymously broadcast packets
of the type (v, yv, n) indicating that they collected observation yv at vertex v.
The last component n is a unique id assigned to each robot— its use will be
presented in section section 4.3. At the end of the mission, after the robots
have converged at the goal vertex vg and are in proximity, they can exchange
all the data they have gathered during the mission. However, at that point data
collection is concluded and they cannot return to the field and acquire more data
to improve the estimate. These communication assumptions are consistent with

In: Bourgeois, J., et al. Distributed Autonomous Robotic Systems. DARS 2022. Springer
Proceedings in Advanced Robotics, vol 28. Springer, Cham. doi: 10.1007/978-3-031-51497-533

https://doi.org/10.1007/978-3-031-51497-5_33
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contemporary technology used by robots in agricultural domain. In particular,
LoRa [93] offers the capability of streaming limited amounts of data at long
distances and is compatible with the assumptions we made when robots are
out in the field. When robots terminate their mission and are in close proximity
data can be instead be exchanged using onboard WiFi.

To reconstruct the scalar field we use Gaussian process (GP) regression, as
detailed in section section 4.3. Throughout the mission, using the available
data (either collected or communicated) robots can make predictions about
the value of f at arbitrary locations in X . We indicate such predictions as f̂ .
The overall objective is to collect the set of observations providing the most
accurate reconstruction of the underlying scalar field. As common in estimation
literature, in this section our metric for accuracy is the mean squared error (MSE)
defined as

MSE =
1
|X |

∫
X
( f (ψ)− f̂ (ψ))2dψ.

4.3 Methods

4.3.1 Spatial prior

The modeling approach used in this chapter is Gaussian process regression and
was implemented identically to the previous chapter (see section 3.2).

The kernel k establishes a prior likelihood over the space of functions that
can fit observed data in the regression task. Kernel selection and tuning is a key
component in GP regression tasks. In machine learning the radial basis function
(RBF) kernel is often used. However, in this paper, we use the Matérn kernel
with ν = 3/2 which is a finitely-differentiable function. Our choice of this kernel
is motivated by its broad use in the geostatistical literature for modeling physical
processes [72] like those motivating this research. The Matérn covariance
function takes the form:

KMatern(X, X⋆) = σ2 21−ν

Γ(ν)

(√
2ν

l
r

)ν

Kν

(√
2ν

l
r

)
(4.1)

where Kν is a modified Bessel function , Γ(·) is the Gamma function, and r is the
Euclidean distance between input points X and X⋆. The hyperparemeters ν > 0,
l > 0, and σ2 > 0 represent smoothness, lengthscale, and observation variance
respectively. As common in GP inference, to account for the measurement noise,
the kernel we use is the sum of two kernels, namely the Matérn kernel and a
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noise term, i.e., the kernel we use is

K(X, X⋆) = KMatern(X, X⋆) + σ2
nI

where I is the identity matrix and the term σ2
n models the measurement noise

σ2
m. While we keep ν fixed at 3/2, the other hyperparameters θ = {σ2, σ2

n, l} can
be trained using various optimization methods using the marginal likelyhood
to match the properties of environment and the sampled data [77]. In particular,
the length scale l is related to the lag parameter of the variogram, a function used
in geostatistics that establishes how quickly the variance increases as a function
of separation distance between pairs of observations in space [72]. In the GP
kernel, smaller values of l imply that variance quickly grows with distance,
while with larger values the variance grows less.

As we will see in the next subsection, by putting constraints on the range of
possible values of l one can implicitly encourage dispersion between the robots,
thus promoting the collection of samples in different areas of the environment.

4.3.2 Exploration

In this section we present the planning algorithm executed by each robot in the
team. No global data structure is shared among the agents, and all the quantities
described in the following are local to each robot. Let G = (V, E) be the graph
of possible sampling locations and let D = (vi, yi) i = 1 . . . n the set of collected
samples (vertices and values). All robots start from the same start vertex vs and
must end at the same goal vertex vg. D is initialized as an empty set, but then
grows as the robot collects more data or receives data from other agents. Each
robot is given a unique numerical identifier ni, but the robots need not to know
how many agents are in the team. At each iteration the robot assigns a reward
function to each of the vertices in V, i.e., it computes a function r : V → R

assigning a value to each possible sampling location. Different options for the
function r will be discussed in the next subsection.
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Algorithm 3 SOPCC

start vertex v, B;
1: Initialize tree T with root equal to v
2: for K iterations do

3: vj ← UCTF(v)
4: add vj to the tree if not present

5: for S iterations do

6: ϕ← SampleTraverseTime(v, vj)

7: B← B− ϕ

8: path← rollout(vj, B′)
9: compute Q[vj] and F[vj] based on the S paths

10: Backup(vj, Q[vj], F[vj])

11: return ActionSelection(root(T )

Once the function r has been computed, the robot is faced with an instance of
the stochastic orienteering problem, i.e., it has a graph G = (V, E) with known
deterministic rewards r associated to vertices and stochastic costs c associated
to edges, as well as a residual budget B. At this point the robot executes the
algorithm presented in [39] to solve the stochastic orienteering problem (SOP).
Because of the intrinsic computational complexity of the orienteering problem,
the SOP algorithm uses a Monte Carlo tree search informed by an heuristic
aiming at identifying vertices with high value r, low travel cost, and from which
the robot can still reach vg with high probability (the reader is referred to [39]
details). The SOP algorithm returns the next vertex va to visit. The robot then
moves to va, collects an observation ya, updates D, and broadcasts the packet
(va, ya, ni) to all other agents, where ni is the unique id of the robot. This process
continues until the SOP algorithm returns vg, in which case the agent moves
to the goal vertex vg and terminates. Throughout the process the robot keeps
listening for possible packets broadcast by other agents, and when they are
received the location and sampled values are added to D.
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Algorithm 4 Adaptive planning with SOPCC and GP-variance

given robot identifier id, observations D;
1: while B > 0 and v ̸= vg do

2: f∗ ← update gp(D)
3: vnext ← SOPCC(v, B, f∗)
4: move to vnext and measure time spent as c
5: B← B− c
6: v← vnext

7: yv ← sample env(v)
8: broadcast(v, yv, id)

Algorithm 5 UPDATE REWARD

given GP ( f (x), current location vc, proposed location v;
1: r(v) = V( f (v))
2: for all robots, j do
3: if d(vj, v) < d(vc, v) then

4: r′(v) = r(v) · d(vj,v)
d(vc,v)

5: return r′(v)

As the SOP algorithm was developed for the single robot case, in this work
we added a minor modification to account for the presence of multiple robots.
The change is as follows: When considering the reward of a vertex r(v), the
robot considers for all other agents, the last packet they transmitted (if it exists).
Then, if it determines that another agent is closer to v than itself, it discounts
the reward r(v). More precisely, let v be the vertex whose utility is being
evaluated, and r(v) its reward. Let vc be the location of the current robot,
and assume that it determines that robot j has broadcast a packet indicating
it collected a sample at vertex vj. If vj is closer to v than vc, then r(v) is updated
as r′(v) = r(v)d(vj, v)/d(vc, v) where d is the Euclidean distance between the
vertices. The rationale for this update is that if another robot is closer to v,
then it is more likely to reach v than the former robot, so the utility of v is
decreased for the former robot to prevent having both robots visiting v, as this
would be a replicated effort wasting resources. However, the utility is not set
to zero because robots do not communicate with each other and do not know
their individual intentions. Also, since each robot maintains its own set of GP
hyperparameters (see discussion below) and these will be different from each
other, robots cannot make absolute predictions about the intentions of other
robots in the team.
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Remark: one could imagine that after a robot has determined which vertex v it
will visit next, it could broadcast this information to other agents so that they do
not consider it anymore among their choices. However, this is not done for two
reasons. Fist, such additional communication would almost double the amount
of transmitted data, thus going against our effort to keep exchanged information
at a minimum. Second, because of the stochastic nature of the environment there
is no guarantee that a robot electing to visit a certain vertex will eventually reach
it and collect a sample. Hence we opt for the current approach where robots
share measured data only after they have reached and sampled a location.

4.3.3 Vertex quality computation

Key to the presented approach is the reward function r : V → R used by the
SOP algorithm to decide which vertex to visit next. Ideally, the function should
identify instrumentally good vertices to visit, where good in this case means
vertices that will yield a reduction of the MSE metric. Different metrics have
been proposed in literature. One obvious choice is to use Eq. (3.8) to predict
the variance of vertices in V and set r(v) = σ2(v). In this case, the objective
is to assign high values to vertices with high uncertainty in the estimate. In
[94] the authors instead propose to use a linear combination of the mean and
standard deviation predicted by Eqs. (3.7) and (3.8). Their approach aims
at discovering the extrema of an unknown function. As in our application
we are interested in the entire function, and not just its peaks, we could set
r(v) = |µ(v)| + βσ(v). Finally, in [95] the authors propose an algorithm to
compute the mutual information for vertices (prior to and after being added
to the movement graph) using predictions for mean and variance. After having
implemented these three alternatives, preliminary experiments did not outline
significant differences between them. However, setting r(v) = σ2(v) has the
advantage of not requiring the tuning of additional parameters, as it is instead
necessary for the other two methods. Therefore, informed by these preliminary
findings, in our implementation each robot assigns the predicted variance as the
value of a vertex. Note that for vertices already in D the algorithm sets r(v) = 0,
so that robots never consider again vertices that have been already sampled at
least once.

The kernel we use to make predictions about the variance depends on three
hyperparameters θ = {σ2, σ2

n, l} that can be tuned to best fit the data in D.
As pointed out in [77] Ch.5, to obtain better results it is possible to repeat the
optimization process multiple times, with random restarts to avoid getting stuck
in suboptimal local minima. In our approach, before assigning values to the
vertices each robot executes the optimization locally with ten restarts, but never
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communicates the hyperparameters of its internal model θ to the other team
members. Each agent then operates with its separate set of hyperparameters
θ that are unlikely to match the others, due to the random restarts of the
optimizer. This difference will further decrease the likelyhood that multiple
agents will select the same vertices to sample, because even with identical sets
D the variance predicted by the GP will be different. However, during the
optimization process each agent uses the same lower bound l0 for the length
scale l. This choice encourages robots to disperse because the variance of vertices
in V near to vertices already inserted in D is lower than the variance of vertices
far from D and thereby the reward associated to vertices near to already sampled
locations is lower.

4.4 Experimental Evaluation and Discussion

To assess merits and limitations of the proposed approach, we perform
simulations on test cases while varying the different parameters related to the
planning and surveying objectives. Due to the limitation of space, we examine
the task of reconstructing two scalar fields. The first is a synthetic scalar field
with a periodic trend depicted in Figure 4.1. The second, displayed in Figure 4.1,
shows the soil moisture distribution measured in Summer 2018 in a commercial
vineyard located Central California. This second scalar field was used as
benchmark in previous publications [29] . To ease the comparisons between the
two cases, both fields were rescaled to the same size, although the amplitude of
the underlying values are different. GP predictions of each respective field were
made with a Matérn kernel with ν = 3/2. It should be noted that this kernel
is commonly used in geostatistical applications and is more appropriate for the
soil moisture dataset. Here, the periodic synthetic field serves as a pathological
example, with a mismatched spatial prior. In fact, the use of periodic kernels
could lead to better results for the synthetic field. Future work will examine
online adaptive kernel selection through Bayesian optimization.

Our algorithm, indicated as Coord in the following discussion, is compared
with two baseline alternatives:

• The random waypoint selection algorithm (RWP), which selects the next
vertex to visit at random among those still to be visited. Due to the nature
of the selection process, the ability to communicate during the sampling
process is immaterial. The RWP algorithm is often considered as a baseline
comparison in this type of tasks (see e.g., [96]).

• A non-coordinated (NC) approach, which selects the next sampling point
using the same criteria used by our proposed algorithm, but does not
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(a) Synthetic dataset (b) Soil moisture dataset

Figure 4.1: Benchmark scalar fields to be estimated. With reference to the travel
budget B, the length of the side edge is 5. In both instances the start vertex vs is in the
lower left corner and the goal vertex vg is in the top right corner.

exchange any information during the sample process, i.e., during the
selection process each agent only considers the samples it collected, but
not those collected by the other agents.

At the end of the mission, when all robots have reached vg, both RWP and
NC share all collected sensor observations and the MSE is computed after fitting
the GP using all data collected by all robots. This step is not necessary for Coord
because data is exchanged on the go, but it ensures that the MSE evaluation
is done fairly among the three algorithms. After the algorithm has selected
the next point to visit, all algorithms, including Coord, use the same planning
engine. Finally, both NC and Coord do refit of the GP and update the parameters
θ before computing r, while RWP does not do this step because it does not use
the current estimate for the selection of the next point to visit.

All procedures were executed single-threaded in Python running on an
Apple M1 processor. All computations related to GP fitting and processing
use the scikit-learn library [86]. For both scalar fields considered in the tests,
we varied the number of agents (3, 5, 7, 9), the budget B (10, 15, 20), and
the parameter l0 (0.1, 0.5, 1). For each combination of parameters, twenty
independent simulations were performed, for a total of about 3,500 executions.

Figure 4.3 show the average MSE as a function of the number robots for
all algorithms. As expected, the trend is decreasing (i.e. improved prediction
accuracy) with diminishing returns as the number of robot grows. We can
observe that the proposed algorithm outperforms the others. Note that the range
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Figure 4.2: Examples of reconstructed scalar fields obtained with a combination of
different planners and scenarios. All experiments shown in this figure were run with n = 5
robots with a path budget of B = 20. Algorithms compared are: Random-waypoint
(RWP), non-coordinated planning based on variance reduction (NC) and coordinated
planning based on variance reduction with shared knowledge of robot positions (Coord).
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of values for MSE in the two test cases is different because the of the different
values in the underlying scalar fields.

3 4 5 6 7 8 9
# robots

2.0

2.5

3.0

3.5

4.0

4.5

5.0

fi
n
a
l 
m

a
p
 M

S
E

synthetic dataset

3 4 5 6 7 8 9
# robots

4

6

8

10

12

soil moisture dataset

algorithm
NC
RWP
Coord

Figure 4.3: Average final map MSE for n = 20 trials per algorithm. Error bars show
± one standard deviation.

Next, in Figure 4.2 we show the reconstructed scalar field for the three
algorithms with a budget of 20 and 5 robots. The red dots show the locations
where the samples were collected. Due to the random selection process, RWP
ends up collecting less samples before exhausting the budget and this leads
to an inferior estimate. NC and Coord, instead, collect more samples, but we
can see how Coord spreads them more uniformly and ultimately leads to a
more accurate estimate (see Figure 4.1 for the ground truth). Similar results
are observed for the synthetic map, but are not displayed for lack of space.
Table 4.1 provides a more detailed numeric analysis of the performance of the
three algorithms. Specifically, we look at the number of unvisited locations as
well as the number of locations visited by more than one robot. These are two
proxies for the MSE metric, and lower values are desired in both cases. When
the travel budget is 10, the number of unvisited locations is similar for the three
algorithms because with limited budget the set of available choices before the
budget is used is limited. As the budget grows, we see that the Coord algorithm
emerges as the algorithm with less unvisited vertices, thus substantiating the
claim that agents spread in the environment in a more coordinated fashion. For
the number of revisited locations, RWP (as expected) always has the lowest
number of revisited locations, due to the completely random nature of the
selection. However, when comparing NC with Coord we see that the latter
has always a lower number, again showing that the agents better spread in the
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map synthetic dataset soil moisture dataset
budget 10 15 20 10 15 20
RWP 179/6 164/8 155/10 179/6 164/9 155/10
NC 164/17 139/31 122/42 166/16 140/30 122/40

Coord 163/12 129/18 104/21 166/11 133/17 106/21

Table 4.1: Average number of unvisited and re-visited waypoints, from an experimental
setting of 200 candidate sampling locations. X/Y means that there were on average X
unvisited vertices and Y revisited vertices.

environment avoiding to revisit the same places, thus ensuring that coordination
leads to a better use of the robots are mobile sensors.

3 5 7 9
# robots

0

1

2

3

4

5

6

7

8

fi
n
a
l 
m

a
p
 M

S
E

"Coord" algorithm

l0
1.0
0.1
0.5

(a) Budget=15

3 5 7 9
# robots

0

1

2

3

4

5

6

fi
n
a
l 
m

a
p
 M

S
E

"Coord" algorithm

l0
1.0

0.1

0.5

(b) Budget=20

Figure 4.4: Average MSE for different values of l0 and number of robots.

Finally, in Figure 4.4 we display how the choice of l0, the lower-bound for
the length scale parameter l, impact the value of the MSE metric. The two
panels correspond to a budget of 15 and 20 respectively, and group the results
for different numbers of surveying robots. For 9 robots the impact is marginal,
and this is explained by the fact that with this many agents the team manages
to cover most of the environment during the mission. However, for budget of
15 and 3 robots, a value of l0 = 1 gives a clearly better result. Likewise, for
budget of 20 and 5 robots, a value of l0 = 0.5 is best. These results show that by
tuning l0 it is possible to implicitly promote better dispersion in the team and
then lower values for the MSE. An outstanding question to be investigated is
how to select this value in a general setting. Nevertheless, these results confirm
our hypothesis that by constraining the GP kernel parameters being optimized,
one can enforce different behaviors on the team members.
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4.5 Conclusion

This chapter presented an approach to reconstruct a scalar field using a
team of robots performing distributed GP estimation. By exploiting the
underlying properties of GPs, robots implicitly manage to disperse thorough the
domain and collect samples at locations leading to a more accurate estimation.
Furthermore, this is all enabled through limited communication, providing
a feasible pathway for multi-robot coordination through limited-bandwidth
communication protocols such as LoRa.

Similar to the premise of optimal sensor placement explored in chapter 2, this
problem framing is well-suited toward agricultural environments. For example,
farm managers and agronomists may choose to closely monitor the presence
of plant pests and pathogens in selected “sentinel trees” [97] as a proxy for a
wider area of interest. In farms without the infrastructure for sensor networks,
a mobile robot may also be used to visit and “read-out” the value of non-
networked sensors. The remaining chapters will explore methods to model
and reconstruct time-varying environmental phenomena with a single robot
(chapter 5) and with teams of robots (chapter 6).
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5

Informative path planning for scalar

dynamic reconstruction using

coregionalized Gaussian processes and

a spatiotemporal kernel

5.1 Introduction

In this chapter, we turn our efforts toward monitoring and modeling
spatiotemporal processes. The emergence of small, inexpensive mobile
platforms points to a future where mobile sensors will be rapidly dispatched
to model a dynamic phenomenon. However, to the best of our knowledge
there have been limited investigations of informative planners that consider
the temporal dimension of information content, especially in an online planning
approach. This is necessary to produce faithful representations of dynamic
environments, as observations made early in the course of a survey may no
longer represent the state of the system at the location at the end of the survey.
Additionally, it may be desirable to infer the state of the system at arbitrary
points in time, or into the future.

To address this issue, we propose a novel sampling-based IPP framework
that considers the information content of sensing locations in space and
time. An overview of the framework is shown in Figure 5.1 and in the
accompanying video. Inspired by the asymptotic optimality of IPP methods
based on random trees [78] [83] and advancements in large-scale, multiple-
output Gaussian process modeling [98], our method combines an information-
theoretic sampling-based planner with a spatiotemporal covariance function
implemented as a separable kernel to access the information gain from the
locations of candidate sensing locations both in space and time. This also allows
for both inference of the state and inference of model uncertainty for unexplored
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parts of the system and establishes a criterion for revisiting already-observed
locations that no longer meaningfully reduce uncertainty of the system’s current
state.

The contributions of this chapter are:

• A framework for reasoning about the information content of observations
in arbitrary dimensions reconciled to a metric appropriate for path
planning

• The integration of this spatiotemporal information function in a novel
time-aware informative planner for terrestrial monitoring

• Validation of the approach in the context of spatial and temporal priors
with simulated and real-world dynamic scenarios inspired by common
environmental dispersion processes

• Exploration of interactions between the parameters governing the planner
and the model

Previous efforts: As discussed in chapter 2, this section draws from a rich body
of literature, surrounding the task of collecting observations by an autonomous
agent for modeling the distribution of a variable of interest in the environment.

Most IPP approaches consider the spatial phenomenon to be static or
at steady-state, or they assume that the phenomenon does not change
meaningfully during the duration of the survey and there has been a limited
number of efforts devoted to planning for time-varying spatial phenomena [38].

As shown in chapter 3, the asymptotic optimality of rapidly-exploring
random trees (RRT) has been leveraged to solve IPP tasks in a computationally
tractable manner, including exploration applications where the robot is tasked
with monitoring an unknown parameter of interest [80]. Rapidly-exploring
information gathering (RIG) algorithms approach the IPP task using incremental
sampling with branch and bound optimization [78]. This chapterbuilds on [83],
which extended RIG with an information-theoretic utility function and a related
stopping criterion.

The remainder of this chapter is organized as follows: The problem
formulation is introduced in section 5.2 and our methods are discussed in
section 5.3. In section 5.4 we experimentally evaluate our proposal and conclude
in section 5.5 1 .

1This chapter is based on the accepted version of the following published article: L. Booth and
S. Carpin, ”Informative Path Planning for Scalar Dynamic Reconstruction Using Coregionalized
Gaussian Processes and a Spatiotemporal Kernel,” 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Detroit, MI, USA, 2023, pp. 8112-8119,
doi: 10.1109/IROS55552.2023.10341858

https://doi.org/10.1109/IROS55552.2023.10341858
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Figure 5.1: An overview of our evaluation methodology. (a) shows the ground truth,
and the vehicle in the replanning stage, with observation history enumerated. (b) shows
the environment during the planning stage with the locations of previous observations.
(c) Samples can be visualized along a path in a temporal dimension and (d) displays the
final map estimate at all inducing points in the Gaussian process.

5.2 Problem Formulation

In this work, we consider the problem of reconstructing a dynamic scalar field
given a limited number of observations, collected along a path. Paths are
generated using a receding-horizon approach, alternating between planning
and execution of the plan until the traveled distance exceeds the budget B
or a prediction window tmax. The task can be formulated as a constrained
optimization problem, where information quantity is to be maximized subject
to an observation cost. In [78], the task is specified follows:
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P∗ = argmax
P∈Ψ

I(P) s.t. c(P) ≤ B (5.1)

where P∗ is an optimal trajectory found in the space of possible trajectories
Ψ, for an individual or set of mobile agents such that the cost of executing the
trajectory c(P) does not exceed an assigned motion budget, B. I(P) is the
information gathered along the trajectory P , and the movement budget can
be any cost that constrains the effort used to collect observations (e.g., fuel,
distance, time, etc.)

This paper inherits the assumptions of the original RIG formulation and of
prior sampling-based motion planning literature (see subsection 3.4.1) [78], [80]
and adds the following assumptions with respect to time:

1. The state of the robots and the environment are modeled using discrete
time dynamics

2. Movement of the sampling agent is anisotropic in the time dimension (see:
section 5.4)

To quantify the information content of a trajectory, we employ a utility
function that optimizes for a reduction in the posterior variance of the GP used
to model the environment. This follows from framing the information gain of
an observation as a reduction of map entropy or uncertainty. In [53], the authors
present an approach for quantifying the information content of a map M as its
entropy H and the information content of a new observation Z as the mutual
information between M and Z, denoted as I(M; Z) and defined as follows:

I(M; Z) = H(M)− H(M | Z) (5.2)

We take advantage of the submodularity of mutual information; that is, the
information gained by adding an observation to a smaller set is more useful than
adding the same observation to a larger (super-) set (See [81] for an analysis
of the benefit of submodular information functions for informative sensing
applications and [82] for the submodularity of mutual information.)

From the perspective of the environmental modeling task, a useful survey
is one that produces the most accurate representation of the environment,
minimizing the expected error given field observations. This follows from
equations Equation 5.1 and Equation 5.2. This assumption holds when the
model is well-calibrated with respect to the priors embodied in the model
parameters 2. Our approach can be extended to an adaptive planning scenario,

2Refer to section 5.4 and Figure 5.3 for discussion of the consequences when this assumption
does not hold
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where model hyperparameters are updated based on new measurements and
future path plans leverage the updated model. In previous work, we have
demonstrated how model priors can encode modeler intuition, resulting in
sampling strategies that vary in the degree if exploration [99].

5.3 Methods

5.3.1 Environmental Model

Let’s now briefly review the environmental model: We describe the
spatial distribution of an unknown stochastic, dynamic environmental process
occurring in a region ξ ⊂ R2 as a function f : X → R that is sampled and
modeled at the discrete grid, X ⊂ RNt×Nx,y . Here Nx,y is a discretization of the
spatial domain ξ, while Nt is the temporal domain in which the spatial process
evolves.

As in previous chapters, the environmental map comprises this function f
that describes our observations yi, plus some additive measurement noise εi,
i.e., yi = f (xi) + εi, where we assume that this noise follows an i.i.d. Gaussian
distribution with zero mean and variance σ2

n: ε ∼ N
(
0, σ2

n
)
. We assume that f is

a realization of a Gaussian process, represented as a probability distribution over
a space of functions. Through marginalization, we can obtain the conditional
density f | y = N (µ f |y, Σ f |y). The joint distribution of observations y,
{ f (x1) + ε1, . . . , f (xn) + εn} and predictions f, { f⋆, . . . , f⋆n} at indices Xi, t,
{x(st)

1,1 , . . . , x(st)
m,n} becomes:[

y
f (x⋆)

]
∼ N

(
0,

[
[cc]k(X, X) + σ2 IN k (X, x⋆)

k (x⋆, X) k (x⋆, x⋆)

])
(5.3)

where s and t denote spatial and temporal indices respectively. Here,
environmental observations y, are drawn from a training setD of n observations,
D = (X, y) = {(xi,t, yi,t) | i = 1, . . . , n}. k is the covariance function (or kernel),
σ2

n is the variance of the observation noise, and input vectors x and query points
x⋆ of dimension D, are aggregated in the D × n design matrices X and X⋆

respectively. From the Gaussian process, we can obtain estimations of both the
expected value of the environmental field and the variance of each prediction.
Noteworthy is the posterior variance, which takes the form:

σ = V [ f⋆] = k (x⋆, x⋆)− k (x⋆, X)× (5.4)[
k(X, X) + σ2

nIn

]−1
k (X, x∗)
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The differential entropy of a Gaussian random variable is a monotonic
function of its variance, and can be used to derive the information content of
a proposed measurement. We will show how this can be used to approximate
information gain (Equation 5.2) in subsection 5.3.4.

It is important to note that for fixed kernels the variance does not depend
on the value of the observation, allowing us to reason about the effectiveness
of a proposed observation before traveling to the sampling location [13]. Also
notable is the kernel k which establishes a prior over the covariance of any
pair of observations. Separate priors can be established in spatial or temporal
dimensions, leading to the opportunity to incorporate spatial and/or temporal
domain knowledge into the planning process.

5.3.2 Spatiotemporal prior

The modeling effort can be framed as a multi-task (or multi-output) prediction
of correlated temporal processes at each spatial discretization Nx,y. As we only
have a finite set of sampling vehicles (one, in fact), we cannot observe all of the
spatial ”outputs” for a given time, however we can establish a basis upon which
they can be correlated [100]. Specifically, the Linear Model of Coregionalization
(LMC) has been applied to GP regression where p outputs are expressed as linear
combinations of independent random vector-valued functions f : T → Rp. If
these input functions are GPs, it follows that the resulting model will also be a
GP [101]. The multi-output GP (MOGP) can be described by a vector-valued
mean function and a matrix-valued covariance function (see Equation 5.4).
A practical limitation of MOGPs has been their computational complexity.
For making p predictions with n input observations y (t1) , . . . , y (tn) ∈ Rp,
the complexity of inference is O

(
n3p3) in time and O

(
n2p2) in memory

[102]. A variety of strategies exist to solve lighter, equivalent inference tasks
under simplifying assumptions, such as expressing an output from linear
combinations of latent functions that share the same covariance function, but are
sampled independently [101]. Since our information function is only dependent
on the posterior covariance, we can take advantage fast approximations with
complexity O(k(n + p log p) (see discussion in subsection 5.3.4).

As mentioned earlier, the kernel k establishes a prior likelihood over the
space of functions that can fit observed data in the regression task. For the
regression of discretely-indexed spatiotemporal data, where space is indexed
by s (eg. latitude/longitude) and time is indexed by t (eg. seconds), we build a
composite kernel by multiplying a spatial and temporal kernel:

k((s, t), t(s′, t′)) = ks(s, s′)kt(t, t′) (5.5)
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While other approaches to kernel composition are possible and encode
different environmental priors, constructing a kernel that is separable along
input dimensions affords considerable computational advantages. More
generally, when k(x, x′) = ∏D

d=1 k(d)(x(d), x′(d)), the kernel (Gram) matrix K
can be decomposed into smaller matrices K = K1 ⊗ · · · ⊗ KD which can be
computed inO(Dn

D+1
D ) time (see [103] and [104] for more on kernel composition

for multidimensional regression.)
For the spatial relation, we use the Matérn kernel with ν = 3/2 and fixed

hyperparameters. Comprehensively described in [72], the Matérn kernel is a
finitely-differentiable function with broad use in the geostatistical literature for
modeling physical processes due in part to its ability to resist over-smoothing
natural phenomena with sharp discontinuities. It takes the form:

KMatern(X, X⋆) = σ2 21−ν

Γ(ν)

(√
2v
l

r

)ν

Kν

(√
2ν

l
r

)
(5.6)

where Kν is a modified Bessel function , Γ(·) is the Gamma function, and r
is the Euclidean distance between input points X and X⋆. ν > 0, l > 0,
and σ2 > 0 are hyperparemeters representing smoothness, lengthscale, and
observation variance respectively. We use a radial basis function kernel (RBF
or squared-exponential) in the time dimension to smoothly capture diffusive
properties that may fade in time. Note that the Matérn kernel approaches the
RBF as ν→ ∞.

5.3.3 Informative Planning

In this work, we present a novel planner IIG-ST to address IPP task defined
in equation Equation 5.1. Our planner is built upon IIG-Tree, a sampling-
based planner with an information-theoretic utility function and convergence
criterion [83] and derived from the family of Rapidly-exploring Information
Gathering (RIG) algorithms introduced by Hollinger and Sukhatme [78]. RIG
inherits the asymptotic cost-optimality of the RRT⋆, RRG, and PRM⋆ algorithms
[79], a conservative pruning strategy from the branch and bound technique
[21], and an information-theoretic convergence criterion (see discussion in
subsection 5.3.5). We add routines to consider the time dimension of samples in
the tree and combine it with a hybrid covariance function and stopping criterion
grounded in map accuracy.
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5.3.4 Information Functions

From equation Equation 5.2, we established information gain as the reduction
of map entropy H given a new observation Z.

If the map is modeled as a Gaussian Process where each map point (or query
point) is a Gaussian random variable, we can approximate mutual entropy
with differential entropy. For a Gaussian random vector of dimension n, the
differential entropy can be derived as h(X) = 1

2 log ((2πe)n|Σ|). If we let

X ∼ N (µX, ΣX) and X | Z ∼ N
(

µX|Z, ΣX|Z

)
be the prior and posterior

distribution of the random vector X, before and after incorporating observation
Z, then the mutual information becomes:

I(X; Z) =
1
2

[
log (|ΣX|)− log

(
|ΣX|Z|

)]
(5.7)

where Σ is the full covariance matrix.
For a random vector X = (X1, . . . , Xn) with covariance matrix K, the mutual

information between X and observations Z can be approximated from equation
Equation 5.7 as:

Î(X; Z) =
n

∑
i=1

1
2

[
log
(
σXi

)
− log

(
σXi|Z

)]
(5.8)

Using marginalization, for every Xi, it holds that V [Xi] = K[i,i]. The
expression becomes:

Î[i] (Xi; Z) =
1
2

[
log
(
σXi

)
− log

(
σXi|Z

)]
(5.9)

and can be computed as the sum of marginal variances at i: Î(X; Z) =

∑n
i=1 Î[i](Xi; Z) (see [83] for a derivation).

The main motivation of using marginal variances at evaluation points
(Equation Equation 5.8) is to avoid maintaining and updating (inverting) the full
covariance matrix. This is of a particular concern for spatiotemporal modeling,
because the number of inducing points grows on the order of m × n for a
spatial domain of m rows and n columns. Alternate GP formulations such as
spatio-temporational sparse variational GPs (ST-SVGP) allow for computational
scaling that is linear in the number of time steps [98] For computing the posterior
variance at GP inducing points, we use LOVE (LanczOs Variance Estimates), for
a fast, constant-time approximation of predictive variance [105, 106].

Algorithm 6 details the procedure for updating a node’s information content.
In lines 6-8, the location of a future measurement z at pose p, is added to the set
of past observations (training points) from the entire node graph. This is used
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Algorithm 6 Information GPVR-ST()

Require:
Proposed robot pose or location from RRT/RIG Steer p, current
map/state estimateMD, covariance function k(·, ·), prior map variance
σ, variance of observation noise σ2

n, near node information Inear;
1: σ̄← σ ▷ Initialize updated map variance as the current map variance
2: if Inear is not empty then ▷ Initialize information gain
3: I ← Inear
4: else
5: I ← 0
6: z← Propose a future measurement at location p and mapM ▷ Calculate

posterior map variance at training and query points
7: σ̄← LOVE (X, X∗)
8: for all i ∈ MD do

9: I ← I + 1/2
[
logdet

(
σ[i]
)
− logdet

(
σ̄[i]
)]

10: return I (total information gain), σ̄ (updated map variance)

to create a new map state containing the previous training points plus the new
measurement and the preexisting query points where the GP is evaluated. Next,
the posterior variance is calculated (lines 8) using LOVE (LanczOs Variance
Estimates) [105, 106] to produce a posterior variance at the proposed locations
of training points X ∈ MD, query points X∗ ∈ MD, and the variance of
observation noise σ2

n. Finally, information content of the entire posterior map
is updated and the information gain is returned as a marginal variance (lines
9-11).

5.3.5 Convergence criterion

The closely related Incrementally-exploring Information Gathering (IIG)
algorithm modifies RIG with an information-theoretic convergence criterion
[83]. Specifically, IIG bases the stopping criterion around a relative information
contribution (RIC) criterion that describes the marginal information gain of
adding a new observation relative to the previous state the RIG tree (see
Equation 15 in [83] for a comprehensive discussion of the IIG algorithm and for a
definition of the RIC). There, it was used as a tunable parameter that established
a planning horizon for information gathering. In this paper, we use posterior
map variance as a lower bound for mean-square error (MSE) (Equation 5.10)
at a arbitrary test location in the GP, given optimal hyperparameters θ for the
GP regression model. We replace the stopping criterion in IIG with a threshold
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established by the operator as the lower bound of expected prediction MSE.

MSE
(

f̂⋆
)
≥ V [ f⋆]︸ ︷︷ ︸

=σ2
⋆|y(θ)

(5.10)

It is important to note that this inequality holds for the hyperparameters
θ that produce an optimal predictor of f (see Result 1 in [107] for a proof of
Equation 5.10 using the Bayesian Cramér-Rao Bound (BCRB).) In practice, θ is
learned from the data. For approximate (suboptimal) values of θ, the bound of
Equation 5.10 will not hold, as additional error is introduced from the unknown
model hyperparameters. However, when coupled with adaptive planning
techniques to learn θ from observations, then the posterior variance approaches
the true lower bound of the MSE. A deeper analysis of the implications of this
application is a target of future work.

5.3.6 Path selection and planning

Once the planner terminates (either by the convergence criterion or after a fixed
planning horizon), a path must be selected from the graph of possible sampling
locations. We use a vote-based heuristic from [83] that ranks paths according to
a similarity ratio and biases towards paths that are longer and more informative
with a depth-first search. In the simulated environment, parameters are set
for vehicle speed, sampling frequency, and replanning interval. The vehicle
alternates between planning, executing, and replanning in a receeding-horizon
fashion, such that 2-3 waypoints are visited in each planning interval.

The path selection strategy is independent of the informative path planning
algorithm and can be thought of as an orienteering problem within a tree of
sampling locations.

5.4 Experimental Evaluation and Discussion

In this section, we contrast our proposed spatiotemporal-informed planner
(IIG-ST) against a traditional coverage survey strategy (see Figure 5.2), and an
informed planner that does not consider temporal variation (IIG). We evaluate
the accuracy of the final map representation at the end of the survey period
under varying choices of spatial and temporal priors. We also consider the
ancillary objective of making predictions of the state of environment at arbitrary
points in time. This can be useful for objectives that wish to reconstruct the
dynamics of a system, such as modeling a vector field. However, this is
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Figure 5.2: A visualization of the benchmark (coverage) sampling scenarios (top: fluid
simulation, bottom: ocean sampling simulation). The posterior variance is depicted in
the second panel, and the posterior mean in the third, with near-zero values filtered
show the underlying structure. The coverage planners are given a path budget and node
budget equivalent to the median of the equivalent metrics among all runs of the informed
planners. Observations are collected on a circlular coverage in the synthetic environment
and a lemniscatic coverage in the oceanic experiment.

complicated by the fact that the survey envelope is anisotropic in the temporal
dimension – the robot and sensor can only travel forward through time.

5.4.1 Experimental setting

Our objective is to model the end-state of a spatial phenomenon that undergoes
advection and diffusion in a 2D environment. This can represent the movement
of a substance of interest in a fluid, a porous medium such as soil, or any
number of similar natural processes. Two fluid parcels are initialized with
inversely-proportional velocities, at opposite corners of a 500× 500-unit gridded
environment. The fluid parcels advect and diffuse according to the Navier-
Stokes equations for an incompressible fluid, implemented as a forward-
differencing discretization without boundary conditions.
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Figure 5.3: [Advection/diffusion simulation] A comparison of map error and posterior
variance (lower is better) at different locations in the mission time for different
spatiotemporal priors Optimal priors are chosen in the top left panel (ℓt = 20 and
ℓs = 30) and become increasingly suboptimal in other panels. IIG-ST (our planner) is
compared the same planner lacking time information (IIG) and a circular survey strategy.
The error metric is expressed across the entire spatial domain at different time indices
(denoted on the x-axis), and reflects the error between the estimated map and the state
of the environment at that time. Y-axis scales are shared between rows.
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We initialized the RIG-planner with fixed planning parameters: the vehicle
can move a maximum of 100 map-units, every 5 time-units. Replanning is
done every 10 time increments, and planning within each increment stops when
estimated V [ f⋆] = 0.15. Sampling occurs once every 5 time increments. We
set the time budget to be 100 units and compute the accuracy of the final
representation of the map at t = 50 min. Map accuracy at different moments
in mission time are presented in Figure 5.3. While the planner was not given
a movement budget, the fixed speed of the vehicle and finite time-horizon
resulted in consistent numbers of observations (M = 21.0, SD = 0.2) and
path lengths (M = 1236, SD = 36) among the informative planners. The
coverage baseline is given a proportional budget (21 observations, 1610 map
units traveled). This is sufficient to complete a full tour of the environment with
revisitation (see Figure 5.2). The full table of parameters set for the planner
can be found in the accompanying video. We executed the experiments in a
GNU/Linux environment on a 3.6 GHz Intel i7-4790 computer with 11 GB of
RAM available. All procedures used single-threaded Python implementations
for RRT sampling from [85] and multi-threaded posterior variance final
map predictions were performed using implementations from GPyTorch [106]
without GPU or TPU acceleration so as to simulate the resources available on an
embedded system.

5.4.2 Consequences of the temporal prior

To demonstrate the consequences of incorporating a spatiotemporal prior on
informative planning in dynamic fields, we use the composite covariance
function given in equation (5.5) both in planning and for evaluating the accuracy
of the final map representation. This is notable for the baseline comparisons–
while the coverage planner follows a deterministic trajectory, different map
accuracies and variance reductions are expected depending on the choice of
spatiotemporal prior during the construction of the final map model.

For the temporal relation, we use a RBF kernel with length scales of ℓt =

20, 100, 200 time units. The spatial relation comprises a Matérn kernel with
ν = 3/2 and length scales of ℓs = 100 distance units. To verify that the
robot solves the problem in section 5.2, we evaluate the root-mean squared
error between the map representation at t = 100 and the state of the field
at the same time. As the planner only requires the posterior covariance, it is
not necessary to produce continuous estimations of the map state, so the final
representation is computed once the simulation has ended. 20 episodes are run
for each hyperparameter combination and summaries of average error, average
posterior variance and standard deviations are found in table Table 5.1.
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RMSE V

planner ℓs ℓt tmax tall tmax tall

IIG
30

20 0.781 (0.066 ) 1.123 (0.072 ) 0.686 (0.0 ) 0.664 (0.001 )
100 0.612 (0.096 ) 1.035 (0.098 ) 0.64 (0.005 ) 0.626 (0.006 )

100
20 0.762 (0.113 ) 1.288 (0.179 ) 0.645 (0.007 ) 0.547 (0.004 )
100 0.75 (0.222 ) 1.093 (0.116 ) 0.462 (0.02 ) 0.413 (0.025 )

IIG-ST
30

20 0.733 (0.089 ) 1.092 (0.064 ) 0.686 (0.0 ) 0.665 (0.001 )
100 0.611 (0.121 ) 1.028 (0.135 ) 0.638 (0.005 ) 0.624 (0.006 )

100
20 0.768 (0.101 ) 1.3 (0.238 ) 0.64 (0.004 ) 0.547 (0.005 )
100 0.866 (0.194 ) 1.114 (0.117 ) 0.458 (0.014 ) 0.414 (0.017 )

coverage
30

20 0.777 1.132 0.671 0.658
100 0.697 1.099 0.639 0.638

100
20 0.718 1.173 0.552 0.491
100 0.721 1.19 0.398 0.394

RMSE

planner ℓs tmax tall

IIG

5 6.654 (0.015 ) 5.499 (0.004 )

40 5.934 (0.382 ) 4.926 (0.087 )

100 3.835 (0.725 ) 3.777 (0.17 )

IIG-ST

5 6.658 (0.013 ) 5.499 (0.003 )

40 5.846 (0.305 ) 4.904 (0.072 )

100 4.1 (0.739 ) 3.698 (0.252 )

coverage

5 3.826 6.238

40 3.281 5.506

100 2.909 4.56

Table 5.1: (Top) [Advection/diffusion] Aggregated (n = 20) map accuracy (RMSE)
and posterior variance (mean, std) of the spatiotemporal planner (IIG-ST) compared
to a spatial-only and deterministic survey strategies for fixed length scales. (Bottom)
[Ocean dataset] Aggregated n = 20 map accuracy for the ocean water quality experiment
(ℓt = 100 for all runs). Lower numbers are better. Note: standard deviation values are
not expressed for the deterministic planner.
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In Figure 5.3, we examine the choice of kernel hyperparameters on the
performance of our planner. Optimal parameters were established offline using
the baseline samples and a standard marginal log likelihood function and the
Adam optimizer in gpytorch (ℓt = 20 and ℓs = 30). These serve as the basis of
comparison in the top-left panel of Figure 5.3 and resulted the spatiotemporal
planner outperforming the temporally-naive and baseline planner for on
average, throughout the entire mission duration. Large lengthscales imply a
greater degree of correlation across space or time, and result a greater reduction
of posterior variance. A reduction of model uncertainty should translate to
a higher map accuracy, however this is not the case if the spatial priors are
unrepresentative. For example, while the coverage planner had lower variance
due to a longer path traveled and more dispersed observations, the resulting
map accuracy was not better than the informative planners, leading to the
conclusion that the spatiotemporal prior did not reflect the variation of the
observed process. We want to emphasize that path planning algorithms based
around variance reduction should also place the metric within a broader context
of the practical objective – map accuracy.

For informative planners, the effect is magnified, as the planner will
move toward more dispersive sampling, thus missing high-frequency spatial
phenomena entirely. This is demonstrated in the marginally improved accuracy
and lower posterior variance for IIG-ST when given a unrepresentative spatial
and temporal prior. In worst-case scenarios, a very unrepresentative temporal
prior (ℓt = 200) can reduce the performance of the spatiotemporal planner
below the baseline (Figure 5.3, Col. 2). As the ultimate goal of informed robotic
sensing is model accuracy and not simply variance reduction, hyperparameter
optimization must be a key component for accurate mapping and is a common
practice in adaptive planning [50]. Furthermore, a time-varying kernel could
be specified and optimized as observations of the environment are gathered.
Future work will investigate the effect and performance of updating model
priors during the course of a survey mission.

The final map posterior is evaluated with the same spatiotemporal kernel in
all cases, regardless of planning method to ensure a fair comparison between
the methods. Only the spatiotemporal planner (IIG-ST) is able to make use of
temporal variance during replanning. Training observations are obtained from
a point sensor model, where the a ”sample” is obtained by the simulated agent
querying the ground-truth scalar field at a sample location. We use a sparse
representation of posterior variance, evaluated at a 1/20 scale spatial resolution
for a total of 25 × 25 × 50 query (inducing) points. Recent advancements in
spatiotemporal GPs with separable kernels, enable computational scaling to
scale lineally in the temporal dimension, instead of cubic [98]. These and other
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Figure 5.4: Example results from the ocean modeling experiments. (Top) Map error as
a function of mission time, (ℓt = 100). (L) Example trajectory, with path trace projected
above a representation of the environment at t = 0. (R) Aggregated statistics from the
figures in the top panel.

recent developments are reducing the computational burden of large GPs and
informative planning with spatiotemporal information at a large scale.

5.4.3 Ocean particulate mapping scenario

We demonstrate our spatiotemporal IPP approach in a syoptic-scale simulation
using real-world ocean reflectance data. The data was collected in an
approximately 1500 x 1000 km region off the west coast of California from
the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s
Terra and Aqua earth observation satellites [108]. Rasters of weekly median
reflectance from band 9 (443 nm wavelength) were assembled for the calendar
year of 2020. Backscattered light in this wavelength band is highly correlated
with the concentration of suspended organic and inorganic particles (e.g.
sediments) in the water. In terrestrial and oceanic waters, this can be used as
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an indicator of water quality, which can guide management decisions related to
water diversion and treatment.

We simulated an autonomous aquatic vehicle (AUV) with characteristics
similar to the Wave Glider, which is an AUV capable of extended oceanic
monitoring campaigns by using oceanic waves for propulsion. Based on the
long-mission average speed of 1.5 knots, our simulated vehicle could cover a
maximum of 330 km per week. We compare the performance of our informed
planner against a fixed lemniscatic coverage pattern. As with the previous
section, we evaluate the RMSE of the map representation, both at the final time
step and at arbitrary temporal increments in the mission envelope. Summaries
of average error, standard deviations, and posterior variance are presented in
Table 5.1 and Figure 5.4. As with the previous experiment, posterior variance
and map accuracy are evaluated at a 1/20 scale spatial resolution. Also, as with
the previous experiment, the performance of IIG-ST is sensitive to the choice of
hyperparameters.

5.5 Conclusion

This chapter presented an approach for environmental modeling using a
novel spatiotemporally-informed path planner. We presented a framework for
quantifying the information gain of sampling locations based on their location
and time and quantifying the operative outcome – map accuracy. We show that
this informed strategy is computationally tractable with modern computational
techniques and can outperform naive and conventional approaches, conditional
on an appropriate spatiotemporal prior.

Multiple avenues for future work lead from this effort. Adaptive planning
can be used to revise the spatiotemporal prior as measurements are collected
between replanning intervals. This approach can be extended to consider time-
varying kernels. variable sensor models, and multi-robot systems.
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6

Unified adaptive and cooperative

planning using multi-task

coregionalized Gaussian processes

6.1 Introduction

With the growth in use of antonomous vehicles for agriculture and natural
resource management [109], so too grows the burden for distilling actionable
information from the observations gathered. In the field of geostatistics, there
is a long history of using mathematical methods for modeling an environment
through sparse measurements [72]. This is particularly relevant when
observations require direct sampling, such as for robotic plant phenotyping
[110] and robotic sampling of plant tissues [111].

This chapter considers the task of modeling a dynamic phenomenon in an
environment with a team of robots equipped with point sensors. Given a limited
movement budget, it is desirable for the robots to visit locations that will result
in more accurate signal reconstructions when the surveying mission is complete.

Previous efforts: This task of informative path planning (IPP) aims to find
obstacle-free trajectories in an environment that maximize the information
gathered during traveling. When applied to environmental monitoring tasks,
it is closely related to the task of optimal sensor placement [82], and can be
considered as an optimization problem subject to constraints such as the
physical confines of the rows of an vineyard [91] or when observations are
constrained to a set of pre-established monitoring locations [99]. When the
process to be monitored evolves over time, there is a choice to be made: whether
to explore unvisited locations in the environment, or to re-survey previously-
visited locations that may have changed. Approaches explored in prior works
include a recursive-greedy approach for surveying a time-varying field with a
single robot [112] and multi-robot efforts that leverage clustering in order to
divide the observation domain among different sampling vehicles. Recent IPP
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Figure 6.1: An example of a planning mission with 3 vehicles in an ocean turbidity
monitoring mission. Vehicle movement history is displayed with a white outline. In
this image, 3 vehicles have acquired 4 observations each. Candidate paths and sampling
locations as proposed by our planner are shown in dashed lines. The planner for the green
vehicle has just finished, and proposed the best candidate path, shown in the dotted red
line.

approaches consider robotic path planning in response to multiple objectives,
such as variable sensor models [84], and multi-modal sensor configurations
[113].

When surveying unknown environments, it is often desirable to utilize
an adaptive sampling scheme, where new samples are targeted based on
information collected from previous samples in the surveying mission in order
to improve the overall surveying ability of the robotic system (subject to the
evaluation criteria) [50]. When extended to robotic surveying, this has been
called the adaptive informative path planning (AIPP) problem. Recent literature
has found learning-based approaches to be particularly suited to AIPP across a
wide variety of mapping objectives [114] [115] [116] and different approaches
have been used to extend the task into multi-robot surveying efforts [117] [118].

In this chapter we present a multi-robot informative path planner IIG-
Cooperative, that guides robots to gather observations in regions that result in
a higher expected improvement of the environmental map. Our approach is
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cooperative as it is able to incorporate information from other robots involved
in the team surveying task. This algorithm builds upon IIG, an informative
sampling-based planner [83] that utilized mutual information as the basis for
establishing when a proposed sampling location would result in an improved
model of an environment. The algorithm in turn builds upon RIG, which
presented an informative planner based on RRTs [119] find obstacle-free
trajectories through an environment that maximize information gathered along
the way by leveraging the asymptotic optimality of random-trees. [78]. In a
previous effort, we presented IIG-ST, which utilizes an information-theoretic
stopping criterion and an information function that trades off between exploring
new environments and re-surveying previous potentially-stale observations,
when monitoring a time-varying spatiotemporal phenomenon [120].

IIG-Cooperative adds an information function that incorporates the location
of observations from other sensing vehicles into a robot’s evaluation of the
information gain at proposed sampling locations. In [120], the performance
of the algorithm was dependent on tuning the information function to the
environment through expert selection of spatial and temporal priors. In
this work, we overcome the limitation by presenting an adaptive planning
framework that alternates between planning, execution, and updating the
environmental priors in order to generate an improvement of planning
performance as a survey proceeds. The main contributions of this work are as
follows:

• IIG-Cooperative, an informative path planner that integrates multi-vehicle
interactions through a separable kernel, reconciled to the surveying
objective

• An open-source 1 adaptive planning framework that takes advantage of
observations gathered to create a best-effort continuous improvement of
model hyperparameters and planning optimality

• An experimental validation of the base planner and a spatiotemporal
variant under different configurations and communication scenarios

Figure 6.1 shows an example of our cooperative planner used in an ocean
monitoring example. Our approach is discussed in section 6.3 and is enabled
by the use of a multi-task Gaussian process, where each robot’s observations
comprise an input of a multi-input modeling task. We extend this effort in an
adaptive planning framework, applied in experiments on simulated and natural
environments in section 6.4. Our framework can accommodate a diverse variety

1https://github.com/ucmercedrobotics/ipp-RRT-family



6. Unified adaptive and cooperative planning using multi-task coregionalized
Gaussian processes

75

of planning and configuration scenarios, including variable sensor models and
variable noise models, all of which will serve as the basis for future investigation
(discussed in section 6.5) 2 .

6.2 Problem Formulation

Consider the case where an environmental field is observed by different sensing
agents v, comprising a team of Nv agents. The different agents may be
equipped with different sensors that may have different noise characteristics,
and observations that are unlikely to be coincident.

We can consider three scenarios:

1. Where observations from all sensing agents are shared to form one unified
training set, for a unified model that serves as the basis for allocating future
sampling locations by a global planner.

2. Where observations from a given sensing agent v are used to build a
representation of the environment that is only used to inform future plans
for an agent v.

3. Where correlations between sensing agents are captured in a covariance
function. Each agent independently builds a representation of the
environment, assisted with knowledge of observations collected from
other sensing agents.

Case 1 can be addressed through a variety of approaches, including
partitioning an environment among a set of sensing agents. Case 2 is applicable
if we apply any single-robot IPP algorithm to a team of surveying robots, who
independently sample and plan without knowledge of the other agents in the
team.

This chapter considers Case 3, where each member v of the team of
robots is tasked with producing an independent, internal representation of the
environment to guide its own planning. We denote each task with the letter
j. Observations are shared between robots and are used to update each robot’s
internal representation of map uncertainty.

In our planning framework, robots alternate between: planning, surveying,
communicating, updating priors, and re-planning. This occurs in a continuous
loop until the end of the allotted survey period, or until the robots consume their

2This section is based on the following manuscript, which is currently in review: Booth, L.,
Carpin, S. (2025). Unified adaptive and coorperative planning using multi-task coregionalized
Gaussian processes
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movement budget. At the end, observations from all robots are aggregated to
form a final, unified model of the environment.

6.3 Methods

6.3.1 Overview

Our planning framework encodes the intuition that it is more desirable to
collect observations where a model is deficient, rather than where a model is
sufficient. In the following sections we describe: the form of the environmental
model and how we derive model adequacy (subsection 6.3.2); how we encode
and update prior knowledge about the environment and the sensing vehicles
(subsection 6.3.3); and how this knowledge allow us to determine where
to sample (subsection 6.3.4). Implementation details of our planner and an
algorithmic overview are found in (subsection 6.3.5)

6.3.2 Environmental model

Congruent with standard approaches in geostatistics, we extend a 2D spatial
regression task (Kriging) to consider a 3D regression task of an unknown
scalar-valued environmental process that changes over time (e.g., chemical
concentration and distribution, soil moisture content, etc.) represented as the
function: f : X → R that is modeled on discrete intervals in space (Nx,y)
and time (Nt): X ⊂ RNx,y × RNt . The phenomenon is observed through
noisy measurements yi,j made at location i ∈ Nx,y ∪ Nt by sensing agent
j: yi,j = f (xi) + ε j. Noisy perturbations ε j are modeled with a zero-mean,
homoskedastic, additive Gaussian noise model, that is consistent within a given
sensor on vehicle v (denoted by task j): ε ∼ N

(
0, σ2

j I
)

.

GP regression

The modeling approach used in this chapter is a multi-dimensional Gaussian
process regression and was implemented identically to the previous chapter (see
subsection 5.3.1).

6.3.3 Spatiotemproal and task priors

Spatiotemporal prior

The kernel (or, covariance function) k is a function that provides the expected
correlation between pairs of data points. While arbitrary functions of input pairs
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are not guaranteed to be valid covariance functions, there exists a considerable
amount of choice and discretion in choosing a function that is appropriate to
the predictive task. Both the choice of kernel and the function hyperparameters
encode assumptions about the property which we wish to predict [77].

Following [120], we establish a base kernel, composed of a spatial and
temporal kernel:

k((s, t), t(s′, t′)) = ks(s, s′)kt(t, t′) (6.1)

where s refers to the spatial index (such as, a geographical coordinate) and
t refers to a temporal index (a timestamp). For the spatial dimensions, we use
a Matérn kernel with ν = 3/2, chosen in part for its use in the geostatistical
literature and its ability to capture discontinuities present in natural phenomena.
We use a radial basis function kernel to capture smoothly diffusive process in the
time dimension. For additional discussion and details about the kernel choice,
readers may refer to [72] and [120].

Task prior

In section 6.2, we describe how each sensing agent is tasked with producing a
unique model of the environment, to guide its path planning. Following the
terminology from [121], we describe our system of models as multi-task, where
the process f is observed by different sensing agents j. Our model is multi-
output, and can produce a unique representation of the environment based on
observations collected from a particular sensing agent j.

Following the notation of [121] let us consider a training set constructed
of data pairs Sd = (Xd, Yd),= (xd,1, yd,1), . . . (xd,Nj , yd.Nj) for outputs D =

Nj (the number of sensing agents) and number of query points N. From
this, we obtain a vector of sampling locations for each sensing vehicle j:
X =

{
Xj
}D

j=1 = X1, . . . , XD, where Xd = {xd,n}N
n=1. In this general sense,

a separate process fd can be learned by training set Sd, where: f(X) =

( f1 (x1,1) , . . . , f1 (x1,N)) , . . . , ( fD (xD,1) , . . . , fD (xD,N)).
We can construct a similar formulation for a vector-valued GP as in

Equation 5.3. The vector-valued kernel K is an ND × ND with entries:(
K
(
xi, xj

))
d,d′ , for i, j = 1, . . . , N and d, d′ = 1, . . . , D.

We can consider a separable kernel function, formulated as a sum of products
between a kernel function for the input space alone (the spatiotemporal kernel
in this work) and a task kernel function that encodes interactions between the
outputs (correlations between the sensor models, in this work). Such a kernel
can be defined as the Hadamard product of an input kernel and a task kernel
and takes the form:
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(
K
(
x, x′

))
d,d′ = k(x, x′)kT(d, d′) (6.2)

where k is the input kernel, kT is the task kernel, both defined over X × X
with {1, . . . , D} × {1, . . . , D}. Equivalently, this can be written as a matrix
expression:

K
(
x, x′

)
= k

(
x, x′

)
B (6.3)

We establish an index kernel, defined by a lookup table of indices
corresponding to the number of tasks. In this chapter, the number of tasks is
equal to the number of sensing agents (Nv), that is: Nv = Nj = D:

k(i, j) =
(

BB⊤ + (Iv)i,j

)
(6.4)

where B is a low-rank matrix that establishes the variance between tasks and
v is a positive constraint on the inter-task variance. Refer to [121] for a detailed
treatment of kernel functions for multi-output GPs and [106] for details of the
function gpytorch.kernels.IndexKernel used in our implementation.

It is important to note that the vehicles do not attempt to construct the
posterior variance from the perspective of other vehicles in the team. For each
vehicle, only the output corresponding to the ego vehicle is used for planning.
The other outputs could be used to infer model variance from the perspective of
other sensing agents, and could be used to project their probable next-actions.
While an interesting area for future work, this consideration is outside of the
scope of this study.

6.3.4 Utility Formulation

Understanding that the differential entropy of a Gaussian random variable is
a monotonic function of its variance, we can construct a utility function based
on the reduction of map entropy H, given a new observation Z. We derive this
from the posterior variance, which is obtained from Equation 5.4. Specifically,
we evaluate the information gain of a new proposed sampling location, using
the mutual information I between the current training set X and a new set X′,
containing the observation Z.

For a random vector of observations X = (X1, . . . , Xn) , for every Xi the
mutual information becomes:

Î[i] (Xi; Z) =
1
2

[
log
(
σXi

)
− log

(
σXi|Z

)]
(6.5)
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and can be calculated as the sum of marginal variances at i: Î(X; Z) =

∑n
i=1 Î[i](Xi; Z). Refer to [120] for additional context and see [83] for a derivation.

Crucially, we are able to obtain from the covariance matrix produced by the
kernel V [Xi] = K[i,i].

6.3.5 Path selection and planning

General framework

Path planning proceeds according to the procedure described in (IIG, [83]) and
chapter 5 (IIG-ST, [120]), using the task-aware covariance function described in
the subsection 6.3.3.

Convergence criterion and path selection

We utilize the convergence criterion from [120] in the re-planning stage, to
establish when the agent should stop adding new proposed locations to the RIG
tree and switch to path generation. Path generation is performed using a vote-
based heuristic from [83]. We use posterior map variance as a lower bound for
mean-square error, given optimal hyperparameters θ for the kernel function.

MSE
(

f̂⋆
)
≥ V [ f⋆]︸ ︷︷ ︸

=σ2
⋆|y(θ)

(6.6)

These kernel hyperparameters θ comprise another component of our
spatiotemporal and task-priors. Optimal parameters can be chosen in a standard
Bayesian approach, using the marginal log likelihood (MLL) of the GP model,
when applied to observed data. We employ this approach to update model
hyperparameters, as the sensing agents receive observations during the survey
mission.

Adaptive planning

An overview of the complete adaptive planning routine is visualized in
Figure 6.2. Each vehicle alternates between collecting observations, updating
internal parameters and re-planning at a fixed interval until a time budget is
elapsed. Each agent broadcasts the value and location of a sample immediately
upon collection, and all agents continuously listen for observations from other
robots in the team. Each robot re-plans after every 2nd sample.

In the experiments, it assumed that vehicles have access to a wide-area, low-
bandwith communication link (such as LoRa [93]) and are able to communicate
their observations globally. Prior to the next re-planning procedure, each vehicle
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Figure 6.2: Schematic overview of the adaptive planning routine. Not pictured: When
the vehicle controller has reached its movement budget (time or distance), the modeler
is called one last time to produce a final map prediction.

evaluates the map expectation E (posterior mean) from the multi-task model,
incorporating all observations yj collected by the agent and communicated by
other agents. The model output is used to calculate the marginal log likelihood
of the GP with respect to the observations collected, which forms the basis of the
hyperparameter optimization routine.

6.4 Experimental Evaluation and Discussion

In this section, we evaluate our coordinated planner IIG-Cooperative against the
non-cooperative IIG-ST introduced in [120] as applied to the task of surveying
and modeling a physical phenomenon that changes in an environment over a
fixed period of time. In the first scenario, the surveyed phenomenon advects
and diffuses in a simulated fluid environment over time, similar to the dynamics
of an environmental contaminant in the soil, water, or air. In the second scenario
an oceanic turbidity dataset is used as the target for the surveying objective.

We evaluate our planner according to the objective that would be most
salient to a surveyor; that is, the accuracy of the final map representation
at the end of the survey period (t = 100) with a root-mean squared error
metric (RMSE). We also consider the auxiliary objective of making predictions
at arbitrary points in time. This is relevant if the operator wishes to reconstruct
the dynamics of the system. However, while our spatiotemporal planners
incorporate time into the planning objective, the robot and sensor can obviously
only travel forward through the temporal dimension.
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Figure 6.3: Advection/diffusion simulation: Map error (lower is better) at different
moments in the survey mission time for different planning configurations for I IG −
Cooperative with varing numbers robots deployed in the sensing task. Planners with fixed
priors are run in two configurations, fixed-suboptimal (ℓt = 50 and ℓs = 100) and fixed-
optimal (ℓt = 20 and ℓs = 30). The adaptive planner starts with the suboptimal priors
and continuously updates model hyperparameters throughout the survey mission. All
planners are run with global communication (bottom row) and without communication,
in an independent planning scenario (top row).

6.4.1 Experimental setting

The simulated world implements advection and diffusion according to the
Navier- Stokes equations for an incompressible fluid (forward-differencing
discretization). All robots are initialized with the same path planner with fixed
planning parameters that are updated independently during the course of a
survey. The full table of parameters set for the planner can be found in the
accompanying video and the code repository. We executed the experiments
in a GNU/Linux environment on a 3.6 GHz Intel i7-4790 computer with 10
GB of RAM available. RRT planning procedures were derived from [85] and
GP posterior variance and final map predictions were executed with GPyTorch
[106], run without hardware acceleration so as to simulate the resources
available on a mobile robot.

6.4.2 Comparison of cooperative and adaptive planning

To assess the effectiveness of the cooperative and adaptive planners, we
compare the planners in three configurations: A planner with fixed model
lengthscales (ℓ) chosen proportional to the size of the world (“fixed” planner,
ℓs = 100, ℓt = 50); an adaptive planner that starts with the same



6. Unified adaptive and cooperative planning using multi-task coregionalized
Gaussian processes

82

hyperparameters as the fixed planner, but is allowed to update as observations
are collected; and a fixed, planner given parameters determined through
hyperparameter optimization along a dense, coverage path plan (“optimal”
planner, ℓs = 30, ℓt = 20).

A summary of the main results can be found in Figure 6.3, which presents
the RMSE between the state of the world at time t and the state of the predicted
world at time t, constructed after observations have been compiled by all sensing
vehicles at the end of the survey mission. This aligns with the typical mode
of operation in multi-agent surveys. All scenarios are run with the multi-task
planner, which degenerates into a single-task problem when n = 1 sensing
vehicle, and/or when there is no transfer of information between the vehicles
(in other words, there is no information for the other input tasks). This later case
is labeled as “independent” planning.

In Figure 6.3, lower error values found on average across nearly the entire
mission envelope for the adaptive planner, although it does not produce as
accurate a map posterior as if it were given “optimal” hyperparamters. A
notable observation is the map accuracy for the final time index of the survey
period, when all planners converge to similar performance, with the “optimal”
planner producing a slightly less accurate representation at t = 100 than the
adaptive planner (or even the fixed planner, in some configurations). There
are a few possible explanations for this phenomenon: 1. For large numbers
of vehicles, by t = 100, the environment has been uniformly surveyed,
regardless of the direction given by the informative planner. 2. The “optimal”
parameters were derived through sampling along a conventional, coverage
path, of a distance equal to the average distance traveled by the informed
planners. This deterministic route does not guarantee representative samples
across the entire spatiotemporal domain (an thus are not strictly optimal).
This demonstrates another weakness of traditional surveying procedures. 3.
The “optimal” parameters were determined through a maximum-likelihood
estimator, optimized for the predictive ability across the entire survey envelope,
and not solely on the final map state. Likely, different results would be obtained
for parameters chosen to minimize the error of the final map state. Reconciling
these potentially competing objectives within a unified planning framework
could be explored in future studies.

A summary of the performance for all planning configurations is presented
in Table 6.1, where the two objectives are presented under: t100 for the predictive
accuracy at t = 100 and tall, for the predictive accuracy across the entire survey
envelope using the coordinated planner (IIG-Cooperative) and the independent
planning scenario. We also explore the addition of the spatiotemporal kernel
to each configuration (“Function” column). Notably, the adaptive planner often
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Coordinated Independent

Planner Function Nv t100 tall t100 tall

Adaptive

IIG

1 0.888 1.344 0.935 1.367
2 0.670 1.104 0.827 1.234
3 0.749 1.109 0.703 1.091
5 0.664 0.988 0.689 0.999

IIG-ST

1 0.845 1.263 0.983 1.477
2 0.703 1.174 0.797 1.181
3 0.683 1.080 0.650 1.143
5 0.618 0.986 0.566 1.015

fixed

IIG

1 0.820 1.321 0.839 1.374
2 0.787 1.372 0.710 1.225
3 0.806 1.312 0.782 1.374
5 0.778 1.197 0.791 1.177

IIG-ST

1 0.782 1.293 0.841 1.294
2 0.760 1.247 0.749 1.365
3 0.726 1.203 0.785 1.205
5 0.745 1.161 0.648 1.149

optimal

IIG

1 0.841 1.162 0.841 1.128
2 0.839 1.093 0.842 1.069
3 0.825 1.043 0.802 0.986
5 0.802 0.946 0.787 0.969

IIG-ST

1 0.833 1.164 0.851 1.113
2 0.843 1.143 0.812 1.063
3 0.783 0.936 0.818 0.984
5 0.787 0.963 0.796 0.972

Table 6.1: Fluid Simulation: Summary of average map error (RMSE ) produced by
observations collected by all vehicles v at the end of a survey mission. Error is represented
across entire survey envelope (tall) and for the last time step of the survey mission
(t = 100). Lowest values within a given configuration are emphasized in bold.

outperforms the non-adaptive configuration, given informed “optimal” priors.
This is due to the reasons outlined in the previous paragraph. In multi-robot
configurations without coordination, minimal to no gains are found with the
spatiotemporally-informed planner across most configurations. This is likely
due to the aggregate effect of a more even coverage of the environment that
occurs with time-naive robots, at high numbers.

6.4.3 Environmental monitoring scenario

As a proof of concept, we demonstrate our planners in a synoptic-scale ocean
monitoring experiment, using ocean reflectance off the west coast of California
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Figure 6.4: Ocean turbidity: Summary of average map error produced for different
planner configurations and varying number of survey vehicles.

from the Moderate Resolution Imaging Spectroradiometer as a turbidity proxy
[108]. Our simulated vehicles are configured with velocities congruent to
the Wave Glider autonomous aquatic vehicle, based on the reported long-
mission average speed of 1.5 knots (approximately 330 km per week) [122].
Figure 6.4 presents the results for different configuration of the coordinated
and independent planners, configured with the spatiotemporal kernel. With a
sampling rate of 1/week for a ∼ 50-week interval, inputs were relatively sparse
and no distinguishing trends were observed between the performance of the
cooperative and independent planners.

As with the synthetic simulation, a basis of comparison for the “optimal”
fixed planner was established with hyperparameters collected by a single-
vehicle lemniscatic coverage. As with the previous experiments, the adaptive
planner results in improved map accuracy for all configurations across the
survey envelope.

6.5 Conclusions

This chapter presented a novel integration of multi-vehicle informative path
planning, informed by both model uncertainty and information from other
sensing agents, which may differ in their contribution toward reducing model
uncertainty. We also demonstrated how this approach could be utilized in an
adaptive planning framework. Finally, we quantified the effectiveness of our
planning approach, grounded in map accuracy, the salient objective for the
survey operator.
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As discussed in section 4.5, it is reasonable to assume mobile robots will
have access to a global, low-bandwidth communication channel (such as LoRa
or other satellite communication systems). The consequences of relaxing this
assumption is the natural next topic of investigation. In the next chapter, we will
explore various dimensions of further study that stem from this and previous
chapters.

This chapter illuminates multiple avenues for future work. Given global
communication, each robot could directly integrate observations from all other
robots, using a distributional or variational kernel. Robots could also attempt
to project likely future movements by other agents in the team, using a similar
utility metric grounded in model uncertainty. Observations collected in these
experiments used a point sensor model, where the robot obtained a low-
noise observation of the environment directly beneath the vehicle. Multi-task
planning scenarios can incorporate variable sensor models, including variable
noise, observation windows, and observation frequency.
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7

Concluding Remarks

ISO 8373 - programmed actuated mechanism with a degree of autonomy, mov-
ing within its environment, to perform intended tasks
IEEE 1872 - An agentive device in a broad sense, purposed to act in the phys-
ical world in order to accomplish one or more tasks.

No Lorenzo, a washing machine is not a robot.
– various “definitions” for “robot”

7.1 Main conclusions

As with many dissertations in this domain, this work is motivated by some
perceived automation need that can (in theory) be served by robotic methods.
Specifically, I make the claim that there are some surveying objectives (especially
whose where data collection is expensive) that benefit from strategic sampling
approaches. Let’s review some practical contributions of this work:

This framework for generating surveys can be used to inform a variety of
surveying efforts, including traditional surveys. The roboticist in me thinks
that it is nice to envision an end-to-end autonomous surveying robot, where
the operator just throws a robot onto the land, tosses a GeoJSON at its feet,
and returns the following day with an environmental model with 5 nines of
predictive accuracy. In reality, an small consultant might not be able to invest
50,000 USD in an ”affordable” robot platform, but they do use a bluetooth GPS
antenna and a smartphone to record samples that they take in the field. The
planning algorithms described in this thesis could be used as a plugin to a
map-based data logging mobile application, where the environmental model
could be updated and maintained on a remote computer (read: the cloud), and
the program could offer a suggestion about the next location that should be
surveyed in order to improve the model’s predictive ability.
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The methods used in this work use geostatistical fundamentals. So far,
we have gotten to the final chapter without mentioning “artificial intelligence”.
In the past decade, the rapid advancements in the use of convolutional
neural networks for image recognition tasks have lead to excitement regarding
applications for earth observation and remote sensing tasks [123]. More recently,
the advancements of vision-language models and other data-driven methods
(of which, I will refer to broadly as “AI”) has led many to speculate and apply
these tools toward remote sensing [124]. However, even before the mainstream
success of generative AI, many researchers have identified the challenges of
interpreting the results produced by these data-driven algorithms. When the
input space and the model parameters are large, it can be very difficult to
understand why a system has produced a particular answer, and the system
can be likened to a ’black box’ [125]. Even worse, one of the largest current
limitations of generative AI systems are their tendency to confidently produce
incorrect outputs for input queries that may have been outside of the training
distribution [126]. These “hallucinations” may be inconvenient for a chat-bot,
but when modeling earth and resource systems, hallucinated observations are
unacceptable and un-scientific.

This dissertation deliberately avoided these “less-scrutable” data-driven
approaches (like deep neural nets) and instead utilized well-understood
principles derived from geostatistics. Of course, this does come with some
limitations:

1. Predictions using GP regression are expensive to compute and the
complexity of computing a posterior mean is O(n3), since it involves a
matrix inversion operation. However, since we only plan based on the
posterior variance O(n3) and we use additional constant-time iterative
approximation methods that are very accurate [105], we are able to use
this technique in an operational capacity for path planning that is quick
enough to run on an actual robot.

2. GP regression tends to aggressively smooth variation in the underlying
data. However, through the correct use of priors and kernels, we can
construct a covariance function that is appropriate to the variation that
exists in our prediction domain [72]. That said, the kernels used in
this dissertation assume stationarity and isotropy. Therefore, the resultant
models are poor at extrapolation, and regress to the mean very quickly
when making predictions outside of the spatial area where there are
observations. This could be improved upon by using different model and
kernel formulations, discussed in the next subsection.
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3. Since the planner is informed by the model, if the model has a low
predictive ability, this can negatively impact the performance of the
planner, which in-turn leads to observations which might not help
improve the model’s predictive ability. It remains to be seen if this
produces a “negative-feedback”, where the planner gets stuck in a local
sub-optimum, whereupon it’s difficult to improve the model. One could
argue that any observation is better than no observation, and that the model
will slowly converge toward the truth given enough time. A formal proof
of this could be the topic of future work.

But one of the greatest advantages of using GP regression coupled with
information-theoretic utility function is the ability to establish bounds on the
expected worst-case accuracy of surveys constructed with the path planner.

During my Master’s work [127], I set out to develop a model that could
predict the amount of required by a crop in a given growing season, partitioned
by rainwater and irrigated inputs. In the end, each prediction was accompanied
by a sometimes wide margin of error, caused by uncertainties preset in every
input that comprised the final calculation. It would be interesting to examine
how uncertainty could be propagated through derivative calculations through
automated surveying strategies that are built around uncertainty quantification.
This leads to the final conclusion:

The utility functions used in this work are based in the qualities that are
useful to surveyors and model designers. Some of the early papers in IPP
performed planning based on an “information field”, where the robot could
query how much information is gained at an arbitrary location and derive a
utility from that value. Of course, there are different ways that this “information
field” could be constructed or derived. Similarly general are the IPP efforts
that represent planner performance by the reduction of model variance. But
this is a misleading metric– in chapter 4 and chapter 5, we explored how an
improper choice of model parameters can lead to models with low variance,
but low accuracy in the model predictions. For this reason, we evaluated all
of our planners based on this accuracy of the final model using an error metric
like RMSE. For users of a surveying system, they care more about how accurate
the resulting model is, not something obtuse like “a reduction of the posterior
variance”. Granted, if the parameters for the GP model are selected in a way
that maximizes the likelihood of the observed data (for example), then a model
with low posterior variance should have a high predictive accuracy.
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7.2 Future work

The major contribution of this body of work was the creation of a framework
for informative path planning that unified the modeling task and the planning
task within a shared statistical construct. In the past chapters, we explored
several dimensions of how this framework can be applied toward: goal directed
planning between waypoints, in a spatio-temporal modeling task, an adaptive
planning task, and a multi-vehicle planning task. There are many variations,
questions, and extensions that can branch from this main trunk of inquiry. Let
us consider a few of these:

Unifying the path selection procedure using an information-theoretic
selection criterion. In chapter 3, we explored the use of a sampling-based
planning approach to IPP, where the utility of a proposed location was
calculated during the expansion step of the random tree. After the stopping
criterion is met, we are still faced with the task of choosing a final path through
the environment. Also in chapter 3, we compared different path selection
routines: an information-greedy approach, a cost-maximizing approach, and
a heuristic path selection routine that balances between information gain and
path length. A future study could explore and compare other heuristic or
information-theoretic approaches at generating an optimal trajectory through
this random tree. For example, the SOP-CC algorithm used in chapter 4 could be
applied to the tree variant of the RIG planner.

Informative path planning incorporating latent variables. In the
geostatistics literature, cokriging is an interpolation technique that utilizes
multiple correlated (latent) variables to improve the prediction of a primary
variable of interest. By establishing a covariance relationship between variables
of interest, a planner could construct a path to optimize for the modeling of an
unseen variable. For example if a covariance relation is established between
CO2 flux and temperature/humidity, a planner could construct trajectories for
measuring temperature/humidity that optimizes the predictive ability of the
flux model. Planning for modeling of latent variables could be explored as
extensions to any of the chapters discussed earlier.

Informative path planning with an expert prior. Kriging interpolation
can incorporate a covariance relation that can be represented as an empirical
semivariogram, constructed with a prior sampling campaign. This statistical
construct could serve as a spatial prior and guide the form or hyperparameters
of the covariance function used to calculate the expected information gain at
a proposed sampling location. A future study could explore unifying this
geostatistical practice with IPP.
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Path planning with a variable sensor model. All of the experiments in
this dissertation assume that the sensing vehicle travels to a location to make
an observation that location, before proceeding to a new location. This is
what one would expect with a sensor that measures a phenomenon at a single
point (i.e. probe-based sensor). Many remote sensors (such as UAV-mounted
multispectral sensors) obtain multiple measurements over a wide area. This
can be modeled as a sensor that obtains an array of point measurements over a
horizontal footprint corresponding to the area imaged by the sensor, where the
ground sampling distance (GSD) is proportional to the spatial resolution of the
sensor. However, both the footprint and the GSD of aerial imaging sensors vary
with the distance that the sensor is flown above the ground. An informative path
planner could produce 3-dimensional trajectories, taking into consideration the
footprint and spatial resolution of the measurements produced by a sensor as a
function of its height. Additionally, the sensor might experience different noise
characteristics as a function of its distance from the objects under observation.
Dimensions of this problem were explored in [63] and can be extended to the
sampling based approaches explored in this dissertation.

Path planning for a continuous sensor model. With the exception of
Chapter 4, all of the experiments in this dissertation use a sampling based
planner that plans in R2. However in practice, observations are “snapped” to a
coordinate grid, whose units are defined by the resolution of the spatial model.
This is appropriate with point sampling schemes and with area and variable
sensor models described in the previous paragraph. However, there are sensors
that produce a continuous stream of data that can be discritized according
to the surveying approach and objective. For example in towed Transient
ELectromagnetic Systems (tTEM), the sensing apparatus produces a continuous
waveform that is transformed via a transfer function and discretized to produce
a 3D reconstruction of subsurface phenomena (eg. soil composition and
moisture) [128]. An informative planner could utilize the inversion algorithm
(used to transform the waveform into the geo/hydrologic properties) as part of
the utility function that guides the surveying platform to regions that result in
a more accurate map. Such an IPP approach could use a discretizations of the
signal in a variable signal model, or could utilize properties of the continuous
signal to update the model covariance relations. There are many dimensions
that could be explored for either approach.

The effect of variable communication modules for optimally of indepen-
dent planning agents. In chapter 4 and chapter 6, we explored basic multi-
vehicle scenarios where is assumed that robots have the means to communicate
small packets of positional information (24 bytes comprising two doubles for
position and one for a timestamp). While, this may be a reasonable assumption
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for low-bandwidth spread-spectrum protocols like LoRa, it would cease to hold
for many other common communication protocols. There is a rich corpus of
literature considering wireless sensor networks and communication protocols,
and the muti-agent methods explored in this dissertation could be extended to
consider unreliable communication scenarios. Of particular interest would be
the effect on the accuracy of models generated from informed paths with par-
tial communication ability. Additional extensions could consider dual objective
planning for communication and information gathering.

Informative path planning for surveying objectives other than regression.
One can envision an objective where instead of modeling some parameter in
an environment, we wish to identify when and where some event of interest
occurs. Motivating use cases include: patrol/surveillance tasks where we want
to identify and locate a threat actor, species presence/absence modeling for
ecological surveys, and source detection for contaminant plumes in pollution
control and environmental remediation. Sampling based IPP methods discussed
in this dissertation (and the extensions described in the above paragraphs) could
be modified into classification tasks by modeling a probability-of-presence as
the regressand, and passing the output into a response function such as in linear
logistic regression.

Relaxing the isotropy, homoskedasticity and stationarity assumptions in
the planning space. Future work can expand the planning task to consider more
sophisticated modeling scenarios, such as: if there are hotspots in the planning
space (anisotropy), if the parameter being modeled is trending (non-stationary),
and/or if there is non-uniform variance in the world (heteroskedasticity).

7.3 Closing thoughts

In chapter 1, we consider task of robotic surveying and frame it within a desire
to obtain information about spatiotemporal systems. As I remember from my
first spatial analysis and modeling class, almost all data taken in our world can
have a spatial label attached to it. We are embodied in space and time and
there will always be a desire to understand processes that exist on our world
(or other “worlds” out there in outer space), and modeling processes is one way
of obtaining those insights. So, does that mean “more data, more better”? Not
really. Also as mentioned in chapter 1, we collect more data presently than we
know what to do with, and our insights are mostly limited by analytic ability,
not a lack of observations.

Still, I want to make the claim that there are some resource management
objectives that are still data-constrained–that is, they are constrained by a lack of
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high quality data. For instance, while the dream is to be able to fly a sensor over
a farm and understand everything that needs to be known about the plants,
sometimes you need to be down at eye level to directly observe if there are pests
present, in order to make a management decision before it is too late.

Now, this brings us to the realm of what is practical. As with much in the
realm of engineering and especially for the domain of robotics, there exists a gulf
between what might work in a lab demo and what can be put into practice for
a business-critical operation. While this topic has been done to death in many
different settings [129] [130], I still observe countless presentations (academic
and commercial) that still breathlessly proclaim that industrial automation or
agricultural robotics are critical in order to X the next Y billion people, while hand-
waving away all the barriers to adoption.

Agriculture shares many of the constraints of other forms of physical pro-
duction, including manufacturing, mining, and energy production. Advanced
automation will only be implemented if the unit economics amount to a net ben-
efit for the firm implementing the technology. While there are many interesting
research questions that may or may not amount to an applicable method that
makes economic sense, we must continue to develop and evaluate new robotic
methods and stretch our imaginations to envision how might be applied to solve
needs in present-day practices.
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.1 Appendix B: Mathematical Notation and Terminol-

ogy

The idea for this section came after observing that notational differences
between texts in different disciplines (geostatistics vs machine learning vs
computer science). This section clarifies the matrix terminology used in this
thesis (drawn primarily from Rasmussen and Williams GP book [77]).

.1.1 Matrix terminology

From Chapter 3.3 of [131, p.107], with some additions:

• An n× ℓ matrix [A] is an array of nℓ elements arranged in n rows and
ℓ columns

– Ajk denotes the k-th element in the j-th row.
– Unless specified to the contrary, the elements are real numbers

• The transpose [AT] of an n × ℓ matrix [A] is an ℓ × n matrix [B] with
Bkj = Ajk for all j, k

• A matrix is square if n = ℓ and a square matrix [A] is symmetric if
[A] = [A]T

• If [A] and [B] are each n × ℓ matrices, [A] + [B] is an n × ℓ matrix [C]
with Cjk = Ajk + Bjk for all j, k

• If [A] is n × ℓ and [B] is ℓ× r, the matrix [A][B] is an n × r matrix [C]
with elements Cjk = ∑i AjiBik

• A vector (or column vector) of dimension n is an n× 1 matrix and a row
vector of dimension n is a 1× n matrix

• Since the transpose of a vector is a row vector, we denote a vector a as
(a1, . . . , an)T

• Note about transposing vectors:

– if a is a (column) vector of dimension n, then:
∗ aaT is the outer product produces an n× n matrix
∗ aTa is the inner product (or dot product) of the two vectors, and

produces a number
· note that this happened when we apply the transpose to the

first vector of the product (so the first vector becomes a row
vector)
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