
UNIVERSITY OF CALIFORNIA, MERCED

On Patrolling Security Games, Modeling Agents, and Computing
Viable Strategies

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering and Computer Science

by

Carlos Diaz Alvarenga

Committee in charge:

Professor Stefano Carpin, UC Merced, Chair
Professor Nicola Basilico, University of Milan
Professor Wan Du, UC Merced
Professor David Noelle, UC Merced

June 2024

Copyright

Carlos Diaz Alvarenga, June 2024

All rights reserved.

The dissertation of Carlos Diaz Alvarenga is

approved, and it is acceptable in quality and form

for publication:

Chair

University of California, Merced

June 2024

iii

DEDICATION

To my loving wife who has always supported me from the very first

day we met and to my family who continue to help me grow as a

person, brother, cousin, nephew, uncle and son.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . xii

Acknowledgements . xiv

Abstract . xvi

Chapter 1 Introduction . 1
1.1 Purpose . 1

1.1.1 Why Security Games? 1
1.1.2 A Single Agent Patrolling 4
1.1.3 Security Games, Patrolling Games, and Search

Games . 6
1.2 Overview of Contributions 7

Chapter 2 Related Work . 10
2.1 Optimization Techniques 10
2.2 Adversarial Patrolling . 12
2.3 Patrolling Security Games 16
2.4 Reinforcement Learning Techniques for Security Games . 17
2.5 Metrics of Evaluation . 19

2.5.1 Optimizations . 19
2.5.2 Intruder Orientated 20

Chapter 3 Single Agent Patrolling Against Adaptive Opponents 22
3.1 Security Game Model . 22
3.2 Patrolling Against a Local Observer 25
3.3 Time-Variant Strategies 29
3.4 Experimental Evaluations 31
3.5 Conclusions . 39

Chapter 4 Single Agent Patrolling via Reinforcement Learning 43
4.1 Patrolling Setting . 43
4.2 Deep reinforcement learning and patrolling 44

4.2.1 Problem Formulation 44

v

4.2.2 Resolution with Proximal Policy Optimization . . 48
4.3 Modeling the Attacker’s Behavior 49
4.4 Training, Domain Randomization and Results 52

4.4.1 Ablation Study 58
4.5 Conclusions . 59

Chapter 5 Multi-Agent Techniques Against an Opponent with Limited
Information . 62
5.1 Multi-Agent Patrolling Setting Definition 63
5.2 Partitioned Patrollers . 66

5.2.1 Multilevel Graph Partitioning 67
5.2.2 MILP-based partitioning 71

5.3 Non-partitioned Patrollers 73
5.4 Evaluations and Comparisons 76
5.5 Conclusions . 80

Chapter 6 Methods for Optimizing a Team of Agents 84
6.1 Patrolling Optimization Setting and Definitions 84
6.2 Overlapping partitions 85
6.3 Exact formulation . 87
6.4 Heuristics for OPP . 92

6.4.1 K-means core . 93
6.4.2 Weighted K-means core 93
6.4.3 Balanced Weights Heuristic (BWH) 93
6.4.4 Local Search Heuristic (LSH) 95

6.5 Evaluation . 96
6.6 Conclusions . 101

Chapter 7 Final Thoughts . 102
7.1 Conclusions . 102
7.2 Possible Future Research Directions 104

7.2.1 Machine Learning for Patrols 105
7.2.2 Adaptive Patrolling as adaptive sampling 106

vi

LIST OF FIGURES

Figure 1.1: Some robot platforms that have been used for patrolling or ur-
ban search and rescue [31, 53, 94]. Example tasks include object
inspection in unknown environments, collaborative mapping in
harsh conditions, and patrolling a parking garage for parking
infractions. Individual images grabbed from the google images
search engine. The KnightScope [53] robot (bottom middle) in
particular has been deployed in parking lots in San Bernardino
County, CA and was recently authorized by the US government
to operate in other parts of the country. 2

Figure 1.2: According to the BBC [30], a kilogram of rhinoceros horn can
fetch up to 50,000 euros on the black market. 3

Figure 1.3: Example of a patrolling instance. Each vertex has a value v and
an attack time a representing the effort needed to compromise
it. A patroller moving from vertex vi to vj will spend time di,j. 4

Figure 1.4: Example of a patrolling security game instance. The red agent,
defender, must visit and re-visit all the vertices in the area to
counteract any malicious activity. Meanwhile, the intruder (red
boat) in this case has started illegal poaching activity in the
top right area of the graph. If the defender can make it to the
target location where the intruder is attacking before all the
resources are compromised, then the defender wins. Otherwise
the attacker wins and is successful in endangering the environ-
ment. The map in question is of the gulf of Mexico, where illegal
poaching of red snapper fish has been a concern in recent years. 6

Figure 3.1: This figure depicts the Markov chain definition. The states
V0, V1 and V2 are connected by edges that represent transition
probabilities. The transition probabilities themselves, are en-
coded in the transition matrix, P. For our purposes the transi-
tion matrix serves as the schedule for the patroller. Since each
row represents a probability distribution (each row in P adds
up to one), starting from any initial vertex the patroller can
sample the probability distribution of the row of the vertex it
is currently present at to determine which area to observe next. 27

Figure 3.2: Comparison between the protection ratios against the two at-
tacker models. Shown here is an instance with 50 target locations. 32

Figure 3.3: Protection ratio for each vertex with attacker using a NN strategy. 34
Figure 3.4: Protection ratio for each vertex with attacker using a NN strategy. 35
Figure 3.5: Protection ratio for each vertex with attacker using a maximum

likelihood strategy. 36

vii

Figure 3.6: Protection ratio for each vertex with attacker using a maximum
likelihood strategy. 37

Figure 3.7: Protection ratio for each vertex with attacker using a DNN. . . 38
Figure 3.8: Protection ratio for each vertex with attacker using a DNN. . . 39
Figure 3.9: Comparison between the protection ratio achieved on a testcase

graph against three different attack strategies. 40
Figure 3.10: Protection ratio for each vertex with the random-time strategy

and the maximum likelihood attacker for different observation
accuracy. 41

Figure 3.11: Protection ratio for each vertex with the time-invariant strategy
and the maximum likelihood attacker with different observation
accuracy. 41

Figure 4.1: Illustration for modelling the patrolling security game as a
Markov Decision Process (MDP), or in other words as a problem
of sequential decision making. Given an observation from the
environment and a reward signal, the defender must decide
which action to take so as to maximize long term rewards.
Despite the need for large amounts of data, RL techniques
offer the robustness of not needing an explicit model for the
attacker. As long as the attacker can be simulated (implemented
through software), then the RL defender can play patrolling
games against the attacker and learn to adapt its schedule ac-
cordingly to beat the intruder. Furthermore, we show that this
framework learns to succeed even against a multitude of attacker
behaviors. 45

Figure 4.2: Figure depicts the network architecture used for the PPO al-
gorithm. Input to the network corresponds to the observation
received from the Markov Decision Process: the current time,
the instantaneous idleness of each target location, and a history
of size M (usually equal to N) of past actions. After passing
through an MLP block and a final soft-max layer the network
transforms the input into a probability distribution (logits) over
the graph’s vertex set. A function modelling the distribution
acoording to the logits then returns which vertex the defender
will move to next. 50

Figure 4.3: Learning curves for the Clipped-PPO agent against the differ-
ent attacker models. |V | = 10 and all curves were smoothed us-
ing a sliding window average. The x-axis represents the number
of epochs trained and the y-axis shows the returned cumulative
reward. Some attacker models are easier to learn against than
others as evidenced by the slope and final value of the distinct
curves. 53

viii

Figure 4.4: Ablation study of the state representation when training Clipped–
PPO against the Maximum Idleness Attacker. The orange curve
represents the performance after removing the history of ac-
tions, P , from the state and the blue curve shows the perfor-
mance after removing the idleness vector, S from the state.
Removing either results in a decreased performance. 59

Figure 4.5: Ablation study of the state representation when training Clipped–
PPO against the Preference Attacker. The orange curve repre-
sents the performance after removing the history of actions, P ,
from the state and the blue curve shows the performance after
removing the idleness vector, S from the state. PA uses the
same distribution as described in section 4.3. 60

Figure 5.1: A common approach to the problem of team patrolling or team
coverage involves partitioning the environment. In the discrete
case (over a graph) the locations are separated into groups ac-
cording to the number of patrolling resources (agents) available.
Consequently, the problem reduces to a single agent instance
for each member of the team. While effective at dividing the
workload requirements for individual members of the team, the
approach lacks robustness to agent failures. If a member of
the team breaks down then a subsection of the environment
is left unguarded until a new partition, with k − 1 agents, is
computed. The black dotted lines above represent edges in the
original graph, that are not used after a partition is computed
and employed. 68

Figure 5.2: Illustration depicting the Multi-Level Graph Partitioning pro-
cedure. Sub-figure a (top left corner) depicts a regular input
graph to the partitioning algorithm. Next, in sub-figure b the
number of vertices in the graph is reduced by combining adja-
cent vertices and aggregating attributes. Then, in sub-figure c a
maximum cut is computed on the smaller graph. In our case, the
transformation computed on the edge weights pushes vertices
far from each other into other sides of the k-way cut. Finally,
the graph is restored to its original size via graph uncoarsening
and partitions are taken according to the k-way cut. Sub-
figure d presents the output of the procedure, a partitioned
graph according to k number of sub-graphs. 69

Figure 5.3: The collapsed two-states Markov chain. 73
Figure 5.4: 5 patrollers. Value multiplied by the probability of the return

time being larger than the attack time. 77
Figure 5.5: Protection ratio for five patrollers against a ML attacker. . . . 78

ix

Figure 5.6: Protection ratio for five patrollers against a Nearest Neighbor
attacker. 79

Figure 5.7: Number of attacks for 5 patrollers against a maximum-likelihood
attaker. 80

Figure 5.8: 5 patrollers, nearest neighbor attacker. 81
Figure 5.9: Intrinsic loss for the case of 10 patrollers. 81
Figure 5.10: Protection ratio for ten patrollers against a ML attacker. . . . 82
Figure 5.11: Protection ratio for ten patrollers against a Nearest Neighbor

attacker. 82
Figure 5.12: Number of attacks for 10 patrollers against a ML attacker. . . 83

Figure 6.1: Overlapping partition for m = 2. Both robots patrol the
core’s blue vertices following the same path between π0

e and
π0
x. Subsequently, robot 1 patrols the red vertices, while robot

2 patrols the green vertices. 86
Figure 6.2: Visualization of the shared and unshared workload for the team

of patrollers. The target locations that belong to the core set
are considered high value and will visited by all of the defenders.
Meanwhile, the target locations in the periphery set will only be
patrolled by a single agent. This scheme is empirically shown to
out perform a the traditional partitioning approach. Both the
red and blue agent share the vertices in the core, however, only
the blue agent visits the target locations on the bottom left of
the graph (peripheral vertices). 88

Figure 6.3: The balanced weight heuristic can be said to work in the
following way: the most valuable target locations are repeatedly
added to the core set until the termination condition is met.
This procedure is visualized above. 94

Figure 6.4: Comparison between the different heuristics for different graph
sizes and number of robots. In both charts, the following color
coding is used: red for k-means; green for weighted k-means;
purple for k-max cut; blue for the balanced weights heuristic;
and orange for the local search heuristic 97

Figure 6.5: Comparison between the different heuristics for different graph
sizes and number of robots. Instead of competitive ratio we
analyze the minimum objective value reached by each heuristic.
In both figures, the following color coding is used: red for k-
means; green for weighted k-means; purple for k-max cut; blue
for the balanced weights heuristic; and orange for the local
search heuristic. 98

x

Figure 6.6: Comparison between the different heuristics for different graph
sizes and number of robots. In all figures, the following color
coding is used: red for k-means; green for weighted k-means;
purple for k-max cut; blue for the balanced weights heuristic;
and orange for the local search heuristic. 100

Figure 6.7: Left: optimal solution for 3 robots and 15 vertices. Right: LSH
solution for 3 robots and 20 vertices. 101

xi

LIST OF TABLES

Table 4.1: Confusion matrix for a graph with |V | = 10. An entry in
the table is generated by first training a Clipped-PPO agent
exclusively against some attacker model then deploying it against
different attackers. Results are averaged over 2,500 games. . . . 54

Table 4.2: Results presented here are some statistics gathered from Table
4.1. Domain randomization helps the Clipped-PPO patroller
generalize over the attacker models. As shown here, the DR
Clipped-PPO agent has a reasonable trade-off between average
performance and variance while at the same time has a better
worst case return. 55

Table 4.3: Normalized (by column) confusion matrix for a graph with |V | =
10. An entry in the table is generated from the values found in
table 4.1. Each value in the table is obtained by dividing the
score by the largest score in the column. 57

Table 6.1: An exact formulation for the OPP problem. 90

xii

List of Algorithms

1 Time-delayed patrolling strategy. 28

2 Time-variant patrolling strategy. 31

3 Local Heuristic Search . 95

xiii

ACKNOWLEDGEMENTS

First, I would like to thank my advisor Stefano Carpin for his continued support

and guidance. Without his help and mentorship none of this would have been

possible. Next, I’d like to thank professor Nicola Basilico who provided input for

every publication found within this thesis. I would not have been able to complete

this thesis without his advice and instruction. Additionally, I’d like to thank my

thesis committee for their valuable insights and suggestions.

A warm and grateful thanks to my all of my lab-mates is necessary as well:

Lorenzo, Thomas, Jose, Shuo, Marcos, Azin, and Giacomo. Their friendship and

advice helped my along the way. Also, I’d like to thank the Merced community:

friends, instructors, graduate students, etc. After 10 years in Merced this good-bye

is bitter sweet, but the city and close-knit community has left an impression on

me for the rest of my life.

Finally, I’d like to thank my wife and family members. I am the first person in

my family to receive a doctorate. I know they are proud of me. Completing this

doctorate is as much theirs as it is mine. It takes a village to raise a child and I

am grateful for them everyday.

I also acknowledge partial financial support from the NSF under grant DGE-

1633722, from the University of California under a Climate Adaptation Grant, and

from the UC Merced School of Engineering through multiple teaching assistant

assignments.

xiv

RELATED PUBLICATIONS

C. Diaz Alvarenga, N. Basilico, S. Carpin. ”Combining Coordination and
Independent Coverage in Multirobot Graph Patrolling”. Proceedings of the 2024
IEEE International Conference on Robotics and Automation, 4413-4419.

C. Diaz Alvarenga, N. Basilico, S. Carpin. ”Learning Generalizable Patrolling
Strategies through Domain Randomization of Attacker Behaviors”. Proceedings of
the 2024 IEEE International Conference on Robotics and Automation, 4406-4412.

C. Diaz Alvarenga, N. Basilico, S. Carpin. ”Multirobot Patrolling Against
Adaptive Opponents with Limited Information”. Proceedings of the 2020 IEEE
International Conference on Robotics and Automation, 2486-2492.

C. Diaz Alvarenga, N. Basilico, S. Carpin. ”Time-Varying Graph Patrolling
Against Attackers with Locally Limited and Imperfect Observation Models”. Pro-
ceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 4869-4876.

C. Diaz Alvarenga, N. Basilico, S. Carpin. ”Delayed and Time-Variant Pa-
trolling Strategies against Attackers with Local Observation Capabilities”. Pro-
ceedings of the 2019 International Conference on Autonomous Agents and Multi-
agent Systems, 1928-1930.

xv

ABSTRACT OF THE DISSERTATION

On Patrolling Security Games, Modeling Agents, and Computing

Viable Strategies

by

Carlos Diaz Alvarenga

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, June 2024

Professor Stefano Carpin, UC Merced, Chair

With increasing levels of intelligence and automation mobile robots are now

an enabling technology for autonomous patrolling of indoor and outdoor environ-

ments. Patrolling is a repetitive and potentially dangerous task whose execution

costs can be mitigated by deploying surveillance robots in the area of interest.

Because these systems are designed to be autonomous, the high-level planning of

the surveillance activities emerges as one of the most critical challenges to achieving

good performance and, ultimately, detecting and preventing malicious activities

in the environment. Issues like how to plan efficient paths, where and when to

schedule surveillance actions, and how to coordinate with teammates have been

tackled by models encoding some environment representation and assumptions on

agents capabilities and behaviors

This dissertation itself addresses some of the challenges in computing patrolling

schedules for an agent, or team of agents, working against an intruder with lim-

ited observablility of the environment. First, we present an overview of related

literature associated with the specific types of problems discussed throughout.

This includes: techniques for single agent instances, techniques for multi-robot

instances, machine learning for patrolling, and common metrics used for gauging

a defender’s performance. It is, then, divided into several chapters which each

address different aspects of the aforementioned challenges.

xvi

xvii

Chapter 1

Introduction

1.1 Purpose

1.1.1 Why Security Games?

Modelling interactions between agents is a long standing research endeavour

that spans many disciplines including psychology [89], cognitive science [88], com-

puter science [92], and others. Generally, researchers are looking to: find emer-

gent behaviors, forecast the consequences of some long running exchange between

agents, or correlate individual agent actions to broader collective goals. Broadly

speaking, our work falls into this category, however, with a specific application in

mind. Ultimately, we study the theoretical implications and practical designs for

systems aimed at deterrence, i.e. the act of discouraging a malicious event. Thus

our work in broad terms concerns itself with computing protection strategies on

one end and simulating malevolent actors on the other. Of the many applications

in this area, the most interesting are the use cases that most consider societal

impact, both negative and positive. Figure 1.1 presents some robot platforms that

have been used for urban search and rescue, as well as for patrolling, in indistrial

and commercial settings.

As recently as 2019 BBC writer Zoe Cormier [30] comments, ”In a time when

climate change is melting the Arctic and setting California on fire, ..., it can still

come as a shock that illegal hunting of wild animals for profit is still one of the

1

2

Figure 1.1: Some robot platforms that have been used for patrolling or urban

search and rescue [31, 53, 94]. Example tasks include object inspection in unknown

environments, collaborative mapping in harsh conditions, and patrolling a parking

garage for parking infractions. Individual images grabbed from the google images

search engine. The KnightScope [53] robot (bottom middle) in particular has been

deployed in parking lots in San Bernardino County, CA and was recently authorized

by the US government to operate in other parts of the country.

3

Figure 1.2: According to the BBC [30], a kilogram of rhinoceros horn can fetch

up to 50,000 euros on the black market.

biggest drivers of extinction.” Figure 1.2 is that a rhino generated by machine

learning models. It is, also, evident that the harms caused by poaching are

potentially catastrophic and avoidable. This specific use case has sparked the

area known as Green Security Games [97]. Pushed by groups like AI for Social

Good (Google) which is led by professor Milind Tambe [34, 93], the team’s goals

center around designing and implementing AI systems to help rangers counteract

illegal poaching in a given area. Security Game theory allows the researchers to

bridge the gap with conservationists and consequently help to protect wildlife.

The work presented in this thesis focuses mostly on the theoretical aspects

of the interactions between agents. All the findings discussed in the subsequent

chapters were obtained by modelling and implementing agents in our own security

game simulator written in python. In this way, we hope to share our insights into

strong agent strategy and agent design.

4

1.1.2 A Single Agent Patrolling

In [20], the authors provide a general definition of patrolling : ”the act of walking

or traveling around an area, at regular intervals, in order to protect or supervise

it”. Moreover, the discipline of robotic patrolling concerns itself with the study and

application of robots, or autonomous agents, to perform patrols. Recent advances

in robotics [54, 58, 65, 85, 97] and artificial intelligence, have sparked renewed

interest in the already mature area of robotic patrolling. Many formulations and

abstractions exist for the problem and this work will be focusing on representations

that abstract the environment as a weighted un-directed graph, G = (V,E, d).

Here the set V is known as the set of target locations, or areas of interest, the edge

set, E, denotes connections between locations and the function d maps individual

elements of the edge set to scalar real values which model the cost of travelling

the edge. Furthermore, in all subsequent cases we will consider values associated

to target locations. A location’s value represents how important that particular

location is.

Figure 1.3: Example of a patrolling instance. Each vertex has a value v and an

attack time a representing the effort needed to compromise it. A patroller moving

from vertex vi to vj will spend time di,j.

All formulations define at least one agent, though some consider more. The first

agent to consider is the so-called defender or patroller. The defender is tasked with

repeatedly surveying the area, i.e. patrolling, so as to protect the environment from

5

any possible breaches. One class of problem which we call optimization techniques,

discussed in chapter 2.1 and chapter 6, attempts to solve the patrolling issue for the

defender by framing the problem as an optimization of some metric over the graph.

Usually considered, is the instantaneous idleness [28] over the set of vertices, V ,

or the entropy generated by the patroller’s schedule [32]. One can think of the

instantaneous idleness of a vertex as a timer, associated to that specific vertex,

that runs to infinity. If the patroller ever visits the vertex then the timer is reset

to zero. In other words, a high idleness for a vertex equates to an under-patrolled

target location.

Once a metric is established then algorithms are developed to search for pa-

troller trajectories that either minimize the idleness or maximize the entropy. In

this work I will use the words trajectories, schedule, or path interchangeably when

referring to the ordered sequence of vertices that the patroller will visit to ensure

safety. Finally, it is worth mentioning the overlap this patrolling formulation has

with operations research and vehicle routing. A potential solution to the question

of agent patrolling, particularly for small instances, could be to compute the TSP

(travelling salesman problem) tour over the particular graph and report the length

of the tour as the worst-case idleness for any vertex. Indeed, this is a common

approach, however, the solution for a patroller does not necessarily need to be

a tour, and potentially needs to consider that not all the target location have

the same importance. For instance, the patroller could perform a walk over the

vertices, i.e. not visiting every location only once when moving through the graph

to ensure protection.

Chapter 6 will detail my work formulating a team optimization version of the

patrolling problem. The question we seek to answer in that work is one of analysis:

Given a limited number of patrolling resources and a large area to protect, what

is the optimal workload distribution for each agent? Consequently, we provide

insights into the idea of combining shared and independent workloads for the team.

The heuristic provided is built upon principles in graph partitioning schemes and

the multiple travelling salesman problem (m-TSP).

6

1.1.3 Security Games, Patrolling Games, and Search Games

Figure 1.4: Example of a patrolling security game instance. The red agent,

defender, must visit and re-visit all the vertices in the area to counteract any

malicious activity. Meanwhile, the intruder (red boat) in this case has started

illegal poaching activity in the top right area of the graph. If the defender can make

it to the target location where the intruder is attacking before all the resources are

compromised, then the defender wins. Otherwise the attacker wins and is successful

in endangering the environment. The map in question is of the gulf of Mexico,

where illegal poaching of red snapper fish has been a concern in recent years.

Another class of patrolling problem deals with formulations that explicitly

model a malevolent agent known simply as attacker, or intruder. Generally, the

defender and the attacker are modeled as rational and as competing for resources

in a two player zero-sum game. In a zero-sum game, one player’s gain equates to

her opponent’s loss. In other words, the net improvement in benefit from the game

is, zero. Many formulations of the problem exist including: von Neumann’s hide-

7

and-seek game [96], the infiltration game [7], the search game [37], the interdiction

game [98], etc (see [20] for a great taxonomy of the different game formulations).

The scope of this current work will be exclusively on the problem known as the

patrolling security game (PSG) [20]. The patrolling security game differently from

other formulations is defined as a two-player multi-stage game with imperfect

information and infinite horizon.

The introduction of another rational agent that is competing with the defender

completely changes the nature of the optimal strategy. Consider that in the pre-

vious section it is mentioned that a potential strategy for minimizing the idleness

could be computing the TSP over the graph and assigning the tour as a schedule

for the defender. This naive strategy would result in poor performance if say

the attacker was able to even just partially observe the defender’s patrol. In this

case the attacker could build a belief about when the defender will be at certain

target locations and calculate the optimal time to begin an attack and guarantee

success. In other words, there will need to be an element of randomness in the

defender’s schedule so as to make it difficult for the attacker to build a belief of the

patrols. Figure 1.4 depicts a typical patrolling security game scenario; the agent

must repeatedly visit target location of heterogeneous importance to ensure proper

protection.

The bulk of the work presented in the following thesis will belong to this

category (chapters 3, 4, 5). The following will detail the assumptions and rules we

apply to the patrolling security games.

1.2 Overview of Contributions

As evidenced throughout this section, the fields of robotic patrolling and se-

curity games are both very mature and share many basic assumptions with other

disciplines such as in operations research. This dissertation itself addresses some

of the challenges in computing patrolling schedules for an agent, or team of agents,

working against an intruder with limited observablility of the environment. It is

divided into seven chapters, including this chapter, which each discuss different as-

8

pects and challenges for robot patrolling. Firstly, chapter 2 presents an overview of

related literature associated with the specific types of problems discussed through-

out. This includes: techniques for single agent instances, techniques for multi-robot

instances, machine learning for patrolling, and common metrics used for gauging

a defender’s performance.

Chapter 3 begins by detailing our general assumptions for the intruder and

the security game itself. Differently from previous work in the area, our model

for the intruder limits its capabilities and knowledge. A popular approach has

been to model the intruder as a worst case agent that knows the defender’s every

move [86], commonly known as a Stackleberg Game. Our formulation instead

only assumes that the attacker can make repeated observations at a single target

location. We argue that this scenario captures more realistically everyday scenarios

where generally we may be tasked with deterring bad actors who do not know the

number of patrolling resources we employ or their respective schedules. We extend

a previous solution [19], shown to be optimal within a loose bound, by exploiting

the principle of a stationary distribution for ergodic Markov chains. Chapter 4

dives into the application of recent advancements in reinforcement learning (RL)

and deep neural networks (DNNs) to the patrolling game. A good amount of

the engineering effort was needed to design the observation space of the Markov

Decision Process (i.e. the input to the network) and design the reward signal

needed to facilitate learning. With some alterations to previous assumptions we

made about the security games, we provide an RL-agent capable of protecting an

environment even against an opponent who constantly changes their strategy.

Chapters 5 and 6, meanwhile, consider the implications and challenges of

computing schedules for a team of patrollers. Chapter 5 takes some of the ideas

presented in chapter 3 and expands their use case to also work with teams of agents.

A common approach in literature for dealing with teams of defenders avoids the

need for communication requirements by partitioning the environment (graph) into

k-subsets - one subset for each available patrolling resource (i.e. agent). In the

chapter, we present a heuristic method for computing partitions quickly and also

discuss an alternative scheme. Partitioning the environment into k-subsets, while

9

efficient is also less robust to agent failures. For example if a particular agent breaks

down, then a portion of the environment will lack adequate protection. This failure

will most likely require a re-partitioning of the environment with k−1 agents. Thus,
in chapter 5, we also introduce an approach to completely overlap every agent’s

workload, or said differently have every agent patrol the entire graph at the same

time. The randomness of the Markov chain framework helps with the redundancy

and we discuss the pros and cons of either approach. Chapter 6 continues this line

of thinking and presents a method for separating the environment into a core set

and a periphery set. The core set is visited by all the patrolling agents, while the

periphery is partitioned into k-subsets and then each subset is assigned to exactly

one agent. Moreover, we present empirical evidence and analysis for the benefits

of employing this shared, unshared workload strategy. In many cases, it is more

efficient resource management to have the multiple agents patrol the core, i.e. high

value vertices, together and leave lesser value target locations under protection of

a single patrolling resource.

The core/periphery heuristic serves as the only work presented herein that does

not explicitly model an opponent and where performance is judged on worst case

idleness. Finally, Chapter 7 provides some concluding remarks about the methods

presented in this dissertation and discusses a few avenues of future research.

Chapter 2

Related Work

The field of robotic patrolling is very mature. Many formulations and appli-

cations exist, each with their own assumptions and frameworks. Broadly, the

literature falls into work that explicitly models and opponent and work that

instead tries optimize a certain performance metric for the defender. More recently,

the field has seen renewed interest because of advances in machine learning and

artificial intelligence. Here we discuss first the non-intruder orientated techniques,

followed by the intruder orientated techniques, and then focus on our own model

for the game. For a survey on recent trends, see [17], and for a more comprehensive

survey on the topic consult the work in [46].

2.1 Optimization Techniques

In recent years, algorithms for graph patrolling, especially in autonomous surveil-

lance using mobile robots, have received great attention [17]. This involves mod-

eling environments as graphs and devising strategies to guide patrollers across

vertices, mirroring real-world scenarios [79] where vertices represent locations of

interest, patrollers are robots with surveillance capabilities, and visits entail check-

ing locations for threats and taking action if needed. The use of mobile robots for

surveillance is one of the flagship applications of the field attracting a significant

amount of research [69]. Here, the central planning problem is that of computing

a patrolling strategy for orchestrating, in space and time, the surveillance activities

10

11

of a robot.

Our work in chapter 6, belongs to the group of methods that adopt an opti-

mization criterion that has been extensively studied in the literature: the idleness

between visits [28, 69]. Solving these optimization problems is usually hard, often

leading to high computational costs when seeking exact solutions. Prior research

has therefore proposed heuristics and approximations to efficiently find sub-optimal

strategies that offer practical performance. This is especially crucial in MultiRobot

Patrolling (MRP) scenarios where the problem’s complexity grows significantly

with the number of robots. Nonetheless, employing multiple patrollers remains an

effective means to increase performance and robustness. In our work, we propose a

novel offline approach to computing MRP strategies by combining two commonly

used techniques, which are typically considered mutually exclusive.

Assuming that m is the number of robots, the first technique involves assigning

each robot the patrolling task over the whole environment and using a coordinated

strategy [57]. This strategy typically relies on a single Hamiltonian cycle (or

traveling salesman problem – TSP cycle) that all robots follow. Coordination

entails synchronizing the traversal of this path by the m robots, resulting in a

collective reduction of maximum idleness on any vertex by a factor of m when

robots are uniformly spaced along the tour [28]. While this approach enhances

patrolling compared to a single robot, it necessitates computing a complete graph

tour and does not leverage the advantages that a potential division of effort among

the robots might induce.

The second technique is instead an implementation of the divide et impera

principle [33, 59, 73]. The idea is to partition the environment into m subsets

of the sites to protect, one for each robot, i.e., if V is the set containing all the

graph vertices, the partition is defined as P = {V1, . . . , Vm}, with ∪iVi = V and

Vi∩Vj = ∅ for i ̸= j. The set P can prescribe a division of effort among the robots

thus allowing to reduce the MRP problem to m simpler single-robot instances. In

this setting, each robot independently patrols its assigned sub-graph. Since sub-

graphs are disjoint, coordination among robots cannot introduce improvements

and is therefore not necessary. Typically, each robot covers the TSP cycle (exact

12

or approximate) on the vertices it is in charge of.

The two techniques can be characterized in terms of overlap between partition

elements. The first case corresponds to full overlap (and hence a single element

identical to V) while the second case would be associated with an empty overlap,

namely a partition of V into m disjoint subsets. In chapter 6, we introduce an

intermediate approach to take advantage of both the coordination of patrollers

(enabled by some overlap over portions of the environment) and the division of

effort (requiring no overlap). Starting from the methods described above, we

compute a partition of V into up to m + 1 subsets, P+ = {V0, V1, . . . , Vm} with

|V0| ≥ 2, i.e., subset V0 will always have at least two vertices (we motivate this

constraint in the next sections.) In such partition, subset V0 represents a portion

of the environment that is patrolled by all m robots in a coordinated fashion, while

the remaining subsets Vk define subsets patrolled by exactly one robot, i.e., Vk is

patrolled exclusively by the k-th robot. The resulting patrolling strategy will be

obtained by combining a set of Hamiltonian paths, computed on each partition’s

elements, to enable a scaling factor of m for the maximum weighted idleness over

the shared vertices (V0) while allowing independent patrolling over the non-shared

parts (see also [28] for more details). By assuming such a structure in the joint

patrolling strategy, we leverage situations where it is convenient to coordinate

shared efforts on a selection of critical vertices that we dub “the core” while

applying a disjoint division of effort over less important ones. Our formulation

however allows for some or all of the Vk (k > 0) to be empty. When that happens,

the corresponding k-th robot just patrols V0. Note that in the limit, if all Vk = ∅
for k > 0, the patrolling strategy coincides with the classic coordinated strategy

where each robot patrols the entire graph.

2.2 Adversarial Patrolling

A significant limitation of the contributions described in the previous section

is the fact that they neglect the adversarial nature of many patrolling problems

which often model the presence of a rational observer who can learn how patrolling

13

is carried out, predict the next moves up to some uncertainty, and devise a best

attacking response that takes into account such knowledge. Despite such short-

comings and the availability of more sophisticated methods dealing with it (see

below), these techniques still enjoy widespread use in real-world implementations

of robotic patrolling systems [76].

Meanwhile, adversary modeling, as studied by Albrecht et al. [6], [5], and others

has advanced our understanding of adversary behavior, from rule-based adversaries

to adaptive agents capable of learning and strategic adaptation. These works

help shed light on best practices for the modelling of intruders and help answer

questions about what we an engineers and designers are trying to capture when

considering different attacker strategies. These interdisciplinary efforts underscore

the multifaceted nature of patrolling security games and highlight the importance

of integrating insights from game theory, optimization, and multi-agent systems

to address contemporary security challenges effectively. All of the next chapters

consider an opponent of some kind except, chapter 6. Opponents are taken to be

rational, and thus trying to build beliefs of the defender’s planning procedure

so as to maximize their own utility. Some of the approaches we employ for

attackers include: k-nearest neighbor, maximum likelihood, deep neural networks,

and greedy idleness attackers.

Security games [93] introduced game-theoretical models for strategic resource

allocation in the presence of adversaries. Robotic patrolling can be seen as one

of these problems where the resource to allocate is a robot moving on a graph

while the adversary (attacker) tries to compromise some vertex. One common

assumption is to adopt a Leader-Follower interaction model [29], where the pa-

trolling strategy is common knowledge since the attacker can observe its execution

for an arbitrary amount of time. The approach prescribes to commit to the best

patrolling strategy given that the attacker will best respond to it.

The Leader-Follower assumption implies full observability of the environment

and unlimited observation capabilities of the attacker, two features that properly

define a worst case scenario but that are rarely satisfied in reality. A number of

works challenged these assumptions, like some of the chapter presented in this

14

thesis. In [3], the case of perimeter patrolling is considered. In such work, different

degrees of knowledge possessed by the attacker are analyzed, from a zero-knowledge

attacker to a fully informed one and some resolution methods are proposed and

compared. However, the work considers gathered knowledge from a general point

of view without adopting an explicit observation model for the attacker. Similarly,

other works have investigated the presence of noise in the patrolling strategy

observed by the attacker and devised robust resolution methods. One example

has been proposed in [67] where bounded rationality is also considered for the

attacker. A similar approach is adopted in [102] where the authors assume that

the attacker cannot always observe the current allocation of patrolling resources

in the environment. In [12] the attacker is allowed to perform a limited number

of observations from which it can propagate a belief over the patrolling strategy,

while in [100] the patrolling strategy is assumed to be known but the attacker has

no access to its real-time realization (that is, it cannot assess the protection status

of the targets).

This last work introduces leakage as a way to episodically obtain such a knowl-

edge from the target of interest. Other examples are found in [13] where the

attacker constructs a belief of the patrolling strategy by performing costly obser-

vations and dealing with a trade-off between cost of observation and risk of capture.

Finally, in [23] the authors consider a similar belief-based observing attacker and

show that planning against the strongest observer might induce limited losses of

utility.

The approaches discussed above cast the limited observation capabilities of the

attacker to some degree of uncertainty in the knowledge it considers in computing

its best response. However, even if affected by errors or sometimes not accessible,

observations are assumed to entirely span an environment whose structure is known

by the attacker (with the exception of [100] where the patrolling strategy is assumed

to be known). In chapters 3-5, we adopt a local observation model that allows the

attacker to collect information only for a single target. As a consequence, the

environment and the patrolling strategy are always unknown while its realization

can only be accessed at a single and fixed vertex. Attacker’s locality has been

15

investigated in [14], but not in relation to the observation process. Instead, it is

exploited in fixing one attacker behavior according to when it positions itself at a

target and then, exploiting a local view, starts its attack as soon as the patroller

leaves for other targets.

Markov chains where states encode the current patroller’s location have been

extensively used to encode patrolling strategies on graph-represented environments

(see, for example, [2, 20, 40]) despite their poor scalability when extending states

to a history of previous visits [20] (a limitation recently addressed in [51] where

response to sequential attacks is studied) and despite their possible failure to

describe the optimal patrolling strategy [49]. To the best of our knowledge, the

use of time-variance in the transition matrix to deal with an observing attacker,

as described in chapters 3 and 5, has never been investigated before.

Multirobot patrolling has also received considerable attention from the robotics

community in the last decade. The literature encompasses models for different real-

world domains and also provides algorithms to obtain patrolling strategies which

guide a robot’s visits to areas of an environment to be protected [69]. Many of these

solutions are deployed as fully or partially autonomous multirobot surveillance

systems [76]. In other words, we are considering agent teams that must cooperate

to ensure a given area is protected against malicious activity.

Techniques based on game-theoretical models usually come from the sub-field

of security games [93] where patrolling is performed considering a worst-case fully

informed attacker. Building on top of these basic works, many recent contribu-

tions have relaxed the worst-case assumptions on the attacker in favor of more

realistic settings. Examples can be found in the use of bounded rationality for

the attacker [67] and, more relevantly, in the introduction of limited observation

capabilities where it is assumed that the attacker can condition its decisions on a

belief constructed by observing the realization of the patrolling strategy [13, 23].

In [19], Basilico et al. introduced a single-robot patrolling setting where the

attacker can only gather information from a single location of the environment.

This assumption adheres to many real-life situations where the costs of adversarial

intelligence are prohibitive. In chapter 5, we study the properties of the model

16

proposed in [19] by extending it to the multirobot case.

When compared against their single-robot counterparts, multirobot settings

introduce additional challenges. Scalability is a central one, since the computa-

tion of joint optimal policies is generally computationally expensive. Customary

approaches try to shrink the strategy spaces by limiting the allowed coordina-

tion among robots at run time [21]. Conflicts among patrollers could arise [35]

while environmental dynamics can pose the need for non-trivial adaptive task-

reallocation methods [50]. Sometimes, online coordination among robots might

not be even possible due, for example, to the lack of a suitable communication

infrastructure [77].

Environment partitioning is one way to mitigate such problems by diverting

part of the coordination issues to the offline dimensions. This basic divide et

impera idea of allocating robots to sub-regions of the environment has been proven

relevant in the multirobot patrolling domain (see, for example, [66, 68, 72]). In

chapter 5, we try to leverage such an idea to extend our novel patrolling model

from [19] for multiple robots. We devise and evaluate two scenarios depending on

whether partitions are used or not. We propose a heuristic and exact method to

compute partitions and we carry out a theoretical analysis of how the patrolling

performance is affected when more patrollers are concurrently deployed. Moreover,

to address strengths and limitations of the partitioning methods we propose, we

contrast these solutions with a solution where multiple robots independently patrol

the whole graph without any sort of coordination or load balancing.

2.3 Patrolling Security Games

An early and seminal work on security games in von Neumann’s hide-and-seek

game [96]. In his formulation von Neumann describes a two player 2D game played

on a grid. One player chooses a cell to ”hide” in and the other player, ignorant of

the first player choice, attempts to ”find” which cell the first player is hiding in by

also choosing a cell. Von Neumann characterizes optimal strategies for the both

players and provides proofs for their optimality. Starting from this work several

17

meaningful innovations have been proposed in literature.

The formalism for the patrolling security game (PSG), however, was provided

by Basilico et al. in [20]. Differently from previous game formulations and as-

sumptions, the PSG is defined as a two player multi-stage game with infinite

horizon. The advent of an infinite horizon uniquely presents a more realistic use

case because the game model can incorporate intruders who wait to strategize.

Indeed in the games we present in subsequent chapters happen in discrete time

steps wherein at each turn the patroller decides which target location to visit next

and the attacker decides whether to begin an attack or instead wait longer. Using

the PSG as a starting point, Carpin et al [19] develop a strategy for the defender

to beat a rational opponent and present a new metric for evaluating a defender,

dubbed protection ratio. The two key ideas exploited by the patrollers are: a

delayed movement strategy and Markov chain scheduling. Much of the work we

present in the next sections are built on top of the very same assumptions and

principles.

More recent work in the domain of patrolling security games has drawn upon

a diverse array of disciplines and methodologies to address the complex challenges

inherent in the safeguarding of target locations. Game-theoretic approaches to

security, as explored by Tambe et al. [92, 93, 103], and Pita et al. [67], have

provided innovative insights into the strategic interactions between defenders and

adversaries. Their work explores how the two competing agents (when admissible)

may reach an equilibrium and how the defender should strategize against the

intruder. Moreover in [93], Tambe et al. provide insights into the challenges

of deploying these systems in the real-world as evidenced by their use-case at Los

Angeles International Airport.

2.4 Reinforcement Learning Techniques for Se-

curity Games

A multi-agent formulation of the patrolling problem has been introduced in [28]

where idleness is proposed as a cost metric. It measures the time passed since the

18

last surveillance inspection of any given location. Idleness is a natural proxy for

the effectiveness of a patrolling strategy since it is inversely proportional to the

frequency of visits, and hence to the amount of surveillance, each node of the envi-

ronment receives. Approaches built around the optimization of idleness (typically

the average or the maximum over the environment) are typically combined with

other metrics and domain-dependent constraints. In [87], for example, robots’

sensing capabilities are confronted with a cost function that grows in each node if

this is not falling in the range of any robot and decreases otherwise. The approaches

presented in [62] and [82] are examples where idleness is coupled with the cost of

establishing situational awareness between the robots by communication, either

with teammates or with a base station. Optimizing this metric is typically hard.

Other works explored the adoption of optimization paradigms for dealing with

maximum idleness constraints. For example, [60] proposed approximated and

heuristic algorithms for the problem of computing the minimum number of robots

under idleness constraints [15], and devised approximated methods [1].

Supervised learning has been evaluated to synthesize decentralized multi-agent

patrolling strategies by leveraging historical data of surveillance tours computed

by a reference ideal method [58]. Despite showing promise, the need for a training

dataset makes this type of approach difficult to deploy. Reinforcement learning

(RL) provides a more natural environment-driven paradigm. A first RL formula-

tion has been proposed in [81] where idleness plays a central role in shaping the

reward function providing feedback to an agent moving in the environment. This

idea has been reused under the latest advances in RL by some recent works. In [65]

and [52] deep reinforcement learning is adopted to learn patrolling policies that

maximize a reward defined as a variable interest metric on each node. Such an

interest increases, at a node-dependent rate, as long as the node is not patrolled

by the agent. Deep R-learning is exploited to solve a persistent area coverage

problem in [85]. The task is characterized by the need to sense stochastic events

in the environment as soon as they appear. This problem, sharing in its definition

some of the features of the patrolling problem, is solved by adopting a reward

function based on the average detection rate of the events. The main difference

19

with our work is that events are not modeled as the product of some adversarial

process, a defining feature for the class of adversarial patrolling problems called

Security Games [20].

Works in this last field use attacker models best responding to patrolling

strategies [43, 64]. This task might be cast in an online framework where the

patroller executes a strategy for some time and then receives feedback [16]. When

compared to ours, this class of approaches, despite adopting an online setting,

models the problem under a game theoretical perspective according to which

attackers often comply with some level of rationality. Recent advancements in so-

called “green security games” proposed the use of deep Q-learning for computing

optimal strategies. In [97] deep RL is exploited to approximate best responses in

an iterative resolution of a patrolling game where real-time observations suggesting

how the attacker is operating are exploited. In our work, we do not necessarily

assume rationality for the attackers and hence we do not rely on an underlying

game-theoretical formulation.

2.5 Metrics of Evaluation

2.5.1 Optimizations

A formalization and analysis of the patrolling problem in multi-agent terms

has been proposed in [28]. This, and other seminal works dealing with patrolling

on a graph-represented environment, framed the search for effective patrolling

strategies as optimization problems where idleness-based metrics were adopted

as initial candidate objective functions. The rationale behind this class of works is

the optimization of the inter-visit delays on some vertices of the graph, each under

specific modeling and operational assumptions. Typical goals include following

the graph’s topology, ensuring a minimum frequency of visits on vertices [33], or

complying with latency constraints [15]. Cumulative costs are normally associated

with traveling along edges and, in some cases, with vertex visits as well. Different

approaches have been applied to solve these problems. These range from the

minimization of selected optimization criteria [1, 44] to using game-theoretical

20

frameworks where the behavior of a rational adversary is considered [20, 32]. This

idleness metric measures the temporal difference between subsequent visits (attack-

clearing actions) to a vertex. By measuring the idleness in each vertex of the graph

and computing an aggregate function of the obtained values (maximum, average,

or variants) it is possible to assess how well a strategy protects an environment.

The rationale is that the lower the idleness of a vertex, the less likely that vertex is

to be subject to an attack. The idleness of a vertex is often scaled by the vertex’s

importance obtaining what is often referred to as the weighted idleness [4].

Other metrics, proposed recently, include maximizing the entropy of the return

time [32, 42], or the average entropy rate [39]. These metrics leverage principles

from information theory, particularly entropy, to guide the movement of robotic

agents in their environments. They aim to maximize the entropy of return times

while still providing adequate coverage of the area. The return time reflects the

duration taken by the patroller to revisit specific target locations. Consequently,

the task of predicting when the defender will return to a target location becomes

considerably more complex. These approaches, however, fall somewhat between

the two categories, as they optimize a performance metric that accounts for the

challenges of patrolling against an adversary.

2.5.2 Intruder Orientated

In the context of patrolling security games we are, to the best of our knowledge,

the first to introduce the so-called protection ratio [19]. This refers to a metric that

evaluates the effectiveness of security patrols in neutralizing attacks within a desig-

nated environment. Specifically, the protection ratio is calculated as the number of

neutralized attacks divided by the total number of attacks attempted by adversaries

weighted by the value of the target location. The protection ratio provides valuable

insights into the overall success of the patroller’s strategy in protecting critical

assets. A high protection ratio indicates that a significant proportion of attempted

attacks are successfully intercepted, by the security patrols, thereby reducing

the overall impact of security threats and enhancing the security posture of the

protected area. The protection ratio serves as a key performance indicator for

21

assessing the efficacy of patrolling strategies and resource allocation decisions. By

monitoring the protection ratio, one can evaluate the effectiveness of different

patrol strategies, adjust resource allocation based on emerging threats, and identify

areas for improvement in security protocols. Other metrics for competing against

adversaries include the probability of capture [80] which measure the empirical

likelihood of capturing the opponent. Both these metrics try to asses the chances

of the defender winning the game and thus can be said to capture, in general, how

well the patroller is performing.

Chapter 3

Single Agent Patrolling Against

Adaptive Opponents

In this chapter, the Patrolling Security Game used throughout is introduced.

A strategy is devised for the problem of a single agent protecting a graph. The

work shown here was originally presented in [8].

3.1 Security Game Model

We adopt a patrolling model built on a customary setting that has been adopted

in numerous works dealing with patrolling robots (see, for example [20]). We

consider a discretized environment consisting of n locations of interest that we

call targets and that will be indicated by the set T = {t1, t2, . . . , tn}. The targets

represent locations that might be under risk of attack and that must be kept under

surveillance. Our discrete representation abstracts away from other possible non-

target locations and from the topology with which target and non-target locations

are connected. Instead, we assume that given two (not necessarily different) targets

ti and tj there always exists at least one path connecting them, that any path

between them can be traveled in both directions, and that the shortest path

between them has a temporal traveling cost known in advance and indicated as

dij ∈ R+
0 in the following.

The value of a target ti, a quantity proportional to its importance, is denoted

22

23

as vi ∈ R+ while the target’s resilience to attacks is given by the attack time

ai ∈ R+. The attack time measures the temporal cost that an attacker must spend

to successfully compromise the target’s security. While it is reasonable to assume

that most valuable targets have the highest attack times, we do not make any a

priori assumption regarding this aspect.

In this context, a patrolling task is carried out by a single mobile robot/agent

traveling from target to target. We assume that the robot has the capability

of detecting the presence of an ongoing attack and undertaking some action to

potentially stop it (for example, raising an alarm or alerting a human). Such a

capability is localized to the target currently visited by the robot. Thus, if the

robot visits target ti at time τ and an attack on that target has started at a time

within the interval [max{0, τ −ai}, τ), then the attack is detected and neutralized.

The status of a target is protected if the patroller is located in it and it becomes

unprotected when the patroller leaves it.

The threat we assume to face is modeled as coming from an attacker agent that,

at any time τ , can start an attack to a target ti. Once the attack is started, the time

window [τ, τ + ai) represents an exposure interval during which the attacker can

be stopped if the patrolling robot visits ti. As commonly done in security games,

we assume an underlying constant-sum interaction between the patroller and the

attacker. More precisely, in the case where the patroller stops an attack on target

ti it receives a utility of U =
∑n

i=1 vi while the attacker gets 0. On the contrary,

if the attack on target ti is successfully completed the patroller receives a utility

of U − vi while the attacker will conquer the target’s value vi. The patroller’s

movements in the environment are defined by a Markov chain process where a

state represents the currently visited target. The n×n transition matrix P, where

the entry pij represents the probability of transitioning from target ti to target tj,

defines the patrolling strategy used to protect the environment. In the following,

we shall assume that P is irreducible and aperiodic [61, 74]. Figure 3.1 depicts a

Markov chain along with its corresponding transition matrix, P.

With respect to the classic literature on security games, we propose two relax-

ations (introduced in [19], here extended with observation errors) that allow us to

24

capture some realistic aspects encountered in real-world applications. The first is

about the patroller’s movement model. The mainstream approach prescribes that

temporal traveling costs of shortest paths (in our setting defined as dijs) should

always correspond to the actual times spent by the patroller for moving between

targets. Indeed, in standard strategical settings it can be relatively easy to show

how following such rationale weakly dominates the opposite. In our model, we

embrace only this basic requirement:

label=) we interpret dij as a lower bound for the time spent traveling between

ti and tj allowing for occurrences where the patroller takes some extra

additional time to transfer.

As we will show, this feature can be useful in scenarios when dealing with a non-

fully informed attacker.

The second relaxation we introduce involves the model of the attacker. Typi-

cally the attacker is modeled as a rational and fully informed agent that has access

to the environment topology, the patrolling strategy being executed by the robot,

and its current position. The derived game is hence solved according to a leader-

follower paradigm where the attacker substantially best responds to the observed

patrolling strategy and the patroller’s current position. In our model we instead

assume an attacker that is still rational, but that is not fully informed. More

specifically, our attacker model is characterized by the following features:

lbbel=) the environment topology and, as a consequence, the values of vi and dij

for all ti, tj are not known and not accessible;

lcbel=) the patrolling robot cannot be observed while it executes its task in any

location of the environment, meaning that the current position is, in

general, unknown and no observation-induced belief over the patrolling

strategy can be maintained;

ldbel=) the attacker1 is hidden and ready to attack at an unknown target where

it can gather local observations under the assumptions described below.

1Despite we will generically refer to a single attacker, our model would work also under the
interpretation of up to n equally defined and uncoordinated attackers.

25

When observing a target during a time where it is unprotected, the collected

information will not be affected by errors. In other words, we assume a null

false-positives rate α = P (protected | unprotected) = 0. On the contrary, if the

attacker is observing a target whose state is protected, with probability β it will

not detect the presence of the patroller independently of how long the patroller

stays on that target an it will be mislead into believing that the target has been

unprotected for the whole time. In other words, we assume a non-null false-negative

rate β = P (unprotected | protected) > 0.

With the model a)–d), we relax some of the assumptions made in security

games, namely, that the patrolling setting is fully observable. Instead, the attacker

model we consider does not have any prior knowledge on the patrolling setting but

only relies on locally limited and noisy observations of a single target. These

features capture realistic settings where the planning activities of an attacker take

place locally to the target itself and, at the same time, the context in which the

patroller is operating (its current position, the set of targets, and the patrolling

strategy) are out of reach due to inaccessibility or high intelligence costs. As

a concrete example consider a large site protected by an autonomous patrolling

unit. Our attacker does not have enough power to monitor the whole site for a

long time because it would take too much effort. As a consequence it cannot derive

the environment discretization used by the patroller and the surveillance strategy.

What it can do, instead, is to loiter at the chosen target area and evaluate its

chances on the basis of what it observes there.

3.2 Patrolling Against a Local Observer

The scenario described above induces a situation where the patrolling agent

travels from target to target by following a transition matrix P. The attacker,

hidden at an unknown target that we denote as tj, observes a sequence of state

changes on that target: from uncovered to protected as soon as the patroller visits

tj and the opposite when it leaves (up to false negatives). Since the success or

failure of an attack depends on the patroller’s visit within an exposure interval,

26

the attacker is incentivized to log state changes with a timestamp and to extract

a time-series defined as subsequent realizations of a random variable Rj modeling

the patroller’s return time (or inter-arrival time) to target tj. In the long run, the

attacker will take advantage of such knowledge by deriving a belief on P [Rj > aj],

that is the probability that the target will stay uncovered for enough time to

complete an attack. In short, we shall call it attack probability. Due to assumptions

a) and b), no inference on the environment topology can be exploited. Specifically,

notice that assumption a) also applies to self loops, allowing the patroller to leave

tj and then returning to it after an arbitrarily small amount of time. For such

reason, the attacker does not have incentives in waiting some extra time after the

target has become uncovered, meaning that, if the attack must start, it will initiate

as soon as the patroller has left the target (thus justifying the use of Rj).

The problem we face when computing a patrolling strategy for such a local

observer is a standard constant-sum setting, namely finding P such that the

maximum attack probability is minimized. Recall that, due to assumption d),

the target at which the attacker is hidden is unknown. Because of the difficulty in

computing the exact probability, in [19] we provided a first, approximate answer

to this question by using the upper bound given by Markov’s inequality [55]

P [Rj > aj] ≤
E[Rj]

aj
= Uj

and in this work we use this same solution2.

The objective we seek for the patrolling task is twofold. From one side the

patrolling strategy should provide the maximum protection at convergence. That

is, it must optimize the attack probability when working under the condition in

which the attacker has managed to derive a correct belief over it. At the same

time, it is desirable that such condition is hard to meet by the attacker, making

the construction of a belief from the observations of Rj as difficult as possible.

One first method that we introduced in [19] is based on the idea of decoupling

spatial and temporal decisions when patrolling the environment. This is achieved

by an iterative two-step decision process. Let us suppose that the current target

2A numerical algorithm iteratively converging to the correct attack probability is the subject
of ongoing research.

27

Figure 3.1: This figure depicts the Markov chain definition. The states V0, V1 and

V2 are connected by edges that represent transition probabilities. The transition

probabilities themselves, are encoded in the transition matrix, P. For our purposes

the transition matrix serves as the schedule for the patroller. Since each row

represents a probability distribution (each row in P adds up to one), starting from

any initial vertex the patroller can sample the probability distribution of the row

of the vertex it is currently present at to determine which area to observe next.

28

occupied by the patroller is ti. In the first step the next target tj is selected

according to a Markov chain strategy expressed by P. In the second step the

patroller draws a value δij from the uniform distribution U [dij, dij + ∆] where

∆ ∈ R+
0 is a parameter representing the maximum delay to be applied. Finally,

the patroller constraints itself to spend δij to reach tj starting from ti. In [19] we

have shown that the random delay causes the attacker to see a sequence of return

times that have the characteristics of white noise. This strategy is summarized in

Algorithm 1, where with π = (π1, π2, . . . , πn) we denote the stationary distribution

induced by P. Notice that since we assumed that P is irreducible and aperiodic,

π is unique and guaranteed to exist.

Algorithm 1: Time-delayed patrolling strategy.

1 Input: T , distances dijs, values v1, v2, . . . , vn, attack times a1, a2, . . . , an,

∆, transition matrix P;

2 Select the start target ti ∼ π;

3 while true do

4 Select the next target tj with probability pij;

5 Generate a random time δij ∼ U [dij, dij +∆];

6 Move to tj spending time δij;

7 ti ← tj;

When adopting a strategy of the form described in Algorithm 1 the upper

bound on the attack probability can be written as

Uj =
1

πjaj

n∑
i=1

πi

n∑
h=1

pij
2dih +∆

2

and solving for the optimal stationary distribution π∗, that is the one that

minimizes the maximum upper bound of the attack probability, gives the following

(see [19] for details):

π∗
i =

µi
n∑

j=1

µj

∀ti ∈ T, with µi =
vi
ai

29

Given the stationary distribution π∗, a time-delayed patrolling strategy can

be implemented by running the Metropolis-Hastings algorithm to obtain P (see

details in the next section). The rationale behind this strategy is that by tuning

the parameter ∆ we can lower the autocorrelation in the time series of inter-arrival

times observed by the attacker, hence making it harder to forecast.

3.3 Time-Variant Strategies

An additional way to increase the difficulty of forecasting inter-arrival times

is to introduce time-variance in the transition matrix derived with the approach

described in the previous section. We introduce time-variant patrolling strategies

which are obtained by changing the matrix P used to determine which vertex to

visit next. The key fact to implement this approach is that we can determine an

infinite number of transition matrices P all having the same optimal stationary

distribution π∗. To see this, we just use the Metropolis-Hastings algorithm [78]

with a random proposal. More precisely, for a given π∗ to generate P we start

with a random3 transition matrix Q whose entries are all strictly positive. Let qi,j

be the (i, j) entry of such matrix, and let

αi,j = min

{
1,
π∗
j qj,i

π∗
i , qi,j

}
Then, for i ̸= j we set pi,j = qi,jαi,j, and pii is set so that all rows add up to one.

From this premise, we consider four different methods, each defined by the rule

used to decide when to drop the current transition matrix P(k) and switch to a new

matrix P(k+1). Furthermore, we introduce the concept of duration of a transition

matrix, a quantity that determines the time span during which the same transition

matrix is used.

In the constant-transition strategy the duration of a transition matrix is

defined as a constant number of transitions, say M . That is to say that the

patroller keeps an internal counter that is increased every time a new target is

3This can be easily created by repeatedly calling a uniform random number generator with
strictly positive support to fill up the matrix, and then normalizing each row to add up to one.

30

visited. When the counter reaches M , a new transition matrix is generated and

the counter is reset. Evidently, M is a parameter that needs to be picked upfront.

The random-transition strategy is a modification of the previous strategy

where the duration of each transition matrix is not given by a constant number

of transitions, but is rather distributed according to a Poisson distribution with

parameter λ. Every time a new transition matrix is generated, its duration is

sampled from the Poisson distribution. In other words, each transition matrix is

associated with its own randomly defined duration.

The constant-time strategy relates the duration of a transition matrix to the

time spent by the patroller to move from vertex to vertex (differently from the

previous two methods that use the number of transitions to determine when to

change transition matrix). Specifically, when moving from ti to tj the patroller

spends time δij (recall Algorithm 1). In the constant time approach, a fixed

threshold TMAX is defined, and as the patroller moves from vertex to vertex a

cumulative variable T is used to add all the various δij. When T exceeds TMAX ,

a new transition matrix is generated and the variable T is reset to 0. In this

strategy TMAX is a constant parameter playing a role similar to M in the constant

transition strategy.

Finally the random-time strategy works exactly as the previous one, except

that TMAX is not a constant, but is rather sampled from an exponential distribution

with parameter ψ4. Similarly to the random transition strategy described above,

every time a new transition matrix is generated, its duration is determined sam-

pling from the exponential distribution and therefore every transition matrix has

a different duration. The time-variant strategies are summarized in Algorithm 2.

All the above strategies depend on a parameter defining when to change the

transition matrix. This choice could be made in different ways. One approach,

embraced in the next section, is to perform a preliminary search for a given set

of benchmark graphs, and then pick the value of the parameter that maximizes a

performance function (see later discussion about possible metrics). This method

is off-line, i.e., the parameter is decided upfront and remains constant throughout

4For the exponential distribution we use the parametrization where ψ is the expectation.

31

Algorithm 2: Time-variant patrolling strategy.

1 Input: T , distances dijs, values v1, v2, . . . , vn, attack times a1, a2, . . . , an,

∆, stationary distribution π;

2 k ← 0 while true do

3 Generate Pk from π;

4 while the duration of Pk has not expired do

5 Set P← Pk and run Algorithm 1;

6 k ← k + 1

the run. In the conclusions we will discuss another possible on-line approach where

the decision on when to change matrix is rather taken on the fly.

3.4 Experimental Evaluations

We generated 50 environments of different sizes considering complete graphs

with 10, 20, 30, 40, and 50 targets, and, for each size, we generated 10 random

instances. The graphs vertices were created by randomly placing points on a

100 × 100 plane and then setting each edge’s temporal cost di,j to the Euclidean

distance between ti and tj. The value of each target vi was drawn from 1+U [0, 10]
while the attack time was drawn from U [D, 3D] where D is the average of the

temporal costs di,j.

While in [19] we considered a single strategy for the attacker, in this study we

test our algorithm against three different types of observing attackers. In each

case the attacker computes a prediction of the next inter-arrival time at the target

as soon as a transition from protected to unprotected is observed. If the predicted

value is greater than the target’s attack time, the attack is attempted. Starting

from its local observations, each type of attacker uses a different method to predict

the time when the attacker will visit the vertex again.

The first type of attacker assumes that inter-arrival times at target ti follow

an exponential distribution with parameter λi and uses a maximum likelihood

approach to estimate such parameter. The attacker then derives a prediction

32

0 10 20 30 40 50

Vertex

0

1

2

3

4

5

P
ro

te
ct

io
n

R
a
ti

o

time-invariant

constant-time (42000.0)

random-time (ψ = 42000.0)

(a)

0 10 20 30 40 50

Vertex

0

1

2

3

4

5

P
ro

te
ct

io
n

R
a
ti

o

time-invariant

constant-transition (450)

random-transition (λ = 450)

(b)

Figure 3.2: Comparison between the protection ratios against the two attacker

models. Shown here is an instance with 50 target locations.

33

for the next inter-arrival time by taking 1/λi, that is the expectation of the

hypothesized exponential distribution.

The second type of attacker uses a nearest neighbor (NN) approach to forecast a

time series [24]. The attacker observing target ti acquires a sequence of observations

O = (R0
i , R

1
i , R

2
i , . . .) for the inter-arrival times. It then considers all the sub-

sequences of length m, where m can be thought as the attacker’s finite memory,

and computes the distance between each of these sequences and the last m inter-

arrival times that have been observed. The closest sub-sequence (different from

the last one) is selected and the inter-arrival time observed immediately after such

sub-sequence is taken as the prediction. In all our experiments, m = 10.

The last type of attacker exploits a deep neural network (DNN) consisting of

a fully connected regression network with 200 hidden units using a long short-

memory layer [45]. Owing to the necessity of having enough training data, this

method uses the first 500 observations to train the network and then makes

predictions for the times of the remaining visits. The parameter 500 was obtained

after manual tuning, and never represents more than 90% of the data available

for training and testing. It shall be noted that, owing to the large number of

parameters to tune, this method requires significantly more data than the other

two and from a practical standpoint one could argue that when observations have

a cost, an attacker would be unlikely to use it. Nonetheless, due to the vast

popularity of these methods, it is interesting to use this approach to assess intrinsic

strengths or weaknesses of our patrolling strategy.

We define an evaluation metric denoted as protection ratio. This quantity is

obtained empirically, by simulating a deployment of the patrolling strategy we

want to evaluate. First we simulate the strategy for a total of K transitions. (In

our experiments, K was set to 10000 for the first two methods and to 100000 for

the DNN, due to the necessity of generating sufficient training data). Afterwards,

for each target ti we consider Ki as the set of transitions after which the status of ti

changed from protected to unprotected. For each k ∈ Ki we run the three attacker

types feeding them with the whole history of inter-arrival times generated at ti

by all the transitions preceding k. We then record each attacker’s decision and, if

34

that decision was to start an attack, we label the attack as successful/unsuccessful

by looking at how the patrolling mission would unfold ahead of k. Call NA(i)

and Nu
A(i) the number of attack attempts and the number of unsuccessful attacks

generated by such procedure on target ti, respectively. The protection ratio for

target ti is then defined as viN
u
A(i)/N

A(i). Ideally, this metric should be high,

i.e., for high-value targets we prefer patrolling strategies causing the attacker to

perform many unsuccessful attacks. In the experiments we present, the choice for

the parameters defining the four time-variant strategies (shown at the top of the

figures) were informed by a preliminary comparative evaluation of different choices.

In particular, we run the algorithms on a set of benchmark problems and picked

the values giving the best performance averaged across all instances.

0 5 10 15 20 25 30

Vertex

0

1

2

3

4

5

P
ro

te
ct

io
n

R
at

io

time-invariant

constant-transition (450)

random-transition (λ = 200)

Figure 3.3: Protection ratio for each vertex with attacker using a NN strategy.

In Figures 3.3 and 3.4 we start by contrasting the time-variant strategies with

the time-invariant method we proposed in [19]. In particular, we plot the protection

ratio for one of the environments with 30 vertices. In this case the attacker used

the NN approach. As it can be seen, the temporal variant strategies outperform

35

0 5 10 15 20 25 30

Vertex

0

1

2

3

4

5

P
ro

te
ct

io
n

R
at

io

time-invariant

constant-time (42000.0)

random-time (ψ = 43000.0)

Figure 3.4: Protection ratio for each vertex with attacker using a NN strategy.

the time-invariant strategy at the majority of targets ensuring a more extensive

protection. Vertices where the gaps are marginal are those typically characterized

by small attack times. For such vertices, the patroller can do little to prevent an

attack since they represent locations intrinsically difficult to protect.

Next, in Figures 3.5 and 3.6 we display analog results, by considering the case

where the attacker uses the maximum likelihood method. It can be observed

that the performance is rather similar, with time-variance outperforming the non-

variant strategy. A possible explanation behind such trends is that time-variance

makes these patrolling strategies harder to learn and hence predicting inter-arrival

times is likely to be subject to errors. Slightly more complex methods such as

NN do not tend to outperform simpler approaches like the prediction based on

maximum likelihood). Furthermore, figure 3.2 presents the results obtained against

the ML attacker on a graph with 50 target locations. As can be seen, the results

are similar and show how our method can be scaled to larger graph instances.

This intuition about the hardness of forecasting these strategies is confirmed by

36

0 5 10 15 20 25 30

Vertex

0

1

2

3

4

5
P

ro
te

ct
io

n
R

at
io

time-invariant

constant-transition (450)

random-transition (λ = 450)

Figure 3.5: Protection ratio for each vertex with attacker using a maximum

likelihood strategy.

the results obtained when the attacker uses a DNN. This is shown in Figures 3.7

and 3.8. First, observe that the absolute values for the protection ratio are essen-

tially comparable to those obtained with the other types of attacker. Therefore

even if the attacker uses a more sophisticated technique to forecast the next visit

to the vertex, the performance does not improve. We explain this result with

the intrinsic hardness of predicting the time series generated by our patrolling

strategies. This is particularly relevant because the tests with the DNN were on

purpose skewed in favor of the attacker: the network was trained with significantly

more data than the samples made available to the attackers based on the NN or

maximum likelihood. The only outlier case appears to be the protection ratio for

vertex 23 in Figure 3.8. Due to the black box nature of the forecast approach

implemented by the DNN, it is difficult to explain why this happens. However,

this single outlier does not hinder the overall conclusions we derived, although

further investigations will be done in the future. Figure 3.9 further corroborates our

37

0 5 10 15 20 25 30

Vertex

0

1

2

3

4

5
P

ro
te

ct
io

n
R

at
io

time-invariant

constant-time (42000.0)

random-time (ψ = 42000.0)

Figure 3.6: Protection ratio for each vertex with attacker using a maximum

likelihood strategy.

assessment that data intensive methods like DNN do not significantly outperform

simple strategies. The figure shows the protection ratio for a testcase graph when

the attacker uses the three different strategies we considered. While the maximum

likelihood and the NN offer comparable performance, the DNN almost uniformly

performs worse that the other two strategies in terms of ability to correctly predict

the next arrival time, while at the same time requiring significantly more data to

train.

In the last experiment we present, we assess the performance of our strategies

with respect to the false negatives rate β. We analyze how the average protection

ratio varies with respect to what we denote as observation accuracy, defined as

1− β. The lower this accuracy, the more frequently the attacker will believe that

the target has been unattended even if the patroller has actually been there to

check it.

In Figures 3.10 and 3.11, we report this analysis for the random-time strategy

38

0 5 10 15 20 25 30

Vertex

1

2

3

4

5

P
ro

te
ct

io
n

R
at

io

time-invariant

constant-transition (450)

random-transition (λ = 200)

Figure 3.7: Protection ratio for each vertex with attacker using a DNN.

and for the time-invariant one against the maximum likelihood attacker. The

intuitive trend that would be expected from an attacker affected by increasing

levels of observation noise is that of an increase in the protection ratio. That is,

attackers with higher false negatives rates should be, on average, performing worse

against our patroller. However, the figures reported below draw a less intuitive

and more insightful picture. We notice that for not remarkably low, and hence

reasonable, values of accuracy (≥ 0.8) no significant difference can be observed in

the average protection ratio for both strategies.

This counter-intuitive result can be explained by noting that a lower accuracy

would inevitable result in a “reckles” attacker since false negatives will induce

an optimistic overestimation of inter-arrival times. The fact that attempting more

attacks results in a better performance of the attacker reveals an hidden prevention

feature of our strategies. That is, in many occasions the attacker is induced to not

attempting an attack (by inducing a belief of a small inter-arrival time) even when

a winning occasion was present. Such prevention effect is clearly mitigated by

39

0 5 10 15 20 25 30

Vertex

1

2

3

4

5

P
ro

te
ct

io
n

R
at

io

time-invariant

constant-time (42000.0)

random-time (ψ = 42000.0)

Figure 3.8: Protection ratio for each vertex with attacker using a DNN.

reckless attackers even if, as the plots show, it become significant only for very low

values of accuracy.

3.5 Conclusions

This chapter presented an adversarial patrolling setting where the attacker is

characterized by an observation model allowing it to gather information only locally

to a target. We proposed heuristic methods to generate patrolling strategies that,

using delays and time-variance, provide protection and are difficult to forecast. A

compelling future direction for the present work is the study of on-line techniques

to adapt time-variance. One possible approach is to have the patroller running

an online model of a baseline attacker (e.g., one that runs a maximum likelihood

estimator) and use it in the decision of when to switch from a strategy to another.

This extension is left for future work.

Among the various directions for future work, a compelling one we already

40

0 5 10 15 20 25 30

Vertex

0

1

2

3

4

5

6

P
ro

te
ct

io
n

R
at

io

random-time DNN (ψ = 42000.0)

random-time Maximum Likelihood (ψ = 42000.0)

random-time NN (ψ = 42000.0)

Figure 3.9: Comparison between the protection ratio achieved on a testcase graph

against three different attack strategies.

mentioned earlier on is in exploring on-line approaches to control time variance.

That is, devising mechanisms for determining at runtime when to change the

transition matrix. One intuitive way to tackle such a problem could be as follows.

As the attacker, through the observation model we defined, observes a sequence

of inter-arrival times, it could try fitting such data to an exponential distribution

using, for example, a maximum likelihood strategy as we discussed in the previous

section. This could be considered a baseline attacker, i.e., the least sophisticated

attacker that does not just performs random attacks (similarly to what done in [14]

with attackers selecting their target with a probability proportional to their value)

. Consequently, the patroller could decide to switch the transition matrix to limit

the accuracy of the estimation. The problem of relating the number of samples to

the estimation accuracy is well understood [75], but it requires the patroller to keep

track of the interarrival times generated at each target by the current transition

matrix, i.e., the decision has to be made online. This extension is left for future

41

0 5 10 15 20 25 30

Vertex

0

1

2

3

4

5

P
ro

te
ct

io
n

R
at

io

ψ = 43000.0, accuracy = 0.8

ψ = 43000.0, accuracy = 0.85

ψ = 43000.0, accuracy = 0.9

ψ = 43000.0, accuracy = 0.95

ψ = 43000.0, accuracy = 1.0

Figure 3.10: Protection ratio for each vertex with the random-time strategy and

the maximum likelihood attacker for different observation accuracy.

0 5 10 15 20 25 30

Vertex

0

1

2

3

4

P
ro

te
ct

io
n

R
at

io

accuracy = 0.8

accuracy = 0.85

accuracy = 0.9

accuracy = 0.95

accuracy = 1.0

Figure 3.11: Protection ratio for each vertex with the time-invariant strategy

and the maximum likelihood attacker with different observation accuracy.

42

work.

Chapter 4

Single Agent Patrolling via

Reinforcement Learning

In this chapter, the PSG is modeled as a Markov Decision Process (MDP) so

that reinforcement learning techniques may be applied. The resulting framework

is applied to the single agent patroller case and evaluated according to its ability

to the capture the intruder. The work shown here was originally presetned in [11].

4.1 Patrolling Setting

In this chapter, we again adopt a graph-based representation of the environment

where K target locations must be protected through visits by a single patrolling

robot as in chapter 3. Targets are denoted as {t1, ..., tk}. Their topological layout
is described by a weighted undirected graph G = (V,E, d) where V = {t1, ..., tk}
and (ti, tj) ∈ E indicates that the patroller can move from ti to tj (or vice versa)

in a time equal to dij. Attack times are assumed to be derived as follows:

ai = k · U(lb, ub)

lb = m−
(m
L

)
ub = m+

(m
L

)
where: L denotes a positive real number, m denotes the average travel distance

on the undirected graph, the function U(·) denotes a random uniform sample on

43

44

the interval [lb, ub], and k scales the resulting random sample by a positive real

number. To generate non-trivial instances, attack times cannot be either too large

(capture would be too easy) or too small (attacks would be too hard to defend

against.) The above formulas capture this requirement by uniformly drawing their

values from an interval (whose width is controlled by the parameter L) centered

at the patroller’s expected distance to be traveled by any two targets.

The patrolling mission unfolds in discrete time steps. In each of them, the

patroller protects the graph by moving from one target location to the next, but

may also decide to stay at the current vertex for another time step. If the patroller

does decide to stay at the current vertex, the travel time is not zero. Instead, the

patroller travels some random time along an edge and returns to the vertex it left

from. It is assumed, in the model, that if the patroller travels to a vertex where

an attack is taking place then the attack is neutralized and the attacker captured.

For generality, all attackers, before a game starts and after any re-spawn, derive

their deadline by randomly sampling from a pre-defined real–valued set.

4.2 Deep reinforcement learning and patrolling

4.2.1 Problem Formulation

We model our robotic patrolling setting as a Markov Decision Process (MDP)

and then apply Deep Reinforcement Learning (DRL) to synthesize a patrolling

strategy. A Markov decision process is defined by the tuple (S,A, P,R, γ) where:

S denotes the set of states, A refers to the set of available actions, P denotes the

transition probabilities for the environment, R is the reward function and γ the

discount factor. Figure 4.1 presents a visualization of the RL framework for the

patrolling robot. The robot must decide which vertex to travel to next (action)

and will then receive both a reward from the environment (security game) and a

transition to a new state.

Considering that in our setting the environment is modeled as an undirected

graph, we introduce a state representation with the aim of encoding key aspects of

the patrolling strategy realization over a finite temporal history. Specifically, we

45

Figure 4.1: Illustration for modelling the patrolling security game as a Markov

Decision Process (MDP), or in other words as a problem of sequential decision

making. Given an observation from the environment and a reward signal, the

defender must decide which action to take so as to maximize long term rewards.

Despite the need for large amounts of data, RL techniques offer the robustness

of not needing an explicit model for the attacker. As long as the attacker can

be simulated (implemented through software), then the RL defender can play

patrolling games against the attacker and learn to adapt its schedule accordingly

to beat the intruder. Furthermore, we show that this framework learns to succeed

even against a multitude of attacker behaviors.

46

define a state as a (M + n + 1)-dimensional vector combining several patrolling-

related aspects of the graph and the patroller’s past decisions:

[ti, pi−M , ..., pi−1, pi, s0, ..., sn]

The first entry in the state representation (ti) is the current time measured as the

sum of the dij’s up to the ith transition in the patrolling mission. The next M

entries in the state vector represent the last M vertices that the patroller visited.

Finally, the last n entries denote the current (or instantaneous) idleness of each

vertex, a common optimization criteria used in literature [81]. Idleness is defined as

the time since the patroller’s last visit to a particular vertex. Hence, the currently

occupied vertex has always an idleness of 0 that starts increasing as long as the

patroller leaves the vertex and does not return to it. The state aims to both capture

the current coverage of the graph and any cycles relevant to patrolling the graph.

Each idleness value encodes information about which vertices are visited more often

(resulting in a lower idleness value) and which vertices are being ignored (larger

idleness value). Furthermore, the history of past vertices is included to enable

the patroller to make correlations between graph cycles, defined as a sequence of

traveled vertices where the first and last vertex are the same, and coverage of the

graph.

The use of MDP based representations is a widespread practice in patrolling [32].

Our formulation, however, adopts a richer state description by combining several

attributes. The action set A for every state is the entire set of vertices, {l1, ..., lk},
denoting which target location the patroller will move to next. We assume deter-

ministic transitions and use a discount factor of 0.99 for all experiments. Moreover,

M in all experiments equals k, or the number of vertices.

We adopt a reward function that rewards the patroller only when an attack is

neutralized. In other words, every action that the patroller takes receives a reward

signal of 0, however, when the state transition results in the capture of the attacker

the patroller receives some positive real reward, r. After a parameter sweep, we

settled on a reward value of 5 for captures. A limitation of this reward function

is the sparseness of the signal and from our experience generally requires that

the patroller captures the attacker within a reasonable number of transitions, in

47

order to learn. In our experiments, this was handled by tuning the deadline of the

attackers. A modest deadline (about 10 transitions) allows for the algorithm to

produce adequate results during training. A few more points on the design of the

reward function: the deadline for the attacker is not fixed and as explained later

in this section it is sampled uniformly from a list of deadlines, a too large deadline

makes the problem very difficult for the RL defender and results in very slow

improvement as the RL agent trains, and finally the signal ultimately produces a

patroller that attempts to capture the intruder as much as it can. The final point

sheds light on the limitations of the present work and a broader debate about the

appropriate measures for success in patrolling scenarios. For example consider an

attacker that waits indefinitely for the best moment to attack and thus may decide

to ”never” attack because its interal belief model never believes it will lead to

success. Our current framework would not be applicable to such an attacker since

the RL agent’s feedback is realized through captures and if the patient intruder

waits indefinitely then the patroller never receives feedback. However, at the same

time a patroller that could keep out an attacker without end because of its strategy,

could also be seen as a highly successful defender. Thus our stated goal by mere

design of our reward function is to capture the intruder and by virtue of our

premise, our RL framework will only work against intruders that must attack

eventually.

Indeed when the current framework was applied to some of the intruder models

discussed in chapters 3, 5 the results were not encouraging. Despite a re-designing

of the reward signal, +1 for every turn that does not result in the end of the game,

the RL agent could not learn to beat K Nearest Neighbor or Maximum Likelihood

attackers. Resolving these issues will require more careful design and curating.

The proposed function encourages the patroller to extend the episode for as long

as possible by rewarding it for repeatedly capturing the attacker indefinitely. We

opted for not including a negative reward signal at the end of the episode when the

patroller is unable to counter the attack because experiments showed that including

the negative signal had almost no effect on the performance. We postulate this

is due to the fact that as the patrolling agent begins to capture more and more

48

attackers, the accumulation of positive rewards outweighs the single negative signal

that could be sent to the agent during learning at the end of a failing episode (the

patroller can capture many attackers in one episode, but can only lose the game

once).

4.2.2 Resolution with Proximal Policy Optimization

Policy gradients [91] is a family of methods for finding an optimal policy of

an MDP where the agent’s policy itself is parameterized by a vector θ and the

optimization happens in the policy space π(a|s, θ). To use policy gradient methods

in our setting we define a policy as π(lj|st, θ) i.e., the policy receives as input the

state at time t and outputs the probability of selecting lj as the next vertex to

visit.

These policy gradient methods can be extended to Actor-Critic [90] methods

where not only is the agent’s policy parameterized (Actor) but also a value function

approximation (Critic) is used to discriminate between good and bad performing

actions. By adopting Proximal Policy Optimization (PPO) [84] we approximate

the objective by a first-order surrogate problem we will refer to as Clipped–PPO

agent. The agent obtains its name from the objective function used to optimize

the actor:

L(θ) = E[min(ft(θ)At, clip(ft(θ), 1− ε, 1 + ε)At)]

where

ft =
π(lt|st, θt)
πold(lt|st, θt)

,

At is an estimator of the advantage function at time step t, and ε is some small

real valued scalar.

The intuition behind Clipped–PPO follows from the reasoning of the Trust

Region Policy Optimization methods (TRPO) [83], i.e., that a too large update on

the policy will result in a destabilization of the learning process.

Whereas TRPO methods opt to use constrained optimization techniques result-

ing in the need to calculate higher order approximations of gradients, Clipped-PPO

moves the constraint on the update into the objective function in the form of the

clip function which will bound the update on the policy.

49

Formalizing PPO to our into our patrolling game setting first requires defining

a policy as π(lt+1|st, θ) i.e the policy will receive as input the aforementioned state

representation at time-step t (which includes the current patroller vertex) and

output the next vertex for the patroller to visit.

In an adversarial patrolling setting where the attacker is able to make observa-

tions of the patroller’s strategy, the defender must exhibit some non-determinism

or else risk making the prediction problem too simple for the attacker. This means

that the optimal strategy for the patroller will be a mixed strategy. Stochastic

policies are a natural way to model mixed strategies over an undirected graph

leading to our choice of using the Clipped Proximal Policy Optimization agent

(Clipped–PPO) from [84]. Figure 4.2 denotes the architecture of our PPO network.

The input to the network comes from the observation in the MDP and after passing

through feed-forward layers will return a probability distribution over the vertices.

Finally, the defender will sample the probabilities to decide which target location

to visit next.

4.3 Modeling the Attacker’s Behavior

An important departure in our work from others is the explicit modeling

of attacker behavior. In general, one can have different attacker models, each

representing a potential attacker to defend against. We propose six different

attacker models and discuss their corresponding rationale. All attacker models

draw their deadline randomly at the beginning of each game from the discrete set

of values {100, 150, 200, 300} in all experiments. The six attackers we consider are

described in the following.

Max Idleness Attacker (MIA)

Once the deadline is reached, the MIA will attack the vertex with the largest

idleness. The MIA model will target locations that have been left vulnerable for

more since a vertex with larger idleness means that the patroller has ignored that

particular vertex for longer. Generally, a larger deadline makes this model (and

50

Figure 4.2: Figure depicts the network architecture used for the PPO algorithm.

Input to the network corresponds to the observation received from the Markov

Decision Process: the current time, the instantaneous idleness of each target

location, and a history of size M (usually equal to N) of past actions. After

passing through an MLP block and a final soft-max layer the network transforms

the input into a probability distribution (logits) over the graph’s vertex set. A

function modelling the distribution acoording to the logits then returns which

vertex the defender will move to next.

51

other idleness models) stronger since it is able to observe the patroller for a longer

period of time. This model assumes that the attacker can observe all vertices in

the graph.

Average Idleness Attacker (AIA)

Once the deadline is achieved this model will penetrate the vertex with the

largest average idleness. Average idleness is measured as:

1

t

y=t∑
y=0

Iy

where Iy is the instantaneous idleness at transition y. The rationale here follows

from the MIA model in that this model will penetrate more vulnerable (i.e., larger

idleness) targets. However, this model will not consider instantaneous idleness but

average idleness up to the current time step. This attacker observes a history of

idleness and attacks the vertex that has been visited with the least regularity. Like

MIA, AIA assumes full observability of the graph.

Idle Subset Attacker (MISA)

This attacker model works exactly like MIA, but it only focuses on a subset of

the vertices and completely ignores the vertices not in its purview. This model’s

rationale follows exactly from the MIA model, but also it captures scenarios where

the attacker is not interested in all the target locations or cannot observe the entire

graph. Whether because of preference or restriction, this attacker models intruders

who have curtailed their total attention. In all subsequent experiments, the MISA

attacker focuses on a fixed subset consisting of half of the target locations.

Scaled Idleness Attacker (SIA)

This model attacks the vertex with the largest value of the product between the

idleness vector and the vector of vertex values once the deadline is reached. This

attacker uses the idleness information but also incorporates a preference for target

locations with higher values. This model emulates intruders that are not interested

in vertices that are being ignored by the patroller if these have low values.

52

Max Value Attacker (MVA)

Once the deadline is reached, the Max Value Attacker always attacks the vertex

with the largest value. Vertex values are generated once for a particular graph

and remain static. This MVA model implements cases where the attacker is only

interested in the largest payout and thus repeatedly tries for the target with the

most assets. This model’s observational capabilities are limited to the maximum

value target location and is unaware of the patroller location when it is not at the

maximum value vertex.

Preference Attacker (PA)

Once the deadline is achieved this model chooses a vertex to attack according

to a probability distribution over the vertices. This model does not take into

consideration idleness or value. As the distribution approaches a uniform prob-

ability the problem becomes more difficult for the patroller. The PA model is a

general model that can represent any preference that the attacker might have over

the vertices and models an intruder who has the ability to infiltrate any target

location but cannot observe the patroller’s movements. All experiments presented

here (where |V | = 10) were done with a distribution of 0.86 probability on one

vertex and the remaining 0.14 distributed non-uniformly among the other vertices.

4.4 Training, Domain Randomization and Re-

sults

All the graphs presented here are created by randomly placing points on a

grid of size 50 by 50; It is important to note that the attackers can be divided

into categories: those that make an attack based on some function of the graph

idleness induced by the patroller’s schedule, and those that do not. We can expect

that the policies that will yield large rewards against the idleness group will not

perform well when compared to the non–idleness group since the objectives are

not correlated.

53

Before training considering multiple attackers, we assess whether the Clipped–

PPO agent is able to learn against individual attacker models. Figure 4.3 shows

the learning curves for the Clipped–PPO for such a scenario.

0 1 2 3 4 5
epochs (E) 1e5

0

50

100

150

200

250

300

350

400

re
tu

rn
 (r

)

Clipped-PPO Training

Clipped-PPO-MIA
Clipped-PPO-AIA
Clipped-PPO-MISA
Clipped-PPO-SIA
Clipped-PPO-MVA
Clipped-PPO-PA

Figure 4.3: Learning curves for the Clipped-PPO agent against the different

attacker models. |V | = 10 and all curves were smoothed using a sliding window

average. The x-axis represents the number of epochs trained and the y-axis shows

the returned cumulative reward. Some attacker models are easier to learn against

than others as evidenced by the slope and final value of the distinct curves.

A single architecture was used to generate all of the curves. It consists of

an actor and value network both with two hidden layers. For both networks,

the first hidden layer contains 200 units, and the second hidden layer 100 units.

54

Training procedures and agent implementations are built upon the TF–Agents

library [41]. An epoch consists of running 30 game simulations in parallel and

then optimizing both actor and critic networks according to the loss functions and

training loop presented in [84]. The learning rate starts at a value of 1 · 10−4 and

is annealed according to an exponential decay function. Rewards and observations

were normalized and for the Clipped–PPO agent an ε value of 0.01 was used.

From the slope and final values of individual curves, it is evident that some of the

attacker models are easier for the Clipped–PPO agent to learn against than others.

For example, the Max Value Attacker curve (in purple) shows that the patroller

quickly learns a good policy for defending the graph. However, the policy that the

agent settles on may not be robust to other attacker models (corroborated later

empirically).

MIA AIA MISA SIA MVA PA

Clipped-PPO-MIA 118.2 29.6 93.4 93.8 0.0 1.7

Clipped-PPO-AIA 68.5 150.1 2.0 51.1 0.0 34.8

Clipped-PPO-MISA 0.4 0.4 293.5 76.8 53.3 0.0

Clipped-PPO-SIA 0.7 0.7 1.0 400.5 8.1 7.0

Clipped-PPO-MVA 0.2 0.2 0.4 46.6 238.7 2.0

Clipped-PPO-PA 0.6 0.4 0.0 0.0 0.0 76.7

MI-P 24.3 3.4 3.3 2.1 0.5 1.0

DR Clipped-PPO 37.4 35.4 43.4 207.7 77.6 3.6

Table 4.1: Confusion matrix for a graph with |V | = 10. An entry in the table is

generated by first training a Clipped-PPO agent exclusively against some attacker

model then deploying it against different attackers. Results are averaged over 2,500

games.

Next, we present the Domain Randomization (DR) [95] training procedure to

generalize across attacker models. The approach at training time exposes the

RL agent to all of the available attacker models instead of just a single model.

55

Tables 4.1 and 4.2 1 show the results for the case of DR training, where before the

start of any game (or episode) during training an attacker model is selected by

sampling uniformly over all the available models. The first six rows of Table 4.1

form a confusion matrix for the different Clipped–PPO agents, while the last row

shows the performance of the Domain Randomization (DR) Clipped–PPO agent.

Average Performance Standard Deviation Worst Case

Clipped-PPO-MIA 56.1 51.9 0.0

Clipped-PPO-AIA 51.1 55.5 0.0

Clipped-PPO-MISA 70.7 113.9 0.0

Clipped-PPO-SIA 69.7 162.1 0.7

Clipped-PPO-MVA 48.0 95.2 0.2

Clipped-PPO-PA 12.9 31.2 0.0

MI-P 5.8 9.2 0.5

DR Clipped-PPO 67.5 72.6 3.6

Table 4.2: Results presented here are some statistics gathered from Table

4.1. Domain randomization helps the Clipped-PPO patroller generalize over the

attacker models. As shown here, the DR Clipped-PPO agent has a reasonable

trade-off between average performance and variance while at the same time has a

better worst case return.

Each entry is a testing scenario where a Clipped–PPO agent is deployed against

a different attacker model. The table corroborates the expectation that an agent

trained exclusively on a single attacker model will perform best against the attacker

it was trained on but will also generalize poorly to other attacker models. Row

”Clipped–PPO–MVA” clearly shows that while the agent can learn to protect

well against the MVA, the resulting policy leaves the patroller vulnerable if the

attacker changes strategies. DR Clipped–PPO, however, performs well across the

attacker models as shown in table 4.2. Presented in table 4.2 are the averages of

1Note that the results presented here differ from the original paper as there was a error in the
implementation of one of the attacker behaviors (SIA).

56

the scores shown in table 4.1 as well as the calculated standard deviation of the

scores. The DR Clipped-PPO agent has a reasonable trade-off between average

performance and standard deviation while at the same time has the best worst-case

performance. Thus if a user were unsure about which opponent she might face,

the DR-Clipped-PPO provides the best guarantee of performance assuming that

the opponent behavior is in the attacker model library used during training.

For completeness, we also compare our method against a heuristic strategy that

represents an established class of approaches to the patrolling problem, [70, 71, 101]

(see also chapter 2 for a discussion of idleness optimization techniques). These

works tackle the patrolling problem as one of computing a route that minimizes

some form of the idleness (instantaneous, average, or expected) over the lifetime of

the patrol. Generally speaking, the problem of finding an optimal path is NP-hard

and thus researchers have focused on developing effective heuristic methods. A

popular scheme is the design of a greedy heuristic that, as the name suggests, acts

optimally within a local context for the patroller.

Thus we introduce, the Maximum Idleness Patroller (MI-P) that will represent

the aforementioned class of heuristic idleness patrollers. The MI-P attacker model,

at every turn, decides to move to the vertex with the largest instantaneous idleness.

In this way, the MI-P acts greedily with respect to immediate information about

all the vertices and approximates a schedule that will minimize the average idleness

induced over the entire graph. As can be seen from Table 4.1, the MI-P patroller

performs its best when playing against the idleness–based attacker models. Our

Clipped–PPO–MIA agent does better by more than a factor of 10 meaning it

learns ways to manipulate the idleness so as to capture the attacker. The MI-P

meanwhile does not respond or react to the attacker. A point of detail here is that,

like other works [70] we set the initial instantaneous idleness for all the verities as

0. We programmed the MI-P to break ties between the vertices randomly and as

such will initially visit all the of vertices once and then realize a deterministic route

along the graph according to the idleness.

We also present table 4.3 with the normalized values found in the table 4.1.

Here we see similar trends with the DR Clipped-PPO agent achieving the best

57

MIA AIA MISA SIA MVA PA AVG. STD.

Clipped-PPO-MIA 1.00 0.20 0.32 0.23 0.00 0.02 0.30 1.77

Clipped-PPO-AIA 0.58 1.00 0.01 0.13 0.00 0.45 0.36 2.17

Clipped-PPO-MISA 0.00 0.00 1.00 0.19 0.22 0.00 0.24 1.42

Clipped-PPO-SIA 0.01 0.00 0.00 1.00 0.03 0.09 0.19 1.14

Clipped-PPO-MVA 0.00 0.00 0.00 0.12 1.00 0.03 0.19 1.15

Clipped-PPO-PA 0.00 0.00 0.00 0.00 0.00 1.00 0.17 1.01

MI-P 0.21 0.02 0.01 0.01 0.0 0.01 0.04 0.26

DR Clipped-PPO 0.32 0.24 0.15 0.52 0.33 0.05 0.26 1.59

Table 4.3: Normalized (by column) confusion matrix for a graph with |V | = 10.

An entry in the table is generated from the values found in table 4.1. Each value

in the table is obtained by dividing the score by the largest score in the column.

worst-case performance, all while obtaining a good trade-off between its average

normalized performance and standard deviation. Note that a lower variance value

here is not necessarily a better performing model, since an agent that always scores

poorly against all the attacker models will have a lower variance.

DR Clipped–PPO was able to learn a patrolling strategy that can cope against

what from the perspective of the patroller is an unknown and non–stationary

attack–generation process. Particularly significant is the fact that the attacker

behaviors we combined exhibit substantially different dynamics. Idleness attackers

(MIA, AIA, MISA) exploit observations of the patrolling strategy’s realization.

Value–related ones (MVA, PA) follow a set of predetermined and arbitrary prefer-

ences, which depend on the environment, not on the patroller, and the remaining

one (SIA) combines idleness and values. In traditional patrolling applications,

these dynamics always result in conflicting objectives to be optimized. The results

obtained with DR Clipped–PPO show how our method is a first promising step to

overcome this limitation and build robust patrolling agents.

58

4.4.1 Ablation Study

Our state representation (and input to our function approximators) can be

partitioned into the tuple (t, P, S) where: t is a real–valued scalar representing the

current time, P is a vector of size K denoting the last K vertices visited, and S is

also a vector of size K denoting the instantaneous idleness of each vertex. Building

our state representation equates to concatenating t, P , and S. As discussed in

Section 4.2, the P vector is a history of the previous actions taken by the patrolling

agent which helps the agent identify cycles and relevant patrolling patterns. The

S vector (also called idleness vector) while also containing information related

to past actions identifies areas of the environment that are under–visited. To

corroborate the individual usefulness of S and P we study the training performance

of the Clipped–PPO agents: first by removing only the history vector P from the

state and then by removing only the idleness vector S from the state. For all

experiments, the size of vector P is equal to the number of vertices in the graph.

We, in this section, focus on two attacker models that are representative of our

attacker library: the Max Idleness Attacker (MIA) and the Preference Attacker

(PA).

Figures 4.4 and 4.5 show the training performances under different state rep-

resentations against MIA and PA, respectively. Focusing on Figure 4.4 (MIA)

first, we see that removing the idleness component from the state diminishes

the performance of the RL agent more than when solely removing the history S.

Intuitively, this makes sense as the RL patroller is inferring correlations between

the idleness component in the state and the attacker’s decisions. Removing one

or the other, however, does have a negative impact on the RL agents’ training

performance. Figure 4.5 (PA) demonstrates a similar pattern wherein removing

the idleness information significantly harms the training performance of the RL

patroller. From both charts, we may deduce that the idleness component in

our state representation provides vital information for the patroller during the

learning process. The idleness vector provides ongoing information about which

vertices have been visited most recently, thus also capturing information about

past actions. From both figures, we see that the actual history of actions alone is

59

0 1 2 3 4 5
epochs (E) ×105

0

50

100

150

200

250

re
tu

rn
(r

)

Ablation Study MIA

Clipped-PPO-MIA (remove S)

Clipped-PPO-MIA (remove P)

Clipped-PPO-MIA

Figure 4.4: Ablation study of the state representation when training Clipped–

PPO against the Maximum Idleness Attacker. The orange curve represents the

performance after removing the history of actions, P , from the state and the blue

curve shows the performance after removing the idleness vector, S from the state.

Removing either results in a decreased performance.

not sufficient for learning to patrol the graph, but as is the case with Figure 4.4 its

addition can improve performance. Note that removing both the components S

and P would leave the state vector as a single scalar and thus we did not perform

any experiments as such.

4.5 Conclusions

In this chapter, we proposed a method to deal with adversarial patrolling using

deep reinforcement learning. We cast the problem in an RL setting where the

reward function is based on the realization of attacks that can follow arbitrary

logic that is unknown to the patroller. Our main contribution is the combination

of a Proximal Policy Optimization agent and Domain Randomization training

60

0 1 2 3 4 5
epochs (E) ×105

0

10

20

30

40

50

60

70

80

re
tu

rn
(r

)

Ablation Study PA

Clipped-PPO-PA (remove S)

Clipped-PPO-PA (remove P)

Clipped-PPO-PA

Figure 4.5: Ablation study of the state representation when training Clipped–

PPO against the Preference Attacker. The orange curve represents the perfor-

mance after removing the history of actions, P , from the state and the blue curve

shows the performance after removing the idleness vector, S from the state. PA

uses the same distribution as described in section 4.3.

61

techniques to generate patrollers that are robust to changing attacker strategies.

Key to the method is changing attacker models before the start of every episode

which effectively exposes the RL patroller to different MDPs during training. This

method pushes the reinforcement learning algorithm (PPO) to converge to a sort

of average policy that is able to generalize across different environments.

To the best of our knowledge, this is the first work that applies a framework and

presents significant results against a mixture of very distinct attacker behaviors.

Our ablation study revealed that including a history of past actions in the state is

less important than including the current instantaneous idleness, yet it is needed.

Future directions include the application of graph neural networks to the actor

and critic networks and multi-patroller settings where a team of patrollers must

cooperate to patrol an environment. This involves studying different network

architectures for the graph neural network and applying Centralized Training and

Decentralized Execution (CTDE) methods to handle the multi-robot setting. With

respect to the GNN, we could obtain a model that does not need re-training for

every new graph instance since the new network could handle variable graph size

input. Furthermore, the CTDE technique will encourage agents to spread out so

as to cover the entire graph and avoid redundancies.

Chapter 5

Multi-Agent Techniques Against

an Opponent with Limited

Information

The previous two chapters focused on approaches for a single defender playing

the patrolling security game. The subject of the next two chapters, however,

extends the problem to incorporate teams of patrollers. The team patrolling

problem requires more complex solutions and strategies for cooperation, thus

making it more challenging. This chapter, compares specifically different schemes

for coordination and cooperation. Results are presented and discussed that show

no single method consistently outperforms any other. A good designer must tailor

the appropriate solution to their specific use-case.

Moreover, for the work in this chapter and in chapter 6 we assume that the

agents do not have access to infrastructure for agent to agent communication. This

assumption allows us to focus our attention on offline centralized approaches, but

does limit the system in some particular ways.

Firstly, because the agents do not communicate any plans amongst themselves

there is the potential for redundancy, or inefficient use of patrolling resources, if

two agents visit the same target location. In this chapter we slightly mitigate

this effect by computing a separate Markov chain for each agent. In chapter 6 we

instead restrict each agent to have the same maximum velocity and also have the

62

63

agents start along a set of initial positions that are equally spaced along the given

patrol path.

The work presented here was originally published in [9].

5.1 Multi-Agent Patrolling Setting Definition

Embraced here is the usual graph-based setting which adopts the model we

recently studied in chapter 3 for the single-robot case. Next we introduce the

presence of multiple patrollers. Assume an environment where K target locations,

targets for short, must be protected by means of repeated visits. We assume that

this graph is connected and we will always work on its transitive closure.

Consider M ≤ K attackers, each with the objective of compromising a given

target. To successfully compromise a target li, an attacker must spend a time

greater or equal to ai on such a target without being detected by any patroller.

Attacks are non-preemptive, meaning that they will terminate either with a success

or a capture. The interaction between the team of patrollers and each single

attacker can be thought as driven by a constant-sum revenue distribution where

the patrollers get the total amount of protected value and the attacker gets the

value of the target it compromises. Formally, patrollers and any attacker will get

(
∑K

i=1 vi, 0) in case of a failed attack, and (
∑K

i=1 vi − vj, vj) in case of a successful

attack on target lj, respectively. We will not use such payoff structure in a game-

theoretical model, but embrace the underlying interpretation where vi can be seen

as the value stored in li, while ai encodes a measure of resiliency of the target.

To protect the targets, N < K patrollers are deployed. We assume that when

a patroller visits a target under attack it neutralizes the attacker: if one attacker

attacks li at time t and the next visit to li by any of the patrollers occurs before

time t + ai, the attacker fails its attempt. If instead no patroller visits li before

t+ ai, li is compromised.

The motion of the patrollers in the graph is governed by strategies that are not

known to the attackers. However, through repeated observations, each attacker

can construct a belief based on the following assumptions:

64

1. each attacker has local observation capabilities spatially confined to a single

given target (as in chapter 3);

2. patrollers are indistinguishable;

3. attackers are unaware of each other.

Assumption 1) allows each attacker to know the times at which a patroller

arrives and leaves the target it is observing. This target is chosen before gathering

any observation of the patrollers and hence it is not influenced by them. In other

words, the strategic decision that the attacker has to perform is whether to attack

a given target under observation or not. We assume that the M targets under

observation are unknown to the patrollers. This assumption reflects our choice of

locally limited observation capabilities: our attackers cannot gather observations

from multiple targets and use such a knowledge to strategically choose which target

to attack.

Assumption 2) means that an attacker observing a target can just see that one

of the N patrollers is visiting but it cannot distinguish which one.

Assumption 3) implies that attackers cannot share the observations they gather,

nor they can coordinate their decisions to maximize their chances.

As in chapter 3, we assume that the patrolling strategy followed by the i-th

patroller can be modeled by a time-invariant Markov chain described by a K ×K
transition matrix Pi whose entries are all strictly positive. As a consequence of

the properties of the transition matrix, all agents will eventually visit every vertex

in the environment. As we will see in the following, we will consider both the case

where all the patrollers follow the same strategy and the case where each patroller

follows a different one. The (i, j) entry in Pi represents the probability that the i-th

patroller will visit lj after having visited li. When a patroller moves from li to lj, it

will take a time of at least dij. In chapter 3 we introduced a new class of strategies

characterized by motion delays. The main idea builds upon the assumption that

when a patroller moves from i to j it will introduce a random traveling delay

so that the overall transition time will be dij + ζ where ζ is a random variable

drawn from a uniform distribution over [0,∆]. As we showed in chapter 3, such

65

random delays could make it more difficult for an attacker to precisely forecast the

next visit to a target. As a result, these strategies outperform other non-delayed

approaches against attackers that condition their attack on patroller observations

they have collected on the observed target.

The transition matrix Pi is assumed to be given and computed from an opti-

mization taking the patrolling setting as input and returning the optimal stationary

distribution πi from which Pi can be reconstructed via the Metropolis-Hastings

algorithm (exactly the same procedure as presented in chapter 3). Notice that,

since Pis have positive entries, each of them has a stationary distribution πi (a

K-dimensional vector such that
∑K

j=1 π
i
j = 1 and πi = πiPi.)

Against this background, we study adversarial patrolling when this is carried

out by a team of N patrollers executing the above defined patrolling strategy over

one or more sub-graphs that span the whole environment. Patrollers execute their

strategies independently, meaning that we do not consider any online coordination

taking place. Instead, we allow offline coordination, seen as a subdivision of the

efforts over different sub-regions of the environment before the mission starts, and

how it can impact on the resulting level of protection. To do this, we will consider

and compare two configurations:

• Partitioned Patrollers: the patrolling effort is distributed according to a

partition of the environment (computed offline). Each patroller is assigned to

one sub-region (sub-graph); the sub-regions do not overlap and their union

covers the whole environment. Here offline coordination is performed.

• Non-Partitioned Patrollers: no patitioning is performed, each patroller

potentially covers the whole environment. Here offline coordination is not

performed. If patrollers do not move in sync, this approach will in general

shorten the time between successive visits to a vertex, thus making it harder

for attackers to succeed.

Each configuration has its advantages and disadvantages. The partitioned case

allows the patrollers to allocate more resources where needed. For example, the

environment could be partitioned into small sub-regions when the total value of

66

the covered targets is high. In general, the sub-regions allow frequent revisits, thus

making it harder for an attacker to succeed. On the other hand, this approach is

less robust to faults. If one of the patrollers were to stop working, the sub-region

that was assigned to it would remain uncovered. The non-partitioned approach

instead, is more resilient to failures because even if one patroller fails, all other

patrollers can periodically revisit any location.

5.2 Partitioned Patrollers

We start by considering the configuration where the environment is partitioned

into N sub-graphs and each patroller is assigned to one of them. The rationale

here is to balance as much as possible the workload among the patrollers.

A partition of G = (V,E) can be represented with a set {V1, V2, . . . , VN} where
Vi ⊆ V , for any i ̸= j it holds that Vi ∩ Vj = {∅}, and such that ∪ni=1Vi = V .

Given a partition element Vi, we denoted as G[Vi] the subgraph induced by Vi on

G. Such an induced subgraph has Vi as the set of vertices, the set of edges is given

by Ei = {(li, lj) ∈ E s.t. li ∈ Vi ∧ lj ∈ Vi}, and it represents the sub-region of the

environment that will be assigned to the i-th patroller. To compute partitions, we

need to quantify the patrolling workload. For any partition element Vi, we choose

the cumulative temporal cost of the edges in Ei:

I(G[Vi]) =
∑

(li,lj)∈Ei

dij

Ideally, it is desirable to seek partition elements with low values of I. A small

cumulative temporal cost is an indicator that the total time needed to cover G[Vi]

can be limited. These features can ease the patrolling task on the environment’s

sub-region associated to G[Vi]: protecting an area where targets tend to be close

to each other can ensure higher frequencies of visits and, hence, better protection.

Clearly, this is an heuristic principle which does not guarantee any optimality on

the patrolling performance and that does not constitute the only possible choice

(for example, the maximum temporal cost could be an alternative.) We decided to

opt for such a metric for its simplicity of definition and, more importantly, for the

67

fact that it will allow us to devise two different methods for computing partitions.

Given I, our partitioning problem can be stated as the following: compute a

partition {V1, V2, . . . , VN} of G such that max{I(G1), I(G2), . . . , I(GN)} is mini-

mized. This problem shares core features with the well-known Graph Partition

(decision) Problem (GPP) defined as follows: given a weighted, undirected graph

G = (V,E) is there a V ′ ⊂ V such that I(G[V ′]) = I(G[V \ V ′])? As shown

in [38] (problem SP12), the GPP is NP-complete from the partition problem. An

immediate consequence of this result is that our partitioned patrollers problem

is NP-hard to solve optimally. In the following we introduce and evaluate two

methods to solve this problem. Figure 5.1 depicts the outcome of partitioning a

graph with 3 total agents.

5.2.1 Multilevel Graph Partitioning

The first partitioning approach we propose is a heuristic based on the multi-level

graph partitioning (MLGP) discussed in [47] and [68]. This method is divided into

three steps: graph coarsening, partitioning, and uncoarsening. The final partition

is both balanced in terms of the number of vertices in each sub-graph and also

minimal with respect to the graph cut or inter-sub-graph cumulative edge weight.

The balanced k-way minimum-cut partition performed by the MLGP algorithm

does not directly solve our partitioning problem. Indeed, our formulation seeks

partitions that minimize the cumulative weight of graph edges that, under the

MLGP formulation, are left uncut. Because of this, we introduce two transfor-

mations of the edge weights. Figure 5.2 visualizes the process of the Multi-Level

Graph Partition algorithm. Graphs are coarsened, cut, and then un-coarsened to

produce partitions for the agents.

The underlying idea in both methods is to re-write the edge weights in such

a way that the cut minimization performed by MLGP will produce a partition

similar to a division based on the cumulative weight of uncut edges (those that,

in our problem, are summed up to obtain I in each partition element.) Because

edges that are part of the cut of the graph are discarded, we remove edges that will

have a high weight cost (i.e. travel time). By inverting the edges weights of the

68

Figure 5.1: A common approach to the problem of team patrolling or team

coverage involves partitioning the environment. In the discrete case (over a graph)

the locations are separated into groups according to the number of patrolling

resources (agents) available. Consequently, the problem reduces to a single agent

instance for each member of the team. While effective at dividing the workload

requirements for individual members of the team, the approach lacks robustness

to agent failures. If a member of the team breaks down then a subsection of the

environment is left unguarded until a new partition, with k−1 agents, is computed.

The black dotted lines above represent edges in the original graph, that are not

used after a partition is computed and employed.

69

Figure 5.2: Illustration depicting the Multi-Level Graph Partitioning procedure.

Sub-figure a (top left corner) depicts a regular input graph to the partitioning

algorithm. Next, in sub-figure b the number of vertices in the graph is reduced by

combining adjacent vertices and aggregating attributes. Then, in sub-figure c a

maximum cut is computed on the smaller graph. In our case, the transformation

computed on the edge weights pushes vertices far from each other into other

sides of the k-way cut. Finally, the graph is restored to its original size via

graph uncoarsening and partitions are taken according to the k-way cut. Sub-

figure d presents the output of the procedure, a partitioned graph according to k

number of sub-graphs.

70

graph, when minimizing the cut of the graph, the MLGP algorithm will remove

edges with large weights, leaving those with small costs uncut (inside a partition

element).

The first method for graph inversion is the following transformation of the

graph edges:

dij =

⌊(
max

(li,lj)∈E
{dij} − dij + 1

)2
⌋
∀li, lj ∈ V

This transformation will leave the heaviest edges in the graph with the lowest

weights, meaning that targets that in the original graph are very far apart will have,

after the transformation, low edge weights. The k-way minimum-cut partition of

the transformed graph will tend to keep vertices that were far apart out of the same

sub-graph in the resulting partition. In other words, the edges in the minimum

cut of the transformed graph will tend to have large weights in the original graph,

which means that sub-graphs in the resulting partition will be characterized by

low cumulative edge costs.

The second method for transforming the edge weights is based on a normaliza-

tion of both the edge weights and each target’s value-to-attack-time ratio defined,

for a target li, as ρi = vi/ai. The normalization of these quantities is performed in

this way:

dnormij =
dij

max
(li,lj)∈E

{dij}
, ρnormi =

ρi
max
li∈V
{ρi}

∀li, lj ∈ V

dnormij =
dij

max
(li,lj)∈E

{dij}
∀li, lj ∈ V

ρnormi =
ρi

max
li∈V
{ρi}

∀li ∈ V

Then, we consider, for each edge, its normalized weight multiplied by the average

normalized value-to-attack-time ratios of the two associated vertices. Thanks to

the normalization, this operation will return a value between 0 and 1:

dij = dnormij

pnormi + ρnormj

2

71

Finally the values are scaled by an arbitrary factor s and the ceiling is taken to

avoid null weights:

dij =
⌈
(s− s · dij + 1)2

⌉
The idea behind this second transformation is to integrate in the new com-

puted weights also a bias related to the value-to-attack-time ratios of the targets

connected by an edge. The value ρi provides a measure of the critical level of

a target. The higher the target’s value the more critical it is because if it gets

compromised the value loss will be large. Similarly, the lower the attack time the

easier will be for the attacker to compromise that target. As a consequence, this

second transformation not only will induce MLGP to push targets that are far

apart into different sub-graphs, but also to try to separate targets that have a high

critical level.

5.2.2 MILP-based partitioning

The second approach we introduce is an exact method based on the resolution of

a Mixed Integer Linear Program (MILP). The following decision variables denote,

for any sub-graph G[Vi] induced by a partition element Vi, whether any target and

edge of the original graph belong to that sub-graph, respectively. Formally, these

variables are:

xhi =


1 if li ∈ Vh

0 otherwise

, yhi,j =


1 if (li, lj) ∈ Eh

0 otherwise

72

Then the binary linear program reads as follows:

minu s.t. (5.1)∑
h∈{1,...,N}

xhi = 1 ∀li ∈ V (5.2)

∑
i∈V

xhi ≥ γ ∀h ∈ {1, . . . , N} (5.3)

yhi,j ≤ xhi ∀li, lj ∈ V (5.4)

yhi,j ≤ xhj ∀li, lj ∈ V (5.5)

yhi,j ≥ xhi + xhj − 1 ∀li, lj ∈ V, h ∈ {1, . . . , N} (5.6)

u ≥
∑

li,lj∈V
di,jy

h
i,j ∀h ∈ {1, . . . , N}, i > j (5.7)

xhi ∈ {0, 1} ∀li ∈ V, h ∈ {1, . . . , N} (5.8)

Constraints (5.2) force each target to belong to exactly one sub-graph in the

partition. Constraints (5.3) require each sub-graph to include at least γ targets (in

general γ ≥ 2, and in our experiments we set γ = 2). This requirement translates

to a minimum workload assigned to each patroller, trying to avoid situations in

which one patrollers stays fixed on a given target as such a situation would be

equivalent to removing that target and one patroller from the original problem.

Constraints (5.4), (5.5), and (5.6) bound the x and y decision variables. These

three set of constraints express, in a linearized form, the fact that and edge (li, lj)

belongs to a sub-graph if and only if both li and lj belong to that graph too.

Constraints (5.7) define the auxiliary decision variable u and any upper bound over

all the cumulative temporal costs of the various sub-graphs in the partition. The

objective function minimization provided in (5.1) requires to seek the minimum

upper bound. Constraints (5.8) impose a binary integrality to the xs (these are

the only integrality constraints needed since the joint effect of Constraints (5.4),

(5.5), and (5.6) and the minimization (5.1) guarantee that, at the optimum, the

ys always get a binary value).

73

5.3 Non-partitioned Patrollers

We consider a patrolling strategy formulated using a Markov Chain over a

graph, as we did in chapter 3. The Markov Chain state space is S = {1, 2, . . . , n}
and its transition matrix P has all entries strictly positive.

In this second configuration, we consider no offline coordination and also N

patrolling units independently executing the same Markov strategy P (computed,

like before, as described before but now over the whole graph. In this case no

partition of the environment is computed.

One key aspect we aim at studying here is how the expected return times to a

generic target lj vary when the N ≥ 2 patrollers are deployed. Indeed, such return

times are at the core of the performances obtained by P against an attacker that

tries to learn them by observing a single target and, when a confident estimate is

reached, uses such knowledge to determine whether to attack or not. The return

time to a target lj when N patrollers use the same strategy can be formally defined

as follows. For 1 ≤ i ≤ N , let xit be the state occupied by the i-th patroller at time

t (this can correspond to being at some target or traveling along some edge). The

return time to a target lj of any of the N patrollers is then defined as the following

random variable:

rNj = inf{k s.t. ∃i, w, t xit+k = xwt = lj}

In particular, we would like to determine how E[rNj] relates to E[rj] (the expected

return time with a single patroller).

Consider a Markov chain with K states and collapse it into a two-state chain

where one state corresponds to state j in the original chain and state ξ represents

the aggregation of all the other states different from j.

j ξ

1− q

q

1− p

p

Figure 5.3: The collapsed two-states Markov chain.

74

Figure 5.3 depicts such a collapsed Markov Chain whose transition matrix is:

Pcoll =

 q 1− q
1− p p


Here, q denotes the transition probability from state j to itself and p will denote the

transition probability from any state different from j (denoted by ξ) and remaining

there. The expected return time to state j is given by:

E[rj] =
(1− q) + (1− p)

(1− p)
Next, we can derive the relation between the values p, q and the non-collapsed

transition matrix P. The value q is Pjj as it corresponds to the probability of

remaining in state j. To obtain p we solve for the value 1 − p. Using the total

probability law 1− p can be derived as:

1− p =
∑
i ̸=j

PijP
′

i

where i ∈ ξ and

P
′

i =
πi∑
i ̸=j πi

1− p =
∑
i ̸=j

PijP
′

i, where P
′

i =
πi∑
i ̸=j πi

which corresponds to the probability of being in state ξ given that we are not in

state j. Thus, the expected return time for any state in the new two-state Markov

chain can be explicitly computed from the values in the original K ×K transition

matrix. Given this, we can now provide a characterization of the expected return

times at the targets in the multi-patroller setting using the transition matrix P

adopted by each of the N patrollers on the graph. We again formulate the multi-

patroller problem as a two-state Markov chain. We will call covered the state

where at least one patroller is at the target lj, while uncovered is the state when

75

no patrollers are currently visiting lj. The transition matrix associated to this

Markov chain is:

Pcoll =

 q∗ 1− q∗

1− p∗ p∗


and

E[rNj] =
(1− q∗) + (1− p∗)

(1− p∗)
The value q∗ in the transition matrix is associated with the probability that given

there is at least one patroller on target lj, at least one of them remains in that

target in the consecutive transition. Next, p∗ corresponds to the probability that

given that none of the patrollers are at target lj, all of them remain outside of

lj in the following transition. We can reason that p∗ is equal to pN , because p is

the probability that one patroller in state ξ remains in the same state after one

transition. Moreover, it can be shown that:

(1− q∗) =
N∑
k=1

(
N

k

)
ηπk

j (1− πj)N−k(1− q)kpN−k

η =
1

1− (1− πj)N

To see this, consider that, using the total probability law again, (1 − q∗) can be

derived as,

(1− q∗) =
∑
s∈S

p(s, ξ)p(s)

where we will now consider a binary string of length N denoted s representing

whether or not a particular patroller is at target lj. A value of 1 is assigned to

index i ∈ [1, ..., N] of the string if the i-th patroller is at target lj and 0 otherwise.

S corresponds to the set of all possible strings.

The probability of a given string can be written as:

p(s) = ηπbj(1− πj)N−b

76

where b is the number of patrollers at target lj and with the normalization

factor η coming from the fact that the string of all 0s must be left out because

we are calculating the probability of leaving lj. In other words, a patroller must

already be in lj to be able to leave it. The probability of going from a covered

string to an uncovered one, p(s, ξ), is equal to

(1− q)bpN−b

i.e., the probability that all the patrollers at target lj leave lj, and all the agents

outside of lj remain outside of it.

Proof. The set S has a cardinality of [2N−1−1] meaning calculating the probability

is exponential. However, we notice that given a string s1 and string s2 with the

same number of agents at vertex j their probabilities are equal and p(s1, ξ) =

p(s2, ξ). Consequently, the exponential problem reduces to an n choose k problem

wherein we introduce the binomial coefficient.

5.4 Evaluations and Comparisons

We provide an empirical evaluation of the patrolling strategies obtained with

our proposed techniques: heuristic partitions without critical levels (non-weighted,

PNW) and with critical levels (weighted, PW), partitions computed with our exact

method (MIP, run with a deadline of 30 minutes), and non-partitioned patrollers

(NP). Varying the number of vertices in the graph from 30 to 60 (with increments

of 10), for each size we generate 10 random instances and we run patrolling missions

over the obtained graphs where each patroller visits 10,000 vertices. We present

the cases where the number of patrollers is either 5 or 10.

We assumed one attacker observing each target and considered two different

types of attackers. The first type, called Maximum-Likelihood (ML) attacker,

fits an exponential distribution over the inter-arrival times observed at its target.

Then, it generates a prediction for the next inter-arrival time by computing the

expectation of that distribution. The second type of attacker, called Nearest-

Neighbor attacker (NN), treats the sequence of inter-arrival times as a temporal

77

0 5 10 15 20 25 30 35 40

Graph Test Cases

4

5

6

7

8

V
i
·P
r[
R
i
>
a
i]

PW PNW NP MIP

Figure 5.4: 5 patrollers. Value multiplied by the probability of the return time

being larger than the attack time.

series and uses a nearest neighbor over the last 10 observed elements from the

series to forecast the next one. In both cases, at each iteration where the predicted

inter-arrival time is larger than the target’s attack time, the attacker decides to

attack. As it is evident, the patrollers could perform more frequent visits but

should also try to induce an overestimation of the next attack time.

The plots will show the protection ratio defined as the number of the attacks

intercepted by a patroller divided by the attempted ones and multiplied by the

value of the target. We show also the number of attack attempts induced by

a patrolling strategy and, for each li, the value vi · Pr[ru > ai] which provides

an indicator of the protected value not dependent on how the attacker estimates

arrival times (called intrinsic loss in the following). Each chart features on the y

axis the average quantity over all the vertices of the graph while on the x axis we

have the single instances from the smallest to the biggest K (number of targets).

Figures 5.5 and 5.6 show the average protection ratios with 5 patrollers against

the two types of attackers. The generally decreasing trends reflect the increasing

difficulty of protecting a graph where there are more targets but the number of

78

0 5 10 15 20 25 30 35 40

Graph Test Cases

1.5

2.0

2.5

3.0

3.5

P
ro

te
ct

io
n

R
at

io

PW PNW NP MIP

Figure 5.5: Protection ratio for five patrollers against a ML attacker.

patrollers stays the same. The NP approach seems to be slightly dominated by the

others suggesting that partitioning could be profitable. The two heuristics kept

pace with the MIP method, even outperforming it at times when this last met the

deadline without finding the optimal partition and returning, instead, the current

best solution found.

A more insightful analysis of these trends can be extracted if one considers not

only the protection ratio, but also the number of attempted attacks – something

we analyze for the case of 10 patrollers discussed next. A more insightful analysis

for the case of 5 patrollers can be observed in Figure 5.7 where we show the

number of attempted attacks, irrespective of whether they were caught or not.

While the performance in terms of protection ratio did not show particularly sharp

gaps, the number of attacks induced by each strategy provides a clear indication

that partitioned-based methods induce fewer attack attempts, especially in those

instances where computing a balanced partition is easier. This is reasonable since

a well-balanced partition (recall the definition of I) favours an even distribution

of values and small inter-arrival times. This acts as a deterrent on the attacker

that in many occasions opts for not attempting an attack. Thus, if from one

side (protection ratio) partitioned strategies seem almost comparable to the non-

79

0 5 10 15 20 25 30 35 40

Graph Test Cases

2.0

2.5

3.0

3.5

P
ro

te
ct

io
n

R
at

io

PW PNW NP MIP

Figure 5.6: Protection ratio for five patrollers against a Nearest Neighbor

attacker.

partitioned one in terms of capturing the attacker, they clearly work better in

keeping the attacker out.

With 10 patrollers things become more challenging and slightly more evident

gaps start to emerge as shown in Figure 5.9 where we show the intrinsic loss

for 10 patrollers. The figure clearly shows that the MIP method provides better

coverage to vertices with high value. Figures 5.10 and 5.11 show the protection

ratio against the two type of attackers. To fully appreciate the meaning of Fig-

ure 5.10, where it seems that the MIP method is underperforming, it is useful

to consider Figure 5.12 where we show the number of attempted attacks. The

figure shows that the MIP strategy induces the attacker to reduce its number of

attempts. In general, partitioned-based methods induce fewer attack attempts,

especially in those instances where computing a balanced partition is easier. This

is reasonable since a well-balanced partition (recall the definition of I) favours an

even distribution of values and small inter-arrival times. This acts as a deterrent

on the attacker that in many occasions opts for not attempting an attack. Thus, if

based on the protection ratio partitioned strategies seem almost comparable to the

non-partitioned one in terms of capturing the attacker, they clearly work better

80

0 5 10 15 20 25 30 35 40

Graph Test Cases

20000

25000

30000

35000

40000

45000

50000

A
tt

ac
k
s

PW PNW NP MIP

Figure 5.7: Number of attacks for 5 patrollers against a maximum-likelihood

attaker.

in keeping the attacker out. Taking all into considerations, the MIP strategy

is the best one. While it is more demanding, our experiments show that using

the approximate solution produced upon stopping the method after 30 minutes

still provides good results. PW and PNW can be considered as fairly effective

heuristics since their performance was not remarkably worse than MIP’s. Their

lower computational burden can be leveraged when scaling to very large patrolling

settings.

5.5 Conclusions

In this chapter, we studied three approaches for multirobot patrolling against

an attacker that, through repeated observations, tries to predict when it is the best

time to attack. Our method based on a MIP formulation turns out to be the best

one, even when it is stopped before the optimal solution is found. For the two types

of attacker we considered, this strategy discourages the attacker from attempting

to compromise the assets being protected. In future works, we shall expand the

analysis presented in this section to consider refined models of the attacker behavior

81

0 5 10 15 20 25 30 35 40

Graph Test Cases

17500

20000

22500

25000

27500

30000

32500

35000

A
tt

ac
k
s

PW PNW NP MIP

Figure 5.8: 5 patrollers, nearest neighbor attacker.

0 5 10 15 20 25 30 35 40

Graph Test Cases

1

2

3

4

5

6

7

8

V
i
·P
r[
R
i
>
a
i]

PW PNW NP MIP

Figure 5.9: Intrinsic loss for the case of 10 patrollers.

including, for example, coordination between multiple attackers.

82

0 5 10 15 20 25 30 35 40

Graph Test Cases

0

1

2

3

4

P
ro

te
ct

io
n

R
at

io

PW PNW NP MIP

Figure 5.10: Protection ratio for ten patrollers against a ML attacker.

0 5 10 15 20 25 30 35 40

Graph Test Cases

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

P
ro

te
ct

io
n

R
at

io

PW PNW NP MIP

Figure 5.11: Protection ratio for ten patrollers against a Nearest Neighbor

attacker.

83

0 5 10 15 20 25 30 35 40

Graph Test Cases

0

20000

40000

60000

80000

100000

A
tt

ac
k
s

PW PNW NP MIP

Figure 5.12: Number of attacks for 10 patrollers against a ML attacker.

Chapter 6

Methods for Optimizing a Team

of Agents

Chapter 5 compared and contrasted two different strategies for multi-agent

coordination: partitioned and non-partitioned patrollers. In the end, the mixed

integer linear program gave some of the better results for how to divide up the

work for the agents. Here in chapter 6 we consider a modification to the patrolling

scenario and propose a new paradigm for designing solutions. In the following,

we do not consider an explicit opponent model and opt instead for optimizing the

worst-case idleness. Furthermore, given there are limited patrolling resources and

some target locations are more valuable than others, we introduce a shared and

un-shared workload for the team of patrolelrs. The work shown here was originally

presetned in [10].

6.1 Patrolling Optimization Setting and Defini-

tions

We consider the classical graph patrolling setting refining a model we formerly

considered in chapter 5. The environment is modeled by a graph G = (V,E),

where vertices V = {1, 2, . . . , n} represent locations and edges (i, j) ∈ E represent

their connections. A value cij represents the traveling cost (time or distance) to

84

85

move from i to j. We assume that the graph is complete and that cij is the shortest

cost. (Such a representation can always be computed from an arbitrary connected

graph). Each vertex i ∈ V is assigned an importance value vi > 0, indicating the

level of criticality for its protection. A set R = {1, 2, . . . ,m} of m patrollers must

protect the environment by moving from vertex to vertex in the graph. When a

patroller visits a vertex, the vertex is protected, i.e., it cannot be compromised

by an attacker, or, if the vertex is under attack, the attack is neutralized. Our

optimization criterion uses the idleness of a vertex i, indicated as Ii and defined

as the time between two successive visits to i by any of the patrollers. A common

function to optimize is the weighted idleness:

minmax
i∈V

viIi (6.1)

This favors patrolling strategies where valuable vertices are visited more fre-

quently, thus resulting in lower idleness. The m patrollers can be organized

according to the following. (i) Coordinated patrolling : each patroller can visit any

of the vertices in G. (ii) Disjoint partitions : the set of vertices V is partitioned

into m non-overlapping subsets, and each patroller is assigned a subset of vertices

(to prevent degenerate cases, we assume each subset has at least two vertices).

(iii) Overlapping partitions : V is subdivided into m subsets that may share some

vertices, each subset is then assigned to one of the patrollers.

6.2 Overlapping partitions

We propose a new way to split the workload between m patrolling agents by

introducing the concept of core and periphery on the vertex set V . Figure 6.2

shows how this could work for a pair of defenders protecting a graph. The core V0

is a subset of V patrolled by all m robots. The periphery P = V \ V0 is the set of

remaining vertices that is instead split into up to m non-overlapping subsets. Let

these subsets be indicated as V1, V2, . . . , Vm. The idea is that each robot k first

patrols the core V0 by traversing a Hamiltonian path between some start and end

vertices, then patrols its assigned subset Vk, also traversing it with a Hamiltonian

86

path, and then goes back to the core and repeats. This strategy is sketched in

Figure 6.1 for a case where m = 2.

Figure 6.1: Overlapping partition for m = 2. Both robots patrol the core’s blue

vertices following the same path between π0
e and π0

x. Subsequently, robot 1 patrols

the red vertices, while robot 2 patrols the green vertices.

We make these assumptions about robots’ coordination.

• All robots traverse V0 following the same Hamiltonian path π0 from π0
e (entry)

and π0
x (exit).

• When exiting π0
x, if Vk ̸= ∅ robot k traverses the assigned subset Vk by

following an Hamiltonian path πk starting at πk
e and ending at πk

x. Then it

travels back to π0
e and repeats. If instead Vk = ∅, robot k moves from π0

x to

π0
e and resumes patrolling the core following π0.

• Robots (i) adapt their speed so that each robot spends the same time to

complete its tour (the time of the longest tour followed by any robot) (ii)

uniformly distancing in time their arrivals at the core’s entrance.

For a given core V0 with entry vertex π0
e and exit vertex π0

x, let tc be the time

it takes to follow the Hamiltonian path π0. Similarly, for each of the subsets Vk,

let tk be the time to complete πk also including the movement from π0
x to πk

e (Vk’s

entry) as well from πk
x (Vk’s exit) to π

0
e – see Fig. 6.1. Given this construction, the

idleness of each vertex in Vk for k > 0 will be tc + tk because the robot in charge

of that subset must patrol, in sequence, V0 and Vk. However, vertices in V0 will

87

be subject to a lower idleness thanks to robots’ coordination. If robots coordinate

their starts from π0
e , then the maximum idleness experienced by the vertices in V0

will be scaled by a factor of m. More formally, when we impose the existence of

a shared core V0, the objective function defined in Eq. (6.1) can be rewritten as

follows:

min max
1≤k≤m

{
Ac tc + tk

m
,Ap(tc + tk)

}
(6.2)

where

Ac = max
i∈V0

{vi}, Ap = max
i∈V \V0

{vi}.

Note that, to be well-defined, this formulation requires that |V0| ≥ 2 to allow for at

least two vertices in V0 as π0
e and π0

x must be distinct. However, if useful towards

the solution of the above minimization problem, we do allow Vk = ∅ for one or

more periphery sets (k > 0). When that is the case, the corresponding agent just

patrols the core. The following problem formulation formalizes the problem we

described.

Overlapping Partitions Problem (OPP) Given a weighted graph
G = (V,E) with n vertices, edge costs c : E → R+, and vertex values
v : V → R+. Let m be a given number of robots. Determine a core
subset V0 ⊂ V with at least two vertices and a partition of V \ V0 into
at most m elements that solve the minimization problem defined by
Eq. (6.2).

The pivotal question therefore is how to determine the core V0, the periphery

V1, . . . , Vm, and the corresponding Hamiltonian paths, solving the minimization

problem formulated in Eq. (6.2), also in light of the following theoretical result.

Theorem 1. The OPP problem is NP-hard.

Proof: for the special casem = 1 the OPP problem is equivalent to the traveling

salesman problem (TSP) over the entire set of vertices V .

6.3 Exact formulation

We here provide an exact mathematical formulation for OPP. This formulation

can be useful to solve small instances (i.e., graphs with few vertices), and to better

88

Figure 6.2: Visualization of the shared and unshared workload for the team of

patrollers. The target locations that belong to the core set are considered high

value and will visited by all of the defenders. Meanwhile, the target locations in the

periphery set will only be patrolled by a single agent. This scheme is empirically

shown to out perform a the traditional partitioning approach. Both the red and

blue agent share the vertices in the core, however, only the blue agent visits the

target locations on the bottom left of the graph (peripheral vertices).

89

understand the structure of the problem. Note that the formulation we provide

allows for the case where all Vk = ∅ for k > 0, but imposes that V0 ̸= ∅. As will be
shown in Section 6.5, in some peculiar cases this could be a disadvantage, i.e., the

disjoint partitions approach could provide better solutions to the problem defined

in Eq. 6.3.

Let V + = V ∪ {0} and R+ = R ∪ {0} and let us consider a directed version of

the edge set E, where we replace each edge with the two corresponding symmetric

arcs. Notably, as we will show in the end, the formulation is nonlinear. Both sets

include an additional 0 element, which will be useful for the following construction.

In the set V +, the element 0 represents an extra vertex that does not correspond

to any real location but that allows us to express the resolution of the problem as

finding a set of m+1 tours starting and ending at it. In the set R+, the 0 element

represents an extra robot which we will associate with the shared patrolling task

of the core. We introduce the following binary decision variables for each i, j ∈ V +

and k ∈ R+.

xkij =

1, if robot k will travel on edge (i, j)

0, otherwise

An assignment of the xkij variables defines a partition of the environment. Each

element V k ⊆ V (k ∈ R+) of the partition can be recovered as follows: V k =
{
j ∈

V | ∑n
i=1 x

k
ij = 1

}
. Another set of similar binary variables ykij is introduced with

the same definition but a different meaning (see usage below).

Notice that the above set definition assumes that the assignment to the xkij

variables is consistent with the set of constraints that will be introduced in the

formulation, which will enforce that each vertex will be visited by exactly one

robot (including robot 0). The definition has the following rationale: if the robot

k travels vertex (i, j) for any i then j is considered part of that robot’s subset of

vertices. In our problem formulation, V 0 will represent the vertices assigned to

the core, i.e., the portion that is shared among the m robots. Conversely, V k for

1 ≤ k ≤ m represents the vertices that are patrolled exclusively by robot k.

The variable ti represents the time at which vertex i is visited within the

90

sequence of vertices in the partition to which i belongs. In the solution, we do not

require that variables ti will be assigned values that are consistent with traveling

costs: we only require that if a vertex i is visited later than a vertex j then ti ≥ tj.

min U (6.3)

s.t.

n∑
j=1

xk0j = 1, ∀k ∈ R+ (6.4)

n∑
i=1

xki0 = 1, ∀k ∈ R+ (6.5)

m∑
k=0

n∑
i=0

xkij = 1, ∀j ̸= i ∈ V (6.6)

m∑
k=0

n∑
j=0

xkij = 1, ∀i ̸= j ∈ V (6.7)

n∑
i=0

xkij =
n∑

i=0

xkji, ∀j ∈ V, k ∈ R+ (6.8)

ui − uj + (n−m+ 1)
m∑
k=0

xkij ≤ n−m, ∀i ̸= j ∈ V (6.9)

x0i0 + xk0j − 1 ≤ ykij , ∀i ̸= j ∈ V, k ∈ R (6.10)

x00j + xki0 − 1 ≤ ykij , ∀i ̸= j ∈ V, k ∈ R (6.11)

n∑
i=1

n∑
j=1

cij
(
x0ij + xkij + ykij

)
≤ Ik, ∀k ∈ R (6.12)

1

m

n∑
i=0

x0ijvj ≤ Ac, ∀j ∈ V (6.13)

n∑
i=0

xkijvj ≤ Ap, ∀j ∈ V, k ∈ R (6.14)

AwIk ≤ U, w ∈ {c, p}, k ∈ R (6.15)

Table 6.1: An exact formulation for the OPP problem.

The formulation shown in Table 6.1 is inspired by the ILP formulation for the

maxmin Multiple TSP (see [56]) from which we take a basic set of constraints and

91

we extend it to enforce the core/periphery structure we propose in this work.

Constraints (6.4) and (6.5) require that each robot leaves and returns to the

depot along a single arc. Constraints (6.6) and (6.7) require that exactly one

robot shall arrive and leave each vertex (except for vertex i = 0, the dummy

depot). Constraints (6.8) ensure that the robot that arrives is the same one that

leaves. Constraints (6.9) are the Miller-Tucker-Zemlin (MTZ) subtour-elimination

constraints. They eliminate solutions where one robot covers its vertices through

two or more disjoint tours on the graph. Here it is assumed that n ≥ m and that,

in the solution, each robot will cover at least one vertex.

The above basic constraints will enforce solutions whose structure is the same

as that required for classical multi-TSP problems: m+ 1 tours, each starting and

ending at the depot i = 0. The tours are such that each vertex i > 0 is covered

once by just one robot. The tour for robot k is composed in this way: leaving the

depot, traveling an inner path πk, and returning to the depot. We need to combine

these m + 1 tours in order to obtain m tours, one for each real robot k > 0, each

defined as start at the first vertex of π0, follow π0, travel to the first vertex of πk,

follow πk, travel to the first vertex of π0, repeat. We can show that the optimal

solution to our problem can be expressed in the multi-TSP form described above

provided that the required objective function is defined. Hence we embed our

required structure in the costs minimized by the objective function.

Constraints (6.10) and (6.11) select, through the y variables, those arcs that

will connect, for each real robot, the inner path π0 with the inner path for just that

robot πk. Constraints (6.12) define Ik as the upper bound on the tour cost (and

hence, the idleness) for a real robot k > 0. Constraints (6.13) and (6.14) similarly

define, an upper bound for the maximum vertex value in the core (Ac) and outside

of it (Ap). Notice that these upper bounds will be “pushed” to be tight since the

problem is a minimization one. Finally, Constraints (6.15) provide an upper bound

to the objective function we seek to minimize. This cost is the maximum weighted

idleness that accounts for a discount of 1/m for the maximum value among the

vertices in the core (those visited by π0). Notice how this final constraint, crucial

to the whole problem, is also the one that introduces a non-linearity.

92

As mentioned earlier, the exact formulation illustrated in this section could be

used to solve small problem instances, i.e., instances with few vertices and edges,

but obviously do not scale to larger ones. For this reason, in the next section, we

propose various heuristics that scale with the problem’s size.

6.4 Heuristics for OPP

In light of the computational complexity of OPP, in this section we introduce

various heuristic methods for finding solutions to large problem instances where

exact methods cannot be applied. As mentioned in the previous section our

problem is related to the min-max multiple traveling salesman problem (mTSP)

formulation [56] and this insight informs our solving strategy. A valid solution to

OPP can be determined as follows:

• Select some vertices to form the core.

• Compute a TSP tour on the core with arbitrary starting and ending vertices

(this can be achieved for example by adding a dummy vertex to the graph

that is connected to all other vertices with edges of zero cost) and restricting

the TSP tour to start and end at the dummy vertex; these arbitrary starting

and ending vertices become π0
e and π0

x;

• Solve the min-max mTSP problem on the periphery where all m tours must

start at π0
x and end at π0

e . Furthermore, the solution to the mTSP will

partition the periphery vertices into disjoint sets for the robots.

• Finally by combining the Hamiltonian path on the core with each of the m

Hamiltonian paths on the periphery we form a valid path for each robot and

thus a valid solution to the problem.

Thus given a core set of vertices, a TSP solver, and a min-max mTSP solver1

one can form a solution by performing the aforementioned steps. However, the

question of how to select the vertices that belong in the core so as to effectively

1Note that we are not requiring an exact solver for these two NP-hard problems.

93

minimize Eq. 6.2 remains open. In the following, we propose different methods

aiming at obtaining low values for Eq. (6.2) that differ in the strategy to build the

core.

6.4.1 K-means core

A first heuristic is based on the intuition that to minimize the objective function

one should minimize the distance traveled by the robots, i.e., reducing the sum

tc + tk. These two terms are conflicting since reducing the total distance traveled

on the core means removing a vertex from there and adding it to the periphery

hence increasing the distance traveled by some robot on its independent workload.

Because we would like every robot to have some minimum workload we propose

to use k-means clustering based on the Euclidean distance between vertices with

m+ 1 clusters to identify the subsets V0, V1, . . . , Vm. After running the algorithm,

we assign the largest cluster to the core.

6.4.2 Weighted K-means core

Weighted k-means clustering [48] works similarly to the non-weighted version

but exploits the fact that each of the vertices in the graph has an associated value.

Since in Eq. (6.2) the values of vertices multiply the travel times, in the weighted

k-means heuristic the values of the vertices are used to scale the weight of the

clusters. Then just as we did with non-weighted k-means, we compute m + 1

clusters and denote the largest cluster as the core set of vertices.

6.4.3 Balanced Weights Heuristic (BWH)

By examining Eq. (6.2) we note some principles governing the nature of the

objective function. The variables tc and tk are found in every term and furthermore

in general minimizing one of the variables means increasing the other since a smaller

tc can only be achieved by removing a vertex from the core and thus adding said

vertex into the periphery. The same is true for decreasing the largest tour on the

periphery - it can only be achieved, in general, by removing a vertex from the

94

Figure 6.3: The balanced weight heuristic can be said to work in the following

way: the most valuable target locations are repeatedly added to the core set until

the termination condition is met. This procedure is visualized above.

periphery and adding it to the core set or adding it to another partition whose

tk value will increase. This suggests that the optimal is found when the terms

{A0 tc+t0
m

, A0 (tc+t1)
m

, ..., A1(tc+ tk), ..., A
k(tc+ tk)} are roughly similar in value. Note

here that the maximum of the first k terms is simply A0 tc+maxk(tk)
m

. Given that A0

is the largest valued vertex in the core and each subsequent Ak is obtained from

the largest valued vertex for each robot’s independent workload, a simple heuristic

for partitioning the set of vertices into core and periphery is obtained by adding a

vertex into the core when its corresponding value satisfies the inequality:

vj >
maxi∈V (vi)

m
.

In this way, we can keep high-valued vertices in the core and, at the same

time, push out into the periphery vertices with values similar to or less than the

first coefficient in the objective function, A0

m
. This heuristic aiming at balancing

the terms in the objective function is dubbed balanced weights heuristic (BWH).

Futhermore, the balanced weight heuristic can be said to work in the following

way: the most valuable target locations are repeatedly added to the core set until

the termination condition is met. Under this line of thinking, figure 6.3 visualizes

how the core set evolves as the heuristic adds valuable vertices.

95

6.4.4 Local Search Heuristic (LSH)

Starting from the balanced weights heuristic, we can develop an improved

version called local search heuristic (LSH). Since the core is shared between k

robots it follows that generally, we would like cores that include more vertices with

respect to subsets in the periphery. Starting from the core proposed by BWH, the

local search heuristic iteratively tries to improve the current selection of the core

by evaluating random additions to it. In this way, our local search method tries to

build solutions that are at least as good as those provided by the BWH approach.

At each iteration for each vertex i in the periphery set, with probability p, it is

removed from the periphery set and introduced into the core set (p = 0.6 in our

experiements). We can then evaluate this new candidate core set by computing its

objective value from Eq. 6.2. If the new core is better than the previous one it is

saved otherwise, it is passed over. An outline of the local search heuristic is given

in Algorithm 3.

Algorithm 3: Local Heuristic Search

Data: B search budget p vertex add probability

1 C ← Balanced Weight Heuristic;

2 o← objective value for C (from equation 6.2);

3 for i← 0 to B do

4 D ← C;

5 P ← V − C;
6 for n in P do

7 with probability p, D = D ∪ n;

8 solve TSP and mTSP sub problems;

9 s← objective value for D (from equation 6.2);

10 if s < o then

11 o← s C ← D

12 return C, o

96

6.5 Evaluation

In this section, we perform two types of evaluations. First, we assess the

relative merit of the heuristics we introduced in section 6.4. Second, we evaluate if

the novel formulation we proposed in this chapter is advantageous when compared

with the coordinated patrolling and disjoint partition methods formerly proposed

in the literature. To compare with the disjoint partition method, we use the k-Max

Cut algorithm we formerly proposed in [9]. This approach partitions the graph

into k subsets and subsequently assigns each robot a sub-graph to patrol. For each

sub-graph, a TSP tour is calculated and serves as the robot’s path through the

area.

For a more complete comparison we also evaluated these heuristics against our

scheme for disjoint partitions from The partition is computed via a max-cut solver

that works on the same graph but with its edge weights transformed according to

their distance to the maximum edge weight. Partitioning the graph into k subsets

and assigning each robot an independent tour has many advantages, but as we will

show empirically for our objective function this does not always provide the best

solution. More details about how the partitioning is performed can be found in

[9].

We performed evaluations on graph sizes ranging from 10 vertices to 60 vertices,

with 10 instances for each graph size. Vertex locations are generated by randomly

sampling points in a 50 × 50 square and edge weights are given by the Euclidean

distance between the vertex coordinates. Finally, vertices values are sampled from

the range 1 to 100 using a uniform distribution. To solve the TSP and mTSP

problems we used the routing module provided by the Google OR-Tools library

[36], while for k-means we use scikit-learn [63].

To get an idea of how far from the optimal solution our methods are, we first

performed a set of experiments on graphs of small size comparing the solutions

provided by the different heuristics and the exact solution.

Figures 6.4a and 6.4b show the competitive ratio of the various heuristics for

graph instances of size 10 and 15. The competitive ratio is defined as the ratio

between the objective value returned by the heuristic method and the optimal

97

0 10 20
Graph Test Cases

1

2

3

C
om

p
et

it
iv

e
R

at
io

10 15

2 robots, n = [10, 15]

(a)

0 10 20
Graph Test Cases

1

2

3

C
om

p
et

it
iv

e
R

at
io

10 15

3 robots, n = [10, 15]

(b)

Figure 6.4: Comparison between the different heuristics for different graph sizes

and number of robots. In both charts, the following color coding is used: red for

k-means; green for weighted k-means; purple for k-max cut; blue for the balanced

weights heuristic; and orange for the local search heuristic

98

0 10 20 30 40 50
Graph Test Cases

0

10

20

30

O
bj

ec
ti

ve
V

al
ue

20 30 40 50 60

2 robots, n = [20, 30, 40, 50, 60]

(a)

0 10 20 30 40 50
Graph Test Cases

0

10

20

30

O
bj

ec
ti

ve
V

al
ue

20 30 40 50 60

5 robots, n = [20, 30, 40, 50, 60]

(b)

Figure 6.5: Comparison between the different heuristics for different graph sizes

and number of robots. Instead of competitive ratio we analyze the minimum

objective value reached by each heuristic. In both figures, the following color

coding is used: red for k-means; green for weighted k-means; purple for k-max cut;

blue for the balanced weights heuristic; and orange for the local search heuristic.

99

value (with 1 therefore being the best one can aim for). Both the charts for 2 and

3 robots show similar trends, namely that BWH and LSH almost always perform

better than the other methods, and have a competitive ratio close to 1.

Furthermore, local search can improve BWH as evidenced in Figure 6.4b. Im-

portant to note in both Figures 6.4a and 6.4b is that the k-Max Cut sometimes does

even better and has a competitive ratio of less than 1. This apparent contradiction

can be explained by the fact that some graph instances naturally cluster into

distinct sub-graphs. This arrangement is advantageous to the k-Max Cut method

since it will keep the independent robot tours small, while it is also detrimental to

the heuristics and the exact method since selecting a core set of vertices will incur

a large travel cost when moving between the two natural sub-graph clusters. The

next set of experiments compares the objective values of the returned solutions

for each of the various heuristics for larger graphs. Note that as the number

of vertices exceeds 15 the exact solution becomes too costly to compute and we

therefore compare the objective values between the different solutions rather than

the competitive ratio. Figure 6.5a, 6.5b, 6.6a, and 6.6b show the values found for

2, 5, 10, and 15 robots and graph sizes varying from 20 to 60 vertices.

As can be seen, the two heuristics proposed in this section almost invariably

are the most effective, and in particular they outperform the method based on

disjoint partitions. The experiments described thus far show that the method

we propose outperforms the disjoint partitions approach. However, one could

wonder if it also outperforms the coordinated method with all robots patrolling all

vertices. An analysis of the results produced shows that the answer is affirmative,

especially in the case of constrained resources (e.g., a small number of robots and

a large number of vertices). Figure 6.7 shows two examples, with the left graph

showing the solution produced by the optimal method and the right one produced

by LSH. In the figure, the size of the vertices is proportional to the vi values and

it outlines how important vertices are included in the core (plotted in blue). In

both instances, better patrolling strategies are obtained by assigning each robot to

a subset of vertices in the periphery (paths plotted in different colors) rather than

including everything in the core as in the coordinated method. These two samples

100

0 10 20 30 40 50
Graph Test Cases

0

10

20

30

O
bj

ec
ti

ve
V

al
ue

20 30 40 50 60

10 robots, n = [20, 30, 40, 50, 60]

(a)

0 10 20 30 40
Graph Test Cases

0

10

20

30

O
bj

ec
ti

ve
V

al
ue

30 40 50 60

15 robots, n = [30, 40, 50, 60]

(b)

Figure 6.6: Comparison between the different heuristics for different graph sizes

and number of robots. In all figures, the following color coding is used: red for

k-means; green for weighted k-means; purple for k-max cut; blue for the balanced

weights heuristic; and orange for the local search heuristic.

101

are representative of the entire dataset.

Entry

Exit

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Entry

Exit

0
1

2

3
4

5

6

78

9

10

11

1213

14
15

16

17

18
19

Figure 6.7: Left: optimal solution for 3 robots and 15 vertices. Right: LSH

solution for 3 robots and 20 vertices.

6.6 Conclusions

In this chapter, we studied three approaches for multirobot patrolling against

an attacker that, through repeated observations, tries to predict when it is the best

time to attack. Our method based on a MIP formulation turns out to be the best

one, even when it is stopped before the optimal solution is found. For the two types

of attacker we considered, this strategy discourages the attacker from attempting

to compromise the assets being protected. In future works, we shall expand the

analysis presented in this section to consider refined models of the attacker behavior

including, for example, coordination between multiple attackers.

Chapter 7

Final Thoughts

7.1 Conclusions

Throughout this dissertation, approaches for computing patrolling strategies

for single agents and teams of agents are discussed. Chapter 1 provides the

motivation for the patrolling games which involves the use of robots to automate

the task of repeatedly visiting important locations of interest. Use cases for these

systems include urban search and rescue, airport security [93], and conservation

efforts [30]. With effective deterrence in mind these studies provide insight into

the challenges associated with the deployment and design of robotic patrollers.

There are different formulations for the patrolling problem: single agent, teams

of patrollers, adversarial patrolling, machine learning applications etc. As well as

different measures of performance such as worst case idleness, or protection ratio.

Chapter 2 gives a history and overview of how these challenges have been addressed

literature.

Chapter 3 introduced our patrolling security game’s formulation and described

the challenges associated with computing a patrol schedule for a single agent. By

exploiting the structure of an ergodic Markov chains we present four different

methods that outperform the previous approach in terms of the protection ratio.

The approach computes a new Markov chain every so often and as such better

obscures the correlations between visits as evidenced by the KNN and Maximum

Likelihood attackers poor performance against it. This is all provided at no cost to

102

103

the protection provided by the patrol schedules since all of the computed Markov

chains have the same stationary distribution and thus the same optimal protection

program.

Chapter 4, on the other hand, delves into a different paradigm for considering

the patrolling security game. By modelling the patrolling task as a sequential

decision making problem, i.e. Markov decision process, we introduce adaptability

and generalizability to the defender’s strategy. We present, to the best of our

knowledge, the first RL patroller to succeed and generalize against multiple at-

tackers. Key to the performance is training the agent via domain randomization

techniques; during training the agent playing games against multiple attackers.

Best results are achieved when the agent’s opponent is switched every episode.

This enemy randomization pushes the agent’s policy to achieve the best worst

case performance against the attackers and at the same time the best average

performance against the attackers.

Chapter 5 switches the composition of the defender’s resources and deals with

the problem of strategizing for a teams of patrollers. The addition of a team of

defenders presents multiple new challenges to the issue including team communi-

cation, resource management, and energy management. In the chapter we extend

the Markov chain model introduced in chapter 3 to work with a team of agents.

Because multiple Markov chains can admit the same stationary distribution, we

compute a single different Markov chain for each patroller to use. Randomness in

the probability chain, furthermore, helps diminish any redundancy in the schedules.

Redundancy occurs when two defending agents arrive at the same target location

at the same time because we assume that the agents are equipped with sensors that

can identify any intruder with fully certainty if seen. Next, we allow the patrollers

to work over the entire graph and dub the management scheme the non-partitioned

team of patrollers. On the other hand, we also present an alternative method for

resource management dubbed partitioned patrollers. We introduce a measure of

workload for the agents, so that we may quantify the individual effort any agent

must spend to patrol her section of the graph. Finally, multi-level graph parti-

tioning algorithms provide quick and efficient prcedures for dividing the workload

104

evenly amongst the defenders. Finally, we present empirical results comparing and

contrasting the two approaches accordingly to the formerly introduced protection

ratio. The Mixed Integer Linear Program partitioning comes out as one of the

best methods for managing the patrolling resources.

Lastly, chapter 6 considers a different plan of action altogether. Seeking to

study a question of analysis we consider: what is the best strategy a limited team of

defenders can employ to reduce idleness over a vast area. Consequently, we propose

a novel method for distributing the workload between the patrolling agents. While

on one side one can employ partitioning schemes to divide the workload between

the agents, and on the other side one could overlap completely the designated areas

of the agent (as discussed in chapter 5) in chapter 6 we present a middle ground

between the two sides. Thus, partial overlaps are considered wherein some of

environment is under the protection of all the agent, meanwhile the other parts of

the environment are only under the guardianship of a single agent. Then question

then becomes: which parts of the environment should be overlapped (guarded by all

resources) and which only need the guardianship of a single agent? Our formulation

of the Overlapping Partitions Problem (OPP) and the balanced weight heuristic

(BWH) are our answers to the aforementioned question. Finally, we empirically

show on a synthetic dataset that these methods of partial overlap work, in most

cases, work better than divide and conquer approaches.

7.2 Possible Future Research Directions

There is still more work to be done regarding planning algorithms for patrolling

agents and teams of agents looking to deter malicious actors. Future work should

focus on challenging the assumptions made in this thesis to make patrolling more

robust, and engineering new algorithmic approaches that achieve better results

than obtained thus far.

105

7.2.1 Machine Learning for Patrols

Graph Neural Networks (GNNs) and A Curriculum Approach

Chapter 4 proposed a different paradigm for considering the patrolling security

game, the Markov Decision Process (MDP), and as a consequence also introduced

adaptability and generalizability to the defender’s strategy. Furthermore, during

the RL training the agent plays games against multiple attackers. Best results

are achieved when the agent’s opponent is switched every episode. This enemy

randomization pushes the agent’s policy to achieve the best worst case performance

against the attackers and at the same time the best average performance against

the attackers. However, a major limitation of this work is the need for re-training

the neural network when either a new attacker behavior or a new graph size

is introduced. One could tackle the latter by employing graph neural network

architectures [99] to the PPO agent. The GNN architecture would allow the agent

to train on graphs of varied size and could thus result in an agent that could patrol

any graph against multiple attackers. Moreover, curriculum learning methods [22]

could be applied in order to achieve smoother and faster training results. These

curriculum procedures also could reduce the amount of training needed when a

new attacker model is introduced to the patroller.

Multi-agent Reinforcement Learning (MARL)

Chapter 4 focuses on designing a reinforcement learning solution for a single

agent tasked with guarding an area. A natural extension would be a framework for

a team of defenders. Consequently, one would need to consider the application of

multi-agent reinforcement learning algorithms [27]. A common scheme is to employ

the centralized training and decentralized execute approach (CTDE). For example,

since the defenders are cooperating one could centralize their training have the

rewards for any agent be the average of the reward signals coming through. The

decentralization could then work by giving each agent a copy of the network as to

patroller their own section of the graph. Issues of coordination and communication

will still need to be address and some of the techniques presented in chapter 5 could

106

be used.

7.2.2 Adaptive Patrolling as adaptive sampling

Finally and perhaps the most interesting line of future work is the prospect of

online adaptability for the defenders. Consider that all of the approaches intro-

duced in this thesis compute schedules offline and then apply those same schedules

in a ”testing” environment where they compete against some attacker model.

In general, one could establish the use of online methods [18] that continue to

learn against the attackers even while still competing against them. Furthermore,

this paradigm shares many similarities to those proposed in the area of adaptive

sampling wherein an agent must collect samples at various locations of interest in

a field in order to characterize a physical phenomenon. In works [25, 26], Booth et

al. present algorithms for teams of agents trying to perform adaptive sampling for

a phenomenon that also varies over time. By modelling the attacker’s preference,

one could apply these techniques to produce a map of the attacker’s likely areas

of interest and at the same time also react to any changes in the attacker’s

priorities. Furthermore, the aforementioned adaptive sampling techniques allow

for a mechanism to determine when to resample target locations. In our case, this

would be akin to determining the proper time that an area should be re-visited,

thus further optimizing our patrolling resources. These methods would expand

the applicability of the presented deterrence methods and most likely outperform

methods that do not adapt online.

Bibliography

[1] P. Afshani, M. De Berg, K. Buchin, J. Gao, M. Löffler, A. Nayyeri, B. Raichel,

R. Sarkar, H. Wang, and H.-T. Yang. Approximation algorithms for multi-

robot patrol-scheduling with min-max latency. In Algorithmic Foundations

of Robotics XIV: Proceedings of the Fourteenth Workshop on the Algorithmic

Foundations of Robotics 14, pages 107–123. Springer, 2021.

[2] P. Agharkar, R. Patel, and F. Bullo. Robotic surveillance and markov chains

with minimal first passage time. In 53rd IEEE Conference on Decision and

Control, pages 6603–6608. IEEE, 2014.

[3] N. Agmon, V. Sadov, G. A. Kaminka, and S. Kraus. The impact of

adversarial knowledge on adversarial planning in perimeter patrol. In

Proceedings of the 7th international joint conference on Autonomous agents

and multiagent systems-Volume 1, pages 55–62, 2008.

[4] S. Alamdari, E. Fata, and S. Smith. Persistent monitoring in discrete envi-

ronments: Minimizing the maximum weighted latency between observations.

The International Journal of Robotics Research, 33(1):138–154, 2014.

[5] S. V. Albrecht and P. Stone. Reasoning about hypothetical agent behaviours

and their parameters. In Proceedings of the 16th Conference on Autonomous

Agents and Multiagent Systems, pages 547–555, 2017.

[6] S. V. Albrecht and P. Stone. Autonomous agents modelling other agents: A

comprehensive survey and open problems. Artificial Intelligence, 258:66–95,

2018.

107

108

[7] S. Alpern. Infiltration games on arbitrary graphs. Journal of mathematical

analysis and applications, 163(1):286–288, 1992.

[8] C. D. Alvarenga, N. Basilico, and S. Carpin. Time-varying graph patrolling

against attackers with locally limited and imperfect observation models. In

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 4869–4876. IEEE, 2019.

[9] C. D. Alvarenga, N. Basilico, and S. Carpin. Multirobot patrolling against

adaptive opponents with limited information. In 2020 IEEE International

Conference on Robotics and Automation (ICRA), pages 2486–2492. IEEE,

2020.

[10] C. D. Alvarenga, N. Basilico, and S. Carpin. Combining coordination

and independent coverage in multirobot graph patrolling. In 2024 IEEE

International Conference on Robotics and Automation (ICRA), pages 4413–

4419. IEEE, 2024.

[11] C. D. Alvarenga, N. Basilico, and S. Carpin. Learning generalizable patrolling

strategies through domain randomization of attacker behaviors. In 2024

IEEE International Conference on Robotics and Automation (ICRA), pages

4406–4412. IEEE, 2024.

[12] B. An, D. Kempe, C. Kiekintveld, E. Shieh, S. Singh, M. Tambe, and

Y. Vorobeychik. Security games with limited surveillance. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 26, pages 1241–

1248, 2012.

[13] B. An, M. Brown, Y. Vorobeychik, and M. Tambe. Security games with

surveillance cost and optimal timing of attack execution. In Proceedings of

the 2013 international conference on Autonomous agents and multi-agent

systems, pages 223–230, 2013.

[14] A. B. Asghar and S. L. Smith. Stochastic patrolling in adversarial settings.

In Proc. ACC, pages 6435–6440. IEEE, 2016.

109

[15] A. B. Asghar, S. L. Smith, and S. Sundaram. Multi-robot routing for

persistent monitoring with latency constraints. In 2019 American Control

Conference (ACC), pages 2620–2625. IEEE, 2019.

[16] M. Balcan, A. Blum, N. Haghtalab, and A. D. Procaccia. Commitment with-

out regrets: Online learning in stackelberg security games. In Proceedings of

the sixteenth ACM conference on economics and computation, pages 61–78,

2015.

[17] N. Basilico. Recent trends in robotic patrolling. Current Robotics Reports,

pages 1–12, 2022.

[18] N. Basilico and S. Carpin. Online patrolling using hierarchical spatial

representations. In 2012 IEEE International Conference on Robotics and

Automation, pages 2163–2169, 2012. doi: 10.1109/ICRA.2012.6224802.

[19] N. Basilico and S. Carpin. Balancing unpredictability and coverage in

adversarial patrolling settings. In Algorithmic Foundations of Robotics XIII:

Proceedings of the 13th Workshop on the Algorithmic Foundations of Robotics

13, pages 762–777. Springer, 2020.

[20] N. Basilico, N. Gatti, and F. Amigoni. Patrolling security games: Definition

and algorithms for solving large instances with single patroller and single

intruder. Artificial intelligence, 184:78–123, 2012.

[21] N. Basilico, A. Celli, G. De Nittis, and N. Gatti. Coordinating multiple

defensive resources in patrolling games with alarm systems. In Proceedings of

the 16th Conference on Autonomous Agents and MultiAgent Systems, pages

678–686, 2017.

[22] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning.

In Proceedings of the 26th annual international conference on machine

learning, pages 41–48, 2009.

[23] A. Blum, N. Haghtalab, and A. Procaccia. Lazy defenders are almost optimal

against diligent attackers. In Proc. AAAI, pages 573–579, 2014.

110

[24] G. Bontempi, S. B. Taieb, and Y. Le Borgne. Machine learning strategies

for time series forecasting. In Business Intelligence, pages 62–77, 2013.

[25] L. Booth and S. Carpin. Distributed estimation of scalar fields with implicit

coordination. In International Symposium on Distributed Autonomous

Robotic Systems, pages 466–478. Springer, 2022.

[26] L. Booth and S. Carpin. Informative path planning for scalar dynamic

reconstruction using coregionalized gaussian processes and a spatiotemporal

kernel. In 2023 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 8112–8119. IEEE, 2023.

[27] L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of

multiagent reinforcement learning. IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews), 38(2):156–172, 2008.

[28] Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling problem.

In Proc. IAT, pages 302–308, 2004.

[29] V. Conitzer and T. Sandholm. Computing the optimal strategy to commit

to. In Proc. EC, pages 82–90, 2006.

[30] Z. Cormier. The technology fighting poachers, 2019. URL https://www.

bbcearth.com/news/the-technology-fighting-poachers. Accessed on

May 22, 2024.

[31] S. R. Corp. Security robots for home use. URL https://smprobotics.com/

security_robot/security_home_robot/. Accessed on June 03, 2024.

[32] X. Duan and F. Bullo. Markov chain–based stochastic strategies for robotic

surveillance. Annual Review of Control, Robotics, and Autonomous Systems,

4:243–264, 2021.

[33] Y. Elmaliach, N. Agmon, and G. Kaminka. Multi-robot area patrol under

frequency constraints. Annals of Mathematics and Artificial Intelligence, 57

(3-4):293–320, 2009.

111

[34] F. Fang, P. Stone, and M. Tambe. When security games go green: designing

defender strategies to prevent poaching and illegal fishing. In Proceedings of

the 24th International Conference on Artificial Intelligence, pages 2589–2595,

2015.

[35] L. Freda, M. Gianni, F. Pirri, A. Gawel, R. Dubé, R. Siegwart, and

C. Cadena. 3D multi-robot patrolling with a two-level coordination strategy.

Autonomous Robots, 43(7):1747–1779, 2019.

[36] V. Furnon and L. Perron. Or-tools routing library. URL https://

developers.google.com/optimization/routing/.

[37] S. Gal. Search games. Wiley encyclopedia of operations research and

management science, 2010.

[38] M. Garey and D. Johnson. Computers and Intractability. A guide to the

theory of NP-Completeness. W.H. Freeman and Company, 1979.

[39] M. George, S. Jafarpour, and F. Bullo. Markov chains with maximum

entropy for robotic surveillance. IEEE Transactions on Automatic Control,

64(4):1566–1580, 2018.

[40] J. Grace and J. Baillieul. Stochastic strategies for autonomous robotic

surveillance. In Proc. CDC, pages 2200–2205, 2005.

[41] S. Guadarrama, A. Korattikara, O. Ramirez, P. Castro, E. Holly, S. Fishman,

K. Wang, E. Gonina, N. Wu, E. Kokiopoulou, L. Sbaiz, J. Smith, G. Bartok,

J. Berent, C. Harris, V. Vanhoucke, and E. Brevdo. TF-Agents: A library

for reinforcement learning in tensorflow. https://github.com/tensorflow/

agents, 2018. URL https://github.com/tensorflow/agents. [Online;

accessed 25-June-2021].

[42] H. Guo, Q. Kang, W.-Y. Yau, M. H. Ang, and D. Rus. Em-patroller:

Entropy maximized multi-robot patrolling with steady state distribution

approximation. IEEE Robotics and Automation Letters, 2023.

112

[43] N. Haghtalab, F. Fang, T. H. Nguyen, A. Sinha, A. D. Procaccia, and

M. Tambe. Three strategies to success: learning adversary models in security

games. In Proceedings of the Twenty-Fifth International Joint Conference

on Artificial Intelligence, pages 308–314, 2016.

[44] S. Hari, S. Rathinam, S. Darbha, K. Kalyanam, S. Manyam, and D. Casbeer.

The generalized persistent monitoring problem. In Proceedings of the

American Control Conference, pages 2783–2788, 2019.

[45] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[46] L. Huang, M. Zhou, K. Hao, and E. Hou. A survey of multi-robot regular

and adversarial patrolling. IEEE/CAA Journal of Automatica Sinica, 6(4):

894–903, 2019.

[47] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for

Partitioning Irregular Graphs. SIAM Journal on Scientific Computing, 20

(1):359–392, 1998. ISSN 1064-8275. doi: 10.1137/S1064827595287997. URL

http://epubs.siam.org/doi/10.1137/S1064827595287997.

[48] K. Kerdprasop, N. Kerdprasop, and P. Sattayatham. Weighted k-means for

density-biased clustering. In Proceedings of the International Conference on

Data Warehousing and Knowledge Discovery, pages 488–497, 2005.

[49] D. Klaška, A. Kučera, T. Lamser, and V. Řehák. Automatic synthesis of

efficient regular strategies in adversarial patrolling games. In Proc. AAMAS,

pages 659–666, 2018.

[50] N. Li, M. Li, Y. Wang, D. Huang, and W. Yi. Fault-tolerant and self-

adaptive market-based coordination using hoplites framework for multi-

robot patrolling tasks. In 2018 IEEE International Conference on Real-time

Computing and Robotics (RCAR), pages 514–519, 2018.

[51] E. S. Lin, N. Agmon, and S. Kraus. Multi-robot adversarial patrolling:

Handling sequential attacks. ARTIF INTELL, 274:1–25, 2019.

113

[52] S. Y. Luis, D. G. Reina, and S. L. Maŕın. A deep reinforcement learning

approach for the patrolling problem of water resources through autonomous

surface vehicles: The ypacarai lake case. IEEE Access, 8:204076–204093,

2020.

[53] D. L. Michaels. Knightscope deploys new autonomous

security robot in southern california, 2022. URL https:

//www.businesswire.com/news/home/20220316005436/en/

Knightscope-Deploys-New-Autonomous-Security-Robot-in-Southern-California.

Accessed on May 22, 2024.

[54] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-

level control through deep reinforcement learning. nature, 518(7540):529–

533, 2015.

[55] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge

University Press, 1995.

[56] R. Necula, M. Breaban, and M. Raschip. Tackling the bi-criteria facet of

multiple traveling salesman problem with ant colony systems. In Proceedings

of the International Conference on Tools with Artificial Intelligence, pages

873–880, 2015.

[57] Y. Oshart, N. Agmon, and S. Kraus. Non-uniform policies for multi-robot

asymmetric perimeter patrol in adversarial domains. In Proceedings of the

International Symposium on Multi-Robot and Multi-Agent Systems, pages

136–138, 2019.

[58] M. Othmani-Guibourg, A. El Fallah-Seghrouchni, and J. Farges. Path

generation with lstm recurrent neural networks in the context of the multi-

agent patrolling. In 2018 IEEE 30th International Conference on Tools with

Artificial Intelligence (ICTAI), pages 430–437. IEEE, 2018.

114

[59] J. Palacios-Gasós, D. Tardioli, E. Montijano, and C. Sagüés. Equitable

persistent coverage of non-convex environments with graph-based planning.

The International Journal of Robotics Research, 38(14):1674–1694, 2019.

[60] J. M. Palacios-Gasós, E. Montijano, C. Sagues, and S. Llorente. Multi-robot

persistent coverage using branch and bound. In 2016 American Control

Conference (ACC), pages 5697–5702. IEEE, 2016.

[61] A. Papoulis and S. Pillai. Probability, Random Variables, and Stochastic

Processes. McGraw-Hill, 4th edition, 2002.

[62] F. Pasqualetti, A. Franchi, and F. Bullo. On cooperative patrolling: Optimal

trajectories, complexity analysis, and approximation algorithms. IEEE

Transactions on Robotics, 28(3):592–606, 2012.

[63] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12:

2825–2830, 2011.

[64] A. Perrault, B. Wilder, E. Ewing, A. Mate, B. Dilkina, and M. Tambe. End-

to-end game-focused learning of adversary behavior in security games. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,

pages 1378–1386, 2020.

[65] C. Piciarelli and G. L. Foresti. Drone patrolling with reinforcement learning.

In Proceedings of the 13th International Conference on Distributed Smart

Cameras, pages 1–6, 2019.

[66] C. Pippin, H. Christensen, and L. Weiss. Performance based task assignment

in multi-robot patrolling. In Proceedings of the 28th Annual ACM Symposium

on Applied Computing, pages 70–76, 2013.

[67] J. Pita, M. Jain, M. Tambe, F. Ordóñez, and S. Kraus. Robust solutions to

115

stackelberg games: Addressing bounded rationality and limited observations

in human cognition. ARTIF INTELL, 174(15):1142–1171, 2010.

[68] D. Portugal and R. Rocha. MSP Algorithm : Multi-Robot Patrolling based on

Territory Allocation using Balanced Graph Partitioning. ACM Symposium

on Applied Computing, pages 1271–1276, 2010. ISSN 1079-0632. doi: 10.

1145/1774088.1774360.

[69] D. Portugal and R. Rocha. A survey on multi-robot patrolling algorithms.

In Proc. DoCEIS, pages 139–146, 2011.

[70] D. Portugal and R. P. Rocha. Distributed multi-robot patrol: A scalable

and fault-tolerant framework. Robotics and Autonomous Systems, 61(12):

1572–1587, 2013. ISSN 0921-8890.

[71] D. Portugal and R. P. Rocha. Multi-robot patrolling algorithms: examining

performance and scalability. Advanced Robotics, 27(5):325–336, 2013.

[72] D. Portugal and R. P. Rocha. Performance estimation and dimensioning of

team size for multirobot patrol. IEEE Intelligent Systems, 32(6):30–38, 2017.

[73] D. Portugal, C. Pippin, R. Rocha, and H. Christensen. Finding optimal

routes for multi-robot patrolling in generic graphs. In Proceedings of the

IEEE/RSJ International Conference on Robots and Systems, pages 363–369,

2014.

[74] N. Privault. Understanding Markov Chains. Springer, 2013.

[75] D. Rasch. Sample size determination for estimating the parameter of an

exponential distribution. Biometrical Journal, 19(7):521–528, 1997.

[76] C. Robin and S. Lacroix. Multi-robot target detection and tracking:

taxonomy and survey. Autonomous Robots, 40(4):729–760, 2016.

[77] M. Romeo, J. Banfi, N. Basilico, and F. Amigoni. Multirobot persistent

patrolling in communication-restricted environments. In Distributed Au-

116

tonomous Robotic Systems: The 13th International Symposium, pages 59–71,

2018.

[78] S. Ross. Introduction to Probability Models. Elsevier, 2014.

[79] F. Rubio, F. Valero, and C. Llopis-Albert. A review of mobile robots:

Concepts, methods, theoretical framework, and applications. International

Journal of Advanced Robotic Systems, 16(2):1729881419839596, 2019.

[80] T. Sak, J. Wainer, and S. K. Goldenstein. Probabilistic multiagent patrolling.

In Advances in Artificial Intelligence-SBIA 2008: 19th Brazilian Symposium

on Artificial Intelligence Savador, Brazil, October 26-30, 2008. Proceedings

19, pages 124–133. Springer, 2008.

[81] H. Santana, G. Ramalho, V. Corruble, and B. Ratitch. Multi-agent patrolling

with reinforcement learning. In Proceedings of the Third International Joint

Conference on Autonomous Agents and Multiagent Systems-Volume 3, pages

1122–1129. IEEE Computer Society, 2004.

[82] J. Scherer and B. Rinner. Multi-uav surveillance with minimum information

idleness and latency constraints. IEEE Robotics and Automation Letters, 5

(3):4812–4819, 2020.

[83] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region

policy optimization. In International conference on machine learning, pages

1889–1897. PMLR, 2015.

[84] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[85] R. Shah, Y. Jiang, J. Hart, and P. Stone. Deep r-learning for continual area

sweeping. In 2020 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 5542–5547. IEEE, 2020.

[86] A. Sinha, F. Fang, B. An, C. Kiekintveld, and M. Tambe. Stackelberg

security games: Looking beyond a decade of success. In 27th International

117

Joint Conference on Artificial Intelligence, IJCAI 2018, pages 5494–5501.

International Joint Conferences on Artificial Intelligence, 2018.

[87] S. L. Smith, M. Schwager, and D. Rus. Persistent robotic tasks: Monitoring

and sweeping in changing environments. IEEE Transactions on Robotics, 28

(2):410–426, 2011.

[88] R. Sun. Cognitive science meets multi-agent systems: A prolegomenon.

Philosophical psychology, 14(1):5–28, 2001.

[89] R. Sun. Individual action and collective function: From sociology to multi-

agent learning, 2001.

[90] R. Sutton and A. Barto. Reinforcement Learning – An Introduction. MIT

Press, 2018.

[91] R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods

for reinforcement learning with function approximation. Advances in neural

information processing systems, 12, 1999.

[92] M. Tambe. Towards flexible teamwork. Journal of artificial intelligence

research, 7:83–124, 1997.

[93] M. Tambe. Security and game theory: algorithms, deployed systems, lessons

learned. Cambridge University Press, 2011.

[94] A. Technology. Portland angb deploys robot dog to enhance base

security, April 19, 2022. URL https://www.airforce-technology.com/

news/portland-angb-deploys-robot-dog-to-enhance-base-security/

?cf-view. Accessed on June 03, 2024.

[95] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain

randomization for transferring deep neural networks from simulation to the

real world. In 2017 IEEE/RSJ international conference on intelligent robots

and systems (IROS), pages 23–30. IEEE, 2017.

118

[96] J. Von Neumann. A certain zero-sum two-person game equivalent to the

optimal assignment problem. Contributions to the Theory of Games, 2(0):

5–12, 1953.

[97] Y. Wang, Z. R. Shi, L. Yu, Y. Wu, R. Singh, L. Joppa, and F. Fang. Deep

reinforcement learning for green security games with real-time information.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,

pages 1401–1408, 2019.

[98] A. Washburn and K. Wood. Two-person zero-sum games for network

interdiction. Operations research, 43(2):243–251, 1995.

[99] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A

comprehensive survey on graph neural networks. IEEE transactions on

neural networks and learning systems, 32(1):4–24, 2020.

[100] H. Xu, A. Jiang, A. Sinha, Z. Rabinovich, S. Dughmi, and M. Tambe.

Security games with information leakage: modeling and computation (2015).

arxiv preprint. Proc. IJCAI, pages 674–680, 2015.

[101] C. Yan and T. Zhang. Multi-robot patrol: A distributed algorithm based

on expected idleness. International Journal of Advanced Robotic Systems, 13

(6):1729881416663666, 2016. doi: 10.1177/1729881416663666. URL https:

//doi.org/10.1177/1729881416663666.

[102] Z. Yin, M. Jain, M. Tambe, and F. Ordonez. Risk-averse strategies for

security games with execution and observational uncertainty. In Proc. AAAI,

pages 758–763, 2011.

[103] C. Zhang, V. Bucarey, A. Mukhopadhyay, A. Sinha, Y. Qian, Y. Vorobey-

chik, and M. Tambe. Using abstractions to solve opportunistic crime security

games at scale. In Int. Conf. on Autonomous Agents and Multiagent Systems,

pages 196–204, 2016.

