
Multi-Robot Routing Algorithms for Robots Operating in Vineyards

Thomas C. Thayer Stavros Vougioukas Ken Goldberg Stefano Carpin

Abstract— In this paper we consider the problem of multi-
robot routing in vineyards, a task motivated by our ongoing
project aiming at creating a co-robotic system to implement
precision irrigation on large scale commercial vineyards. The
problem is related to a combinatorial optimization problem
on graphs known as the “team orienteering problem”. Team
orienteering is known to be NP-hard, thus motivating the
development of heuristic solutions that can scale to large
problem instances. We propose three different approaches
informed by the domain we consider, and compare them against
a general purpose heuristic formerly developed and widely
used. In various benchmarks derived from data gathered in
a commercial vineyard, we demonstrate that our solutions
outperform the general purpose heuristic and are scalable, thus
allowing us to solve instances with hundred of thousands of
vertices in the graphs.

I. INTRODUCTION

Grapes are ideally grown following a stress irrigation
regime, i.e., each vine receives a limited amount of water
to bolster sugar content and emphasize flavonoids. However,
currently used irrigation systems lack the ability to adjust
water delivery at a fine grain level, e.g., on a per vine basis
or based on small zones. Because overstressing a vine may
lead to inferior yield and even to vine death, growers tend to
over-irrigate and avoid potential losses. Delivering “the right
amount of water” remains an open challenge. This problem
is particularly acute in California, where grape production
has a strong economic impact, but freshwater availability is
limited, and where recent droughts have made the situation
even worse. The US - where freshwater usage in agriculture
is estimated to be 85% - is not facing this problem alone;
worldwide usage of freshwater in agriculture is thought to
be around 70% [10], making agricultural water conservation
a global challenge. If one looks at irrigation infrastructure
from a control standpoint, there is an abundance of data
gathered from vineyards through remote or in-site sensing,
but the ability to modify the inputs to the system (i.e., water)
is very coarse. Equipping each vine (or small groups of
vines) with an electrically actuated variable-rate emitter is
unfeasible because of cost considerations and the necessity to
withstand extremely harsh operating conditions for extended
periods of time. Passive, variable-rate emitters mitigate this
problem, but manually adjusting them is an approach that

T.C. Thayer and S. Carpin are with the University of California, Merced,
CA, USA. S. Vougioukas is with the University of California, Davis, CA,
USA. K. Goldberg is with the University of California, Berkeley, CA, USA.

This material is based upon work that is supported by the by USDA-NIFA
under award number 2017-67021-25925 (NSF National Robotics Initiative).
Any opinions, findings, conclusions, or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the view
of the U.S. Department of Agriculture.

does not scale due to the sheer size of the vineyards and
increasing labor shortage.

In development by the University of California, RAPID
(Robot Assisted Precision Irrigation Delivery) is a scalable
irrigation management solution that aims to assist vine
growers with water conservation efforts while improving
yield and quality. The objective of RAPID is to create a co-
robot system whereby fleets of robots will navigate through
vineyards to adjust passive emitters allowing a more targeted
water delivery. In [6] we presented PEAD (Portable Emitter
Actuation Device), i.e., an actuator that can be used to latch
and adjust a variable rate emitter, and in [2] we showed how
this concept can be extended for mounting on a robotic arm.
Ultimately, the robotic arm would be moved by a mobile
platform emitter to emitter to perform required adjustments.

The motion of the mobile robot carrying the arm is subject
to various constraints. In particular, the robot may not be able
to follow a straight line when moving from one emitter to
another because vines and irrigation lines prevent changing
vine rows. This is illustrated in figure 1. Moreover, due to the
limited onboard power supply, the robot needs to periodically
return to the deployment site for a recharge or swap of its
batteries. In [11] we recently showed that this problem is
related to the orienteering problem and we proved that it
remains NP-hard even when considering the special structure
of the graph induced by the environment the robot operates
in. Then, we proposed two heuristics informed by the domain
that outperform standard heuristic methods proposed in the
past. However, in [11] we only considered the single robot
case, whereas a more realistic scenario will have a fleet of
robots deployed to expedite the process. In this paper, we
therefore extend our former findings considering the case
where multiple robots are deployed. This problem is related
to the team orienteering problem and is obviously as hard
as the single agent case. From a practical perspective, there
is an additional challenge. Because vines are densely grown,
the width of each row is small, and with multiple robots
operating in the same vineyard, one should avoid having two
robots traveling at the same time along the same row in
opposite directions, as there may not be enough space.1

The rest of this paper is organized as follows. Related
work is briefly discussed in section II, whereas the problem
we consider is formalized in section III. Motivated by the
intrinsic computational complexity, three different heuristics
are presented in section IV, where we moreover shortly dis-
cuss a formerly developed method for this class of problems.

1While at this stage of the project we use a small Husky robot, in a field
deployment we anticipate that platforms with a larger footprint will be used.

Fig. 1: A test platform for identifying challenges in naviga-
tion within a vineyard. Irrigation lines and vine stocks block
travel between rows, thus creating motion constraints.

Section V compares the different solutions on various prob-
lem instances based on data we collected on a commercial
vineyard, and shows that our proposed solution favorably
scales with the size of the problem. Finally, conclusions are
given in section VI.

II. RELATED WORK

The problem considered in this paper is related to the
classic orienteering problem whereby one agent needs to
traverse a graph where each vertex has a reward and each
edge has a cost. The objective is to compute a path maxi-
mizing the sum of rewards for visited vertices while ensuring
that the sum of costs for traversed edges does not exceed a
preassigned budget. If a vertex is visited multiple times, the
associated reward is counted only once. This problem was
originally introduced in [7] where it was proven to be NP-
hard, and in [3] the authors showed that orienteering belongs
in the and APX-hard class. There exist numerous variants
of the orienteering problem, and we point the reader to [8]
for a recent survey. Two main approaches are followed to
tackle this problem. The first aims at developing heuristic
approaches that may work well in practice, often informed
by domain specific knowledge (the above mentioned survey
provides numerous pointers). The second utilizes exact meth-
ods using branch-and-bound techniques, but applicability is
limited to problem instances with a small number of vertices
in the graph, i.e., less than 1,000 [5]. To put this number
into context, the problem instances we consider may have
more than 100,000 vertices. The team orienteering problem,
(TOP) is a variant of the orienteering problem where multiple
agents collect the rewards, while all agents are subject to the
same budget constraint [4]. Evidently, this problem is as hard
as orienteering, and then subject to the same computational
challenges, although the cooperative nature of the problem
calls for the development of specialized heuristics, like [12].
The problem we consider is also related to the multi-robot

motion coordination problem, in particular because of our
requirement of not having two or more robots traversing
the same row in opposite direction at the same time. Our
approach relies on considering the space/time composition
to resolve conflicts, and is related to methods that determine
how to schedule multiple robots along a preassigned set of
routes [9]. The multirobot path planning remains intractable
even when restricted to problem instances defined on planar
graphs, and heuristics are used in this domain as well [1],
[14], [13].

III. PROBLEM DEFINITION

The team orienteering problem is formally defined as
follows: Let G = (V,E) be a complete, undirected graph,
let r : V → R≥0 be a reward function defined over the
vertices, and let c : E → R≥0 be a cost function defined
over the edges. Starting from these two functions, a path in
the graph can be associated with a cost and a reward. The
cost is the sum of the costs of all edges along the path, while
the reward is the sum of the rewards of all vertices visited
by the path. If a path visits the same vertex multiple times,
the reward is added just once, whereas the cost of an edge is
incurred every time the edge is traversed. For a given integer
M (number of team members) and given real number TMAX

(budget) we want to determine M paths starting and ending
at a preassigned vertex v ∈ V that maximize the sum of the
rewards of the paths subject to the following two constraints:
1) each path has cost at most TMAX ; 2) if a vertex is visited
more than once, either by the same or different agents, the
associated reward is collected only once.

In our recent work [11] we introduced a special class
of graphs called irrigation graphs that we indicated as
IG(m,n) where m and n are the number of rows and
columns, respectively. Irrigation graphs are planar graphs
of degree at most three that capture the motion constraints
emerging when robots navigate in a vineyard. Figure 2 show
the structure of these graphs, and we refer the reader to
[11] for the formal definition. Each vertex in the irrigation
graph represents the location of a water emitter (placed in
close proximity to a vine), and edges show possible motions
between emitters. The structure of the edges model the
motion constraints for a robot operating in a vineyard, i.e.,
row swapping is only possible at either end of the row, but
not in the middle of a row.

Orienteering heuristics and algorithms often require com-
plete graphs, and an irrigation graph can obviously be
extended into a complete graph by adding the missing edges
with the costs set equal to the shortest path in the original
graph. The basic version of the problem we consider in this
paper is the following.

Irrigation Graph Team Orienteering Problem
(IGTOP): Let G be a graph IG(m,n), v1, vn ∈
V be two of its vertices and c, r be a cost and
reward function on G. For a given constant TMAX ,
find M routes of maximum reward starting at v1
and ending at vn of cost no greater than TMAX ,
and such that the reward for visiting a vertex is

. . .

...
. . .

. . .

...

Fig. 2: Structure of an irrigation graph. The parameters m
and n refer to the number of rows, and the number of vertices
in each row, respectively.

collected only once if the vertex is visited multiple
times.

In [11] we proved that the special case of IGTOP where
M = 1 (single agent) and c(e) is equal for all edges is NP-
hard. Consequently, IGTOP is NP-hard as well. Note that
the assumption of constant edge costs is motivated by the
domain we consider, because vines and water emitters are
uniformly spaced, and terrain is flat. Additionally, we make
the assumption that all robots are homogenous; that is, they
perform equally well in the same conditions.

As mentioned in the introduction, when solving the IGTOP
problem there exists the possibility that a solution may cause
two or more robots to collide when it is implemented. This
is because the spacing of trellises and vines may be too
narrow to allow two robots to traverse the same row in
opposite directions. Traveling in opposite directions along
the vertical columns at either end of the graph is allowed,
however, because those sections are typically much larger.
The heuristic we will propose, therefore, will not only solve
the IGTOP problem defined above, but also ensure that no
collisions occur.

IV. PROPOSED SOLUTIONS

A. Single Agent Greedy Partial Row Heuristic

The Greedy Partial Row Heuristic algorithm (GPR) we
proposed in [11] only solves the single agent case, but can
be used as a building block to solve the multi-agent case. We
shortly summarize it in the following and refer the reader to
[11] for a full discussion. Algorithm 1 shows the pseudocode.

GPR precomputes total reward values for completely
traversing each row, and cumulative reward values for par-
tially traversing rows (entering a row, visiting some number
of vertices into the row, then turning around and exiting from
whence it came, leaving some vertices in the row unvisited)
from either side. A feasible vertex is a vertex such that there
is enough budget to visit the vertex and then go to the ending
location vn. Initially, all vertices are marked as feasible.
Then, the main loop is performed where vertices, rows, or
partial rows are added to the tour until there are no longer any
feasible vertices for the remaining budget, at which point the
tour concludes by going to vn. When choosing the next row

or partial row to visit, the heuristic scores for all feasible
paths are computed dividing the potential rewards by the
potential costs. In the case of full rows, the full row reward
is divided by the cost to enter the row plus the cost to traverse
the row. In the case of partial rows, the cumulative reward
at each vertex within rows is divided by the cost to enter
the row plus the cost to partially traverse the row up to the
vertex plus the cost to turn around and exit the row on the
same side it entered. After heuristics are computed, the best
full row and partial row are chosen, then compared to each
other. The greater of the two is then added to the tour if it is
feasible and then marked as unfeasible so it does not enter
the tour a second time. If not feasible, it is marked as such
and the other is added to the tour then marked as unfeasible.
If both are not feasible, then they are both marked as such.
Each loop iteration will mark more vertices as unfeasible
until no more are left, thus ensuring the algorithm eventually
terminates.

The complexity of this algorithm is O(m2n) where m is
the number of rows and n is number of vines per row. In [11]
we demonstrated that this heuristic is the best among those
we considered for irrigation graphs, and it also outperforms
general purpose heuristics proposed in the past. Therefore we
use it to implement various multi-agent extensions to solve
IGTOP instances.

1: Compute cumulative rewards from left and right
2: Mark all vertices as feasible
3: while feasible vertices exist do
4: Compute full-row heuristics
5: Find best full-row
6: Compute partial-row heuristics for current side
7: Find best partial-row
8: if best full-row is better then
9: if feasible then

10: Append to tour
11: Mark as unfeasible
12: if best partial-row is better or best full-row is unfeasible

then
13: if feasible then
14: Append to tour
15: Mark as unfeasible
16: if both unfeasible then
17: Mark both as unfeasible
18: Append path from current vertex to ending vertex to tour
19: return tour
Algorithm 1: Greedy Partial-Row Heuristic (GPR)

B. Vineyard Sectioning

The simplest method of applying teamwork to orienteering
on a graph consists in splitting the graph into a set of M
sections and assign one agent to each section. This is the
classic divide and conquere approach, and besides being
extremely simple to implement, it can be very effective in
some circumstances. For the case of IGTOP, each of the M
agents is assigned a set of contiguous rows over which it
is to solve the single-agent orienteering problem using the
GPR algorithm.While it is possible to split the vineyard into
M equal sections so that each agent has the same amount

of area to service, this is obviously suboptimal when the
budget is too small for all vertices to be visited, as some
sections will have more rewards to collect than others. To
prevent agents from spending budget on low reward regions,
blocks of rows are split by percentage of overall reward.
Each agent will have a certain percentage of overall budget
to expend, so it is assigned to a contiguous block of rows
with approximately the same percentage of overall reward.
Dividing the vineyard in this fashion normalizes the agents
potential reward with its budget to utilize it more effectively.
Because only one agent is assigned to each section, and each
section contains only complete rows that are not assigned to
any other section, collisions are avoided by construction.

This algorithm, called Vineyard Sectioning in the follow-
ing, is sketched in algorithm 2. The overall complexity of
solving IGTOP using this technique is O(M ·m2n), due to
the fact that GPR is run once for every agent.

1: Compute rewardtotal of vineyard
2: j = 1
3: for M agents do
4: i = j
5: sum = 0
6: percentM = budgetM/budgettotal
7: while sum/rewardtotal < percentM do
8: j = j + 1
9: sum = sum+ rewardj

10: temprewardmap = rewardmap
11: for all rows not between i and j do
12: temprewardmaprow = 0
13: Run GPR(temprewardmap) for current agent

Algorithm 2: Vineyard Sectioning

C. Series GPR

Instead of preliminarily sectioning the vineyard in M
zones, an alternative strategy is to sequentially solve the
single-agent orienteering multiple times on the whole ir-
rigation graph, zeroing out the rewards collected by each
agent, so that they are no longer considered by the following
ones. Algorithm 3 shows how this is implemented. Perhaps
more primitive than the vineyard sectioning approach, this
method forgoes preplanning the area of visitation for each
agent and instead allows them to freely roam collecting
the highest available rewards. GPR is run M consecutive
times, and after each run visited verticies and rows have their
rewards set to zero so that every run afterwards ignores these
areas in its search. To properly avoid collisions within rows,
GPR is modified (see algorithm 4) to track where and when
previous robots visited a vertex by taking as input a conflict
map containing every vertex with times visited and passing
this map as output filled with the new tour’s information.
Similarly to vineyard sectioning, running GPR in series will
result in an overall complexity of O(M ·m2n), giving this
algorithm a linear complexity with respect to the number of
agents.

1: initialize conflictmap
2: for k agents do
3: Run GPRwithAvoidance(rewardmap, conflictmap)
4: for all visited vertices do
5: rewardmapvertex = 0

Algorithm 3: Series GPR

1: Compute cumulative rewards from left and right
2: while tour not concluded do
3: Reset conflictmap and vertex feasibility to input
4: tour = ∅
5: while feasible vertices exist do
6: Compute heuristics of full-row and partial-row for

current side
7: Compute time for visiting full-rows and partial-rows
8: Find best full-row without time conflicts
9: Find best partial-row without time conflicts

10: if best full-row or best partial-row not empty then
11: if either is unfeasible then
12: Mark as unfeasible where appropriate
13: if best full-row is better and feasible then
14: Append to tour
15: Add vertices and times to conflictmap
16: Mark as unfeasible
17: else if best partial-row is feasible then
18: Append to tour
19: Add vertices and times to conflictmap
20: Mark as unfeasible
21: else
22: Tell tour to wait 1 unit
23: if exists path to end vertex without time confilct then
24: Append path from current to end vertex to tour
25: Add vertices and times to conflictmap
26: return tour, conflictmap
27: else
28: Tell tour to save more time for the end

Algorithm 4: GPRwithAvoidance

D. Parallel GPR

Rather than plan the route for each agent independently,
planning each route in parallel allows agents to take advan-
tage of their current location when choosing who will cover
the next best row or partial row. To apply this idea, an internal
loop is added to GPR, such that heuristics are computed to
reveal the best row and best partial row for each agent, which
are kept track of in a list of candidates. The path with the
greatest heuristic value is tested for feasibility as well as
time confilcts, and if feasible and conflict free it is added to
the corresponding agent’s tour then marked as unfeasible for
future iterations. However, if it is unfeasible then the next
best candidate is tested and the unfeasible row / partial row
and agent combination is added to a blacklist where it will be
passed over for future iterations. Once a row or partial row
is blacklisted for all agents, then it is marked unfeasible and
will no longer be considered. Like GPR with avoidance, the
algorithm will continue until all points of interest are marked
unfeasible, then each tour will be concluded at the ending
vertex if there are not time conflicts. The complexity of this
algorithm is O(M · m2n), again linear with respect to the

number of agents, and pseudocode is shown in Algorithm 5.

1: Compute cumulative rewards from left and right
2: while all tours not concluded do
3: Reset conflictmap, blacklist, and vertex feasibility
4: All tours = ∅
5: while feasible vertices exist do
6: Clear candidates
7: for all agentM do
8: Compute heuristics of full-row and partial-row for

current side
9: Compute visiting time of full-rows and partial-rows

10: for all full-rows without time conflicts do
11: Find best full-row not in blacklist for agentM
12: Add to candidates
13: for all partial-rows without time conflicts do
14: Find best partial-row not in blacklist for agentM
15: Add to candidates
16: if nothing added to candidates for agentM then
17: Tell tourM to wait 1 unit
18: while Candidates is not empty do
19: Find candidate with greatest heuristic
20: if best candidate is feasible then
21: Append to tourM
22: Add vertices and times to conflictmap
23: Mark as unfeasible
24: else
25: Add to blacklist
26: Mark verticies blacklisted by all agents as unfeasible
27: for all agentM do
28: if exists path to end vertex without time conflict then
29: Append path to tourM
30: Add vertices and times to conflictmap
31: else
32: Tell tourM to save more time for the end
33: if all tours at ending vertex then
34: return tours, conflictmap

Algorithm 5: Parallel GPR

E. Guided Local Search

To benchmark our algorithms, we use the Guided Local
Search (GLS) Metaheuristic [12], which builds an algorithm
for solving TOP in the general case using a composition of
several local search heuristics. GLS was chosen because it
is easily extendable from the general TOP case with fully
connected graphs to the case we study here with irrigation
graphs. Initial construction is performed by creating M tours
from the start location to the furthest possible vertices from
the start and end, such that each tour visits only one vertex
other than the start and finish. Next, cheapest insertion is
performed on each tour until no longer possible, and then the
algorithm enters a series of loops. These loops are iterated
until the solution can no longer be improved (for defined
parameters), and within them the following local search
heuristics are performed: swap which trades vertices between
tours, TSP which performs a 2-opt cost improvement on
individual tours, move which moves vertices between tours
to group together budget left, insert which adds unvisited
vertices to tours, replace which swaps a visited vertex for
an unvisited one, and disturb which removes some number
of vertices from the beginning or end of each tour. The

guided local search metaheuristics are used in the replace
and TSP heuristics to improve results. One important aspect
to notice is that GLS was not designed around IGTOP and
therefore does not account for possible collisions within
rows. The complexity of this algorithm and others similar
to it is O(TMAX · k2log2(M · k)) where k is the number
of vertices in the graph, i.e., k = mn in our case. The
complexity is then significantly higher than our heuristics.
Note also the linear dependency on TMAX .

V. EXPERIMENTAL COMPARISON

The algorithms presented in the previous section were
tested on a series of simulated routing problems derived from
a commercial vineyard in central California with multiple
blocks of roughly the same size. Most blocks were rect-
angular with m = 240 rows of n = 500 columns (vines)
each (see Figure 3). These generate problem instances with
120,000 vertices in the graph.

Fig. 3: One of the vineyard blocks used to collect data for
our experiments and the locations where soil moisture data
was collected.

The reward r(v) for each vertex v was calculated as
r(v) = |T − m(v)|, where T is a constant indicating the
desired soil moisture in the vineyard and m(v) is the soil
moisture at vertex v. This reward is the difference between
desired moisture and actual moisture, thus revealing how
underwatered or overwatered a vine is. Due to the large
size of the ranch, soil moisture data was sampled at discrete
locations within the vineyard using a GPS equipped manual
probe (Campbell Scientific Hydrosense HS2P). From the
finite set of samples, a soil moisture map for the whole block
was obtained with a linear interpolation in between samples,
and extrapolated with a nearest neighbor for locations outside
the convex hull of the locations of the samples. Other
interpolation techniques, like kriging, could be used, but are
inconsequential to the work discussed here. Figure 4 shows
one example of reward map.

The first test compared the three proposed algorithms
(Vineyard Sectioning, Series GPR, Parallel GPR) with the
GLS metaheuristic discussed earlier. Here, the irrigation
graph tested was scaled-down to 300 verticies (12×25)

Fig. 4: Reward map for the same vineyard in Fig. 3.

because of computational constraints using GLS. For a
thourough comparison, the number of agents and total budget
(budget for all agents combined) was varied. For all four
algorithms, no collisions occurred. This result was somewhat
unexpected for GLS, as it is not designed to mitigate colli-
sions in an irrigation graph. However, while our heuristics
are guaranteed to produce collision free solutions irrespective
of the graph size and the reward map, the same cannot be
said for GLS.

Fig. 5: Number of agents vs fraction of total reward collected
for fixed budgets on a 12×25 graph. Note that some lines
are overlapping in some intervals.

Figure 5 shows how the number of agents used to solve
a IGTOP effects the overall outcome. In each instance run,
all agents shared the same total budget equal to Tmax/M .

For example, for a total budget of 100, two agents have
50 each, 4 have 25 each, etc. These results show that, for
irrigation graphs, one agent with a larger budget would be
more impactful than multiple agents with smaller budgets.
This is expected because with a single robot no coordination
is necessary. However, this is unfeasible in practice; it is
technically not viable to deploy a single robot with auton-
omy equal to the sum of the autonomies of all M robots.
Additionally, all three proposed algorithms perform better
than GLS in most cases, with the exception of relatively low
budgets, where GLS performs almost as well as the others.

Fig. 6: Budget vs fraction of total reward collected for
6 agents on a 12×25 graph. Note that some lines are
overlapping in some intervals.

In figure 6 we instead consider the case where 6 agents are
used and the combined budget is increased. The performance
of the three proposed algorithms shows similarity. Vineyard
Sectioning, Series GPR, and Parallel GPR all at one point
collect the highest reward, but usually Parallel GPR is on top.
In many instances, the three algorithms are almost equal to
each other in performance, and they stay neck and neck to
each other in most cases. There is a maximum difference
of 13.52% in collected reward between the three algorithms
when M = 6 and TMAX × M = 325. When GLS is
considered, the gap between the top performer and GLS
maximizes at 47.25% when M = 6 and TMAX ×M = 375.
Note that GLS performs as well as the others when budgets
are lower, but begins to fall behind as budgets climb higher.

The plots shown in figure 7 and figure 8 highlights ineffi-
ciencies in budget usage for each algorithm. Residual budget
is the unused budget after the execution of the algorithm,
meaning the algorithm cannot find a way utilize the rest of
the budget to visit new vertices and increase the total reward.
Unused budget emerges because the robots need to return
to the deployment vertex before they can spend all their
budget. An optimal algorithm should have a low residual
as the fraction of total reward collected increases, with
minimal spikes (signaling where graph structure prevents
efficent use of budget), and a high reward ceiling at 1, where
the residual begins to increase toward infinity. Series GPR
and parallel GPR both have low residuals but high rewards
ceilings, showing that they are efficient in path planning for
irrigation graphs. Vineyard sectioning has lots of high value

Fig. 7: Reward vs leftover budget after paths are built
for 5 agents on a 12×25 graph. Note that some lines are
overlapping in some intervals.

Fig. 8: Reward vs leftover budget after paths are built
for 6 agents on a 12×25 graph. Note that some lines are
overlapping in some intervals.

residuals, which is the result of splitting the vineyard into
blocks because some agents will be caged and unable to
use their entire budgets, but also shows the ability to reach
high fractions of reward collected. GLS tends to have a low
residual budget, however it also does not do well collecting
reward at high budgets, so residual budget increases greatly
at a lower reward ceiling, signifying it is not as efficient as
the other algorithms.

The second test compared the three proposed algorithms
to each other on the full sized irrigation graph with 120,000
vertices (240×500). Again, both the number of agents and
total budget were variable parameters so that the overall
effectiveness of each algorithm could be explored. Moreover,
no collisions were detected between robots, because the three
heuristics ensure that no collisions will occur.

Figure 9 shows Series GPR and Parallel GPR are very
close for much of the tested number of agents, while Vine-
yard Sectioning is considerably less efficient. Similarly to
the 12×25 test, Parallel GPR performs slightly better than
Series GPR most of the time, especially with larger budgets.

Figure 10 reveals that with the full sized graph and
50 agents, Series GPR and Parallel GPR perform nearly
identically however, unlike in figure 6, Parallel GPR is
nearly always the top performer. Vineyard sectioning also

Fig. 9: Number of agents vs fraction of total reward collected
for fixed budgets on a 240×500 graph.

Fig. 10: Budget vs fraction of total reward collected for 50
agents on a 240×500 graph.

performed very well, however it never equals the reward
collection performance of the other two algorithms. Speci-
ficly, with a budget of 150,000, Parallel GPR can collect
95.7% of the rewards and Series GPR can collect 94.5% of
the rewards, but Vineyard Sectioning is only able to collect
87.7% of the rewards. The results are similar in cases with
any number of agents (1 through 100 agents tested), with
reward collected equal for all algorthims when only one
agent is considered but diverging as more agents are added.

The residuals in figure 11 show an interesting pattern
emerge for the Vineyard Sectioning algorithm. As the com-
bined budget increases, each agent has a larger budget to
expend, however after a certain point much of the increased
budget is wasted. Again, this is likely due to the compart-
mentalization of each agent, i.e. when they collect all the

Fig. 11: Fraction of collected reward vs leftover budget after
paths are built for 50 agents on a 240×500 graph.

rewards in their area there is nothing left for them to do
so they end their tour. Because some sections are larger
than others and all the agents have the same budget, larger
sections will have portions unexplored unless the budgets are
increased dramatically beyond what is needed for smaller
sections, so agents servicing smaller sections will have lots
of excess. Additionally, when Series GPR and Parallel GPR
collect all of their rewards, the residuals shoot up because
there is nothing left for the agents to do, so extra budget
goes unused. Again, results look similar for all numbers of
agents tested.

To analyze the robustness of the proposed algorithms, they
were subjected to more tests of the same sizes as the first
two tests (12×25 and 240×500) but with different moisture
maps. The results of these tests are very similar to the
results presented earlier, and the relative effectiveness of each
algorithm remains consistent.

VI. CONCLUSIONS

In this paper we studied the problem of routing multiple
robots within a vineyard - where movement is limited when
a row is entered - for the application of precision irrigation.
Recognising this problem as NP-hard, we presented three
evolutions of the single robot routing algorithm we recently
developed and extend its capabilities for teams of robots.
These algorithms were compared with the GLS heuristic,
a method formerly proposed and widely used. Two of the
heuristic outperformed GLS in both reward and computation
time. Future work in this domain will consider navigational
and emitter adjustment uncertainties, and heterogeneous
agents (i.e. humans and robots). Moreover, we will study
the effect of different techniques to construct global moisture
maps from a finite set of samples. Methods like kriging yield
smoother maps and this could indicate alternative heuristics
to explore. Efforts to deploy a fully working prototype in the
field are also ongoing.

ACKNOWLEDGMENTS

We gratefully acknowledge Luis Sanchez and Nick
Dokoozlian from E&J Gallo Winery for having granted
access to their vineyards for data collection, and for the

valuable and information provided during this project. We
thank Carlos Diaz Alvarenga and Jose Manuel Gonzalez for
assisting with data collection in the field.

REFERENCES

[1] J. Banfi, N. Basilico, and F. Amigoni. Intractability of time-optimal
multirobot path planning on 2d grid graphs with holes. IEEE Robotics
and Automation Letters, 2(4):1941–1947, 2017.

[2] R. Berenstein, R. Fox, S. McKinley, S. Carpin, and K. Goldberg.
Adjusting indoor drip irrigation emitters with the toyota hsr robot.
In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 2236–2243, 2018.

[3] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson,
and M. Minkoff. Approximation algorithms for orienteering and
discounted-reward tsp. SIAM Journal on Computing, 37(2):653–670,
2007.

[4] I. Chao, B. Golden, and E. Wasil. The team orienteering problem.
European Journal of Operations Research, 88:464–474, 1996.

[5] M. Fischetti, J.J. Salazar Gonzalez, and P. Toth. Solving the ori-
enteering problem through branch-and-cut. INFORMS Journal on
Computing, 10(2):133–148, 1998.

[6] D. Gealy, S. McKinkley, M. Guo, L. Miller, S. Vougioukas, J. Viers,
S. Carpin, and K. Goldberg. Co-robotic device for autoamated tuning
of emitters to enable precision irrigation. In Proceedings of the IEEE
Conference on Automation Science and Engineering, pages 922–927,
2016.

[7] B.L. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval
Research Logisitics, 34(3):307–318, 1987.

[8] A. Gunavan, H. Chuin Lin, and P. Vansteenwegen. Orienteering prob-
lem: A survey of recent variants, solution approaches and applications.
European Journal of Operational Research, 255(2):315–332, 2016.

[9] L.E. Parker. Path planning and motion coordination in multiple mobile
robot teams. In Meyers R.A, editor, Encyclopedia of Complexity and
System Science. Springer, 2009.

[10] G.D. Schaible and M.P. Aillery. Callenges for US irrigated agriculture
in the face of emerging demands and climate change. In J. Ziolkowska
and J.M. Peterson, editors, Competition for Water Resources, chapter
2.1.1, pages 44–79. Elsevier, 2017.

[11] T. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin. Routing
algorithms for robot assisted precision irrigation. In Proceedings of
the IEEE International Conference on Robotics and Automation, pages
2221–2228, 2018.

[12] P. Vansteenwegen, W. Souffriau, G. Vanden Berghe, and D. Van
Oudheusden. A guided local search metaheuristic for the team
orienteering problem. European Journal of Operations Research,
196:118–127, 2009.

[13] J. Yu. Intractability of optimal multirobot path planning on planar
graphs. IEEE Robotics and Automation Letters, 1(1):33–40, 2016.

[14] J. Yu and S. M. LaValle. Optimal multirobot path planning on graphs:
Complete algorithms and effective heuristics. IEEE Transactions on
Robotics, 32(5):1163–1177, 2016.

