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Abstract— To determine a force-closure grasp, current grasp
synthesis algorithms either assume a deterministic model to
compute a desired finger placement without noise, or model
the end-effector position as a free-floating rigid body whose
noise in pose is independent of the kinematic chain formed by
the robot arm. In this work we instead explore a probabilistic
approach that explicitly models noise in joint-angles. By sam-
pling additive noise that is applied to a pre-grasp configuration
and studying the resulting probability of force-closure when the
robot fingers are closed, we observe in experiments that joint-
angle positions can have a remarkable effect on the probability
of successfully restraining an object. We systematically study
the grasp quality value as a random variable and investigate
the convergence of sampling based estimators for the mean,
covariance and moments up to third order of this quantity by
means of Montecarlo Sampling. We study illustrative examples
of the impact of initial joint-configurations on the likelihood
of force closure on a seven degree of freedom simulated Kuka
lightweight robot arm.

I. INTRODUCTION

The study of grasp quality metrics is deeply intertwined
with the study of grasp planning algorithms. This connection
stems from the fact that in most cases a robotic manipulator
can grasp a given object in multiple ways. Given a set of
possible solutions determined by the grasp planner, it is then
natural to ask which one should be preferred, and the utility
of grasp quality metrics is therefore evident. While many
grasp quality metrics have been proposed [5], [10], [17], [21],
most contributions have ignored the morphology of the robot
executing the grasp. For example, the Ferrari-Canny metric
[5] emerged as the most used metric, but it just considers the
contact points without incorporating kinematic constraints.
Most other methods embrace a similar standpoint [10], [17],
[21]. Moreover, most classical grasp quality metrics do not
incorporate a fully realistic noise-model accounting for the
inevitable inaccuracies occurring when a grasp is executed.
This problem is becoming particularly relevant with the
advent of platforms with passive joints (e.g., Baxter [6]),
for which small deviations from the desired trajectory or
desired final position and orientation of the end effector are
unavoidable.

In this work, we propose to explicitly account for noise in
joint-angle positions, and to study the relationship between
this noise and the definition of the grasp quality metric
Q defined by Ferrari and Canny. We focus in particular
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Fig. 1: The above figures display two grasps with identical contact point
configurations. Note however the relative rotation of the third joint by π

2
.

When imposing Gaussian noise on the individual joints of the robot arm, the
covariance ellipsoid of end-effector positions is also rotated by π

2
, resulting

in a drastically changed value for P (FC).

on the probability of force closure measure P (FC) [13]
and the expected grasp quality E[Q]. The reader is referred
to Figure 1 to consider the motivations for this work. It
shows an example of two grasps with identical contact
configuration at the finger tips but with differing third joint
angle. With a classical modeling of these grasps, without
noise, or assuming i.i.d noise in end-effector position, these
configurations would be considered equivalent. However, we
observe that by considering Gaussian perturbations in joint-
angles significant differences between these configurations
are noted. For example, our experiments show that the
grasp shown on the left has a significantly lower probability
of force closure and expected Ferrari-Canny grasp quality
compared to the grasp on the right. The same results are
observed throughout the numerous experiments we present
in this manuscript. We argue that noise-models that fully
incorporate the kinematic structure and limitations of a robot
should be used to more reliably predict the success of a
proposed grasp. The main goal of the present paper is to
highlight the importance of noise in joint-configurations for
the purpose of grasp quality evaluation and synthesis. While
error propagation is a well-studied problem in mechanics and
robot arms [4], the impact of errors in joint-angles has, to the
best of our knowledge, at this point not been integrated with
the main-stream robotic grasp quality evaluation literature.
We in particular present a sampling based approach to study
the impact of noise on the Ferrari-Canny grasp quality metric
and on the probability of force closure.

The rest of this paper is organized as follows. Related
work is discussed in Section II. In Section III we define the
problem we consider and present the experimental method-



ology sustaining our study. Simulations and their results are
illustrated in Section IV, while conclusions and future work
are discussed in Section V.

II. BACKGROUND AND RELATED WORK

A. Analytic Grasp Synthesis

Over the last two decades various grasp quality metrics
have been developed with the aim of turning the grasp
synthesis problem into an optimization problem. The reader
is referred to [2], [18] for surveys of these methods, in
particular for aspects related to physics-based models, such
as the quasi-static model [15] to derive force or form-closure
grasps. The Ferrari-Canny metric [5] ranks grasps based on
their ability to resist an arbitrary disturbance wrench acting
on the object being restrained. This metric has gained signif-
icant popularity despite the fact that is suffers from various
drawbacks, i.e., it is not scale invariant, and its numerical
value depends on an arbitrary choice of the point with respect
to which torques are computed. Strandberg and Wahlberg
[22] proposed an alternative metric that overcomes some of
these limitations and in particular considers only disturbance
wrenches that may occur in practice. This measure, however,
has been scarcely used in practice because of its compu-
tational burden. Recently, Liu and Carpin have proposed
two methods based on partial quick hull computation to
significantly accelerate the computation of these metrics [11],
[12]. A recent survey of grasp quality metrics is given in
[19]. The above mentioned methods do not model noise
in the grasping process and are based on analytic physics
based approaches requiring perfect knowledge of numerous
parameters, including friction coefficients, contact points and
surface normals. In most instances, these values are instead
only known with uncertainty.

Data-Driven Approaches

An alternative approach to analytics grasp synthesis is
given by data-driven approaches, where grasps are obtained
combining prior data to learn how to grasp a new object. The
reader is referred to [3], [9] and references therein for recent
results obtained with this class of methods. With data-driven
approaches, noise is implicitly accounted for when data is
gathered, but it is often not explicitly modeled. Therefore, the
ability to predict how a grasp configuration will be affected
by a change in the noise is limited and usually not explicitly
accounted for.

Noise modeling in mechanics

As pointed out in [16], noise in modeling robot arm
mechanics derives from four sources, i.e., 1) deterministic
inaccuracies in the geometric models of links; 2) nondeter-
ministic geometric errors due to backlash and dimensional
changes due to compliance; 3) nondeterministic errors due
to friction, and external loads; 4) quantization errors in sens-
ing and control. Most papers studying these noise sources
embrace a linearized error propagation models and Gaussian
distributions, although papers like [16] model errors starting
from the empirical error distribution. Coupled with error

modeling, there is also a rich literature parameter identifica-
tion using either analytic approaches [7] or machine learning
techniques [1], [23].

Noise modeling for grasping

Noise in grasp contact points has so far been considered
only independently of the kinematic structure, for example
in the work of [8], where Gaussian errors in the end-effector
positions, friction coefficient and object shape lead to a no-
tion of probability of force closure. Similarly, uncertainty in
the object parameters led to the notion of probabilistic force
closure [24] and has been applied in [13], were the authors
proposed a large-scale cloud-based approach to sampling
perturbations of grasps and leverages multi-armed bandits
and deep learning to determine grasps with high probability
of force closure. The approach taken in the present paper is
instead to consider the effect of noise on joint-angles on the
final grasp quality.

III. PROBLEM DEFINITION AND METHODOLOGY

Problem Definition

Consider a robot arm with d degrees of freedom. Let
f : Rd → SE(3) denote the forward-kinematics function
mapping a joint-configuration q = (q1, . . . , qd) ∈ Rd to
the position and orientation of a coordinate system placed
at the end-effector, e.g., in the palm of the robot hand. A
typical approach to grasp planning is to determine a pose
and orientation of the hand base that results in a stable
grasp when the fingers of the robot hand are “autoclosed”
sequentially and stopped when they touch the object. This
approach is used for example in the popular grasp planner
GraspIT [14]. The quality of the resulting grasp can then
be ranked with a grasp quality metric Q associating a real
valued score to the contact points. In this work, we assume
that the joint-angles of the robot can be set to a target value
q0 only up to some additive noise ε = (ε1, . . . , εd) where
the εi are independent random variables following a known
distribution, e.g., Gaussian, uniform, or triangular. Without
loss of generality, we assume that each εi is zero-mean.
We denote by N (0, σ2) the univariate Gaussian distribution
with mean 0 and variance σ2. From this assumption, it
follows that when the robot is commanded to achieve a
target configuration q0 it will instead reach a configuration
q = q0+ε. As a result, the grasp quality score Q under noise
is a random variable, and we aim at studying its dependence
on ε and the kinematics of the robot arm. We in particular
consider the Ferrari-Canny metric which measures the size
of the largest wrench that can be resisted in all directions
by the grasp. If the grasp fails to be in force closure, or
if contact is not established, the grasp quality metric is
not defined. Therefore another binary random variable is
implicitly defined, i.e., the variable indicating whether a
grasp is force closure or not. The probability of this variable
being equal to 1 is the probability of force closure P (FC) we
mentioned earlier. To study the properties of Q (as a random
variable) and P (FC), we investigate the mean, variance and
the third standardized moment, i.e., the skewness. The goal



of our analysis is to identify differences in grasp robustness
caused by variations in arm configurations, to enable a
robot to choose an optimally robust grasp under noise in
kinematics.

Sampling based approximation

Given a target grasp configuration q0 determined for
example with a grasp planner such as GraspIT, we study the
resulting grasp quality of the random variable Q(f(q0 + ε))
where we explicitly outline the dependency of Q on both
the forward kinematics map f and the noise ε. To this end,
we generate a finite number of samples ε1, . . . , εn ∈ Rd and
let Xi = Q(f(q0 + εi)). We then compute the n-sample
empirical estimators (mean, standard deviation, co-variance,
skewness):
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IV. SIMULATIONS

Here, we first provide an illustration of the performance
of empirical estimators of mean, variance and skewness on
end-effector position and showcase the differences in noise
profiles that can occur even for simple planar linkages. Next,
we consider sampling based aproximation of grasp quality
for a 7-DOF Kuka Leightweight (LWR) robot arm.

A. Empirical estimation of noise on end-effector position

We start by considering the simple planar 2 and 3 link arms
depicted in Figure 2. We apply zero mean Gaussian noise
with variance of σ2 = 0.01752 and display two nominal arm
positions with identical end-effector pose (x, y) = (2, 2), as
well as a visualization of the end-effector position for 10, 000
samples from the noise distribution.

The distributions of the end effector positions differ not
only in spatial orientation, but also in spread, with their
empirical covariances Σ1,Σ2 differing in Frobenius norm
by 0.000437 for the two link arm 0.0014 for the three
links arm. To better understand the convergence of these
sampling based estimators for the end-effector position,
we sampled 10,000 samples from N (0, σ2) for σ2 ∈
{0.00332, 0.01332, 0.02332, 0.03332} in 10 trials. The top
panel in Figure 3 displays the convergence of the mean of
these 10 runs for the estimators for mean, covariance and
skewness to a ‘ground truth’ given by the mean estimate of
100,000 samples. As we can observe, the number of required
samples to obtain satisfactory convergence is heavily depend
on the variance of the noise profile. The bottom panel in
the same figure displays the same experiment for the Kuka

Fig. 2: A two and three link planar robot arm with mean
joint configurations and samples of end-effector poses under
Gaussian noise. Observe that while in both cases the nominal
configuration q0 would bring the end effector in the same
position, because of the noise we have different empirical
means and covariances.

LWR arm. The charts show that despite the different number
of degrees of freedom, 10,000 samples seem sufficient to
numerically determine the empirical estimators.

B. Grasp Quality and Noise

We next study the dependence of grasp quality on nominal
grasp configuration under noise. After describing our experi-
mental setup, we consider the convergence of sampling based
grasp quality estimators followed by experiments illustrating
interesting cases of the dependence of probabilistic grasp
success on variance, object shape and joint configuration.

1) Experimental setup: We use VRep [20] to simulate
a 7 degree of freedom leightweight KUKA arm with a
Schunk Dexterous hand with three fingers and 7 DOF
displayed in Fig. 1. We determined a nominal pre-grasp joint
configuration using a grasp planner we developed following
the same ideas used in GraspIT! [14], i.e., we sample hand
poses around the object to be grasped and through physical
simulation we determine if the grasp obtained closing the
fingers from the corresponding pose results in a force closure
grasp. If this is the case the grasp configuration is retained,
otherwise it is discarded. Figure 4 illustrates this process. All
computations are performed using VRrep’s built in features
for collision detection, and the method eventually returns a
set of pre-grasp configurations that will give force closure
grasps.

At run time, to generate random samples for a nomi-
nal joint-configuration, we added isotropic Gaussian Noise
N (0, σ2) to each joint of the robot arm and executed the
auto-close procedure. Due to noise, the grasp may fail for
various reasons. First, the fingers may miss the object during
the auto-close step, and therefore not enough contact points
can be established to restrain the object. In addition, there
are cases in which all fingers make contact with the object,
but the resulting placements still do not yield a force closure
configuration. Both these instances will be indicated as fail-
ures in the following. If instead all fingers establish contact
with the object and these points indeed yield force closure,
we compute the Ferrari-Canny grasp quality measure. For
our experiments, we used the objects displayed in Figure 5.



Fig. 3: L2 error convergence of mean position, covariance
error (measured in Frobenius norm), and skewness under
isotropic Gaussian noise as the number of samples is in-
creased. The top three figures display results for the 2 link
arm, while the bottom three display results for the Kuka
LWR. We observe that the standard deviation influences the
initial convergence rate, but in all cases 10000 samples seem
sufficient to empirically determine the estimators.

2) Empirical estimation of noise on grasp quality and
probability of force closure: Paralleling the experiments we
presented in section IV-A, we start by assessing the impact
of noise on grasp effectiveness. In particular, we empirically
estimate the probability of force closure, i.e., the probability
of obtaining a successful grasp, and the grasp quality metric
when a successful grasp is established. Figure 6 shows the
empirical estimation for the probability of force closure
P (FC) (bottom two charts) and the grasp quality metric
(top two charts). The curves were obtained averaging five
different grasps for the spray flask object and show a slower
convergence rate when compared with Figure 3. This is true

Fig. 4: The left figure displays the arm and hand in a pre-
grasp configuration. Pre-grasp configurations are generated
randomly. Next, the fingers are closed and contact points
with the surface of the objects are determined as shown on
the right figure. If the resulting set of contact points gives
force closure the grasp is retained, otherwise it is discarded.

Fig. 5: Objects used in experiment

for both the grasp quality metric Q and1 P (FC).
3) Impact of arm configuration: One of the limitations of

current grasp metrics is that they do not consider the arm
configuration used to implement a target grasp. However,
when noise is explicitly modeled, significant differences
may emerge when comparing different arm configurations
achieving the same contact points. To study this effect, we
start by considering two objects grasped with the same
contact points but different arm configurations. Figure 7
shows the two objects and the variability for the grasp.
Colored sticks are used to display the normal to the object
surface at each contact point, with different colors used for
the three fingers. The figures display the results obtained
with 10,000 samples. For the drill object we determine that
the mean grasp quality metric is comparable in the two
cases (0.0982 versues 0.0910) and the variance is comparable
too (0.0025 versus 0.0028). However, there is a remarkable
difference in the probability of force closure P (FC). The
left configuration achieves a value of P (FC) = 0.50,
whereas the right configuration has a value P (FC) = 0.31.
Similar observations are made for spray flask, where the
right configuration has P (FC) = 0.57 and the left one has
P (FC) = 0.42.

4) Impact of noise on grasp quality: Finally, we exten-
sively evaluate the impact of noise on P (FC) and the grasp
quality metric for different objects, grasps, and noise levels.
We start considering the spray flask object with five different
grasps and four different noise levels. Figure 8 shows the
distribution of normals to the contact points using the same

1Note that since P (FC) is the probability of a binary indicator random
variable FC, the mean of FC is equal to P (FC).



Fig. 6: Empirical estimation of the convergence rate for the
estimators of the Ferrari-Canny grasp quality metric (top
charts) and probability of force closure (bottom charts).

coloring used in Figure 7. Each row corresponds to the
a different grasp, and each column to a different variance
in the joints, i.e., 0, 00332, 0.01332, 0.02332, 0.03332 (left
to right). Table 9 displays the numerical results for these
grasps, i.e., probability of force closure P (FC) and the
mean and variance of the Ferrari-Canny grasp quality metric
for the successful grasps. Results are obtained using 10,000
samples. From the table we can observe that P (FC) appears
to be more sensitive to variations in the joint noise, as
measured in terms of the variance σ2. Grasp quality varies
too, although the variation is more modest and at times even
non monotonic.

As last experiment, for the same four objects shown in
Figure 5 we consider ten different grasps and evaluate the
effect of noise in terms of P (FC) and grasp quality for
the successful grasps. Results are displayed in Figures 9 and
10. Figure 9 displays the results for grasps configurations
consisting of different contact points and different arm con-
figurations. Figure 10 instead considers same contact points
but different arm configurations due to different placements
of the objects with respect to the arm. In both cases joint
angles were affected by Gaussian noise N (0, 0.00332). As it
can be seen, generally speaking P (FC) is uniformly high for
a simple object like the cube, while is may dramatically vary
for more complex objects. Quality measure is the average
value for the Ferrari-Canny metric limited to the grasps for
which force closure is obtained. In the two figures we can
see more variations for the first case where variations involve
both the contact points and the arm configuration. Finally

Fig. 7: Distribution of grasp contact points on two objects
where two different arm configurations are used to imple-
ment the same grasp.

Error is the difference between the theoretical grasp quality
metric predicted by the planner without considering noise
sources, and the average grasp quality metric experimentally
determined. As it can be seen, this value is almost always
positive, indicating that in most cases noise alters the contact
points in a way that negatively impacts the quality measure,
although in some sporadic this observation is not valid, i.e.,
noise actually ends up generating contact points with a better
quality (and then error values are negative.)

V. CONCLUSIONS AND FUTURE WORK

In this paper we have formulated a framework to study the
interplay between grasp quality evaluation functions, noise,
and the mechanical structure of the robotic arm. This work
fills a gap in the grasp evaluation literature inasmuch as grasp
quality metric studies have ignored these aspects and have
mostly evaluated grasps seen as a set of deterministic contact
points. Unsurprisingly, our experiments show that there is
a dependency, but the notable aspect is that this can be
significant.

This work lies the foundation for a number of follow
up studies. In particular, we believe that a fundamental re-
thinking of grasp quality metrics is needed to account for
both the noise and the robot structure. The proposed method
based on sampling outlines the problem, but is not practical
in an online scenario. This is strongly dependent on the
algorithm used to compute the wrench metric and the number
of samples and can currently be in the order of few minutes.
To this end, it would be interesting to determine grasp quality
metrics that can be expressed as an analytic function of
the contact points, so that its Jacobians could be explicitly
computed and plugged into an analytic approximations.

Finally, in this paper we have mostly concentrated on the
noise affecting the robot joints and how it impacts the pose
of the end effector and then the success rate of a grasp or
its quality. One could argue that in some robots this noise
may be negligible, though the recent advent of low cost



σ2 = 0.00332 σ2 = 0.01332 σ2 = 0.02332 σ2 = 0.03332

Mean Variance P (FC) Mean Variance P (FC) Mean Variance P (FC) Mean Variance P (FC)
1 0.026383 0.000683 0.5275 0.071357 0.003324 0.3094 0.071521 0.002820 0.2158 0.069315 0.002447 0.1972
2 0.161483 0.002088 0.4763 0.105348 0.004519 0.5033 0.094063 0.003341 0.3777 0.091105 0.003066 0.3040
3 0.055606 0.000868 0.6537 0.069675 0.002674 0.3228 0.073776 0.002924 0.2264 0.072395 0.002666 0.1850
4 0.067810 0.000094 0.6038 0.070409 0.001154 0.2673 0.066890 0.001361 0.1899 0.067309 0.001477 0.1625
5 0.141029 0.001225 0.5084 0.100313 0.002700 0.5749 0.089174 0.002718 0.3995 0.087669 0.002671 0.3422

TABLE I: Probability of force closure, mean and variance of the grasp quality metric for the grasps in figure 8. Grasp
quality metric is computed only for successful grasps.

Fig. 8: Distribution of the normals to the contact points for
different grasps over the spray flask object.

platforms with passive joints like Baxter demonstrate the
opposite. Irrespective of that, our study outlines the effects of
a mismatch between the expected relative pose between the
robotic hand and the object to be grasped. Hence, our same
conclusions extend to the case where the noise affecting the
robot is negligible, but there is uncertainty in the pose of the
object being grasped.
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