
Prep
rin

t

Use of intelligent/autonomous systems in crop irrigation 
Stefano Carpin1*, Ken Goldberg2, Stavros Vougioukas3, Ron Berenstein2, Josh Viers4 

 1Department of Computer Science and Engineering, University of California, Merced
2Department of Industrial Engineering and Operations Research, University of California, Berkeley 

3Department of Biological and Agricultural University of California, Davis 
4Department of Civil and Environmental Engineering, University of California, Merced 

Abstract 
In this chapter we discuss how robotic and artificial intelligence can be used to improve 
precision irrigation in vineyards. In particular, we discuss RAPID (Robot Assisted 
Precision Irrigation Delivery), a novel system being developed and tested at the 
University of California. RAPID uses remote sensing and machine learning to predict soil 
moisture content, and uses this information to determine how variable rate emitters 
should be adjusted by one or more robots moving through the vineyard. As part of this 
project we are developing machine learning algorithms for soil moisture prediction, 
routing algorithms for efficiently scheduling multiple robots through vineyards, and we 
are also designing novel grippers that can be used to adjust inexpensive variable rate 
emitters that can be retrofit existing irrigation systems. Early results demonstrate the 
promise of the proposed effort. 
Keywords: robotics, irrigation, artificial intelligence. 

1 Introduction 
Agriculture is the major consumer of managed freshwater worldwide. Some studies have 

estimated that more than 80% of managed freshwater in the US is used for agriculture, and 
worldwide the percentage is around 70% (Schable et al., 2017). Climate change, combined with 
the need to feed an increasing population with decreasing arable land requires to radically re-
think the way water is delivered to crops to increase efficiency and minimize wasted water 
(Wallace, 2000). Precision irrigation systems using drip emitters have been used for decades but 
only offer a partial solution. In particular, the problem of regulating the amount of water 
delivered to an individual plant is still outstanding, in particular for large-scale operations. This 
problem is evident in wine grapes and particularly acute in California.  

In recent years, California has endured one of its most severe droughts (Wang et al., 
2017). While these cyclic phenomena are known to periodically repeat, because of climate 
change they are in the future expected to increase in frequency, intensity, and length (Rahmstorf  
& Coumou, 2011). California produces more than 80% of the US wine (WineInstitute, 2018), 
and the wine sector is growing in quantity and quality. Vines are best grown with a strategy 
known as stress irrigation or deficit irrigation whereby the amount of water delivered to vines is 
limited to improve grape quality and curb vegetative growth. Given the intrinsic soil 
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heterogeneity found in large-scale farming, commonly used strategies using uniform irrigation 
over large blocks are suboptimal and lead to non-uniform growth. In particular, when in doubt, 
ranch managers tend to over-irrigate, with the doubly negative effect of consuming more water 
and possibly reducing the quality of the final product. One of the leading challenges in this 
domain is that if one looks at an irrigation infrastructure as a control system (McCarthy et al., 
2011), we find an abundance of sensor data, but a scarcity of fine grain actuation mechanisms 
(see Fig. 1).  

 
Figure 1: Irrigation system as a control system. Figure adapted from (McCarthy et al., 2011). 
 

Funded by the US Department of Agriculture as part of the National Robotics Initiative 
led by the National Science Foundation, RAPID (Robot Assisted Precision Irrigation Delivery) is 
a multi-year, multi-campus research project aiming at overcoming these limitations by 
developing a novel irrigation system relying on a combination of remote sensing and mobile 
robots to carefully tune the amount of water delivered to each vine. The basic idea is to retrofit 
existing irrigation systems with passive, low-cost drip emitters that can be individually regulated 
to adjust the amount of water delivered to each vine. Due to the sheer scale of the ranches 
commonly found in intensive grape farming, manually adjusting them is an approach that does 
not scale. To this end, we are designing a fleet of robots that will periodically traverse the tree 
rows and make the necessary adjustments to increase or decrease water flow to match desired 
conditions. Decisions about the necessary adjustment will be made based on an inference system 
combining, though learning, weather data, remote sensing, and soil moisture measures.  Note that 
electromechanical systems or IoT based solutions are currently not considered viable on a large 
scale by end users, because of their cost and the necessity to withstand for extensive periods of 
time extremely harsh environmental conditions. 
 

The rest of this chapter is organized as follows. In section 2 we discuss selected works in 
the area of estimation and robotics. Section 3 provides an overview of the RAPID system and 
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then in Section 4 we provide preliminary results for estimation and routing. We conclude the 
chapter with section 5, where conclusions and opportunities for future work are discussed.  
 
2 Related Work 
Soil and Field Modeling  

The RAPID project incorporates modeling water levels available at a per-plant basis, and 
evaluating sensing modalities for updating those models.  The problem of modeling how 
subsurface water propagates in space and over time has been extensively investigated and a 
variety of models and software packages are available, both commercially and as open source. 
These methods aim at solving a problem known as soil water balance calculation and compute 
the water balance as the difference between inputs  (precipitation and irrigation) and outputs 
(evapotranspiration, runoff, and drainage). The problem of spatially varying moisture 
measurement and simulation has been extensively studied  (Clement et al., 1994; Romano, 2014; 
Tian et al., 2011) using models based on finite differences, nonlinear differential equations and 
partial differential equations. Temporal variability has been considered as well, for example in 
(Choi & Jacobs, 2007; Ojha et al., 2014; Vereecken et al., 2014). Methods specifically aiming at 
modeling subsurface moisture with drip irrigation have been developed (Kandelous & Šimůnek, 
2010) and experimentally shown to be quite accurate.   

 
Building upon these models, several simulation packages are available for modeling 

surface, subsurface, and groundwater flow.  Models for water flow through soil typically involve 
solving three-dimensional partial differential equations, e.g. the commonly used Richards 
equation for variably saturated soil water flow (Lafolie et al., 1989; Or & Coehlo, 1996; van 
Dam & Feddes, 2000; Tian et al., 2011). Software packages like HYDRUS 2D/3D  (Hydrus, 
2018) or LandLab  (Adams et al., 2014) have been used for modeling flow and designing drip 
irrigation systems  (Deb et al., 2013; Rahimi et al., 2004). However, such models have not been 
implemented to design irrigation systems at the per-plant scale, and have not been used for 
model-based closed-loop regulation. Furthermore, such models rely on many different 
parameters, including physical parameters related to soil or topographical properties, as well as 
being able to estimate initial and boundary conditions for moisture levels. 
 
Environmental Sensing 

Different sensing modalities for estimating plant water availability across vineyards have 
received a lot of attention, and there is a rich history regarding soil moisture measurement 
techniques  (Dane & Topp, 2002; Robinson et al., 2008; Smith & Mullins, 2000). Recently, 
airborne thermal imagery has been used to assess the spatial variability of water stress, an 
indicator of soil moisture availability across vineyards (Baluja et al., 2012; Bellvert et al., 2014), 
as well as soil moisture  probes based on soil electroconductivity. Wireless sensor networks 
(WSN) have been proposed for environmental monitoring  (Pon et al., 2005; Rahimi et al., 
2004), and applications in agriculture (Rehman et al., 2014).  A WSN composed of 135 soil 
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moisture and 27 temperature sensors was deployed in an apple tree orchard of about 5000 m2 
(Majone et al., 2013).  The network is in charge of estimating soil moisture, but does not include 
an actuation subsystem capable of adjusting the application of water. A similar system was 
proposed in (Navarro-Hellín et al., 2015) where it was demonstrated that current sensing 
technology is mature to determine soil moisture levels. In (Gutierrez et al., 2015) an irrigation 
sensor was developed using a smartphone camera, and a water pump was then activated based on 
the results provided by the image-processing algorithm. This system assumes that a human will 
manually take a picture of its crops and therefore does not scale when large extensions are 
considered.  Moreover, the pump activates a whole irrigation line and does not allow a per-plant 
adjustment. 
 
Irrigation Scheduling 

While irrigation schedules based on moisture measurements and water balance 
calculation are extensively used, in plant sciences there is increasing interest to switch towards 
plant-based methods, i.e., to determine the amount of water based on data related to plant 
physiology and water stress (Jones, 2004; Romero et al., 2010). However, to date, the question of 
which quantities should be measured and how these measures could be turned into a decision 
about how much water should be delivered to the plant is an active area of study.  This is a 
research problem pertaining to the domain of plant science and orthogonal to the one tackled in 
this project.  With RAPID we develop technology that enables individual adjustment of water 
emitters so that every plant can receive a different amount of water. In our control algorithm the 
amount to be delivered is based on soil water measurements and soil water balance calculations; 
our control algorithm is however amenable to systems where emitter states are controlled based 
on plant water stress levels. 
 
Mobile Robotics 

From the robotics and control theory communities there is a large body of literature 
concerning the use of robots and mobile sensor networks for data collection over stationary or 
time varying distributions (Bullo et al., 2009; Martinez et al., 2007; Schwager et al., 2009; Smith 
et al., 2012). Among the many approaches proposed in literature the Voronoi based coverage 
control algorithms introduced by Bullo and collaborators have gained notable traction (Bullo et 
al., 2009; Martinez et al., 2007). These approaches have in general only been studied in theory 
and have seen limited applications in the field (Pierson et al., 2015).  

 
A related problem of interest is how to combine together multiple maps or models 

providing partial information about a domain of interest. This work is in the general area of map 
merging (Aragüés et al., 2011; Aragüés et al., 2012; Erinc & Carpin, 2014; Saeedi et al., 2016) 
and different solutions are available depending on the structure of the underlying model, i.e., 
occupancy grids, topological maps, appearance based maps, and more. Moisture maps essentially 
represent a scalar field, and the problem of combining them together can then be seen as a 
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special instance of image stitching. Methods aiming at combining together multiple occupancy 
grid maps can be used, e.g., (Birk & Carpin, 2006; Carpin, 2008; Saeedi et al., 2012). Recently, 
these techniques have indeed been used to stitch together multiple images for agricultural 
applications (Li & Isler, 2016) where images were obtained from UAVs flying at low elevations. 
 
Robot Task Allocation 

Robot and multi-robot task allocation  (MRTA) is a mature, active area of research 
drawing insights from multiple domains, like economy, operations research and more (Korsah et 
al., 2013; Khamis et al., 2015). When a cooperative system is considered with multiple tasks to 
be assigned and multiple heterogeneous agents available to execute them, the question “Which 
robot should execute which task?” (Gerkey, 2003) naturally emerges, and MRTA algorithms aim 
at answering such question optimizing some objective function accounting for the tasks being 
solved and the agents. Many MRTA algorithms can handle heterogeneous agents and could then 
in principle be used to solve task allocation problems where some of the agents are robots and 
some are humans.  

 
With increased interest in the development of co-robot systems, the problem of 

scheduling human-robot teams became a question of independent value (Clare et al., 2012; 
Gombolay & Shah, 2014; Murphy, 2015). In this case the main focus is to leverage the peculiar 
strengths of humans and robots and to implement an allocation of tasks that does not alienate 
humans. Note that in general this is a different problem than human-robot interaction, because 
the scheduling algorithm may generate an allocation of tasks such that humans and robots to not 
interact at all.  In the context of RAPID we face a situation where the set of tasks to be allocated 
is homogeneous, i.e., it consists of a set of spatially distributed emitters to be adjusted. Hence, 
the problem of picking a set of tasks engaging for humans (Gombolay et al., 2015) is not relevant 
because all tasks are the same. What is instead important is assigning tasks so that humans can 
improve their productivity without being overwhelmed. 
 
3 RAPID Overview 

Figure 2 shows how introducing RAPID would refine the control system presented in 
figure 1. 

Rapid implements both a new estimation algorithm to determine how much water is to be 
delivered, as well as the actuation system. Both components rely on existing infrastructure and 
methods to gather data in the field, and consequently novel sensors or sensing systems are not 
being developed as part of this effort. Figure 3 illustrates in mode detail the overall architecture 
of the RAPID system we are developing, and evidences the feedback loop. As part of this 
project, we are currently developing three different efforts to develop three subsystems that will 
interact to implement the envisioned solution. 
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Figure 2: revised irrigation as control system with the introduction of RAPID.  
 

 
Figure 3: RAPID architecture. 
 

The first effort consists in developing a learning based system to infer soil moisture levels 
from aerial images (Tseng et al., 2018). Based on deep convolutional neural networks (CNN), 
this module aims at learning a mapping between soil moisture data and aerial images.  

 
The second thread consists in the co-design of a variable rate emitter and a robotic 

gripper that can perform the desired adjustments (Gealy et al., 2016; Berenstein et al., 2018). 
Mounted on a robotic arm placed on a mobile robot, or on a hand-held device carried by a 
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human, the gripper can latch on a variable rate emitter and autonomously perform the desired 
adjustment. In fact, while we anticipate an extensive use of robots to address the scalability 
aspect, preliminary discussions with farmers and growers have evidenced that a human 
component will also be important, as the presence of a human expert in the vineyard has multiple 
benefits in terms of quality assessment and the overall process monitoring.  

 
The last component consists in a suite of planning algorithms to distribute the load 

between robots operating in the vineyard (Thayer at al., 2018a; Thayer et al., 2018b). An 
essential part underlying these three efforts is the experimental validation in the field in 
collaboration with our commercial partners. In this chapter, due to space limitations, we mostly 
discuss the first and third task, i.e., inference and routing algorithms. 
 

Our underlying assumption, corroborated by multiple interactions with vine growers, is 
that in most instances uniform growth is desired over a given block. Starting from this premise, 
the overall information flow of the RAPID system is as follows. Through the collection of aerial 
images, the trained CNN infers the moisture level in the soil of a given vineyard. This soil 
moisture map is then presented to a human expert (e.g., a ranch manager) who, based on domain 
knowledge, can then indicate a desired (target) soil moisture level. The mismatch between the 
inferred soil moisture level and the desired soil moisture translates into actionable information 
about how each variable rates emitter should be adjusted to increase or decrease the amount of 
water released and match the target distribution. This information is provided to the planner that 
then schedules one or more robots to make the desired adjustments throughout the vineyard. 
Once the mobile robot reaches an emitter to be adjusted, the robotic arm mounted on the robot 
performs the required change. 
 
4 Preliminary Results 
4.1 Soil Moisture Inference 

Critical to the RAPID system is the knowledge of soil moisture to determine how 
emitters should be adjusted. Due to the sheer size of the vineyards managed by large-scale 
growers, measurements based on stationary sensors or mobile probes would provide only coarse 
scale data. To overcome these limitations, one possible alternative is using a data-driven 
approach to infer soil moisture conditions from aerial images. This approach is potentially 
advantageous because thanks to recent advances in UAV related technologies it has become 
relatively easy and inexpensive to acquire images covering large areas. Aerial images could be 
color images, hyperspectral, or thermal, just to name a few. In fact, there exist various previous 
works attempting to solve this very problem using a variety of machine learning algorithms, such 
support vector machines (SVM), Bayesian Neural Networks, and multilayer perceptrons 
(Hassan-Esfahani et al., 2014; Hassan-Esfahani et al., 2015; Hassan-Esfahani et al., 2017; 
(Zaman et al., 2012; Ahmad et al., 2010; Bachour et al., 2014). Estimation methods based on 
deep learning and related approaches (Goodfellow et al., 2016) have enormous potential but to 
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the best of our knowledge have not yet been applied to this specific problem. One of the main 
limitations of these techniques is the necessity to acquire large-scale datasets for training. In a 
domain like the one considered, this could be prohibitively time consuming. To sidestep this 
entry-level obstacle and assess the potential of deep learning in this domain, we developed a 
simulator synthesizing artificial aerial images of a vineyard subject to different irrigation regimes 
(Tseng et al., 2018). The simulator is based on a discretized version of the Richards equation. In 
particular, the volumetric water content at time t is approximated as 

𝑠! = 𝑠!!! + 𝛥𝑠! 
where the variation 𝛥𝑠𝑡 is defined as 

𝛥𝑠𝑡 = −(𝑟− 𝑎𝑡)−𝑈(𝑡) 
In this last equation 𝑟 is the soil drainage, 𝑎!is the irrigation rate, and 𝑈(𝑡)is the plant 

uptake that is assumed constant in our simulation. The quantity 𝑑 = 𝑟 + 𝑈 is called dissipation 
rate and is what the algorithm tries to learn from the images generated by the simulator. More 
specifically, the simulator generates 320x200 RGB images where the growth of 𝑛𝑚 plants 
spaced in a regular grid with 𝑚 row and 𝑛 columns is determined based on a vector 𝑑 of soil 
moisture dissipation rates and a vector 𝑎 of applied irrigation rates (see figure 4). 

Figure 4: The left side shows one of the synthetic aerial images generated by the simulator, 
while the center figure shows the corresponding drainage image used for training. On the right, 
an actual cropped aerial image of a vineyard collected during our field experiments. 
 

Both vectors have 𝑛𝑚 real components and are input parameters to the simulator. In all 
experiments presented in the following, 𝑚 = 20 and 𝑛 = 10. Starting from an initial uniform 
soil moisture distribution, the simulator propagates the distribution of moisture and adds leaves 
to a tree if the soil moisture value is positive. If the soil moisture is zero, then no leaves are 
added and the color of the existing leaves is altered by adding a shade of yellow. With this 
method, 1200 images were generated and then randomly split into 1000 training images and 200 
validation images.  
 

Starting from these images, the objective is to learn the dissipation rate. More formally, 
let 𝑥! be the i-th synthetic image and 𝑑! be the corresponding dissipation rate. The objective is to 
determine the parameters 𝜃 of a model 𝐻! that predicts the dissipation rate 𝑑! associated with the 
image 𝑥!. Given an aerial image 𝑥, for a given choice of parameters 𝜃′ the predicted soil moisture 
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dissipation will be 𝐻!!(𝑥). As common in machine learning literature, for a given choice of the 
vector of parameters 𝜃 we define a loss function 𝐿 as  

𝐿 𝑑,𝐻!(𝑥) =  
1
𝑝 (𝑑! − 𝐻!(𝑥!))2

!

!!!

 

The optimal set of parameters would therefore be the vector 𝜃∗solving the following 
minimization problem 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛! 𝐿(𝑑!,𝐻!(𝑥!))
!!"#$%

!!!

 

To test the potential of deep convolutional neural networks in this domain, we consider 
two different architectures. The first, dubbed Deep Convolutional Neural Networks Uncorrelated 
Plants (CNNUP), is fed with a tree cropped out from the aerial image and produces the 
dissipation rate for the single tree (see figure 5).  

 
Figure 5: The CNNUP architecture takes as input a single tree cropped from an image with 200 
trees and predicts the dissipation rate for the input tree. 
 

The second, dubbed Deep Convolutional Neural Networks Correlated Field (CCNCF) 
instead receives as input the entire image and predicts 𝑛𝑚 = 200 dissipation rates, i.e., one for 
each tree in the input image (see figure 6). 
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Figure 6: The CCNCF architecture takes as input an entire image with 200 trees and produces 
as output the soil moisture prediction for the whole set of trees. 
 

These architectures were implemented using TensorFlow and the Adam algorithm was 
used for optimization (see (Tseng et al., 2018) for more implementation details).  
To assess the potential of convolutional neural networks in this domain, we compared the two 
networks against five alternative approaches: 

1. a constant baseline always producing a fixed value c  for every input; 
2. a set of 200 support vector machine (SVM) using a linear kernel, each predicting the 

moisture dissipation rate for one vine; 
3. an uncorrelated method based on random forests using the RGB values to make 

predictions about moisture dissipation rate for one vine (RFUP); 
4. a correlated method based on random forests where the whole image is used to make 200 

predictions (RFCF); 
5. A two-layer feed-forward neural network (NN) inspired by the work presented in 

(Hassan-Esfahani et al., 2017). 
 

In all cases 1000 examples were used for training and 200 examples were in the validation 
set. To assess the merit of each approach and contrast them with each other, we consider the 
absolute error in the dissipation rate prediction |𝑑! − 𝐻(𝑥)!|,i.e., the absolute difference between 
the predicted and actual dissipation rates. Table 1 shows mean, median, as well as the 25th and 
75th percentile for this performance measure. Training times are also provided and refer to a 
system equipped with and Intel Core i7-6850k and three Nvidia Titan X Pascal GPUs. 

 

Method 25th perc. Mean Median 75th perc. Training  
Time (s) 

Constant 0.082 0.177 0.162 0.246 -- 

SVM 0.015 0.038 0.030 0.053 4141 
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RFUP 0.030 0.071 0.060 0.101 578 

RFCF 0.047 0.109 0.094 0.152 655 

NN 0.037 0.086 0.075 0.119 243 

CNNUP 0.021 0.054 0.044 0.077 538 

CNNCF 0.012 0.034 0.027 0.047 603 

Table 1: results obtained comparing the proposed convolutional neural network architectures 
and five alternative machine-learning algorithms. 
 

From the table we can see that the CNNCF architecture outperforms all other methods in 
terms of the considered error metric. As expected, its training time exceeds the time needed to 
train the two-layer neural network, but the gap is moderate and the absolute time is contained. In 
particular, given that this refers to the offline training stage, this difference is acceptable from a 
practical standpoint. The overall objective of this preliminary study is to explore possible 
network architectures to identify promising approaches and to determine whether this solving 
method is practical at all. Results suggest that this is possible and efforts are ongoing to extend 
and adapt these deep architectures to deal with real data collected in the field. 
 
4.2 Routing Algorithms in Vineyards 

Once a uniform target moisture level for the block has been determined, either by a 
human expert or an algorithm, it will be necessary to adjust variable rate emitters to match it. 
The discrepancy between the current soil moisture level and the desired moisture is an indicator 
of how much the emitters should be adjusted. Therefore, for each emitter 𝑒 we define a quantity 
𝑅 𝑒 = |𝑚 𝑒 − 𝑇| as the difference between the moisture measured at the emitter 𝑚 𝑒  and the 
desired target moisture 𝑇. The quantity 𝑅(𝑒) indicates by how much the water flow at each 
emitter should be adjusted. In particular, if 𝑅 𝑒 = 0 for a certain emitter, no adjustment is 
needed because the current soil moisture level matches the desired value. Large values of 𝑅(𝑒) 
indicate significant mismatches, either due to over-irrigation or under-irrigation.  

 
In general, in large vineyards a mobile robot, or a person, will not be able to visit and 

adjust all emitters at once, due to the necessity to periodically recharge the batteries (or rest, in 
the case of a person). In the following, we indicate this limitation as travel budget, and we will 
indicate it with the letter 𝐵. Intuitively, 𝐵 captures the constraint that a robot can only travel a 
finite distance between two successive charges. Therefore, an optimization problem emerges, 
i.e., selecting the subset of spatially distributed emitters that can be adjusted given the travel 
budget 𝐵. In particular, it appears intuitive to prioritize adjusting emitters with a high mismatch 
value 𝑅 𝑒 . 
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This problem is related to a classic optimization problem known as orienteering  (Golden 
et al., 1987). More precisely, the orienteering problem is defined as follows. Let 𝐵 be a positive 
budget and 𝐺 a graph where every edge has a non-negative weight and every vertex has a value. 
The orienteering problem asks to determine a path in 𝐺 maximizing the sum of the values of the 
visited vertices and whose cost is no larger than 𝐵. It shall be noted that if a vertex is visited 
multiple times the reward is collected only once, but the cost of an edge is incurred every time it 
is traversed. In our problem setting this corresponds to the case where a robot visits more than 
once the same emitter. In such case the emitter would be adjusted only once, and accordingly the 
reward would be collected only once. It was shown in (Golden et al., 1987) that orienteering is 
an NP-hard optimization problem, and it was more recently shown that it is also APX-hard 
(Blum et al., 2007).  

 
Numerous variations have been developed through the years. One that is particularly 

relevant to our discussion is the team orienteering problem (TOP) where one is given 𝑀 agents, 
all subject to the same budget 𝐵, and the objective is to determine 𝑀 paths maximizing the sum 
of the rewards collected by the 𝑀 agents (Chao et al., 1996). Note that in TOP if a vertex is 
visited multiple times then its reward is collected only by the first robot. Because of its intrinsic 
complexity and the difficulty in developing suitable approximation algorithms, heuristic 
approaches have been the most common choice for solving large instances of the orienteering 
problem (Gunavan et al., 2016). General-purpose heuristics working for a large variety of graphs 
have however remained elusive.  

 
The connection between orienteering and our vineyard routing problem is as follows. For 

a given vineyard, we build a graph where every emitter is associated with a vertex, and edges are 
added between vertices to model the motion constraints typical of a vineyard. One such graph is 
shown in Fig. 7. The connections between the vertices model the constraints that in a vineyard a 
robot can move along tree rows (horizontal edges), but row switching is allowed only at either 
end of the rows (see also Fig. 8). A graph of this type will be called irrigation graph  (IG) in the 
following, and in particular we write IG(m,n) for an irrigation graph with m rows and n emitters 
along each row.  

 
Figure 7: An irrigation graph modeling the spatial layout of emitters in a vineyard. 
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Figure 8: A robot moving in a vineyard can change row only at either ends because of the 
irrigation lines running between vines. 
  

For each vertex the reward is then set to 𝑅(𝑒), as defined above. For each edge, the cost 
is set as the distance between the vertices it connects. Graphs like the one shown in Fig. 7 are a 
particular instance of  BP3, i.e., bipartite, planar graphs with vertices of degree at most three. A 
special instance is obtained when the cost of each edge is constant, for example to model the fact 
that emitters are regularly spaced in a vineyard. In (Thayer et al., 2018) we defined the following 
problem. 
 

Constant Cost Orienteering on BP3 Problem (CCOBP3P): let 𝐺 = (𝑉,𝐸) a BP3 graph,  
𝑟:𝑉 → ℝ a value function and 𝑐:𝐸 → ℝ a constant cost function defined over the edges. 
Moreover let 𝑣!, 𝑣! be two vertices in 𝑉 and 𝑇!"# a positive constant. Find a path from 
𝑣! to 𝑣! of maximum value with cost no larger than 𝑇!"#. 

 
In (Thayer et al., 2018a) we have shown that CCOBP3P is NP-hard and therefore we 

developed domain specific heuristics both for the single robot case and for the multi-robot case 
(Thayer et al., 2018b). We refer the reader to the aforementioned paper of the detailed 
algorithmic formulation and we here sketch the underlying ideas. In all cases we assume that 
𝑣! = 𝑣!, i.e., at the end the robot must return to the start location. For the single robot case, we 
have developed two heuristics called greedy row and greedy partial-row. The greedy row 
heuristic on an IG(m,n) works as follows. Preliminarily, for each of the m rows we compute the 
quantity  
 𝑅! = 𝑅(𝑖, 𝑗)!

!!!   
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i.e., the overall reward collected if the robot fully traverses the i-th row in the graph†. Moreover, 
to each row we associate a feasible flag, indicating whether with the remaining budget the robot 
can move from the current position to the row, traverse it, and go to the final position. This flag 
is incrementally updated, as the robot route is updated and more of its allocated budget 𝑇!"# is 
consumed. The overall route is then built as follows. Considering the current robot location 𝑣 
and remaining budget, the robot updates the feasible flag for all rows, and for each feasible row 
it computes the normalized cost 

𝑅!! =
𝑅!

𝑐𝑜𝑠𝑡(𝑣, 𝑖) 

i.e., the ratio between the reward of the i-th row and the cost to reach it, and traverse it. Among 
all feasible rows, the path is then extended by appending the row maximizing the normalized 
cost and the residual budget is updated subtracting the budget spent to extend the route. This 
process is iterated until no more feasible rows are left. At that point the robot returns to the 
starting location. Note that by construction this is always possible because a row is appended to 
the tour only if it is feasible, i.e., if there is enough residual budget to reach the final location. 
Therefore a valid solution is always found.  
 

Observing that soil moisture displays a ‘‘local’’ structure, i.e., wet and dry locations tend 
to be clustered, we designed a different heuristic called greedy partial-row (GPR). The intuition 
is that if there is a region with high rewards at either end of the rows, it may be more 
advantageous to enter the row, adjust some of its emitters, and then come back from the same 
side from which it was entered, and then move to an adjacent row. The tradeoff is that the robot 
will spend some budget without getting any reward when traveling back along the row, but this 
may enable to move to an adjacent row with high rewards without having to first traverse an 
entire row.  This would not be possible in the previous heuristic where once one row is entered it 
must be fully traversed. This idea can be implemented following an approach similar to the 
previous one, i.e., the route is iteratively extended by greedily selecting feasible rows or partial 
rows. The definition of a feasible row or partial row is exactly the same, i.e. there has to be 
sufficient residual budget to cover the partial row and then proceed to the final vertex 𝑣!. 
However, given that in this case a row can be partially entered by either side, we compute two 
rewards, i.e., 𝐿 𝑖, 𝑗  and 𝑅(𝑖, 𝑗). 𝐿 𝑖, 𝑗  is the reward obtained if the robot enters the i-th row from 
the left, proceeds until the j-th emitter, and then goes back. The definition of 𝑅(𝑖, 𝑗) is the same 
but considers starting from the right. Such costs are then scaled by the travel cost as in the full 
row heuristic, and the path is then extended greedily (see (Thayer et al, 2018a) for more details). 
Both these heuristics have computational complexity polynomial in the number of rows m and 
columns n. In particular, the former is 𝑂(𝑚!)  while the latter is 𝑂 𝑚!𝑛 .   
 

                                                
† Since emitters are placed in a grid layout, R(i,j) is the reward associated with the emitter placed at 
position (i,j) on the grid. 
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Besides the single robot heuristics, we also developed three heuristics for the TOP 
problem, as it is foreseeable that multiple robots will be developed in a vineyard to service it 
more efficiently (Thayer et al, 2018b). In the following we indicate with 𝑀 the number of robots. 
The first approach, dubbed sectioning, splits the vineyard into 𝑀 sections (each consisting of a 
certain number of rows) and assigns a robot to each section. Within each section the robot then 
runs the greedy partial row heuristic. Sections are defined aiming at having the same sum of 
rewards and not the same area, so that each robot can potentially make the same impact. With 
this approach, all robots stay separate and cannot collide with each other. The second heuristic, 
called SeriesGPR, runs 𝑀 times the GRP heuristic in sequence. At every iteration, the path for a 
single robot is planned, and the map is updated at every iteration to zero out the rewards 
associated with the emitters already serviced. With the SeriesGPR algorithm, all robots can visit 
any area in the vineyard. Finally, the ParallelGPR approach plans the path for all robots at the 
same time. This means that at every iteration the algorithm determines for each robot what is the 
best next move (using the GPR heuristic) and the path is extended for that robot. The approach is 
iterated until all robots have expended their budget.  
 

Extensive results are presented in (Thayer et al, 2018a; Thayer et al, 2018b) and we here 
report just a small representative set. The two single robot heuristic approaches we developed 
have been numerically compared with a general purpose heuristic for orienteering called the S-
algorithm (Tsiligirides, 1984). For the TOP case, instead, we compared our findings with the 
guided local search (GLS) heuristic formerly proposed in literature (Vansteenwegen et al., 2009). 
 

 
Figure 9: performance of the single robot routing heuristics. 
 

Figure 9 shows the performance of the single robot heuristics. The left figure shows the 
results for a small vineyard where the optimal solution can be found with an integer 
programming approach. The figure shows that the greedy partial row heuristic and the S-
algorithm are relatively close to the optimal solution and show comparable performance. 
However, the S-algorithm does not scale well and cannot efficiently solve instances with 
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hundred of thousands of vines. In the right figure we then compare the performance of the two 
heuristics we proposed for the case of a full size vineyard. The chart confirms that the greedy 
partial row is the most competitive one. In figure 10, instead, we compare the performance of the 
various heuristics as a function of the budget for a case with 6 agents. In this case the 
ParallelGPR algorithm emerges as the most competitive and the result is representative of other 
cases, too. 
 

 
Figure 10: performance of the heuristics for the multi-agent case. 
 
5 Conclusions and Future Work 

We are currently in the second year of a project expected to last for four years. Therefore, 
while many of the individual components have been prototyped, system integration of the whole 
RAPID system is still ongoing. Due to limited space, we described just selected contributions but 
refer the reader to cited references for additional results, for example regarding the design and of 
the gripper. 

 
Despite the fact we are still in an early stage of the project, there are some conclusions 

that can be already drawn. With regard to estimation, deep convolutional neural networks seem 
to be a promising method to infer soil moisture content from aerial images and they appear to 
have the potential to outperform methods proposed in the past. With regard to routing in 
vineyards, the peculiar structure of the environment calls for the development of domain-specific 
heuristics capable of scaling to very large instances. Our preliminary results have identified 
methods superior to the state of the art and scalable. 
 

In terms of future work, besides the necessary integration of all components, we identify 
the following venues for further investigation. First, it will be necessary to test the CNN 
architecture on data collected in the field, and possibly later its structure to better model the data 
we gathered. For routing, we will incorporate uncertainty in the rewards, since those are obtained 
through an estimation process that is necessarily uncertain. Uncertainty shall therefore be 
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considered when deciding where the robot should go next. Finally, extensive field evaluation 
will be needed to assess the viability of the whole system and ultimately quantify water savings. 
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