
Distributed estimation of scalar fields
with implicit coordination

Lorenzo Booth and Stefano Carpin∗

Department of Computer Science and Engineering.
University of California, Merced

5200 N Lake Rd, Merced, CA 95343, USA,
lbooth@ucmerced.edu,scarpin@ucmerced.edu

Abstract. Motivated by our ongoing work in robotics for precision agri-
culture, in this work we consider the problem of estimating a scalar field
using a team of robots collecting samples and subject to a travel bud-
get. Our fully distributed method leverages the underlying properties of
Gaussian Process regression to promote dispersion using minimal infor-
mation sharing. Extensive simulations demonstrate that our proposed
solution outperforms alternative approaches.

Keywords: Coordination; Applications in Agriculture; Estimation

1 Introduction

In this work we consider the problem of estimating a scalar field using a team of
collaborating robots. This problem is motivated by our ongoing research in pre-
cision agriculture, where it is often necessary to estimate the spatial distribution
of parameters such as soil moisture, nitrates, or carbon dioxide flux that can be
modeled as spatially-varying scalars. To model this underlying field, we use a
Gaussian process (GP) [6]. GPs are not only elegant and efficient computational
tools to solve regression problems, but are also the model of choice in geostatis-
tics and agroecological modeling, where GP regression is known as kriging [9]. A
key feature about GP regression is that this model allows to easily estimate the
uncertainty of the predictions, thus enabling iterative methods where new sensor
measurements are collected in regions of high uncertainty to refine accuracy.

In agricultural applications one is often faced with the problem of estimating
quantities over very large domains, therefore the use of multiple robots allows for
quicker coverage of the region of interest. In these conditions, robots have to plan
their motions with multiple objectives. When an exhaustive, systematic coverage

∗L. Booth is supported by the Labor & Automation in California Agricul-
ture (LACA) project (UC-MRPI intiative). S. Carpin is partially supported by
the (NSF)under NSF Cooperative Agreement Number EEC-1941529 (IoT4Ag) and
USDA/NIFA under award # 2021-67022-33452. Any opinions, findings, conclusions,
or recommendations expressed in this publication are those of the authors and do not
necessarily reflect the views of the funding agencies.

2 Booth and Carpin

of the entire region is not feasible, it is important to collect samples at the most
informative places. It is also necessary to be aware of the limited distance that
can be covered before the robot must be refueled or recharged. Therefore robots
have to plan paths that will eventually terminate at a designated end point before
they run out of energy or fuel. Likewise, it is also important to consider that
in real world applications the energy consumed to move between two locations
is not deterministically known upfront; rather, it is a random variable whose
realization is only known at run-time. For example, a robot may need to take a
detour to reach a certain place, or it may move through a muddy area causing
wheel splippage, etc. Finally, in rural regions communication infrastructures are
often lacking or limited and therefore robots can not assume the availability of
broadband communication channels.

With these motivations in mind, in this paper we present an algorithm to
solve this estimation problem with a team of robots. Coordination between the
agents is obtained with minimal information exchange and by leveraging the
mathematical properties of GPs to promote dispersion. The approach is fully
distributed and each robot just broadcasts to the rest of the team the limited
information consisting of the locations where it has collected data, the value it
measured, and its unique identifier—no more than a handful of bytes at a very
low frequency. No other communication is required and robots never exchange
their individual plans or models. In addition, each robot uses a refinement of our
recently developed planner for stochastic orienteering to ensure that it reaches
the final location before it runs out energy. Through extensive simulations we
demonstrate that this approach ensures robots collect samples in areas leading
to a more accurate reconstructions of the underlying unknown scalar field.

The rest of the paper is organized as follows. Selected related work is pre-
sented in section 2. The problem formulation is introduced in section 3 and our
methods are discussed in section 4. In section 5 we present extensive simulations
to evaluate our proposal and in section 6 we draw the conclusions.

2 Related Work

The problem considered in this contribution is related to the orienteering combi-
natorial optimization problem where one has to plan a path through a weighted
graph to gather the maximum sum of vertex rewards while ensuring that the
length of the path does not exceed a preassigned travel budget. Recently, we have
extensively studied this problem in agricultural settings, both for single agents [7,
13] and multiple agents [14], and we also considered its stochastic variants [12].
In all these works, however, rewards associated with vertices were static and as-
signed upfront, while in this work rewards associated with vertices are iteratively
re-estimated based on the gathered samples. Moreover, our former multi-robot
solution [14] was centralized, while we here propose a fully distributed approach.

The use of Gaussian Processes for estimating scalar fields with robots has
also been explored in the past. Suryan and Tokekar [11] proposed an algorithm
to reduce in minimal time the variance of the scalar field being estimated with a

Distributed estimation of scalar fields 3

GP. Their solution uses a team of robots, but does not consider travel budgets,
i.e., robots can travel as much as needed. Similarly, Di Caro et al. [2] propose
an estimation algorithm for GPs aiming at reducing uncertainty under time and
communication constraints. However, their solution does not consider a travel
budget.

Our work is also related to Informative path planning (IPP) where the em-
phasis is on planning paths to collect the most informative samples [3, 4]. In IPP,
however, the set candidate sample points is not given, but is rather determined
by the algorithm, and the travel budget is typically not explicitly considered.

3 Problem Statement

We consider the problem of estimating a scalar function f : X → R defined over
a bounded region of interest X given a limited number of observations collected
by multiple robots. The goal is to determine where robots should collect these
samples. As commonly done in this domain, a graph structure is used to model
the navigable environment. We assume that observations of the underlying scalar
function can be collected at a limited set of sampling locations, denoted as the
set of vertices V in the graph. This assumption holds in a variety of real-world
agricultural applications, where specific points of interest (e.g., sentinel trees
that serve as early-indicators of ecosystem health) have been pre-identified, or
when the robots sense the environment by leveraging pre-deployed infrastructure
(such as soil sensors implanted in the ground). This assumption is not restrictive;
when prior sensing locations are not specified, one can choose V arbitrarily, e.g.
as a set of equally-spaced points covering the region of interest, as is typical in
näıve surveying schemes. We consider this navigable environment as a complete
graph, with edge set E = V × V . To each edge e ∈ E we assign a random
variable c(e) representing the movement cost (e.g. energy spent) when the robot
traverses the edge. We assume that the density functions characterizing these
random variables are known.

All robots must begin at an assigned start vertex vs and end at an assigned
goal vertex vg before they run out of energy. Each robot ri starts with a travel
budget Bi. When the robot traverses an edge e, its budget decreases by the
random value drawn form the random variable c(e). For simplicity, we assume
that all Bis are the same, but this is not a strict requirement. Each time the
robot visits a location v ∈ V , using its onboard sensor(s) it collects a sample of
the underlying function f , obtaining a noisy observation yv = f(v) + ε, where
ε ∼ N(0, σ2

m) is measurement noise, Gaussian-distributed with zero mean and
variance σm.

With regard to communication, we make the following two assumptions:
When robots are collecting data, they can only anonymously broadcast packets
of the type (v, yv, n) indicating that they collected observation yv at vertex v. The
last component n is a unique id assigned to each robot— its use will be presented
in section 4. At the end of the mission, after the robots have converged at the goal
vertex vg and are in proximity, they can exchange all the data they have gathered

4 Booth and Carpin

during the mission. However, at that point data collection is concluded and they
cannot return to the field and acquire more data to improve the estimate. These
communication assumptions are consistent with contemporary technology used
by robots in agricultural domain. In particular, LoRa [10] offers the capability of
streaming limited amounts of data at long distances and is compatible with the
assumptions we made when robots are out in the field. When robots terminate
their mission and are in close proximity data can be instead be exchanged using
onboard WiFi.

To reconstruct the scalar field we use Gaussian process (GP) regression, as
detailed in section 4. Throughout the mission, using the available data (either
collected or communicated) robots can make predictions about the value of f at

arbitrary locations in X . We indicate such predictions as f̂ . The overall objective
is to collect the set of observations providing the most accurate reconstruction
of the underlying scalar field. As common in estimation literature, in this work
our metric for accuracy is the mean squared error (MSE) defined as

MSE =
1

|X |

∫
X
(f(ψ)− f̂(ψ))2dψ.

4 Methods

4.1 Gaussian Process Regression

We provide the necessary notation and background for GP regression and we
refer the reader to [6] for a more comprehensive introduction. As per our prob-
lem definition, we describe the spatial distribution of an unknown parameter
(moisture, nitrates, etc.) as a function: f : X → R that is continuous in the
2-D environment X ⊂ R2 where measurements are taken. The function which
describes the environmental field f and measurement noise σm are represented
as unique random variables that follow an i.i.d. Gaussian distribution with zero
mean µ and variance σ2. The Gaussian process assumption is to model f as a
random probability distribution over a set of functions, and that the value of f
for arbitrary inputs x and x′ (f(x) and f(x′), respectively) has a jointly-Gaussian
distribution. We assume that f(x) is a realization of a Gaussian process, which is
completely defined by a mean function m(x) and a covariance function k(x,x′)
with input vector x:

f(x) ∼ GP (m(x), k(x,x′)) (1)

The joint distribution of observations (the explanatory variable) y, {f(x1)+
ε1, . . . , f(xn) + εn} at inputs X, {x1, . . . , xn} and function values (the response
variable) f , {f⋆, . . . , f⋆n} can be written as:[

y
f(x⋆)

]
∼ N

(
0,

[
k(X,X) + σ2IN k (X, x⋆)

k (x⋆,X) k (x⋆, x⋆)

])
(2)

where y is a column vector of scalar outputs y, from a training set D of n
observations, D = (X,y) = {(xi, yi) | i = 1, . . . , n}. k is the covariance function

Distributed estimation of scalar fields 5

(or kernel), σ2
n is the variance of the observation noise, and input vectors x and

query points x⋆ of dimension d are aggregated in the d × n design matrices X
and X⋆ respectively.

Through the marginalization of jointly Gaussian distributions, we can derive
the following predictive conditional distribution at a single query point f⋆ |
D, x⋆ ∼ N (E [f⋆] ,V [f⋆]) as [6]:

µ = E [f⋆] = k (x⋆,X)
[
k(X,X) + σ2

nIn
]−1

y (3)

σ = V [f⋆] = k (x⋆, x⋆)− k (x⋆,X)
[
k(X,X) + σ2

nIn
]−1

k (X,x∗) (4)

where k(X,X) is a matrix containing the joint prior distribution of covariances
of the function f at inputs X and k (x⋆,X) is a matrix containing the covari-
ances between the function at query points and training inputs. The covariance
function k (or kernel), captures prior knowledge about the function of interest,
including stationarity and smoothness. Often, it is assumed that the covariance
of any two random variables depends only on their distance (isotropy), indepen-
dent of their location (stationarity) [6]. Note that the variance in Equation (4)
can be computed for any point and not only for the observed locations. This
serves as a means to reason about overall map uncertainty at unobserved loca-
tions and is key for the robots to decide where to sample next to decrease the
MSE at the end of the surveying task.

4.2 Spatial prior

The kernel k establishes a prior likelihood over the space of functions that can
fit observed data in the regression task. Kernel selection and tuning is a key
component in GP regression tasks. In machine learning the radial basis function
(RBF) kernel is often used. However, in this paper, we use the Matérn kernel
with ν = 3/2 which is a finitely-differentiable function. Our choice of this kernel
is motivated by its broad use in the geostatistical literature for modeling physical
processes [9] like those motivating this research. The Matérn covariance function
takes the form:

KMatern(X,X⋆) = σ2 2
1−ν

Γ (ν)

(√
2ν

l
r

)ν

Kν

(√
2ν

l
r

)
(5)

whereKν is a modified Bessel function , Γ (·) is the Gamma function, and r is the
Euclidean distance between input points X and X⋆. The hyperparemeters ν > 0,
l > 0, and σ2 > 0 represent smoothness, lengthscale, and observation variance
respectively. As common in GP inference, to account for the measurement noise,
the kernel we use is the sum of two kernels, namely the Matérn kernel and a
noise term, i.e., the kernel we use is

K(X,X⋆) = KMatern(X,X⋆) + σ2
nI

6 Booth and Carpin

where I is the identity matrix and the term σ2
n models the measurement noise

σ2
m. While we keep ν fixed at 3/2, the other hyperparameters θ = {σ2, σ2

n, l} can
be trained using various optimization methods using the marginal likelyhood to
match the properties of environment and the sampled data [6]. In particular,
the length scale l is related to the lag parameter of the variogram, a function
used in geostatistics that establishes how quickly the variance increases as a
function of separation distance between pairs of observations in space [9]. In the
GP kernel, smaller values of l imply that variance quickly grows with distance,
while with larger values the variance grows less. As we will see in the next
subsection, by putting constraints on the range of possible values of l one can
implicitly encourage dispersion between the robots, thus promoting the collection
of samples in different areas of the environment.

4.3 Exploration

In this section we present the planning algorithm executed by each robot in the
team. No global data structure is shared among the agents, and all the quantities
described in the following are local to each robot. Let G = (V,E) be the graph
of possible sampling locations and let D = (vi, yi) i = 1 . . . n the set of collected
samples (vertices and values). All robots start from the same start vertex vs and
must end at the same goal vertex vg. D is initialized as an empty set, but then
grows as the robot collects more data or receives data from other agents. Each
robot is given a unique numerical identifier ni, but the robots need not to know
how many agents are in the team. At each iteration the robot assigns a reward
function to each of the vertices in V , i.e., it computes a function r : V → R
assigning a value to each possible sampling location. Different options for the
function r will be discussed in the next subsection.

Once the function r has been computed, the robot is faced with an instance
of the stochastic orienteering problem, i.e., it has a graph G = (V,E) with known
deterministic rewards r associated to vertices and stochastic costs c associated
to edges, as well as a residual budget B. At this point the robot executes the
algorithm presented in [12] to solve the stochastic orienteering problem (SOP).
Because of the intrinsic computational complexity of the orienteering problem,
the SOP algorithm uses a Monte Carlo tree search informed by an heuristic
aiming at identifying vertices with high value r, low travel cost, and from which
the robot can still reach vg with high probability (the reader is referred to [12] for
all details). The SOP algorithm returns the next vertex va to visit. The robot
then moves to va, collects an observation ya, updates D, and broadcasts the
packet (va, ya, ni) to all other agents, where ni is the unique id of the robot.
This process continues until the SOP algorithm returns vg, in which case the
agent moves to the goal vertex vg and terminates. Throughout the process the
robot keeps listening for possible packets broadcast by other agents, and when
they are received the location and sampled values are added to D.

As the SOP algorithm was developed for the single robot case, in this work
we added a minor modification to account for the presence of multiple robots.
The change is as follows: When considering the reward of a vertex r(v), the robot

Distributed estimation of scalar fields 7

considers for all other agents, the last packet they transmitted (if it exists). Then,
if it determines that another agent is closer to v than itself, it discounts the
reward r(v). More precisely, let v be the vertex whose utility is being evaluated,
and r(v) its reward. Let vc be the location of the current robot, and assume
that it determines that robot j has broadcast a packet indicating it collected a
sample at vertex vj . If vj is closer to v than vc, then r(v) is updated as r′(v) =
r(v)d(vj , v)/d(vc, v) where d is the Euclidean distance between the vertices. The
rationale for this update is that if another robot is closer to v, then it is more
likely to reach v than the former robot, so the utility of v is decreased for
the former robot to prevent having both robots visiting v, as this would be a
replicated effort wasting resources. However, the utility is not set to zero because
robots do not communicate with each other and do not know their individual
intentions. Also, since each robot maintains its own set of GP hyperparameters
(see discussion below) and these will be different from each other, robots cannot
make absolute predictions about the intentions of other robots in the team.

Remark: one could imagine that after a robot has determined which vertex v
it will visit next, it could broadcast this information to other agents so that they
do not consider it anymore among their choices. However, this is not done for two
reasons. Fist, such additional communication would almost double the amount of
transmitted data, thus going against our effort to keep exchanged information at
a minimum. Second, because of the stochastic nature of the environment there is
no guarantee that a robot electing to visit a certain vertex will eventually reach
it and collect a sample. Hence we opt for the current approach where robots
share measured data only after they have reached and sampled a location.

4.4 Vertex quality computation

Key to the presented approach is the reward function r : V → R used by the
SOP algorithm to decide which vertex to visit next. Ideally, the function should
identify instrumentally good vertices to visit, where good in this case means ver-
tices that will yield a reduction of the MSE metric. Different metrics have been
proposed in literature. One obvious choice is to use Eq. (4) to predict the vari-
ance of vertices in V and set r(v) = σ2(v). In this case, the objective is to assign
high values to vertices with high uncertainty in the estimate. In [8] the authors
instead propose to use a linear combination of the mean and standard deviation
predicted by Eqs. (3) and (4). Their approach aims at discovering the extrema
of an unknown function. As in our application we are interested in the entire
function, and not just its peaks, we could set r(v) = |µ(v)|+βσ(v). Finally, in [1]
the authors propose an algorithm to compute the mutual information for vertices
(prior to and after being added to the movement graph) using predictions for
mean and variance. After having implemented these three alternatives, prelimi-
nary experiments did not outline significant differences between them. However,
setting r(v) = σ2(v) has the advantage of not requiring the tuning of additional
parameters, as it is instead necessary for the other two methods. Therefore, in-
formed by these preliminary findings, in our implementation each robot assigns
the predicted variance as the value of a vertex. Note that for vertices already in

8 Booth and Carpin

D the algorithm sets r(v) = 0, so that robots never consider again vertices that
have been already sampled at least once.

The kernel we use to make predictions about the variance depends on three
hyperparameters θ = {σ2, σ2

n, l} that can be tuned to best fit the data in D.
As pointed out in [6] Ch.5, to obtain better results it is possible to repeat the
optimization process multiple times, with random restarts to avoid getting stuck
in suboptimal local minima. In our approach, before assigning values to the
vertices each robot executes the optimization locally with ten restarts, but never
communicates the hyperparameters of its internal model θ to the other team
members. Each agent then operates with its separate set of hyperparameters θ
that are unlikely to match the others, due to the random restarts of the optimizer.
This difference will further decrease the likelyhood that multiple agents will
select the same vertices to sample, because even with identical setsD the variance
predicted by the GP will be different. However, during the optimization process
each agent uses the same lower bound l0 for the length scale l. This choice
encourages robots to disperse because the variance of vertices in V near to
vertices already inserted in D is lower than the variance of vertices far from D
and thereby the reward associated to vertices near to already sampled locations
is lower.

5 Experimental Evaluation and Discussion

To assess merits and limitations of the proposed approach, we perform simula-
tions on test cases while varying the different parameters related to the planning
and surveying objectives. Due to the limitation of space, we examine the task
of reconstructing two scalar fields. The first is a synthetic scalar field with a
periodic trend depicted in figure 1a. The second, displayed in figure 1b, shows
the soil moisture distribution measured in Summer 2018 in a commercial vine-
yard located Central California. This second scalar field was used as benchmark
in some of our former publications [14]. To ease the comparisons between the
two cases, both fields were rescaled to the same size, although the amplitude of
the underlying values are different. GP predictions of each respective field were
made with a Matérn kernel with ν = 3/2. It should be noted that this kernel
is commonly used in geostatistical applications and is more appropriate for the
soil moisture dataset. Here, the periodic synthetic field serves as a pathological
example, with a mismatched spatial prior. In fact, the use of periodic kernels
could lead to better results for the synthetic field. Future work will examine
online adaptive kernel selection through Bayesian optimization.

Our algorithm, indicated as Coord in the following discussion, is compared
with two baseline alternatives:

– The random waypoint selection algorithm (RWP), which selects the next
vertex to visit at random among those still to be visited. Due to the nature
of the selection process, the ability to communicate during the sampling
process is immaterial. The RWP algorithm is often considered as a baseline
comparison in this type of tasks (see e.g., [2]).

Distributed estimation of scalar fields 9

(a) Synthetic dataset (b) Soil moisture dataset

Fig. 1: Benchmark scalar fields to be estimated. With reference to the travel
budget B, the length of the side edge is 5. In both instances the start vertex vs
is in the lower left corner and the goal vertex vg is in the top right corner.

– A non-coordinated (NC) approach, which selects the next sampling point us-
ing the same criteria used by our proposed algorithm, but does not exchange
any information during the sample process, i.e., during the selection process
each agent only considers the samples it collected, but not those collected
by the other agents.

At the end of the mission, when all robots have reached vg, both RWP and
NC share all collected sensor observations and the MSE is computed after fitting
the GP using all data collected by all robots. This step is not necessary for Coord
because data is exchanged on the go, but it ensures that the MSE evaluation is
done fairly among the three algorithms. After the algorithm has selected the next
point to visit, all algorithms, including Coord, use the same planning engine, i.e.,
the one we proposed in [12]. Finally, both NC and Coord do refit of the GP and
update the parameters θ before computing r, while RWP does not do this step
because it does not use the current estimate to select the next point to visit.

All procedures were executed single-threaded in Python running on an Apple
M1 processor. All computations related to GP fitting and processing use the
scikit-learn library [5]. For both scalar fields considered in the tests, we varied
the number of agents (3,5,7,9), the budget B (10,15,20), and the parameter l0
(0.1,0.5,1). For each combination of parameters, twenty independent simulations
were performed, for a total of about 3500 executions.

Figure 2 shows the average MSE as a function of the number robots for
all algorithms. As expected, the trend is decreasing (i.e. improved prediction
accuracy) with diminishing returns as the number of robot grows. We can observe
that the proposed algorithm outperforms the others. Note that the range of
values for MSE in the two test cases is different because of the different values in
the underlying scalar fields. Next, in Figure 3 we show the reconstructed scalar
field for the three algorithms with a budget of 20 and 5 robots. The red dots
show the locations where the samples were collected. Due to the random selection
process, RWP ends up collecting less samples before exhausting the budget and
this leads to an inferior estimate. NC and Coord, instead, collect more samples,

10 Booth and Carpin

3 4 5 6 7 8 9
robots

2.0

2.5

3.0

3.5

4.0

4.5

5.0
fi
n
a
l
m

a
p
 M

S
E

synthetic dataset

3 4 5 6 7 8 9
robots

4

6

8

10

12

soil moisture dataset

algorithm
NC
RWP
Coord

Fig. 2: Average final map MSE for n=20 trials per algorithm. Error bars show
± one standard deviation.

but we can see how Coord spreads them more uniformly and ultimately leads to
a more accurate estimate (see figure 1b for the ground truth). Similar results are
observed for the synthetic map, but are not displayed for lack of space. Table
1 provides a more detailed numeric analysis of the performance of the three
algorithms. Specifically, we look at the number of unvisited locations as well as
the number of locations visited by more than one robot. These are two proxies
for the MSE metric, and lower values are desired in both cases. When the travel
budget is 10, the number of unvisited locations is similar for the three algorithms
because with limited budget the set of available choices before the budget is used
is limited. As the budget grows, we see that the Coord algorithm emerges as the
algorithm with less unvisited vertices, thus substantiating the claim that agents
spread in the environment in a more coordinated fashion. For the number of
revisited locations, RWP (as expected) always has the lowest number of revisited
locations, due to the completely random nature of the selection. However, when
comparing NC with Coord we see that the latter has always a lower number,
again showing that the agents better spread in the environment avoiding to
revisit the same places, thus ensuring that coordination leads to a better use of
the robots are mobile sensors.

Finally, in Figure 4 we display how the choice of l0, the lower-bound for the
length scale parameter l, impact the value of the MSE metric. The two panels
correspond to a budget of 15 and 20 respectively, and group the results for
different numbers of surveying robots. For 9 robots the impact is marginal, and
this is explained by the fact that with this many agents the team manages to
cover most of the environment during the mission. However, for budget of 15 and
3 robots, a value of l0 = 1 gives a clearly better result. Likewise, for budget of
20 and 5 robots, a value of l0 = 0.5 is best. These results show that by tuning l0
it is possible to implicitly promote better dispersion in the team and then lower
values for the MSE. An outstanding question to be investigated is how to select

Distributed estimation of scalar fields 11

(a) RWP (b) NC (c) Coord

Fig. 3: Reconstructed scalar field soil moisture map with 5 robots and B = 20.

map synthetic dataset soil moisture dataset

budget 10 15 20 10 15 20

RWP 179/6 164/8 155/10 179/6 164/9 155/10
NC 164/17 139/31 122/42 166/16 140/30 122/40

Coord 163/12 129/18 104/21 166/11 133/17 106/21

Table 1: Average number of unvisited and re-visited waypoints, from an experi-
mental setting of 200 candidate sampling locations. X/Y means that there were
on average X unvisited vertices and Y revisited vertices.

this value in a general setting. Nevertheless, these results confirm our hypothesis
that by constraining the GP kernel parameters being optimized, one can enforce
different behaviors on the team members.

6 Conclusion

We have presented an approach to reconstruct a scalar field using a team of
robots performing distributed GP estimation. Through limited communication,
by exploiting the underlying properties of GPs, robots implicitly manage to dis-
perse thorough the domain and collect samples at locations leading to a more
accurate estimation. Our proposed approach has been extensively evaluated in
simulation and outperforms competing approaches.

References

1. E. Contal, V. Perchet, and N. Vayatis. Gaussian process optimization with mu-
tual information. In Proceedings of the 31st International Conference on Machine
Learning, pages 253–261, 2014.

2. G.A. Di Caro and Abdul W. Ziaullah Y. Map Learning via Adaptive Region-Based
Sampling in Multi-robot Systems. In F. Matsuno, S. Azuma, and M. Yamamoto,
editors, Distributed Autonomous Robotic Systems, pages 335–348. Springer, 2022.

12 Booth and Carpin

3 5 7 9
robots

0

1

2

3

4

5

6

7

8
fi
n
a
l
m

a
p
 M

S
E

"Coord" algorithm

l0
1.0
0.1
0.5

(a) Budget=15

3 5 7 9
robots

0

1

2

3

4

5

6

fi
n
a
l
m

a
p
 M

S
E

"Coord" algorithm

l0
1.0

0.1

0.5

(b) Budget=20

Fig. 4: Average MSE for different values of l0 and number of robots.

3. G. A. Hollinger and G.S. Sukhatme. Sampling-based robotic information gather-
ing algorithms. The International Journal of Robotics Research, 33(9):1271–1287,
2014.

4. M.G. Jadidi, J.V. Miro, and G. Dissanayake. Sampling-based incremental informa-
tion gathering with applications to robotic exploration and environmental moni-
toring:. The International Journal of Robotics Research, 38(6):658–685, April 2019.

5. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

6. C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning.
Adaptive Computation and Machine Learning. MIT Press, Cambridge, Mass, 2006.

7. A. Shamshirgaran and S. Carpin. Reconstructing a spatial field with an au-
tonomous robot under a budget constraint. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages 8963–8970, 2022.

8. N. Srinivas, A. Krause, S.M. Kakade, and M.W. Seeger. Information-theoretic re-
gret bounds for gaussian process optimization in the bandit setting. IEEE Trans-
actions on Information Theory, 58(5):3250–3265, 2012.

9. M.L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer
Series in Statistics. Springer-Verlag, New York, 1999.

10. J. P. S. Sundaram, W. Du, and Z. Zhao. A survey on LoRa networking: Research
problems, current solutions, and open issues. IEEE Communications Surveys &
Tutorials, 22(1):371–388, 2019.

11. V. Suryan and P. Tokekar. Learning a spatial field in minimum time with a team
of robots. IEEE Transactions on Robotics, 36(5):1562–1576, 2020.

12. T.C. Thayer and S. Carpin. Solving stochastic orienteering problems with chance
constraints using Monte Carlo tree search. In Proceedings of the IEEE International
Conference on Automation Science and Engineering, pages 1170–1177, 2022.

13. T.C. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin. Routing algorithms
for robot assisted precision irrigation. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 2221–2228, 2018.

14. T.C. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin. Multi-robot routing
algorithms for robots operating in vineyards. IEEE Transactions on Automation
Science and Engineering, 17(3):1184–1194, 2020.

