
UNIVERSITY OF CALIFORNIA, MERCED

Bridging the Gap in Grasp Quality Evaluation and Grasp Planning

by

Shuo Liu

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Computer Science

Committee in charge:
Professor Stefano Carpin, Chair

Professor Marcelo Kallmann
Professor Ming-Hsuan Yang

Fall 2017

c© 2017 Shuo Liu

All rights are reserved.

The dissertation of Shuo Liu is approved and it is acceptable in quality and form for publication on
microfilm and electronically.

Stefano Carpin, Chair Date

Marcelo Kallmann Date

Ming-Hsuan Yang Date

University of California, Merced

c©Fall 2017

To my parents and my wife

i

Acknowledgments

I am greatly indebted my advisor, Dr. Stefano Carpin, for guiding and supporting me over these
years. I was a careless person when I first entered the University of California, Merced, as I was
more concerned with the speed at which I conducted my research instead of the quality of my
work. He forced me to change the way I view my own research, which will carry me far in my
career. Particularly, I want to thank him for letting me follow through on my ideas and helping me
develop them into viable research topics. He set an excellent example as a researcher, mentor, and
instructor. Although we had many disagreements, he always treated me with respect. It was a great
honor to have him as my advisor. I would like to extend my gratitude to my committee members,
Dr. Marcelo Kallmann and Dr. Ming-Hsuan Yang, for all of their guidance through this process;
their feedback has been absolutely invaluable. I would like to thank my fellow graduate students,
Dr. Seyedshams Feyzabadi, Jose Luis Rincon, Andres Torres Garcia, Thomas Thayer and many
others, for their inspiring comments and valuable friendship. I’ve enjoyed every moment working
with them.

I want to thank the National Institute of Standards and Technology for its partial support of
my studies through cooperative agreement 70NANB12H143. I would like to thank University of
California, Merced for providing me with Teaching Assistant opportunities in Fall 2014, Spring
2016 and Spring 2017. I am honored to receive Bobcat Fellowship from University of California,
Merced in Spring 2014, Summer 2015, Fall 2016 and Summer 2017. I would also like to express
my gratitude to Dorabot Inc. for offering me an internship in Summer 2016. This great opportunity
had broadened my knowledge and brought me closer to the robotic industry.

I would especially like to thank my roommates, Dr. Youhong Zeng, Wei Liang, and Dr.
Yanjun Su, for all the time we spent together, all the adventures we had, and much, much more.
Without them, my life here would have been a horrible disaster. We clearly have built something
permanent instead of just sharing a house. I would also like to thank Dr. Zhijiang Ye, Dr. Chengjie
Qin, Dr. Jingru Shao, Dr. Jimei Yang, Dr. Zhe Hu, Dr. Tao Ren and many other friends that
supported me throughout these years. Because of them, I was never alone when I was depressed
or overwhelmed. It was a great honor to have them in my life. In particularly, I want to thank Dr.
Zhijiang Ye and his family for taking care of me during the most depressing period of life. I also
am grateful for all the fishing trips and poker nights we had together.

I want to express my deepest appreciation to my family, especially to my parents. My parents
supported me through every bit of my life. They encouraged me to be an independent thinker, and
have confidence in my ability to go after new things that inspired me. Although we are not always
in touch, I know they will always be there for me and I hope they know that I will always be there
for them. Finally, but not least, I want to sincerely thank my wife Huiying Wang. She is a very kind
and caring woman and I am very grateful to have met her, gotten to know her and marry her. She is
the reason that I keep pushing myself to become a better person. I could not imagine surviving all
this without her loving support.

ii

Publications

Conference Papers

• S. Liu and S. Carpin. Fast Grasp Quality Measure with Partial Convex Hull Computation.
In Proceedings of the IEEE International Conference on Robotics and Automation, pages
4279-4285, 2015

• S. Liu and S. Carpin. Global Grasp Planning Using Triangular Meshes. In Proceedings of
the IEEE International Conference on Robotics and Automation, pages 4904-4910, 2015

• S. Liu and S. Carpin. A Fast Algorithm for Grasp Quality Evaluation Using the Object
Wrench Space. In Proceedings of the IEEE Conference on Automation Science and Engi-
neering, pages 558-563, 2015

• S. Liu and S. Carpin. Kinematic Noise Propagation and Grasp Quality Evaluation. In Pro-
ceedings of the IEEE Conference on Automation Science and Engineering, pages 1177-1183,
2016

• S. Liu, Z. Hu, H. Zhang, M. Kwon, Z. Wang, Y. Xu and S. Carpin. Grasp Quality Evaluation
and Planning for Objects with Negative Curvature. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 2223-2229, 2017

• S. Liu and S. Carpin. Grasp Quality Evaluation with Whole Arm Kinematic Noise Propa-
gation. In Proceedings of the IEEE International Conference on Robotics and Automation,
2018 (under review)

Journal Papers

• J. Falco, K. Van Wyk, S. Liu and S. Carpin. Robotic Grasping: Facilitating Replicable Per-
formance Measures via Benchmarking and Standardized Methodologies. In IEEE Robotics
and Automation Magazine, 22(4):125-136, 2015

• S. Liu and S. Carpin. Partial convex hull algorithms for efficient grasp quality evaluation.
Robotics and Autonomous Systems 86:5769, 2016

Technical Report

• S. Carpin, S. Liu, J. Falco, K. Van Wyk. Multi-fingered Robotic Grasping: A Primer. arXiv
preprint arXiv:1607:06220, 2016

iii

Contents

1 Introduction 2

2 Related Work 5
2.1 Grasp planner . 5

2.1.1 Force Closure Grasp . 5
2.1.2 Grasp Quality Driven Model-Based Grasp Planner 8
2.1.3 Sensor Data Driven Model-less Grasp Planner 9

2.2 Grasp Quality Metrics . 11
2.2.1 External Wrench Resistance Based Measure 12
2.2.2 Hand Based Measure . 14
2.2.3 Combing Multiple Measures . 15

2.3 Convex Hull Computation . 16
2.3.1 Convex Hull in 2D and 3D . 16
2.3.2 Convex Hull in Higher Dimensions . 17

2.4 Inverse Kinematics . 18

3 Background and Notation 19
3.1 Background in grasping and grasp metrics . 19

3.1.1 Grasp wrench space metric . 20
3.1.2 Object wrench space metric . 21

3.2 Background in Convex Hulls . 22
3.2.1 Convex Hulls . 22
3.2.2 The QuickHull algorithm . 23

4 Efficient Grasp Quality Evaluation through Partial QuickHull Computation 25
4.1 Grasp Wrench Space Metric with Partial Convex Hulls 26
4.2 Object Wrench Space Metric with Partial Convex Hulls 31
4.3 Experimental Evaluation . 37

4.3.1 Grasp Wrench Space Metric . 37
4.3.2 Object Wrench Space Metric . 38
4.3.3 Impact on Planning . 41

4.4 Conclusions . 44

iv

5 Grasp Quality Evaluation with Whole Arm Kinematic Noise Propagation 46
5.1 Problem Definition and Methodology . 48
5.2 Experiments . 52

5.2.1 Empirical estimation of noise on end-effector position 52
5.2.2 Grasp Quality and Noise . 53
5.2.3 Analytical based estimation of noise on end-effector pose 59

5.3 Conclusions and future work . 65

6 Grasp Quality Metric Improvement Considering Hand Configuration and Target Ob-
ject 67
6.1 Grasp Quality Metric Improvement . 69

6.1.1 Grasp Quality Metric with Hand Configuration 69
6.1.2 Grasp Quality Metrics with Negative Curvature 71
6.1.3 Combining the Hand Friction Cone and Object Friction Cone 74

6.2 Experiments and Results . 74
6.2.1 Preliminary Results Considering Hand Configuration 74
6.2.2 Preliminary Results Considering The Target Object 75
6.2.3 Results on Combined Friction Cone . 76
6.2.4 Impact on Grasp Planning . 77

6.3 Conclusions . 78

7 Grasp Planner Development 81
7.1 Grasp Planner using Negative Curvature . 81

7.1.1 Model Based Grasp Planning . 82
7.1.2 Model-less Grasp Planner . 84
7.1.3 Negative Curvature Planner Comparison 90
7.1.4 Experiments and Results . 91
7.1.5 Real Robot Experiment . 92

7.2 Global Grasp Planning Using Triangular Meshes 95
7.2.1 Continuity . 96
7.2.2 Proposed Approach . 96
7.2.3 Experimental Results . 103

7.3 Conclusion . 108

8 Conclusions and Future Works 110

Bibliography 113

v

Abstract

Robot grasp planning has been extensively studied in the last decades often consisting of two
different stages determining where to grasp an object and measuring the quality of a tentative grasp.
Additionally, because these two processes are computationally demanding, form closure grasps are
more widely used in practice than force closure grasps, even though the latter is, in many cases,
preferable. In this dissertation, we introduce our framework to improve grasp quality evaluation
by increasing the speed of evaluating a grasp and developing more informative metrics. Specifi-
cally, we accelerate the computation of the grasp wrench space, used to measure the grasp quality,
by exploiting some geometric insights in the computation of a convex hull through identifying a
cutoff sequence to terminate the convex hull calculation with guaranteed convergence to the qual-
ity measure. Furthermore, we go into detail about the metric improvement for the grasp quality.
Specifically, we study how noise at each joint of the manipulator affects grasp quality and how dif-
ferent arm configurations will generate different noise distributions at the end-effector, which has a
huge impact in the robustness of grasping. Moreover, we illustrate our method that evaluates arm
configurations based on the probability of achieving a force closure grasp. Then we introduce our
work taking into account the hand structure and the local geometry of the object to be grasped as the
second aspect for improving grasp quality metrics. In particular, for concave objects, we exploit the
fact that grasping the concave region can make the grasp more robust. These insights are explored
through theory and then validated on an experimental platform. Finally, we present three grasp plan-
ners we developed. We constructed two planners taking advantage of the negative curvature feature.
The first the planner uses the geometry model of the object and constructs a database for online use.
The second planner does not require the model but instead, detects negative curvature features on
the fly and calculates candidate grasps in real time. Lastly, our third grasp planner searches through
the objects’ surface, represented as a triangular mesh, and tries to find the global optimal grasp.

1

Chapter 1

Introduction

Grasping is one of the most widely studied problems in robot science. However performing
reliable grasps on objects used in everyday activities continues to be one of the most important
unsolved problems. This limitation is well described by Moravec’s Paradox: ”it is comparatively
easy to make computers exhibit adult level performance on intelligence tests or playing checkers,
and difficult or impossible to give them the skills of a one-year-old when it comes to perception
and mobility” [69]. Considering all strategies a robot needs to perform in assisting and interacting
with human beings in everyday life, grasping is -in the long term vision - still a missing block. It
has been argued that grasping, manipulation, and speech are among the most fundamental human
abilities unparalleled by animals [10]. Then it should not be a surprise that many problems in this
area are still open.

As a starting point, we can not ignore the most commonly used strategy in real world grasps,
form closure grasps. Form closure grasp aims to prevent the object from moving in any direction.
Currently, form closure grasps are still vastly used in both academia and industry. Force closure
grasps refers to grasps that can resist any motion of the object by the contact forces. The primary
difference between form closure and force closure grasps is the latter relies on contact friction
which translates into requiring fewer contacts and is suitable for executing precision grasps. In the
early years, the limitations of the manufacturing robot hand and the expenses required to calculate
good force closure grasp put constraints on producing complicated grasps. Nowadays, with the
development of mutifingered robot hands, and increased computing speeds, preforming good force
closure grasp is feasible. One might ask what a good force closure grasp is and how it is defined.
This question can be answered in many ways since there exists many different quality measures.
But in general people agree on a quality measure which determines the robustness of a grasp that
can resist arbitrary wrenches while applying minimal forces with the finger. In this dissertation, the
grasp quality measure will be based on force closure grasps.

The general purpose of grasp planning problems is to determine how to grasp an object in
order to finish a given task. Assume that a robot is programmed to grasp an object on a table at
point A and move it to point B with some obstacle on its path. An example is shown in Figure
1.1. One might focus on where to grasp the object, and others might be more interested in how to
plan a safe path. As a matter of fact, both problems are equally important and in some ways related
to grasp planning. Due to the errors of the actuator, we can not count on it to preform exactly the

2

motion we programmed; thus the path around obstacles will have effects on the grasp. Also, if
implementing grasping in the real world, it is obvious to see the how failure of grasping process can
be caused by the error of the actuator. This kind of error cannot be corrected completely with the
current development of hardware and control system. In order to fix this, we should apply certain
knowledge in the grasp planner, and improve the robustness of the grasp.

Figure 1.1: Example of a working environment. The manipulator will be planning to move the red
object from A to B. The figure was generated using OMPL [98]

In this dissertation, we posit that the key to solving grasp planning problems is the grasp
quality metric. Most well know grasp quality metrics are constructed based on a single feature,
such as hand configuration and position of each contact. However, we think that the optimum grasp
quality metric should be able to combine all features that have an effect on grasping, including hand
force, contact position, local geometry of the target object, and the configuration of the entire arm.
A force closure grasp requires two important aspects when evaluating its quality metric. The first
one is the construction of grasp wrench space. In short, the grasp wrench space represents a space of
wrenches that can be resisted by a given grasp configuration. The concept will be further introduced
in chapter 3. The second aspect is the evaluation of the grasp wrench space. For example, Ferrari
and Canny proposed a metric to evaluate the grasp wrench space by the minimal wrench in any
direction [29]. Our focus is mainly on the construction part. In general, the construction of the grasp
wrench space is based on the friction cone at each contact point defined by the grasp configuration.
However, we believe that by modifying the friction cone, we will be able to add in more information
such as the local geometry of the object being grasped and the hand configuration. Thus, we can
build a comprehensive measurement system that combines multiple features into a single grasp
quality metric.

In this thesis, our focus is listed as follows:

• Improve the calculation speed for two important quality metrics, i.e., the grasp wrench space
metric and the object wrench space metric.

• Connect grasp quality measure with arm configuration.

• Connect grasp quality measure with local geometry information.

3

• Connect grasp quality measure with hand configuration.

• Develop a framework to combine items 1 to 4 into a single grasp quality metric.

• Develop a global grasp planner that generates high quality force closure grasps using trian-
gular meshes as object representations.

• Develop a model based grasp planner and a model-less grasp planner based on local geometry
information.

The main research focus of this dissertation is on robot grasping. Topics 1 through 5 con-
tributes to improving grasp quality measure in calculation speed, i.e., topic 1, and in metric, i.e.,
topics 2 through 4. Topics 2 through 4 improve the quality metric by adding in information about
the object to be grasped, the hand configuration and the manipulator configuration. These three
aspects together form the entire system of grasping with a manipulator. The last two topics, built
upon the improved quality measure, connect the quality and actual grasping strategies through grasp
planning for both model and model-less scenario.

The rest of this dissertation is organized as follows. Chapter 2 will discuss some related work
in grasping. In chapter 3 we introduce background knowledge and basic notations. Chapter 4 will
be introducing our previous work which focuses on improving the calculation speed of the grasp
quality measure published in [60]. Chapter 5 will be introducing our work that combines grasp
quality metrics with arm configurations by taking grasp probabilities into account. This chapter is
based on work published in [59]. In the next chapter, chapter 6, we address our work that connects
hand and object local geometry with grasp quality measure using the friction cone. Part of this
chapter was published in [61]. Chapter 7 will be introducing the grasp planners we developed over
the years based on published papers [61] and [58]. The last chapter will conclude this dissertation.

4

Chapter 2

Related Work

In this chapter, we will provide a recap of relevant literature in grasp planners, grasp quality
metrics, and convex hulls. Throughout this chapter, we exclusively consider force closure grasps.

2.1 Grasp planner

Because of its practical importance, grasp planning has received significant attention since
the very dawn of robotics research. For a general introduction on grasping, the reader is referred
to [70, 79]. Literature in grasp planning is vast and different taxonomies could be considered to
classify the various approaches proposed.

2.1.1 Force Closure Grasp

When discussing the literature of grasp planning, we are often referred to grasp planning
based on force closure grasps. A force-closure grasp is a type of grasp that can exert, through a
set of contacts, arbitrary force and moment on this object [73]. In other words, a force closure
grasp can generate any external wrench that the grasped object may have resisted and counteract
any external disturbing wrenchs. Before going into grasp quality measures for force closure grasp,
researchers have identified a multitude of properties that a good force-closure grasps must consider
in comparison to a human hand in order to perform everyday tasks [22, 39].

• Dexterity

• Equilibrium

• Stability

• Dynamic behavior

Each of these properties contains different sub-problems. For example, dexterity studies how should
each finger be configured; equilibrium studies how much force should be applied at each contact;
Stability studies how to balance external disturbances and dynamic behavior studies how a grasp

5

should be configured for a given task. Figure 2.1 shows the interrelationship between these four
properties and other well known grasp properties proposed in the grasping literature [92].

Figure 2.1: The interrelation between multiple grasp related properties proposed in the literature
[92].

This paragraph will introduce of some works based on these properties. Beginning around the
early 1980s, researchers started to investigate force closure problems. Laugier proposed a frame-
work to determine the potential sets of grasping object positions based on rejection of infeasible
grasps [52, 53]. His work is done on two finger hands grasping polyhedral objects in 3D. Wolter et
al. developed an efficient method for a two finger hand to automatically generate grasp positions
for polygonal objects with parallel planes in 2D [109]. Barber improved Wolter et al.’s work by
considering more general conditions [6, 7]. Similarly, Abel et al. also developed an algorithm for
two finger hands grasping polygonal objects in 2D [1]. In addition, they investigated the effect
of surface roughness and the feasibility of achieving equilibrium grasps. Later on, Nguyen pro-
posed an algorithm that computes stable grasps with frictional contacts on polygonal objects based
on independent contact regions [73]. Independent contact regions are defined as a set of regions
on the object where each finger can be placed independently and keep its force closure property
within these regions. Examples for computing independent contact regions were given in [50, 81].
Nguyen also proved in that paper that all 3D force closure grasps can be made stable. Such paper
is considered one of the fundamental works of grasp planning. Following this paper, works in cal-
culating grasps for two-fingers, three-fingers and four-fingers on a polygonal object were published
in [103], [74] and [64], respectively. In [77], the authors compute four-finger equilibrium force clo-
sure grasps on polyhedral objects. The authors presented a geometric characterization of all possible
types of four-finger equilibrium grasps and solved the problem using linear optimization.

One of the earliest papers that planned grasps considering the palm was published in [101].
Palm in this case stands for the flat surface where all the fingers are placed on. This work also
proposed the idea of an enveloping grasp, where multiple contacts are allowed between chains and
the object. Fingertip force closure grasps are ideal, but for more realistic cases, the fingers often
have more than one contact. The authors also defined tippablilty regions to help achieve enveloping

6

grasps quickly. A tippablilty region is defined as a region to place a contact where increasing contact
forces will drive at least one of the supporting contact forces to zero. Under-actuated robotic hands
are defined as hands which have more degrees of freedom than actuators, which can be self-adaptive,
robust, and easy to control. Readers are referred to [11] for more in depth information. The grasp
characteristics needed for under-actuated hands to perform enveloping grasps are studied in [62].
Furthermore, [47] proposed a quality measure for under-actuated hands regarding their ability to
grasp and hold while performing enveloping grasps.

Most force closure grasp studies are based on polygonal or polyhedral objects, however, some
researchers are interested in more complicated objects, i.e., objects with curved edges. An approach
to compute stable grasps of curved two-dimensional objects is presented in [28], where fingers can
be positioned independently by optimization within the grasp regions. In [54], the authors computed
three-fingers grasps on irregular 2D and 3D objects based on geometrical analysis, and developed a
simple algorithm which only needs a few algebraic calculations. They also proposed new necessary
and sufficient conditions for 2D and 3D equilibrium and force closure grasps and a corresponding
algorithm for computing force closure grasps.

The works introduced are solve problems related to dexterity, equilibrium and stability prop-
erties. These properties are all directly related to the structure of the hand or the shape of the object,
i.e., the two most important components to perform a grasp. The dynamic behavior property, on the
other hand, is task oriented. It is often set aside from other properties due to the fact that modelling
a task and providing objectives to compare different grasps based on the task is difficult. In order
to take task information into account, Chiu [19] proposed a task compatibility index to measure the
similarity between the optimal direction of the manipulator and the actual moving direction based
on the task. This work is done on the manipulator scale, i.e., unrelated to grasps, but the idea can
be transferred to deal with task based grasping problems. The actual moving direction can be con-
sidered a source of disturbance which activates grasp planning approaches based on disturbance
force rejection. To this matter, Li and Sastry proposed the task ellipsoid in [55]. The task ellip-
soid addresses the likelihood of collision in each direction. This ellipsoid is further generated in
six-dimensions, as in wrench space, which was later referred to as task wrench space (TWS). Dis-
cussions on how to evaluate grasp quality based on TWS will be introduced in section 2.2. However,
the process of modelling a task using a task ellipsoid is very complicated and currently not used in
practice. This fact made the task ellipsoid model very hard to scale up.

Instead of finding a grasp and evaluating its quality based on task information, a different
approach that takes the task into account using hand-preshapes at early grasp planning stages was
proposed in [78] by Prats. The authors defined different hand-preshapes and classified them based
on their grasp wrench space. When a task is given, the robot will select the most suitable hand-
preshape according to its grasp wrench space and automatically plan a set of actions for grasping
the object and performing the task. The authors then used the concept of a task frame, introduced
in [65], to fill the gap between the grasp and the task. A task frame is a concept from task planning,
which implies a geometric coordinate frame that is attached to the object being manipulated. Task
frame is adapted for tasks occurring along a specific direction, such as opening a door or a drawer.
Prats’ method is thereby limited to easy tasks and fails to associate proper hand-preshapes with
complicated tasks.

7

2.1.2 Grasp Quality Driven Model-Based Grasp Planner

Grasp quality measures are often treated as objective functions to guide the grasp planning
system in the searching process. A literature review of existing grasp quality measures is given in
section 2.2. Optimal output of such system usually represents local optimum grasps which are con-
sidered to be stable by the grasp quality measure the author chose. In [110], the author introduced
a highly integrated grasp planning system, that starts with an initial grasp and tries to improve the
grasp quality by moving the fingers to its neighbouring joint positions until a local maximum grasp
quality is reached. This way of using grasp quality metric is also addressed in [81], [23] and [116].
This kind of planner is usually not designed for a particular type of hand and can have an arbitrary
number of contacts. In order to work with a real robot, simulation softwares are often used. In [67],
a robotic grasping simulator, called Graspit!, which focus on the grasp analysis of force closure
grasps is proposed. GraspIt! embeds the collision detection and contact determination system al-
lowing a user to evaluate a grasp and compute optimal grasping configurations. Openrave [26] and
V-REP [83] are also two commonly used simulators for grasp planning. By using simulation, we
can construct an offline database for a specific hand and a collection of objects we aim to grasp.
This database is usually based on a sampling approach where the quality of resultant grasps satisfies
a fixed threshold. This approach is well addressed in [66]. At runtime, model-based grasp plan-
ners often requires human guided input. An example of a common pipeline for this kind of grasp
planner being applied on a real robot is shown in Figure 2.2. These methods rely on collections
of formerly computed grasps for typical objects. The Columbia Grasp Database is probably the
most well known datasets supporting these methods [32]. However, a more autonomous way to
handle a grasp database based on model at runtime is to combine it with a model-less grasp planner
to recognize the object and estimates the object’s pose. This will be discussed more in the next
subsection.

Figure 2.2: The pipeline diagram for grasp quality driven model-based grasp planner applied on
real robots.

Most grasp planners are focused on the search process to generate grasp candidates, however,
some works are focused on the object’s geometric representation while doing grasp planning. Some
commonly used geometric representations are shown in Figure 2.3. The availability of geometric
models based on well defined primitives like superquadrics, or those that can be analytically de-
scribed will favor the optimization process due to its continuity. In [42], the authors assume that the
object to be grasped is modeled by a superquadric, and, notably, include in the grasp planning stage
a set of constraints imposing that the planned grasp can actually be performed by a given robotic

8

hand. Superquadric representation can give a close approximation to objects which cannot be an-
alytically described by one continuous function. This globally continuous function is beneficial to
perform the optimization process for grasp planning and enables the grasp planner to explore the en-
tire surface of the object. However, there is a trade off between surface approximation and function
complexity. Superquadric representation also lacks the ability to generate a very close approxima-
tion for complicated objects. In [116], the authors instead assume that the surface of the object is
represented by a patch of parametric surfaces like planes, spheres, etc. This kind of representation
may work well for objects which can be simply parametrized. But for complicated objects such
as teapots or drills, it requires a huge amount of constrained functions which are hard to obtain by
hand and hard to perform grasp planning on. Another common limitation of these two approaches
that we try to overcome, is that a valid initial placement of the fingers needs to be given. Moreover,
during the grasp planning process, the finger position is constrained to remain on the surface where
it started. Therefore, in the case of a complex object whose shape is given by the union of many
surfaces, the planning process does not explore the whole search space, but only a subset. A method
based on triangular meshes was published in [35]. This method is based on a hierarchy of triangular
meshes at different resolutions. This method does not rely on initial setup, but it might narrow the
result to few local optimum grasps which are not enough to build a comprehensive database, i.e., a
database containing grasps from all directions. Furthermore, this method does not have the ability
to explore the entire surface. The method we developed based on triangular meshes is capable of
travelling across adjacent triangles. This technique enables the planner to explore the object surface
globally and output a large number of local optimum grasps for constructing a grasp database. This
method will be discussed in section 7.2.

Figure 2.3: Three commonly used geometric models to represent a cube.

2.1.3 Sensor Data Driven Model-less Grasp Planner

In numerous situations, people are interested in grasping unknown objects, namely model-
less grasps. Model-less grasp planning usually refers to grasp planning based on real capture sen-
sorial data, rather than a perfect geometric model given up front. A common way of solving such

9

problems, as in [13, 93, 99, 102], is to construct the target object from the captured data. In order
to be able to reconstruct the entire object, the data capturing process can become time consuming.
Then a grasp planning algorithm is used to analyze the model and generates a robust force closure
grasp. This kind of method can be considered the first step towards a model-less grasp planning.
Although they do not have a perfect model up front, the grasps are still planned based on a built
model. As an extension, the idea of data-driven grasping is proposed. Data-driven grasping is based
on the existence of a large indexed dataset of object data, so that new inputs can be quickly matched
to similar instances and obtain precomputed grasps. This idea was first introduced in [31], where
they also proposed a framework for a data driven grasp planner that indexes partial sensor data
into a database of 3D models along with precomputed grasps and transfers grasps from models in
the database to target objects. Due to construction and querying reasons, it is impossible to store
every possible object in the database. In fact, for commonly used objects, although they are not
stored in the database, the planner is still capable to of grasping it by matching it with similar ob-
jects. However, since only partial sensor data is used, mismatching or wrong angle matching often
occurs. Using deep learning, [104] developed a system to capture a single view depth image and
reconstruct it in 3D object. Then, a grasp planner is used to plan and execute based on this single
view image. This work improves the problem of online time consuming object reconstruction in the
works mentioned earlier. It saves time in capturing data and performing grasp planning based on the
target object. The only downside of this work is that the accuracy of this deep learning model is not
guaranteed. Figure 2.4 shows an example of the pipeline diagram for sensor data driven model-less
grasp planner applied on real robots. Up to now, these works are still connected with the model
of the object. However, researchers have come up with a very efficient model-less grasp planners
that are only based on features captured by the vision system, instead of learning what the object is.
In [88], the authors treated image features as a representation of good grasping points, used synthetic
images as training data and applied supervised learning. The outcome was then used to recognize
good grasping points and perform grasps in real time. However, the feature vector characterizing a
good grasping point is in very high dimension. Although [4] improved this algorithm using dimen-
sionality reduction, the problem is still complicated. Apart from this, the authors of [30] proposed a
system to compute stable grasps based on Height Accumulated Features (HAF) and their extension,
Symmetry Height Accumulated Features, extracted from the point cloud directly. HAF is a simple
topographic feature which is common among target objects and can be simply computed. The result
indicates very robust performance. Furthermore, in [16], the authors proposed a novel grasping al-
gorithm that uses active vision and curvature information obtained from the silhouette of the object
to guide the grasp. Comparing to HAF, curvature features are rather hard to find among novel ob-
jects. However, these two methods lack theoretical support. It is not guaranteed that the candidate
grasps they selected is the one with the highest quality. In fact, if they can quantify the quality of
their candidate grasps and rank them in order for execution, they might achieve a higher success
rate. In conclusion, these methods can be improved by formulating the effect of their features as
grasp quality metrics.

Compared to model-less grasp planners, model-based grasp planners require additional pre-
computation to build the grasp database. This step is very time consuming because a large amount
of grasps needs to be calculated for every object. Also, the grasping ability for this type of planner
is only limited to objects which are similar to the ones stored in the database. On the other hand,

10

Figure 2.4: The pipeline diagram for sensor data driven model-less grasp planner applied on real
robots.

because of this precomputation step, when this type of planner runs on real robots, it is more effi-
cient and accurate for grasping objects in its database. This type of planner performs very well in
a manufacturing environment. For model-less grasp planners, methods that require reconstructing
the target object from multiple view points are the most time consuming. The positive side of this
type of planner is that it works on any object. Model-less grasp planners based on feature extraction
are considered to be the most efficient. This type of planners do not require precomputation, and
when performed in real time, they only need to extract graspable features instead of recognizing the
object. The negative side of this type of planners are that when the sensor data does not contain
any graspable feature, they will fail. Although they have the ability to grasp unknown objects, they
are only limited to the set of objects that contains recognizable graspable features. However, for an
advanced grasping system, these three types of planner can be combined in serial. The first planner
in the pipeline can be the planner based on features. If no graspable feature can be identified, we
can shift to the planner using the database to check if the target object is similar to what is stored.
If this planner fails, it means that the target object is unknown with no graspable features. Then
we need to put it through the planner that reconstructs the object and plans the grasp. A planner
pipeline example combining these three different type of planners is shown in Figure 2.5.

2.2 Grasp Quality Metrics

Everyday experience suggests that objects can be restrained in different ways and it is there-
fore natural to ask which grasping configuration is preferred. Being able to quickly evaluate the
effectiveness of a metric impacts grasp planning efficiency, because planning can be seen as a search
in the space of possible grasps driven by the quality metric [81,86]. With these motivations, various

11

Figure 2.5: The pipeline diagram to combine three grasp planners.

grasp quality metrics have been proposed and the reader is referred to [82] for a recent survey.

2.2.1 External Wrench Resistance Based Measure

A force closure grasp is a grasp that can resist arbitrary wrenches on the object. In other
words, any disturbance wrench on the object is resisted by the contact forces. Given two force
closure grasps, one would intuitively prefer the grasp that can balance disturbances with the min-
imal effort, i.e., applying the smallest forces. This idea was originally introduced by Kirkpatrick
et al. [44] and later on refined by Ferrari and Canny [29]. This metric proposed by Ferrari and
Canny is obtained computing the convex hull of a grasp wrench space (GWS), i.e., six-dimensional
vector space for 3D. The concept of grasp wrench space will be introduced in detail in section 3.1.
This grasp quality measure has de-facto become the most frequently used grasp metric, and the
QuickHull algorithm [5] is commonly used to compute the corresponding convex hull. Despite its
popularity, this quality measure has some notable drawbacks. To be specific, it is not scale invariant,
it does not consider the geometry of the object being grasped, and its value depends on an arbitrary
choice for the point about which torques are computed. Moreover, it is too conservative, in the
sense that it considers the set of all possible disturbance wrenches instead of considering the set of
disturbance wrenches that can occur in practice. Finally, its computation relies on an approximation
of the friction cone, and in order to expedite the computation there is then an incentive to use coarse
approximations. Despite these limitations, however, it continues to be the most commonly used.
In an effort to overcome some of these drawbacks, alternative approaches have been introduced.
Zheng proposed to replace QuickHull with an algorithm that iteratively approximates the convex
hull by growing a polytope guaranteed to be inside the convex hull [114]. Different from partial
QuickHull for grasp wrench space (PQHGWS), which we published in [60], this algorithm cannot
be applied when evaluating grasps that do not achieve force closure, and this is a limitation because
when a grasp is not force closure the distance between the hull and the origin is still useful to guide
the planning process [115]. The algorithm presented in [114] provides used the exact friction cone
instead of a pyramid approximation. However, this algorithm is still calculating an approximation
of the convex hull and the approximation error converges to zero only asymptotically with an un-
known convergence rate. As for PQHGWS, approximated friction cone was used but the convex
hull is then determined. Between [114] and PQHGWS, it is hard to argue which method is more

12

efficient and which method is more accurate. No publicly available implementation is available
for [114], so no experimental comparisons can be made. Pokorny and Kragic [75] provided the first
accurate study of the analytical properties of the grasp wrench space metric proposed by Ferrari and
Canny and of its approximations. Starting from this study, they proposed an efficient algorithm to
recognize and reject non-force closure grasps, but this method does not rank grasps achieving force
closure, i.e., it does not compute a grasp quality metric. Importantly, [75] presents an analytical
bound for the approximation error introduced by the discretization of the friction cone, and we ex-
ploit their result to quantify the quality of our findings. Various methods have been proposed with
the objective of removing the approximation introduced by discretizing the friction cone [57, 115].
None of these has however gained much traction, mostly because of the associated computational
costs. In an effort to consider not all disturbance wrenches, but only those occurring in practice,
the object wrench space (OWS) was introduced [76]. Strandberg and Wahlberg [96] introduce a
method for the direct computation of the OWS metric. The key observation is that a disturbance
wrench is almost invariably generated by a disturbance force, and they formulate a metric consid-
ering how much the object wrench space can be inflated before it reaches the boundary of the grasp
wrench space. The grasp wrench space metric can be thought as inflating a unit sphere within grasp
wrench space until the sphere hits the boundary, and the quality is determined as the ratio between
the inflated sphere and the unit sphere. It is clear that by defining the grasp wrench space this way,
object wrench space metric is simply replacing the unit sphere with the object wrench space. The
object wrench space metric overcomes two major problems of grasp wrench space metric, i.e., it
is scale invariant and its value does not depend on an arbitrary choice for the point about which
torques are computed. However, the object wrench space metric has limited use because it is costly
to compute and the method provided by [96] is only slightly better than a brute force approach.
Borst et al. [14] proposed a method to approximate the object wrench space by computing an en-
closing ellipsoid rather than its exact shape. This ellipsoid is then transformed into a sphere using
a linear transformation and the GWS metric is used to assess the quality of the grasp. This method
is computationally compared to grasp wrench space metric. However, it is approximate and there
can be a significant mismatch between the actual object wrench space and the enclosing ellipsoid.
Both methods in [96] and [14] also face a problem, where the grasp wrench space computation must
also include the origin. In other words, their methods can only be used on force closure grasps. We
improved the calculation speed of this metric and made it comparable to the calculation of the GWS
metric and also give a solution for non-force closure grasp in [60]. A similar method was proposed
in [41]. Li and Sastry defined the concept of task wrench space (TWS), i.e., the set of wrenches
that can be generated while executing a specific task [55]. This wrench space is even more specific
than the OWS (i.e., it is a subset), but it has found limited applications because it is difficult to
determine TWS for an arbitrary task [56]. Again, since TWS is a subset of OWS, our method of fast
computation of the OWS in [60] can also be used in the calculation for TWS. Figure 2.6 shows an
example of the relationship between the unit sphere for grasp wrench space metric, object wrench
space and task wrench space. Task wrench space is clearly a subset of object wrench space, while
both task wrench space and object wrench space are not subsets of the unit sphere used in grasp
wrench space metric. However, if we express the unit sphere as a combination of all unit directional
vectors, then task wrench space and object wrench space can be defined as a weighted combination
of all unit directional vectors, where the weight can be larger or equal to zero. Different from the

13

determined measures, [106] proposed the notion of probabilistic force closure in order to consider
the uncertainty affecting the object parameters. This idea has been has been applied in [63], were
the authors proposed a large-scale cloud-based approach to sampling perturbations of grasps and
leveraged multi-armed bandits and deep learning to determine grasps with a high probability of
force closure. This is also the fundamental method we will be using to evaluate grasps in chapter 5.

Figure 2.6: The relationship between the unit sphere for GWS metric, object wrench space and task
wrench space.

2.2.2 Hand Based Measure

The methods we mentioned above focus on external wrench resistance determined by the
position of the contact points on the object. However, there exists grasp quality metrics that come
from other features. The second group of grasp quality measures consider hand configurations.
In [82], a measure was designed to maximize the smallest singular value of the hand Jacobian in
order to keep the hand away from singular configurations. This idea was originally used in [45],
where the author aims to keep redundant arms away from singular configurations using manipulator
Jacobian. The purpose of this metric is to keep the hand configuration away from singularity. But
in reality, singularity is not a major concern in grasping. The relation between singularity and
stabilty of a grasp configuration is not clearly determined. To achieve better stability with grasping,
the authors in [112] considers the volume of the manipulability ellipsoid. This quality indicates a
larger velocity of the grasped object is produced when the same velocities are applied in the finger
joints. The volume of the manipulability ellipsoid can be thought of as a general guidance reflecting
stability. However, when considering a specific problem, the situation is usually biased, such as the
manipulability ellipsoid biased along the direction with higher probability of the object to escape
is considered to be more stable compared to the manipulability ellipsoid with the largest volume.
Similarly, in [87], a measure was constructed based on the uniformity of transformation, i.e., defined
as the similiarity in all the components of the object velocity, while the transformation in the velocity
domain from the finger joints to the object is uniformly distributed. This measure is also facing the
same issue as [112]. However, a recently published measure, in [49], optimizes over the maximum
force applied at each contact. This measure is capable of ranking grasps solving both general and
specific task related problems. In current models of measures based on disturbance force rejection,
the maximum finger force along the object’s surface normal direction is considered to be the key

14

factor in preventing the object from escaping the hand. Larger contact forces can enlarge the grasp
wrench space to resist higher wrenches. This measure can be though as holding the object tighter
with a limited amount of power. In general, this measure is better compared to the other measures
based on hand configuration. But it also faces a problem where the best grasp candidate of this
measure might have a configuration with a singularity or close to the mechanic boundary. A way to
avoid these kinds of situations would be to set a limit to keep the joints away from the true bound
and then use this measure to evaluate grasps.

2.2.3 Combing Multiple Measures

Many grasp quality measures have been proposed, but most of them are only focused on
a single feature. Therefore, researchers have started to combine multiple features to obtain more
comprehensive measurements. The two major ways of combining grasp quality metrics are in serial
or in parallel. The serial way means applying multiple measures sequentially. This procedure can
be thought as setting multiple thresholds, where the candidate output must satisfy all the thresholds
for every measure. In [37], the authors proposed a method to combine two grasp quality measures
in serial. The authors used one of the quality criteria to generate candidate grasps, and passed the
best candidates forward to be ranked by the next quality measure. However, the serial way is only
capable of filtering out grasps that fail to meet the thresholds set by all measures, but it can not
provide a reasonable ranking to argue which grasp is the best. In [37], the author does output a
ranking, but it was only based on the last measure, which may be biased and might not be any
different from just applying the last measure. On the other hand, the parallel approach combines
different quality measures into a single global index, which creates a more solid argument for the
ranking of the output grasps. A simple addition of unit weighted metrics to choose optimum grasps
for 2D and 3D objects was used in [12] and [2], respectfully. The output ranking can be seen as
the overall optimum among the two measures the authors used. However, the parallel technique
still faces some issues. Deciding the importance for each measure and adding each of them with
weights is complicated. Different measures usually have different ranges. For example, the grasp
wrench space metric [29] usually ranging from 0 to 1, where the higher bound is limited by the
scale of the object or the position of contact points with respect to the object’s center of mass. On
the other hand, the maximum contact force measure [49] is completely affected by the torque limit
of each joint. If only one measure is used or a combination of measures is used in serial, grasp
candidates are compared to each other under the same objective. But for the parallel case, if one
measure is significantly larger, other measures will have little impact on the objective, which may
not be noticeable. Different from these two ways, in chapter 6, we will be introducing our way
of combing measures during the construction of GWS. Since we use only one measure combing
multiple features as the objective function, we overcome the problems mentioned for both serial
and parallel combinations of grasp quality measure. The only problem we face is that since we
are adding in features through the force domain, other types of features such as the volume of
manipulability ellipsoid are hard to account for.

15

2.3 Convex Hull Computation

The problem of computing the convex hull of n points in Rd is one of the most studied prob-
lems in computational geometry [24,91]. The computational complexity for convex hull algorithms
can be described as a function of three parameters, i.e., the number of points n, the dimensionality
of the space d, and the number of facets in the convex hull h.

2.3.1 Convex Hull in 2D and 3D

For the planar case, i.e., d = 2, an Ω(n log n) lower bound is easy to prove, and there exist
various optimal algorithms matching this bound [111]. Before going into these optimal algorithms
we want to introduce the gift wrapping algorithm [40], which is considered as one of the most fun-
damental algorithms in solving convex hull in 2D. This algorithm first start with the leftmost point
and wrap around the point set by comparing polar angles. The complexity of this algorithm is Ω(nh),
where h is the number of vertices in the resulting convex hull, i.e., the size of the output. If the size
of h is smaller than log n, then this algorithm will actually perform faster. One of the algorithms
that holds the Ω(n log n) bound was published by Ronald Graham in 1972, called the Graham’s scan
algorithm [33]. This algorithm finds all vertices of the convex hull along its boundary following
either clockwise or counterclockwise order. A stack is used to detect and remove concave angles on
the boundary. This is a very intuitive and straight forward algorithm that meets the optimal lower
bound Ω(n log n). The downside of this algorithm is that it can be only used in 2D. A variation
of this algorithm is Andrew’s Monotone Chain Convex Hull algorithm [3]. It first sort the points
lexicographically, and then constructs the upper and lower hulls of the points in Ω(n) following the
Graham scan algorithm. Another algorithm that is considered optimal in 2D is Divide and Con-
quer algorithm published by Preparata and Hong in 1977 [80]. This algorithm uses a basic divide
and conquer strategy and is capable to calculate the convex hull in 2d and 3D. Another algorithm,
Quickhull [5], uses a divide and conquer approach similar to quicksort [38], and has an average case
complexity of Ω(n log n). Although, just like quicksort, the worst case of quickhull is Ω(n2), it is
still considered one of the fastest algorithms to compute convex hull. Moreover, quickhull can be
generalized to compute the convex hull in any dimension. Notably, vertices in the convex hull are a
subset of the input points. This has motivated the development of algorithms with output sensitive
complexity. In [17, 43] two algorithms with complexity O(n log h) were proposed. Note that in R2

the number of vertices and facets in the convex hull are the same. The first algorithm [43] uses a
variation of the divide conquer paradigm called marriage-before-conquest. This algorithm is only
applied in 2D and does not generalize to higher dimension naturally. The second algorithm [17] is
a simpler algorithm compared to [43], first it divides the point set into smaller sets and use one of
the Ω(n log n) algorithms to compute each sub convex hull. Then it applies the gift wrapping algo-
rithm on the boundary points the of sub convex hulls to merge them into the final convex hull. This
algorithm can be simply generalized to 3 dimensions and keeps the time complexity Ω(n log h).

As mentioned before, many algorithms designed for 2D can also be used in 3d while keeping
their efficiency [5,17,80]. In R3, the convex hull of n points can still be computed on O(n log n) [80]
and the number of facets is still linear in the number of vertices in the hull (see e.g., [24], chapter
11).

16

2.3.2 Convex Hull in Higher Dimensions

For d > 3 the number of vertices and facets in the resulting convex hull is no longer linear
on n. It was proposed by Seider [91] that for arbitrary dimension, the number of facets h can grow
as Θ(nbd/2c). Therefore, output sensitive algorithms are not necessarily the best option. Clarkson
and Shor, in [21], proposed a Las Vegas algorithm, a type of randomized incremental algorithms,
with optimal expected complexity O(n log n + nbd/2c). This algorithm was later simplified by Seidel
in [90]. The fisrt algorithm that can deterministically compute higher dimension convex hulls in
O(n log n + nbd/2c) was proposed by Chazelle [18], and simplified by Bronnimann, Chazelle, and
Matousek in [15]. The algorithm Chazelle proposed is a derandomized incremental algorithm,
based on derandomizing Clarkson and Shor’s algorithm. It is optimal in the worst case but it is
not an output sensitive algorithm. Seidel instead proposed an output sensitive algorithm [89] with
complexity O(n2 + h log n). To compare these two alternative approaches, it is useful to recall that
in Rd the number of facets h can grow as Θ(nbd/2c) (see e.g., [91]), which has become the limitation
of run time in high dimensions.

The QuickHull algorithm [5] has become the de-facto standard when it comes to computing
convex hulls in higher dimensional spaces. QuickHull improves the randomized algorithm pre-
sented in [21] by introducing some heuristics that significantly improve its performance. QuickHull
works in the space of points and convex hulls instead of the dual space of halfspaces and polytopes
compared to [21]. Also, QuickHull uses less space than most of the randomized incremental algo-
rithms and runs faster for distributions with nonextreme points. Although the QuickHull algorithm
is a variation of an randomized incremental algorithm, it is in fact not a randomized algorithm.
Instead of picking a random point, the QuickHull algorithm always select the ”farthest” point. So
far, an analytical characterization of its computational performance has remained elusive, but its
observed empirical performance suggests an O(n log s) complexity, where s is the number of pro-
cessed vertices. Among the reasons for QuickHull’s popularity is the availability of a freely avail-
able, highly optimized implementation.1 Chapter 3 provides a short recap of its principles. Note
that convex hull algorithms for grasping are mainly used to generate wrench spaces.

Algorithm wise, the QuickHull algorithm is hard to beat. However, some work was devel-
oped to improve the QuickHull algorithm by taking advantage of the hardware system. Although
the QuickHull algorithm is an incremental algorithm, where the convex polytope is growing step
by step, the point redistribution after creating new faces can be performed in parallel. In [113], the
authors proposed a novel implementation of the QuickHull algorithm on the GPU for planner point
sets. They claimed that their implementation can achieve the speedups of up to 10.98x. Another
work that takes advantage of GPU was published in [94], where they developed a novel parallel
algorithm for computing the convex hull of a set of points in 3D using the CUDA programming
model. It is said by the authors that their implementation can achieve 30-40 times speedup com-
pared to CPU-based implementation. However, implementations based on GPU of the QuickHull
algorithm in dimensions higher than 3 is still missing.

1http://www.qhull.org

17

2.4 Inverse Kinematics

Inverse kinematics (IK) problems is extensively studied in literature. It has been one of the
most fundamental problems for robot manipulation. For a manipulator with d joints the IK problem
is defined as follows: given a pose p ∈ S E(3), compute a configuration q ∈ Rd such that by
applying q to the manipulator, the end-effector pose is p. If the joint number is smaller than six,
the IK problem is in general not solvable for arbitrary poses, whereas if the joint number is exactly
six, a unique solution can generally be obtained. When the number of joints is greater than six,
redundancy is introduced, resulting in a solution space in which a specific configuration can then
be selected based on one or more objectives (e.g., clearance from obstacles, used energy, etc.). In
general, many manipulators are designed with redundancy. This is due to the fact that multiple IK
solutions can be a huge benefit to solve motion planning problem for the arm. For a six degree of
freedom arm, the solution for motion planning problems are often limited and the IK solution might
not exist when collision is taken into account.

In the literature, IK problems are often solved using Jacobian based approaches and/or it-
erative methods. General solutions include pseudoinverse methods [107] and Jacobian transpose
approaches [108]. These methods solves the IK problem from an initial configuration and use the
pseudoinverse or the transpose of the Jacobian matrix to iteratively approach to the target pose.
However, these methods lack the ability to handle singularity problems. As an improvement to deal
with these limitations, the damped least square method was proposed in [71, 105].

In contrast to iterative methods, closed-form solutions can be computed by analytic ap-
proaches. The IKFast method, presented by Diankov in [26], automatically determines a set of
equations for closed-form IK solving. The algorithm performs well for solving IK problems with
manipulators with up to six degrees of freedom. As mention earlier, a redundunt manipulator has
more then six degree of freedom. So as an improvement, Diankov combined IKFast with a dis-
cretized sampling strategy in [25] to deal with redundancy. This method can then produce multiple
solutions for a redundant manipulator with more than six joints. Our work in chapter 5 is highly
dependent on the IKFAST method in determining multiple IK solutions efficiently.

Recently, deep learning attracted a lot of attention from researchers. In [46], a neural-network
committee machine was introduced to solve the inverse kinematics of a 6-DOF redundant robotic
manipulator. The goal of this work is to improve the precision of the solution while maintaining
its efficiency. In [100], the authors proposed an online adaptive strategy based on the Lyapunov
stability theory and Radial Basis Function Neural Networks. The results showed good performance
in obtaining successful configurations of the robot with a feasible inverse kinematics solution. Since
the inverse kinematics problem is often complex, highly nonlinear, coupled and have multiple solu-
tions for complicated redundant manipulator system, deep learning methods are still facing certain
limitations. As an improvement, generate-and-test artificial intelligent optimization methods based
on the Darwinian principles of biological evolution is proposed in [68] to solve inverse kinematics
problem. This method is efficient in producing smooth joints paths while maintaining excellent
accuracy along the Cartesian path.

18

Chapter 3

Background and Notation

3.1 Background in grasping and grasp metrics

We briefly recap basic facts concerning grasping and grasp metrics, and refer the reader
to [70, 79] for more detailed introductions. A rigid body B is grasped using a multi-fingered hand
with m fingers. A graspG is specified by the m contact points p1, . . . ,pm on the surface ofB together
with m contact forces f1, . . . , fm. It is customary to express the coordinates of the contact points with
respect to a frame whose origin O coincides with the center of mass of B. Each force generates a
wrench, i.e., a six-dimensional vector including both the force and the torque with respect to O, i.e.,
wi = [fi pi × fi]T . To prevent slippage at the contact point, forces are constrained in a given range
defined by the assumed friction model. As common in literature, in the following we consider the
contact with friction model (also known as hard finger model). More complex contact models can be
expressed as multiple contacts of this type, whereas the simpler frictionless model is too restrictive
and usually not utilized in practice. Therefore our assumptions is general enough to be useful in
many practical scenarios. The hard finger assumption is built upon Coulomb’s friction model, i.e.,
to prevent slippage at the contact point each force must lie inside the friction cone defined at the
contact point. More formally, at every contact point pi we establish an orthonormal reference frame
with vectors ti,ui, vi where ti is inward and ui, vi lie on the plane tangent to B in pi. Contact force
fi can then be expressed as fi = [fi1 fi2 fi3]T where fi1 is the component along ti and fi2, fi3 are the
components along ui and vi. The set of forces that do not cause slippage at pi is then

F(pi) =

{
fi ∈ R

3 | fi1 ≥ 0 ∧
√

f 2
i2 + f 2

i3 ≤ µ fi1
}

where µ is the friction coefficient between the object and the fingers, and for simplicity we assume
it is constant. The condition fi1 ≥ 0 implies no separation, whereas the second condition follows
Coulomb’s friction law. Geometrically, F(pi) defines a cone. Hence the name friction cone at pi.

From a practical point of view, it is common to discretize the cone as a regular pyramid with
k edges (see Figure 3.1). Using this approximation each contact force lying within inside the can
be written as a non-negative combination of forces along the boundary of the friction cone, i.e.,
fi =

∑k
j=1 αi, jfi, j with αi, j ≥ 0. Based on this discretization the wrench generated by the ith contact

19

fi,j+1

fi,j

fi,j−1

pi

ti

Figure 3.1: The friction cone F(pi) is commonly approximated by a regular pyramid with k edges.

force can then be written as

wi =

[
fi

pi × fi

]
=

 ∑k
j=1 αi, jfi, j

pi ×
∑k

j=1 αi, jfi, j

 =

k∑
j=1

αi, j

[
fi, j

pi × fi, j

]
=

k∑
j=1

αi, jwi, j

where each of the wi, j is called elementary wrench. The km elementary wrenches wi, j can be ar-
ranged in a 6 × km matrix G called the grasp matrix. The grasp achieves force closure if for each
disturbance wrench w there exists a vector x ∈ Rkm such that

w = Gx xi ≥ 0, i = 1, . . . , km. (3.1)

That is to say, the grasp matrix G positively spans R6, and in such case x contains the αi, j factors for
all contact points. The set of wrenches obtained through the grasp matrix G when the sum of the
elements in x is one is known as the unit grasp wrench space (UGWS), and this assumption is often
made in practice [29, 96]. In this case it is known that an equivalent condition for force closure is
that the convex hull of all the km elementary wrenches wi, j includes the origin (see e.g., [70]).

3.1.1 Grasp wrench space metric

Ferrari and Canny formalized the idea that between two different grasps achieving force clo-
sure, preference should be given to the one capable of resisting an arbitrary external wrench with
minimum effort [29]. This intuition is formalized through the following geometric interpretation.
Any wrench exerted on B through the m contacts can be scaled to belong to the set

WL∞ = CH

 m⊕
i=1

{wi,1 . . .wi,k}

 (3.2)

where ⊕ represents the Minkovski sum. From an operative point of view it is worth observing that
inner Minkovski sum in Eq. 3.2 gives a set of finite elements, and therefore WL∞ is the convex hull
of a finite set of elements in R6. The grasp metric Q∞ is then defined as the distance of the closest

20

facet of WL∞ from the origin, i.e.,
Q∞ = inf

x∈∂WL∞

||x||2 (3.3)

where ∂WL∞ indicates the boundary of WL∞ , i.e., the union of its facets. Physically, Q∞ aims
at minimizing the maximum force exerted by any of the m fingers to resist an arbitrary external
wrench. Alternatively, one could aim at minimizing the sum of forces exerted by all fingers. To this
end, consider

WL1 = CH

 m⋃
i=1

{wi,1 . . .wi,k}

 . (3.4)

Similarly to Q∞, the grasp metric Q1 is then defined as the distance of the closest facet of WL1 from
the origin

Q1 = inf
x∈∂WL1

||x||2. (3.5)

Note that when
∑

i, j αi, j = 1, then WL1 is the formerly defined unit grasp wrench space.
The reader is referred to [29] for a thorough explanation of the relationship between the ge-

ometrical and physical interpretation of Q∞ and Q1. It is also important to remark that the two
measures are not equivalent, i.e., a grasp that is optimal according to Q1 may not be optimal accord-
ing to Q∞ and viceversa. Hence, from a practical standpoint they are both needed. This metric is
related to the ability to resist an arbitrary wrench, and is therefore referred to GWS metric.
As evident from Eq. 3.2 and Eq. 3.4, both Q∞ and Q1 rely on the computation of a convex hull
of a set of vectors in R6, and the connection between grasp quality measures and convex hulls is
therefore evident. From a practical standpoint, QuickHull is the algorithm most commonly used to
compute these metrics. Despite the fact that these measures are de-facto the most commonly used
in practice, as we pointed out earlier, they are affected by the drawbacks we formerly outlined.

3.1.2 Object wrench space metric

The metrics described in the previous subsection are somehow too conservative because they
consider the set of all possible disturbance wrenches. But from a practical point of view a distur-
bance wrench is almost invariably caused by a disturbance force, and it would therefore make sense
to accordingly restrict the set of disturbance wrenches to be considered. Starting from this observa-
tion, Strandberg and Wahlberg defined a method to evaluate grasps based on the ability to reject a
disturbance force [96]. The construction is related to the object wrench space (OWS) introduced by
Pollard [76], i.e., the set of wrenches that can be generated by an arbitrary unit force ei acting on the
surface of the object. Assuming that the surface ∂B of the object is composed by l triangles, OWS
can then be defined as follows

OWS =
⋃

ei

⋃
v j,c

CH

[ei

v j,c × ei

]
j = 1 . . . l, c = 1, 2, 3, ei ∈ F(v j,c)


where CH indicates the convex hull, v j,c is the c−th vertex of the j−th triangle on the triangle mesh,
and ei is a unit length force vector. Note: In the definition the force, ei is constrained to be inside the
friction cone F(v j,c) at the contact point. Under the hypothesis that the surface is represented with

21

a triangulation, the computation can be limited to the vertices of the mesh [96]. The OWS leads
to a different grasp quality metric defined as follows. Assume a grasp G is given together with its
associated grasp matrix G. Let e be a unit vector specifying the direction of a disturbance force. All
disturbance forces in that direction can be written as f e with f ≥ 0 to avoid tractional forces. By
sweeping e over the surface of B it is possible to characterize all disturbance wrenches generated by
forces parallel to e. Let f ∗ be the smallest value such that the associated wrench is exactly on the
border of the unit grasp wrench space. Varying e, one gets to the following min-max formulation

f ∗ = min
p

max
x∈Rkm

 f ∈ R+ : − f
[

e
p × e

]
= Gxe ∈ F(p), p ∈ ∂B, xi ≥ 0,

km∑
i=1

xi = 1


where the contact point p is constrained to be on the surface ∂B of the object being grasped, and the
force e is constrained to be inside the friction cone F(p) at the contact point. f ∗ is then the intensity
of the maximum disturbance force that can be resisted by the unit grasp G associated with G and
can be used to define the grasp quality metric

QOWS = max {r > 0 | r · OWS ⊆ GWS} (3.6)

where r ·OWS is the set obtained multiplying all elements of OWS by r. In the following r is
also referred to as inflation factor because its role is to expand or shrink OWS. From a computational
standpoint, to consider all possible directions for the disturbance force one expresses e in spherical
coordinates and then accordingly samples the associated space of angles ϕ, θ (see [96] for details.)
Note that in the original formulation an additional wrench w0 accounting for the gravity force is
included, but without loss of generality, we do not consider it here.

The advantages of this metric are manifold. It is scale and reference invariant, it explicitly
includes the shape of the object being grasped, and it considers just the forces that appear in practice.
Moreover, one can determine the optimal f value varying e over the unit sphere, thus leading to a
graphical interpretation in three dimensions that is easy to visualize and understand (see [96] for
examples.) The major downside is that the method is computationally demanding and therefore it
is not practical to use it to guide a search over the space of possible grasps.

3.2 Background in Convex Hulls

3.2.1 Convex Hulls

We summarize some facts about computational geometry and convex sets. The reader is
referred to [24] for more details.

First, let us start with some definitions.

Definition 1. Let S be a subset of Rd. S is a convex set if for each x, y ∈ S and each λ ∈ [0, 1] the
point λx + (1 − λ)y is an element of S.

Definition 2. Let N be a set of n points in Rd. The convex hull of N is the smallest convex set
including N . The convex hull of N will be indicated as CH(N).

22

Definition 3. Let CH(N) be the convex hull of N . A facet F of CH(N) is a convex set determined
by the vertices of CH(N) that lies on the same hyperplane.

It is known that CH(N) is the intersection of all convex sets including N . Moreover, CH(N)
is the intersection of a finite number of half spaces in Rd. Given a set N of n points in Rd, its
convex null CH(N) is a convex polytope in Rd that can be represented by its vertices and its facets.
Each of its facets Fi is a convex subset of a (d − 1)-dimensional hyperplane Hi and each vertex
of CH(N) is an element of N . The hyperplane Hi including facet Fi is also called the hyperplane
supporting Fi. In the following, we will also write H(F) to indicate the hyperplane supporting
facet F . Hyperplane Hi splits Rd in two halfspaces, one of which contains CH(N). The inside set
of hyperplane Hi is defined as the half space including CH(N), and it will be indicated as I(Hi).
Similarly, the outside set of Hi is the half space not including CH(N) and it is indicated as O(Hi).
We associate toHi a unit normal vector ni directed towards its outside set O(Hi).

Definition 4. A simplex in d dimensions is a polytope that is the convex hull of its d + 1 vertices.

It is known that a simplex in d dimensions has d + 1 facets.

3.2.2 The QuickHull algorithm

We shortly recap how the QuickHull algorithm works and we refer the reader to [5] for a
more thorough discussion. Assume the n points in N are in general position, i.e., they do not all
lie on the same (d − 1)-dimensional hyperplane. If the points are not in general position, a small
perturbation can be applied to remove this degenerate condition. QuickHull computes CH(N) as
follows. An initial simplex is created selecting d + 1 points from N . If possible, QuickHull picks
points with an extreme coordinate, though this is not necessary for the correctness of the algorithm.
Every facet F1, . . . ,Fd,Fd+1 in the initial simplex is supported by an hyperplane. For every facet
Fi, its outside set1 is defined as the set of all points inN located in the outside set of the supporting
hyperplane Hi. Following the same notation introduced for the supporting hyperplanes, the inside
and outside sets of facet Fi will be indicated as I(Fi) and O(Fi), respectively. Note that in general
a point in N may belong to more than one outside set, and an outside set can also be empty (see
Figure 3.2.a).

From the initial simplex, the convex hull is iteratively grown as follows. If there exists a facet
with a non empty outside set, the convex hull is expanded by growing the convex hull to include the
point in its outside set that is the farthest from the facet. This step is called expansion. Expansion
eliminates the facet being expanded, and generates a set of new facets for which their respective
outside sets are created (see Figure 3.2.b). Once the outside sets of all facets are empty, the process
terminates. By greedily growing the convex hull towards the farthest point in outside set, it was em-
pirically shown that QuickHull outperforms other algorithms utilizing different criteria to expand
the current hull, e.g., [21].

1Note that in QuickHull the outside set of a facet is given by a set of points, whereas in our general definition O(Hi)
is an half space. With a slight abuse of notation we use the same term to avoid introducing additional symbols.

23

(a) (b)

Figure 3.2: a) QuickHull initialization. In R2 the initial simplex includes 3 points. The outside set
of each facet is displayed using the same color of the facet. Black points are inside the simplex and
do not belong to any outside set. b) QuickHull expansion. The cyan facet is expanded and replaced
by two new facets (red and purple), and their respective outside sets are updated.

Throughout its computation, QuickHull maintains a list of the vertices and facets of the con-
vex hull being built. Moreover, for each facet Fi it maintains also the normal ni associated with the
supporting planeHi.

24

Chapter 4

Efficient Grasp Quality Evaluation
through Partial QuickHull Computation

In this chapter we present two algorithms that greatly expedite the computation of two for-
merly proposed grasp quality metrics. The first was introduced by Ferrari and Canny in [29]. It
relies on the construction of a convex hull in six dimensions and it is extensively used in practice.
Background material and notation regarding convex hulls is given in chapter 3. Although this metric
is used extensively in practice, it has many drawbacks, which we aim to address. For example, it is
not scale invariant, it does not consider the shape of the object being grasped and is too conservative
because it considers a set of all possible disturbances, including those that are unlikely to occur in
practice. In the following we refer to this measure as the grasp wrench space (GWS) metric be-
cause it considers all possible disturbance wrenches. The second metric we examine was proposed
by Strandberg and Wahlberg [96] and, in principle, it offers notable advantages when compared
to [29]. Particularly, it is scale invariant, it takes the shape of the object into consideration and
it focuses on disturbances that are likely to occur in practice. However, so far it has rarely been
employed because there is no efficient method to compute this metric. In the following we refer
to this measure as the object wrench space (OWS) metric because it considers only the disturbance
wrenches that can occur on the object being restrained. Our algorithms are built upon a common
observation: both metrics can be determined by computing a partial convex hull. Together, both
algorithms start building a six-dimensional convex hull, but through exploiting computational ge-
ometry, they can identify and can be stopped when enough information has been computed to obtain
the needed values. We have named this approach “partial quick hull computation.”

The contributions of this chapter are the following.

• We present an algorithm (PQHGWS – Partial Quick Hull for Grasp Wrench Space) to ef-
ficiently compute the metric proposed in [29]. The algorithm can be applied for both force
closure and non-force closure grasps. In the first case, it will return the grasp quality measure,
whereas in the second case, it will return the distance of the convex hull from the origin - a
value that can be used to guide the planning process.

• We present an algorithm (PQHOWS – Partial Quick Hull for Object Wrench Space) to effi-
ciently compute the metric proposed in [96]. PQHOWS is faster than the brute force method,

25

is faster than a previously used method to compute an approximation of the metric, and is
comparable time wise to PQHGWS. If the grasp being evaluated is a non-force closure grasp,
PQHOWS quickly identifies the metric as not defined and immediately returns the appropri-
ate flag. With these improvements, the metric proposed in [96] can be used in lieu of [29]
during grasp planning.

• We provide the theoretical foundations supporting of our methods.

• We show that our algorithms offer significant advantages when compared to current methods
through experimental data.

Note that the two ways we deal with non-force closure grasp, i.e., calculating the distance of
the convex hull from the origin and quickly identifying this case returning an appropriate flag, can
replace each other. That is to say, PQHOWS can approach a non-force closure grasp by calculating
the distance of the convex hull from the origin while PQHGWS can quickly identify this case to
return appropriate flag.

The code implementing our findings and the datasets used to generate the results presented
in this chapter are made freely available to the scientific community.

This chapter is organized as follows. Our two algorithms are presented in section 4.1 and
4.2. Extensive experimental results substantiating the computational advantages of our methods are
given in section 4.3, and conclusions are presented in section 4.4.

4.1 Grasp Wrench Space Metric with Partial Convex Hulls

In this section we show how the computation of the grasp metric presented in section 3.1.1
can be greatly accelerated. When considering a force closure grasp, both Q1 and Q∞ are defined
as the radius of the largest ball centered in the origin and fully inside a suitably defined convex
hull. If the grasp is not force closure, the origin is outside the hull and the grasp quality measure is
not defined. However, the distance between the origin and the convex hull still provides valuable
information because it indicates how far a grasp is from achieving force closure [115]. Therefore,
for both force and non-force closure grasps, Eq. (3.3) and (3.5) provide an informative value. In both
cases it is not necessary to compute the entire convex hull, since the distance, and then the metric,
is exclusively determined by the closest facet of the hull. The algorithm we propose, labeled Partial
Quick Hull for grasp wrench space, builds upon this observation. From a practical standpoint, the
convex hull is iteratively grown using the same principles used in QuickHull, but its computation
is stopped when the closest facet is determined. The following definitions introduce the relevant
quantities we use to describe the algorithm. We then follow the supporting lemmas to prove our
proposed approach.

Definition 5. LetH be a hyperplane in Rd and y a point in Rd. The Euclidean distance betweenH
and y is indicated as d(H , y).

Definition 6. An oriented hyperplane is an hyperplane H associated with a unary vector nH or-
thogonal toH .

26

The role of nH is to identify one of the two halfspaces defined by H . As QuickHull and
PQHGWS incrementally build the resulting convex hull, both algorithms maintain for each facet F ,
an orthogonal unit-length vector pointing into the outside set of the supporting hyperplane H . The
definition of the outside set is given in chapter 3.
Assumption: when considering a convex hull, the hyperplanes supporting its facets will always be
oriented with a unit vector pointing into the outside set.

Definition 7. Let H be an oriented hyperplane in Rd and y ∈ Rd. We define o(H , y) (offset from y
to hyperplaneH) as

o(H , y) = d(H , y)sgn((pH − y) · nH)

where pH is any point on the hyperplaneH , · is the dot product, and sgn is the signum function.

From the above definitions it follows that d(H , y) is always non-negative, whereas o(H , y)
can be positive, negative, or zero. The offset o(H , y) can be interpreted as a signed distance, i.e., it
is d(H , y) when y is in the inside set, whereas it is −d(H , y) when y is in the outside set.

Definition 8. Let F be a facet of a convex hull and y be a point in Rn. The distance between y and
F is

d(F , y) = min
x∈F
||y − x||2.

Definition 9. Let H be a hyperplane in Rd 1 and y ∈ Rd. The projection of y into H is the point
x obtained by the intersection between H and the line through y orthogonal to H . The projection
length of y intoH is the Euclidean distance between y and x.

Definition 10. Let F be a facet on the convex hull, H be the hyperplane supporting F , and H(y)
the projection of y ontoH . We define o(F , y) (offset from point y to facet F) as

o(F , y) =

o(H , y) ifH(y) ∈ F
sgn(o(H , y)) · d(F , y) otherwise.

According to definition 8, d(F , x) can be solved as a constrained optimization problem using
methods such as the interior point method or the conjugate gradient method. However, the solution
is easy to determine by a few simple calculations.

Let us start with the calculation in 2D. A convex hull in 2D is a convex polygon where all the
facets are represented as an edge E with two vertices V1 and V2. The distance between a 2D point
P0 and E yields to two cases, depending on the projection of P0 on the line supporting E, as shown
in figure 4.1. If the projection of P on the line supporting E is within E, then the distance is equal to
the length of the segment connecting P0 and Pv, where Pv is the projection of P0 into E. Otherwise,
the distance is equal to the distance between P0 and the closest vertex of E, e.g., V1, as shown in the
right part of figure 4.1.

Next, we consider the calculation in 3D. Faces in 3D are determined by at least 3 vertices.
However, if a face contains more than 3 vertices, then these vertices must be lying in the same

1H is a line in 2D and a plane for 3D.

27

Figure 4.1: Two cases for calculating the distance between a point and a facet in 2D. The green line
shows the distance between point P0 and the edge defined by V1 and V2.

plane. Assume a facet F in 3D is represented with n vertices V1, V2 . . . Vn. The distance between
P0 and F also depends on the projection of P0 on the plane supporting F. Assume the projection of
P0 on the plane supporting F is Pp

0 . If Pp
0 is within F, then the distance is equal to the projection

length, lp, determined by the distance between P0 and Pp
0 . An example for this case is shown in

figure 4.2(a). Otherwise, we need to check the projection of Pp
0 on the edges of F. If the projection

of Pp
0 on the line supporting any edge is within the edge, assume the projection length is le, then a

possible distance between P0 and F is equal to
√

l2p + l2e . This case is shown in figure 4.2(b), where
the corresponding edge is the one determined by V1 and V2. However, there exists another possible
case, shown in figure 4.2(c), where the distance between P0 and F is equal to the distance between
P0 and the closest vertex of F, i.e., V2.

Figure 4.2: Three cases for calculating the distance between a point and a facet represented as a
triangle in 3D.

In conclusion we can calculate d(F , x) defined in definition 8 as follows:

• If the projection of x on the hyperplane supporting F is within F , then d(F , x) is equal to
the projection length of x on F .

• Otherwise, d(F , x) is equal to the minimum projection length between x and all sub-facets of
F , which the projection of x onto the sub-facet is within the sub-facet, from dimension n − 1
to 1. Note that a sub-facet in dimension i of a facet in dimension n, where i < n, is defined as
the convex combination of i non-linear vertices of this facet.

Note that for dimension 1, the sub-facets are represented as points. We assume the projection
of a point to another point is the other point.

28

From these definitions we can state the two lemmas supporting the PQHGWS algorithm.

Lemma 1. Let CH(N) be the convex hull of n points in Rd and x be a point in Rd. If x is inside
CH(N), then the offset from point x to all the oriented hyperplanes supporting all facets of CH(N)
is larger than 0. If x is outside CH(N), there exists at least one facet of CH(N) for which x has
negative offset from the supporting hyperplane.

Proof. CH(N) is the intersection of all the inside sets of the hyperplanes supporting its facets (see
e.g., [24]), i.e.,

CH(N) =
⋂

i

I(Hi)

where Hi is the supporting plane for the i-th facet and i varies over all the facets of CH(N). If x is
inside CH(N) then it is in the inside set of all the hyperplanes supporting its facets. As per definition
7, o(Hi, x) is then positive. If x is outside CH(N), then there exists at least one facet Fi such that
x < I(Hi). Therefore x is in the outside set ofHi, with its offset o(Hi, x) as negative, per definition
7. �

Lemma 2. Let x be inside CH(N) and let F be a facet of CH(N) with the smallest value of d(F , x).
Then d(F , x) = o(H , x), i.e., the distance of x from F is equal to the offset of x from the hyperplane
H supporting F .

Proof. Let H be the plane supporting F . Observe that it must be H(x) ∈ F , i.e., the projection
of x onto the plane supporting F must be inside F . If this were not the case, then the line through
x and orthogonal to H would intersect another supporting plane before intersecting H outside F .
However, this would contradict the hypothesis that F is the closest facet. Then the claim follows as
per the first case in definition 10. �

Algorithm 1 sketches the details of PQHGWS. The algorithm creates the initial simplex as
in QuickHull (line 1). Inside the main loop the algorithm looks for the next facet to expand, Fe.
The first for loop (line 4 to 6) establishes if the grasp is force closure. If the grasp is force closure,
as indicated by the boolean variable FCflag, the facet with the smallest offset from the origin (line
8) is expanded. Note that in this case all facets have positive offsets, so the search for the facet to
expand happens on the whole set of facets. However, if the grasp cannot be determined as a force
closure yet, the facet with the largest offset amongst those with negative offsets (line 10) will be
expanded. In both cases, if the outside set of expanding facet is empty, then the closest facet has
been calculated and the computation is terminated (line 12). Otherwise, the facet is expanded (line
14), and a new loop starts.

According to definitions 7 and definition 10, calculating o(H , 0) is simpler compared to cal-
culating o(F , 0). In order to calculate o(F , 0), we first need to check whether the projection of the
origin on F is within F . If the projection is inside F , o(H , 0) can be used. Otherwise, we have
to iterate over all sub-facets of F to identify the correct value of o(F , 0). It is important to notice
when FCflag is set, we just need to calculate o(H , 0), as shown in line 8, instead of o(F , 0). The
correctness of this step is guaranteed by Lemma 2. For the case where FCflag is not set, i.e., some
facets have a negative offset to the origin, we must calculate o(F , 0) for all facets with negative
values of o(H , 0), as shown in line 10.

29

Algorithm 1 PQHGWS algorithm
1: Create initial simplex CH with d + 1 points
2: loop
3: FCflag← true
4: for all F ∈ CH do
5: if o(H(F), 0) < 0 then
6: FCflag← false
7: if FCflag then
8: Fe ← arg min o(H(F), 0)
9: else

10: Fe ← arg max{o(F , 0) | o(H , 0) < 0}
11: if O(Fe) = ∅ then
12: return o(Fe, 0)
13: else
14: Expand Fe

It is immediate to observe that the algorithm is guaranteed to terminate, because every itera-
tion expands one facet, so that eventually, all facets will have an empty set.

Non-force Closure Grasp Solution

As we indicated in the earlier section, we can quickly terminate with a return value equal to
the distance from the GWS to the origin for non-force closure grasps. This is guaranteed by line
10 of the algorithm. For a non-force closure case, if the facet with the largest offset among those
with a negative offset can not be expanded, then no point that is currently outside of the convex
simplex can grow the convex hull towards the origin. Thus, the distance from the GWS to the origin
is determined at this point. Furthermore, greedily choosing the facet with the largest negative offset
to expand will speed up the process to include the origin for a force closure grasp.

Computational Complexity

QuickHull is observed to be competitive in practice, but its computational complexity has not
been formally determined [5] and its performance characterization is mostly empirical. Similarly,
no accurate computational complexity analysis is available for PQHGWS. For each iteration of
PQHGWS, we need to scan all of the facets to identify the closest facet to expand. On the other
hand, it not necessary for QuickHull, because all facets without empty outside sets can be chosen for
expansion. However, QuickHull exploits the heuristic observation that choosing the point farthest
from the current convex polytope will accelerate the overall process. Therefore, instead of looking
for the first facet with a non-empty outside set, it iterates over the facet list to search for the point
that is furthest to the current hull. This strategy aligns the cost for each iteration of PQHGWS to
QuickHull. Other than this, PQHGWS follows the same framework as QuickHull but terminates
early when the closest facet with an empty outside set is found. Due to these facts, it is safe to argue

30

that by construction QuickHull’s (conjectured based on a variety of experiments) computational
complexity O(n log s) is an upper bound for PQHGWS.

4.2 Object Wrench Space Metric with Partial Convex Hulls

In this section we present an algorithm to efficiently compute the grasp metric based on the
object wrench space described in section 3.1.2. Before starting, it is important to recall that QOWS
is defined only for force closure grasps. Therefore when computing its value, one has to verify
whether the GWS associated with the grasp being evaluated includes the origin or not, otherwise
the metric is not defined. Our algorithm includes a greedy initialization step aimed at determining
whether or not the grasp is force closure. In the latter case, the computation terminates, indicating
that the metric is undefined. As per Eq. (3.6), to compute QOWS one needs to determine the inflation
factor r, such that the boundary of OWS touches the boundary of GWS. If QOWS is used to guide a
grasp planner, the shape of the object is fixed. So, OWS can be pre-computed and will not change.
On the contrary, every time a new grasp is evaluated, a new GWS is needed. The following theorem
provides a first step towards simplifying the computation of the metric.

Theorem 1. Let OWS be an object wrench space and GWS be a grasp wrench space. Then,

max {r | r · CH(OWS) ⊆ GWS} = max {r | r · OWS ⊆ GWS} .

Proof. By definition, OWS ⊆ CH(OWS). Therefore

max {r|r · CH(OWS) ⊆ GWS} ≤ max {r|r · OWS ⊆ GWS} .

To see that the inequality cannot be strict, we have to remember that each vertex of CH(OWS)
is also a vertex of OWS. Let

r∗ = arg max {r|r · CH(OWS) ⊆ GWS} .

Since GWS and CH(OWS) are both convex sets by construction, the intersection between r∗ ·
CH(OWS) and GWS will always occur at a vertex2 of CH(OWS). Since such vertex is also a
vertex of OWS, r∗ is also the optimal inflation rate for OWS. Consequently, the inequality cannot
be strict.

�

According to Theorem 1 we can conclude that the largest inflation factor r is obtained when
one of the vertices of r · CH(OWS) intersects one of the facets of GWS. Note that this statement
is true in general, including when the intersection happens between two vertices, or between two
facets. Therefore the expression to compute QOWS can be further rewritten as

QOWS = min
r

{
r | r · vi

⋂
GWS , ∅, vi ∈ V(CH(OWS))

}
2In the special case in which the intersection happens between two parallel facets, the reasoning still holds consider-

ing one vertex of the facet of CH(OWS).

31

where V(CH(OWS)) is the set of vertices defining the convex hull of OWS. This last expression
can be used to derive a brute force algorithm to compute QOWS. For example, for each vertex
vi ∈ V(CH(OWS)) and each facet F j in GWS we can compute

ri, j =
o(H j, 0)
vi · nH j

(4.1)

where o(H j, 0) is the offset from the origin of the hyperplane H j, supporting F j and nH j is the
outward normal to H j. ri, j is the factor by which which we need inflate vertex vi so that it lies on
hyperplaneH j (note that this value may also be negative). Based on these values, the needed metric
is then

QOWS = min{ri, j|ri, j > 0}. (4.2)

While correct, the brute force method is not practical because it has complexity Θ(VOWSHGWS),
where VOWS is the number of vertices defining the OWS convex hull and HGWS is the number of
hyperplanes in the convex hull of GWS. To fully comprehend the limitations of this approach, it is
useful to recall [91] that the convex hull of n points in Rd can include up to Θ(nbd/2c) hyperplanes.
Since we are operating in R6 it follows that HGWS can grow as Θ(V3

GWS) where VGWS is the number
of vertices in GWS. Another computational challenge comes from the discretization of the friction
cones. To reduce the impact of the approximation, one has interest in increasing k, i.e., the number
of edges in the pyramid approximating the cone (see figure 3.1). However, increasing k further
increases VGWS. Due to these computational costs, the QOWS metric has been, so far, rarely used in
practice during the planning stage. In the following, we propose an efficient algorithm to compute
QOWS, based on principles similar to the partial convex hull computation we introduced in section
4.1. This expedient greatly accelerates the computation.

Starting from the observation that CH(OWS) can be precomputed upfront, the idea is to iter-
atively grow GWS and to stop the process as soon as the correct value of QOWS can be determined.
Recall that by definition GWS is a convex hull, so this iterative growing step has some aspects in
common with the algorithm for PQHGWS. To determine when the computation can be stopped,
each vertex of OWS is assigned to one of the facets in the partial convex hull of GWS being com-
puted. The association is done so that the inflation factor in Eq. (4.1) is computed only between
associated vertices and facets, and not among all possible vertices and facets. The main challenge,
is in efficiently establishing and updating these associations while the convex hull is iteratively
growing with facets being added and deleted. The following lemma provides the foundation for our
algorithm.

Lemma 3. Let V be the set of vertices in CH(OWS) and H be the set of hyperplanes supporting
the facets of the convex hull GWS. If vi ∈ V and H j ∈ H achieve the minimum in the expression
given by Eq. 4.2, then ri, jvi lies in the facet supported byH j.

Proof. According to the definition of ri, j and elementary geometry, ri, jvi lies onH j for every point
vi and every hyperplane H j. Let v′i = ri, jvi be such point, and by contradiction assume v′i is not
on a facet of GWS. Then there must exist a positive r′i, j < ri, j such that r′i, jvi intersects a facet Fk

supported by hyperplane Hk. Then by definition r′i, j must be the inflation factor between vertex vi

32

and hyperplane Hk, i.e., r′i, j = ri,k. However, this contradicts the hypothesis that ri, j achieves the
minimum in Eq. (4.2) and the claim follows. �

The algorithm works as follows. As first step CH(OWS) is computed. Let V(CH(OWS))
be the set of vertices of this convex hull. Then, a simplex for the space of elementary wrenches is
initialized with d + 1 vertices, using the same initialization procedure used by QuickHull. Since we
work in R6 the initial simplex features 7 points. The initial convex hull is then greedily expanded
with the facet that has the smallest negative offset until it includes the origin. This precondition is
necessary to ensure the correctness of the successive steps. If this expansion fails, i.e., the facet
being expanded has an empty outside set, then it is not possible to include the origin, and the grasp
is not force closure. Therefore the algorithm terminates because the grasp quality metric is not
defined. Figure 4.3 shows the initialization phase for the simpler R2 case. The following lemma is
a special case of Lemma 3 because only a partial convex hull has been computed.

Figure 4.3: In the initialization stage, CH(OWS) is computed (gray) as well as a partial convex hull
over the set of elementary wrenches (black dots). The process stops when the origin is included in
the partial convex hull (cyan).

Lemma 4. Let V be the set of vertices in CH(OWS) and H be the set of hyperplanes supporting
the facets of the current convex hull. If vi ∈ V and H j ∈ H achieve the minimum in the expression
given by Eq. (4.2) over all hyperplanes in H, then ri, jvi lies on the boundary of the current convex
hull, i.e., it lies in the facet supported byH j and does not intersect with any other hyperplane.

Proof. According to the definition of ri, j and elementary geometry, ri, jvi lies onH j for every point vi

and every hyperplaneH j. Let v′i = ri, jvi be such point, and by contradiction, assume ri, jvi intersects
with another hyperplane Hk at point v′i . Then there must exist a positive r′i, j < ri, j determined by
the ratio between v′i and vi. Then by definition r′i, j must be the inflation factor between vertex vi

and hyperplane Hk, i.e., r′i, j = ri,k. However, this contradicts the hypothesis that ri, j achieves the
minimum in Eq. (4.2) and the claim follows. �

Next, associations between vertices of OWS and facets of GWS are determined. Each vertex
is associated with the facet with which it will intersect when inflated. The search for the correct face

33

to associate is done brute force over the set of all hyperplanes supporting the facets in the current
partial convex hull. Lemma 4 assures that taking the smallest value computed for each vertex will
identify the correct facet. Although this initial association is performed by trying all possible vertex-
facet combinations, it is not time consuming because, at this stage, the convex hull only has a small
number of facets (see figure 4.4). Note also, that since the association starts after the origin has been
included in the partial GWS, each vertex in OWS is associated with a positive inflation factor.

Figure 4.4: Preliminary association between vertices of OWS with facets of the partial GWS (asso-
ciations are shown by colors). For some vertices (e.g., the blue ones) the actual inflation factor is
smaller than 1 because they lie outside the partial GWS. The figure also shows the facet associated
with the vertex with the smallest inflation factor.

In the main cycle, the algorithm iteratively expands the partial convex hull adding a new
vertex for every iteration. As the objective is to determine the smallest inflation factor, the algorithm
always expands the facet associated with the point with the smallest inflation factor. The expansion
step follows the same heuristic of QuickHull and GWSPQH, i.e., the partial GWS is expanded by
adding the farthest point in the outside set of the expanding facet (see figure 4.5). During this step
the facet is replaced by a set of new facets. Additionally, point in OWS formerly associated with the
removed facet becomes associated with one of the new facets. These points can only be associated
with one of the new facets, because the directions these points represent remain unchanged and the
old facets are replaced by new ones. Therefore, it is not necessary to search the whole set of facets
in the partial convex hull.

This iterative expansion process continues until the facet associated with the vertex with the
smallest positive inflation rate has an empty outside set. At that point the computation can be
stopped because the smallest inflation rate has been determined and this value is the needed metric.

Algorithm 2 sketches the pseudocode for the strategy we just described. In line 1 the initial
simplex CH is initialized as in the QuickHull algorithm. Next, (loop from line 3 to 15) CH is
iteratively expanded until the origin is included. This condition is satisfied when the offset of the
hyperplane supporting every facet is not negative, as per Lemma 1. If this is not the case, the simplex
is expanded first by selecting from the facets with a non-empty outside set, then by selecting he
one with the smallest offset (lines 11 and 15). This heuristic accelerates the process of including
the origin. If the origin cannot be included in CH the metric QOWS cannot be computed, and the

34

Figure 4.5: Expansion step. A facet in figure 4.4 (navy blue) is removed to expand the convex hull
towards the farthest vertex in its outside set. Two new facets are created and the vertices of OWS
formerly associated with the green face are now associated with the two new facets.

algorithm terminates (line 13). The initial assignment of the vertices of CH(OWS) to the facets
is performed in lines 16-19 , by scanning through the set of all facets in the partial convex hull.
For each facet F , rmin(F) is the smallest inflation factor among all vertices associated with the
facet. Then, in the final loop (lines 20-27) the convex hull is iteratively expanded. At each iteration
the facet with the smallest value for rmin(F) is expanded, if possible, (line 21-23) and after the
expansion the assignment of vertices to facets is updated. If the facet with the smallest value for
rmin(F) cannot be expanded, then the algorithm terminates and returns the corresponding inflation
value (line 27).

Non-force Closure Grasp Solution

The strategy used in algorithm 2 to deal with non-force closure grasps is simple rejection.
This step is done in line 11 to 13 in the algorithm. The sufficient condition to identify a non-force
closure grasp is any facet with negative offset that holds an empty outside set. This condition is
simple to prove. Facets with an empty outside set implies it is one of the facets of the resultant
convex hull. If the distance between a facet and the origin is negative, then according to Lemma
1, the resultant convex hull does not contain the origin, i.e., this grasp must be non-force closure.
Since the condition is built for any facet with a negative offset, it is not necessary to obtain the actual
distance from a facet to the origin, defined by o(F , 0). Compared to the solution we proposed in
PQHGWS for non-force closure grasps, i.e., return the distance from the origin to the convex hull,
the solution we proposed here, i.e., rejecting non-force closure grasps, is much more efficient.

Computational Complexity

As for PQHGWS (and QuickHull), the computational complexity of PQHOWS cannot be
easily determined, and therefore its complexity analysis has to rely on approximations and con-
jectures. Note that the following discussion does not include the complexity for the upfront com-
putation of the convex hull of the object wrench space CH(OWS). This preliminary computation

35

Algorithm 2 PQHOWS algorithm
1: Create intial simplex CH with 7 points
2: OriginInside← false
3: while not OriginInside do
4: FCflag← 1
5: for all F ∈ CH do
6: if o((F , 0) < 0 then
7: FCflag← 0
8: if FCflag=1 then
9: OriginInside← true

10: else
11: Fe ← arg min

F
o(H(F), 0)

12: if O(Fe) = ∅ then
13: return “Grasp is not force closure”
14: else
15: Expand Fe and update CH
16: for all facets F j ∈ CH do
17: for all vi ∈ V(CH(OWS)) do
18: Compute ri, j as per Eq. 4.1.
19: Associate each vi to the facet F j with smallest ri, j

20: loop
21: Fe ← arg min

F
rmin(F)

22: if O(Fe) , ∅ then
23: Expand Fe

24: Reassign vertices associated with Fe to the new facets (Fnew)
25: Calculate rmin for the new facets (Fnew)
26: else
27: return rmin(Fe)

can be done with QuickHull. The complexity of PQHOWS (Algorithm 2) is determined by the
sequential execution of three phases, each associated with a loop. The first (line 3 to 15) expands
the initial simplex until the origin is inside and it is based on the QuickHull algorithm. Therefore it
inherits its conjectured O(n log s) complexity, where n is the number of vertices and s is the number
of processed vertices. The second loop (line 16 to 18) has complexity O(VOWS HCH) where VOWS

is the number of vertices of CH(OWS) and HCH is the number of hyperplanes in the convex hull
CH determined in the first loop. The third and last loop (line 20 to 27) continues to expand CH
and at each iteration it reassigns some of the vertices in CH(OWS) associated with the facet in CH
being expanded. Therefore its complexity is O(VOWS n log s) where we again used the conjectured
complexity for QuickHull. Therefore the conjectured complexity for PQHOWS can be stated as
O(VOWS HCH + VOWS n log s).

36

4.3 Experimental Evaluation

In this section we experimentally show that the two algorithms presented in section 4.1 and
4.2 provide significant computational improvements when compared with the state of the art.3 Our
code is obtained through modifying the freely available QuickHull implementation and, therefore,
benefits from a solid code base. All tests were run on a standard desktop running Linux with a
2.8GHz Intel i7 processor and 8 Gb RAM.

4.3.1 Grasp Wrench Space Metric

QuickHull is the algorithm most commonly used to compute the GWS based grasp quality
metric. We compared PQHGWS with QuickHull over a set of 200 grasps with 4 contact points and
an approximation of the friction cone with 32 edges. The object being grasped is a bar. To put
the following results into perspective, it is worth recalling that PQHGWS does not approximate the
value of the grasp quality metric, but rather returns exactly the same value obtained using QuickHull.
Since the grasps are randomly generated, some of them are force closure and some are not. Figure
4.6 shows the results.

We contrast the two algorithms using three performance measures, namely the number of
processed points, the number of generated hyperplanes, and the time spent to compute the metric.
Note that the number of points and the number of hyperplanes are the measures used in literature to
assess the scalability of QuickHull [5]. The three plots on the left contrast the absolute performance,
with the blue line showing QuickHull’s performance and the the green line showing PQHGWS’
performance. Since the gap between the two is large, the three plots on the right display the ratio
between them (the larger the better). It is interesting to note that the average speedup for the number
of processed points is only about 6, whereas the average speedup in terms of number of processed
hyperplanes exceeds 70 and the average speedup in terms of computational time is slightly below
40. With regard to this last number, it shall be outlined that our current implementation is not
optimized, and therefore this gain could be further improved.

In practical scenarios the friction cone is approximated using a regular pyramid. Hence to
reduce the approximation error one would increase the number of edges in the pyramid. There is a
linear relationship between the number of edges and the number of points for which the convex hull
will be computed. Figure 4.7 shows the ratio between QuickHull’s and PQHGWS’ performance
as a function of the number of edges approximating the friction cone. The figure shows that as
the number of edges k increases the performance gap between QuickHull and PQHGWS grows
as well. Therefore, PQHGWS allows us to approximate the friction cone with a pyramid with a
large number of edges without introducing a significant computational burden. This would not be
possible with QuickHull. Figures 4.7 is particularly important in light of the findings presented
in [75]. Pokorny and Kragic have shown that when the grasp is force closure the approximation
error introduced by discretizing the friction cone with k edges is M(1 − cos(π/k)), where M is a
constant accounting for geometric aspects unrelated to k. Using PQHGWS, one can afford to use
large k values to approximate the cone. For example, for k = 64 PQHGWS is still extremely fast

3The code implementing the algorithms described in this paper is freely available on the authors’ website, together
with the datasets used to generate the results presented in this section.

37

Figure 4.6: Left: Performance of QuickHull (blue) and PQH (green) for randomly generated grasps
that may or may not be force closure. Right: Ratio between the two performances. In all figures the
horizontal colored line indicates the average.

and (1 − cos(π/k)) ≈ 0.0012.

4.3.2 Object Wrench Space Metric

We next evaluate the performance of the PQHOWS algorithm. In this case there is no widely
used implementation available for comparison, so we contrast our method with two alternatives.
The first considers the brute force approach obtained by applying Eq. (4.1) for every vertex vi and
every facet F j. This approach is slow but computes the correct result without introducing any
approximation. The second method was proposed in [14] and is approximate. The idea is to enclose
the OWS with the smallest ellipsoid, and to then transform the ellipsoid into a sphere with a linear
transformation applied to both OWS and GWS. After this transformation the metric is obtained by
computing the radius of the largest sphere enclosed in the transformed GWS. This computation
can be then performed using QuickHull or PQHGWS. Note that besides being approximated, this
method also does not provide an explicit bound on the approximation error.

Figure 4.8 shows a time comparison of the various methods over 200 different grasps for
the same OWS. Every method requires the preliminary computation of OWS, so this time is ex-
cluded from the chart because it is determined upfront for all algorithms. We consider two com-

38

Number of edges
0 10 20 30 40 50 60

P
o
in

ts

0

2

4

6

8

10

12

Number of edges
0 10 20 30 40 50 60

H
y
p
e
rp

la
n
e
s

0

100

200

300

Figure 4.7: Ratio between the performance of QuickHull and PQH as a function of the number of
edges used to approximate the friction cone.

Number of Episodes
0 50 100 150 200

T
im

e
(m

s)

10-1

100

101

102

PQHOWS
QuickHull
Brute Force
PQHGWS

Figure 4.8: Time comparison for different methods computing the metric QOWS. Note the logarith-
mic scale on the y axis.

parisons. First, we compare the two methods computing the exact value for the OWS metric, i.e.,
the brute force method (red line) and PQHOWS (blue line). The chart clearly shows that PQHOWS
largely outperforms the brute force method. Next, we compare PQHOWS with two different imple-
mentations for the approximate method proposed in [14]. The two implementations differ in how
they compute the convex hull, i.e., the first uses QuickHull (green line), whereas the second uses
PQHGWS (cyan line). The chart shows that the three methods are more or less comparable in terms
of time. However, the main difference is that PQHOWS computes the exact result, while the other
two methods provide only an approximation, and the next experiment shows that the approximation
error can be, at times, significant.

Figure 4.9 shows the relative approximation error, that is for each of the 200 grasps evaluated
we plot |QOWS−Q̃OWS |

QOWS
where QOWS is the exact value and Q̃OWS is the approximate value computed

with [14]. The figure shows that the approximation error can be at times very large and, therefore,
the method in [14], albeit slightly faster, should be avoided. One should add that to the best of
our knowledge the quality of the approximation proposed in [14] has not been analytically studied,

39

0 50 100 150 200
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
p

p
ro

x
im

a
ti
o

n
 E

rr
o

r

Number of Episodes

Figure 4.9: Approximation error introduced by the method proposed in [14].

and, therefore, an experimental evaluation is the best one can aim for at the moment. The analy-
sis demonstrates that the method we propose is preferred because it provides the exact result and
its computational requirements are comparable with the faster of the implementations for the ap-
proximate methods. Finally it is important to observe that a direct comparison of PQHOWS and
PQHGWS is ill posed because the two algorithms compute two different metrics. For a given grasp
PQHGWS is, in general, faster, but the metric it computes is different (and in a sense less desirable
or accurate) than the one computed by PQHOWS.

One factor affecting the time complexity of PQHOWS is V(CH(OWS)), i.e., the number of
vertices of the convex hull of OWS. Table 4.1 shows the relation between V(CH(OWS)) and the
average run time of PQHOWS for four different objects. Results for averages over 1000 runs. Re-
ferring to the last column of table 4.1, the ratio between the average planning time of PQHOWS
andV(CH(OWS)) is nearly constant. This result suggests that the time complexity of PQHOWS is
linear over V(CH(OWS)). Another meaningful result we can obtain from table 4.1 is the compu-
tation time comparison of PQHOWS, QuickHull and PQHGWS. For objects with relatively small
V(CH(OWS)), such as the cube, the performance of PQHOWS is closer to PQHGWS. For more
complicated objects with large V(CH(OWS)), our algorithm is worse, but still comparable to the
performance of QuickHull. Note that the calculation of OWS is not shown in the table. Since OWS
is fixed for all grasp candidates, it is precalculated upfront.

V(CH(OWS)) is affected by the construction of OWS. OWS is calculated by applying unit
disturbance force along all directions on the surface of the object. The term any directions introduces
an approximation into the calculation of OWS, which is determined by a sample of a uniform unit
sphere. Figure 4.10 shows the result of four important factors with respect to the change of the
number of vectors used to approximate the unit sphere. All cases refer to the joystick object. The
number of vectors we tested are 112, 162, 212, 262, 312, and 362. The top left figure shows the
average quality value of Qows over the same 1000 samples. The change in the average value from
the lowest sphere approximation number to the highest sphere approximation number is lower than
0.0006, which is approximately 2%. We also calculated the difference in standard deviation shown

40

Average Computation Time

Object V(CH(OWS)) PQHOWS QuickHull PQHGWS
AvgT (PQHOWS)
V(CH(OWS))

Cube 1458 3.345 13.876 0.977 0.0023
Sphere 7809 16.076 6.610 1.154 0.0021
Joystick 5293 9.673 7.859 0.971 0.0018
Teapot 5704 10.938 7.043 0.999 0.0019

Table 4.1: For four different test cases, the table displays the number of vertices in V(CH(OWS))
and the average computation time using PQHOWS, QuickHull and PQHGWS. The last column
displays the ratio between the average planning time of PQHOWS and V(CH(OWS)). Time is
expressed in seconds.

in the bottom left of the figure. This value is calculated by using QOWS , calculated for each case, and
subtract the lowest sphere approximation case. Then we use this set of values, which for each case
contains 1000 values, to calculate its standard deviation. As shown in this subfigure, the difference
in standard deviation is in the order of 10−4. Additionally, consider the two subfigures on the right,
displaying that the average time used to calculate QOWS and the number of vertices of the convex
hull of the OWS, shows a linear growth with respect to the number of vectors used to approximate
the unit sphere. Combining the results shown in figure 4.10, we can conclude that it is not necessary
to approximate the unit sphere with a very high value. A very accurate approximation does not gain
much with respect to the quality, but will be a huge burden on run time. An appropriate number to
approximate the unit sphere would be in the range of 162 to 212. The approximation number we used
for all previous experiments regrading to OWS are with 441 vectors, which ensures a rather accurate
approximation. The performance of PQHOWS can be improved by decreasing the approximation
number to around 200, and the time to calculate QOWS can be cut in half.

4.3.3 Impact on Planning

While expediting grasp quality evaluation is of independent interest, efficient implementa-
tions are particularly valuable to improve the performance of grasp planners relying on grasp met-
rics to search the space of possible grasps. In this section we substantiate this claim considering
two different planners and showing how they are affected by the choice of the algorithms used for
grasp evaluation. First, for qualitative purposes consider figure 4.11, where we display how the
choice of the grasp metric is significant. For the object being grasped, 1000 force closure grasps
were determined upfront. The grasp wrench space metric and the object wrench space metrics were
then used to select the best one among them. The top three figures show the best grasp determined
using the first metric and the bottom three figures the best grasp obtained using the second metric.

The difference is evident, and similar discrepancies were observed in all the experiments we
performed, outlining that the choice of the metric may have a dramatic impact on the grasp selected
by a planner. Thus it is important to integrate more than one quality evaluation algorithm into the
planner. To put this statement into perspective, it is important to recall that, to date, the object
wrench space metric is rarely used in practice because of its computational complexity. As we

41

Figure 4.10: (a) shows the effect of the sample number on the unit sphere used to construct OWS
with respect to average QOWS calculated through 1000 samples. (b) shows the average time used
to evaluate QOWS for each case. (c) shows the standard deviation of the difference between all
cases and the first case where the unit sphere is sampled with 121 vectors. (d) shows the number of
vertices of the convex hull of the OWS with respect to the sample number of the unit sphere used to
construct the OWS.

will show next, PQHOWS provides an algorithm whose performance is comparable to the current
implementations for the grasp wrench space metric, and thus enables the use of this more powerful
tool for grasp planning.

We next consider two planners to determine force closure grasps on some objects, three of
which are displayed in Figure 4.12. The other two objects we consider (not displayed in the figure)
are a sphere and a cube.

The first planner we consider works like the GraspIt! planner [66], i.e., it places the hand
at a random position in proximity of the object and then closes the fingers to determine if the re-
sulting contact points produce a force closure grasp or not. With this algorithm we determined
1000 grasps and we evaluated each of them using both the grasp wrench space metric and the ob-
ject wrench space metric. For both algorithms we used the current implementation (QuickHull,
BruteForce) and our algorithms PQHGWS and PQHOWS to compare the time. Figure 4.13 shows
the results (displayed time is averaged over 1000 grasps, and the top figures display standard de-
viations) Figures 4.13.a and 4.13.b confirm that PQHGWS and PQHOWS largely outperform their
counterparts. Figure 4.13.c compares the performance of PQHOWS with the algorithm computing
the grasp wrench space metric with QuickHull. The figure shows that PQHOWS is comparable4 to
QuickHull in terms of the time spent to evaluate a grasp, and it can therefore be readily integrated
into existing planners without altering their performance while providing a significantly better grasp

4The reader should consider that our PQHOWS implementation is not optimized yet, so small differences in perfor-
mance can be eliminated.

42

Figure 4.11: Top figures: best grasp determined using the grasp wrench space quality measure.
Bottom figures: best grasp determined using the object wrench space quality measure. Each grasp
is shown from three different view points to outline the differences.

quality measure. For completeness Figure 4.13.d also compares the the performance of PQHGWS
with PQHOWS. To put this chart into perspective, it is important to recall that the two algorithms
compute two different metrics, with the object wrench space metric being more complex. Therefore
it is not surprising that PQHGWS outperforms PQHOWS.

Next, we incorporated PQHGWS into a grasp planner we recently developed [58]. In essence
the algorithm performs a search for the best grasp exploring the surface of the object and guiding
its search using a gradient-descent like approach informed by the quality metric (the details of the
planner are provided in chapter 7). Our original implementation relied on QuickHull to compute
QGWS , and to perform this comparison we replaced it with PQHGWS. Table 4.2 illustrates the
results obtained when the planner seeks a grasp with four contact points and the friction cone is
approximated with k = 24 edges. Each test case refers to a different object, and averages over 100
different planned grasps are displayed.

The second and third column show the overall planning time spent when QuickHull or
PQHGWS are used, respectively. The fourth column shows the ratio between the two. Similarly,
the fifth and sixth columns show only the time spent for grasp quality evaluation and the seventh
column displays their ratio. As expected, this second ratio is higher since it considers only the time
spent for grasp quality evaluation, whereas in the previous case, the overall planning time is shown.
The table shows that by just substituting QuickHull with PQHGWS, speedups larger than 20 can be
immediately obtained.

43

Figure 4.12: Three of the objects used to assess the impact of PQHGWS and PQHOWS on grasp
planning. Left to right: C-shape, joystick and teapot.

Planning Time Grasp Quality Evaluation
Testcase QuickHull PQHGWS Speedup QuickHull PQHGWS Speedup

Cube 219.713 10.326 21.28 218.034 8.647 25.26
Sphere 163.625 7.678 21.31 162.182 6.235 26.01
C shape 270.357 15.921 16.98 268.439 14.003 19.17
Joystick 309.247 13.895 22.26 306.965 11.613 26.43
Teapot 309.629 10.376 29.86 307.204 7.951 38.64

Table 4.2: For five different test cases, the table displays the planning time spent when QuickHull or
PQHGWS are used. The last three columns display just the time for grasp quality evaluation. Time
is expressed in seconds.

4.4 Conclusions

In this chapter we have presented two algorithms to efficiently compute two grasp quality
evaluation metrics proposed in literature. Both algorithms build upon the common intuition that the
metrics can be obtained computing a partial quick hull in the six-dimensional space of wrenches.
The first algorithm, PQHGWS, computes the widely used metric proposed by Ferrari and Canny
more than twenty years ago. It is based on a modified criterion for expansion for the QuickHull
algorithm and we have experimentally shown that is substantially faster than the original. The
second algorithm considers a metric based on the object wrench space that was proposed in the past
but rarely used in practice. This metric is defined only for force closure grasps, and we demonstrated
that our method yields a performance comparable to the one obtained for the Ferrari and Canny
metric. Therefore, thanks to our algorithm this metric can now be used in practice, whereas, in the
past, it was deemed too demanding for practical use. Implementations for both algorithms are freely
available.

In this chapter, we also provided two methods to deal with non-force closure grasps. The
first one computes the distance of the convex hull to the origin for the case where the origin is not
inside the convex hull. This method is beneficial for grasp planners using an optimization approach,
such that the distance of the convex hull to the origin can be used to greedily drive the planner
from non-force closure grasps towards force closure grasps. Although the current grasp measured is

44

(a) (b)

(c) (d)

Figure 4.13: Performance comparison between different grasp quality evaluation algorithms.

not force closure, by approaching the direction that returns a closer distance in the next step drives
the planner towards a local optimum grasp. The other method we proposed to deal with non-force
closure grasps is by quickly rejecting them. This method fits well in sampling based grasp planners,
where the current measure would not affect the grasp selected in the next step. Since the sampling
based planner samples randomly, quickly rejecting non-force closure grasps improves the overall
performance. Both methods are affected by the growth of the convex hull, which can be easily
combined with the partial quick hull algorithms for GWS and OWS.

In this chapter we have focused on the grasp wrench space and the object wrench space, but
a third paradigm was proposed in literature, namely the task wrench space. We have not considered
the TWS metric because to date there is no efficient and practical way to determine the TWS in
a general setting. However, it should be noted that the algorithm presented in section 4.2 could
be equally applicable if the TWS is provided. In fact, one can just substitute OWS with TWS in
algorithm 2 without making further changes.

45

Chapter 5

Grasp Quality Evaluation with Whole
Arm Kinematic Noise Propagation

The study of grasp quality metrics is deeply intertwined with the study of grasp planning
algorithms. This connection stems from the fact that in most cases a robotic manipulator can grasp
a given object in multiple ways. Given a set of possible solutions determined by the grasp planner, it
is then natural to ask which one should be preferred, and the utility of grasp quality metrics becomes
evident. While many grasp quality metrics have been proposed [29, 55, 76, 95], most contributions
have ignored the morphology of the robot executing the grasp. For example, the Ferrari and Canny
metric [29] just considers the contact points without incorporating kinematic constraints. Most other
methods embrace a similar standpoint [55, 76, 95]. Moreover, most classical grasp quality metrics
do not incorporate a fully realistic noise-model, accounting for the inevitable inaccuracies emerging
when a grasp is executed. This problem is particularly relevant with the advent of platforms with
passive joints (e.g., Baxter [34]), for which small deviations from the desired trajectory or desired
final position and orientation of the end effector are unavoidable.

Noise modeling in mechanics has been well studied, e.g., in [72], where it is evidenced how
noise in modeling robot arm mechanics derives from sources such as inaccuracies in the geometric
models of links, backlash, nondeterministic errors due to friction, and quantization errors. Al-
though many papers account for these noise sources through linearized error propagation mod-
els and Gaussian distributions, works like [72] model errors using the empirical error distribution.
Along with error modeling, a rich literature exists in parameter identification, using either analytic
approaches [36] or data-driven techniques [8, 97].

Noise modeling for grasping has rarely been considered together with the kinematic struc-
ture. For example, [51] accounted for Gaussian errors in the end-effector positions, friction coef-
ficient and object shape, and formulated the problem using a probabilistic framework. Similarly,
Allen and collaborators [106] investigated uncertainty in the object model, which led to the notion
of probabilistic force closure. Furthermore, [63] applied probabilistic force closure and proposed
a large-scale cloud-based approach for sampling perturbations of grasps, leveraging multi-armed
bandits and deep learning to determine grasps with high probability of force closure. The approach
we consider in this chapter is instead focused on the impact of noise on the grasp quality metric
through the whole-arm kinematic structure.

46

Figure 5.1: The above figures display two grasps with identical contact point configurations. Note
however the relative rotation of the third joint by π

2 . When imposing Gaussian Noise on the indi-
vidual joints of the robot arm, the covariance ellipsoid of end-effector positions is also rotated by π

2 ,
resulting in a drastically changed value for P(FC).

In this chapter, we propose to explicitly account for noise in joint-angle positions, and to
study the relationship between such noise and the definition of the grasp quality metric Q defined
by Ferrari and Canny in [29] and widely used in literature. We focus in particular on the probability
of force closure measure P(FC) [106] and the expected grasp quality E

¯
[Q]. The reader is referred

to Figure 5.1 to consider the motivations for this work. It shows an example of two grasps with
identical contact configuration at the finger tips, but with a differing third joint angle. With a clas-
sical modelling of these grasps, without noise, or assuming independent and identically distributed
noise in end-effector position, these configurations would be considered equivalent. However, we
observe that by considering Gaussian perturbations in joint-angles, significant differences between
these configurations are noted. For example, our experiments show that the grasp shown on the left
has a significantly lower probability of force closure and expected Ferrari and Canny grasp qual-
ity compared to the grasp on the right. The same results are observed throughout the numerous
experiments we present in this manuscript. We argue that noise-models that fully incorporate the
kinematic structure and limitations of a robot should be used to more reliably predict the success of
a proposed grasp. The main goal of the present chapter is to highlight the importance of noise in
joint-configurations for the purpose of grasp quality evaluation and synthesis. While error propaga-
tion is a well-studied problem in mechanics and robot arms [27], the impact of errors in joint-angles
has not been integrated with the main-stream robotic grasp quality evaluation literature. We in par-
ticular present a sampling based approach to study the impact of noise on the Ferrari and Canny
grasp quality metric and on the probability of force closure.

The rest of this chapter is organized as follows. In section 5.1 we define the problem we
consider and present the experimental methodology sustaining our study. Experiments and their
results are illustrated in section 5.2, while conclusions and future work are discussed in section 5.3.

47

5.1 Problem Definition and Methodology

Problem Definition

Consider a robot arm with d degrees of freedom equipped with a multifingered robotic hand,
like the one shown in Figure 5.1. The forward kinematics (FK) function, f : Rd → S E(3), maps a
joint-configuration q = (q1, . . . , qd) ∈ Rd to the position and orientation of a frame rigidly attached
to the end effector (e.g., to the center of the palm of the hand.) An approach widely used in grasp
planning (see e.g. [67]) determines the pose of the reference point, which then projects the contact
points for the fingers, assuming they are closing until contact is made with the object being grasped.
Knowing the mechanical structure of the hand and of the object being grasped, this projection is a
straightforward computation. Hence in the following, we can treat f = f (q) as a grasp. The quality
Q of the resulting grasp can then be calculated using one of the aforementioned metrics. In this
work we assume the joint angles of the arm with d DOF, are set to a desired target value, q0, but
superimposed noise exists at each joint. Specifically, noise is modeled as vector ε = (ε1, . . . , εd),
where the εis are independent random variables with known distributions. For a realistic setup ac-
counting for the mechanical limitations governing each joint, we consider each |εi| to to be bounded
by εmax. Moreover, we assume each random component to have 0 mean. Distributions like the the
truncated Gaussian1 and the uniform distribution are obvious candidates to model this type of noise.

For the given setup, instead of reaching the target configuration q0, the arm will end up at
q = q0 + ε. As a result, the grasp quality Q is a random variable. We are therefore interested in
the dependency between the random variable Q, the noise vector ε, and the kinematics of the robot
arm. To be specific, for the grasp quality metric we consider the well known Ferrari and Canny
metric that measures the size of the largest wrench along all directions that can be resisted by the
grasp. For the case where the fingers fail to make contact with the object, or if the grasp does not
achieve force closure, the value of the metric is undefined. To assess the effect of noise on Q, we
consider the formerly mentioned probability of force closure P(FC) and the expected quality metric
E
¯
[Q]. To study the properties of Q as a random variable, we consider different noise distributions

and arm configurations achieving the same end-effector pose. The goal of our analysis is to identify
variations in grasp robustness caused by variations in arm configurations, and reason about how
we can computationally select the best arm configuration to achieve a higher P(FC) for a target
end-effector pose.

Sampling based approximation

Given a target grasp configuration, q0, determined, for example, with a grasp planner such
as GraspIT!, we study the resulting grasp quality of the random variable Q(f (q0 + ε)), where we
explicitly outline the dependency of Q on both the forward kinematics map f and the noise ε. To
this end, we generate a finite number of samples ε1, . . . , εn ∈ Rd and let Xi = Q(f (q0 +εi)). We then

1This is a modified Gaussian distribution with 0 mean and whose density function is set to zero outside [−εmax, εmax]
and then normalized to integrate to 1. We use N(0, σ2, εmax) to indicate this distribution.

48

compute the n-sample empirical estimators (mean, standard deviation, co-variance, skewness):

E
¯
[Q,q0] '

1
n

n∑
i=1

Xi = Q

σ '

√√
1

n − 1

n∑
i=1

(Xi − Q)2

Cov[Q,q0]s,t '
1

n − 1

n∑
i=1

(Xi − Q)s(Xi − Q)t

M
¯ 3[Q,q0] '

1
n

n∑
i=1

Xi − Q
σ

 .3
Analytical approximation

As mentioned earlier, FK computes the pose of the end-effector as a function of the joint
angles using the kinematic equations of a robot. For a given arm configuration q0, the corresponding
end-effector pose can then be written as pe = f (q0). When noise is added in each joint, the end-
effector pose is instead p′e = f (q0 + ε). The difference between the actual pose of the end effector
and the desired pose can be written as

∆pe = f (q0 + ε) − f (q0).

This mismatch is due to the error ε, superimposed to the desired robot configuration, q0. Let J be the
Jacobian of the forward kinematics function f . For small values of ε, the error can be approximated
as

∆pe ≈ J(q0)ε.

According to our assumptions, each component of the disturbance vector satisfies the in-
equality |εi| ≤ εmax. If q0 is a non-singular configuration we can then write:

∆pT
e (JJT)−1∆pe ≤ d||εmax||

2
2

This inequality represents an ellipsoid for the error distribution of the end-effector pose with
bounded noise ε. We dub this ellipsoid the noise ellipsoid. The length of the axes and the orientation
of the noise ellipsoid are determined by the eigenvalues and eigenvectors of matrix JJT . The noise
ellipsoid is however accurate only for noise vectors ε with a small norm, due to the first order
approximation we used.

Though the approximation of the noise ellipsoid does not provide a tight bound, we can still
use it to formulate the problem of computing an arm configuration to grasp an object that is robust
to configuration disturbances. That is to say that among the various possible solutions provided
by inverse kinematics in the case of a redundant manipulator, we can use robustness to noise as a
selection criterion. To formalize the problem, we introduce the concept of high probability force
closure region as follows.

49

Definition 11. Let fe ∈ S E(3) be an end-effector pose that achieves a force closure grasp. The high
probability force closure region associated to fe with confidence ζ HPFCR(fe, ζ) is defined as the
neighborhood of fe such that

∀f ∈ HPFCR(fe, ζ) PFC(f) > ζ

where PFC(f) is the probability that f achieves force closure.

Starting from this definition, we present a sampling based approach to approximate the high
probability for closure region. The steps are as follows.

1. Determine a force closure grasp with grasp quality value Qfe > QMIN , where QMIN is a
predetermined constant lower bound.

2. Given a bound b and step size s, sample the grasps around fe within the cubical region with
edge size 2b using step size s. Let PALL be the set of all such grasps.

3. Evaluate grasps in PALL and let P ⊂ PALL be the set of grasps that are force closure with
quality larger than a threshold tq.

4. Calculate the six-dimensional ellipsoid E fitting P with confidence percentage c. The confi-
dence percentage refers to the percentage of points in set P that are within E. In the following
we set c = 70%, but the algorithm is not too sensitive to this value.

5. Compute P(E), i.e., the probability of force closure of E as the ratio between the number
of grasps in E ∩ PALL that are force closure and the total number of grasps in E ∩ PALL.
If P(E) < ζ, increase tq and go back to step 3. Otherwise, we terminate and set E to be
HPFCR(fe, ζ). Note that the center of E is usually shifted from the origin. In order to improve
the probability of force closure, we use the center of E to correct the force closure grasp we
used in the first step.

Step 2 in the above procedure is the most critical because the end-effector pose is a six-
dimensional vector and therefore brute force enumeration generates about (2b

s)6 grasps that must be
evaluated. This problem, however, is mitigated in two different ways. First, this entire process is
done offline in a precomputation step. Second, rather than enumerating all possible grasps in the
regularly spaced grid, it is possible to generate just a subset of fixed size. Both of these expedients
are explained and illustrated in the following.

After obtaining the high probability force closure region, the next step is to use it to measure
the quality of an arm configuration, i.e., the ability of an arm configuration to yield a grasp with high
probability force closure despite joint-level noise. The following definition formalizes this idea.

Definition 12. Let E = HPFCR(fe, ζ) be the high probability force closure region for a grasp fe and
confidence ζ. By construction, E is a six-dimensional ellipsoid, and let E be the associated square
matrix representing it. For a given arm configuration qa such that fe = f (qa), let Ja be the Jacobian

50

matrix, and let e1, . . . , e6 be the eigenvalues of the matrix dε2E−1(JaJT
a). The grasp quality with

respect to arm configuration qa is

Qarm =
1

Σi(
√

ei − 1)2 .

The rationale for this definition is as follows.
√

ei is the axis length of the ellipsoid determined
by dε2

maxE−1(JaJT
a). Therefore (

√
ei − 1)2 measures the mismatch against the unit sphere along the

i− th dimension. The matrix JaJT
a represents the noise ellipsoid at the end-effector of the given arm

configuration and linear transformation E−1 maps this matrix to a space where the high probability
force closure region is a unit sphere. Therefore, Qarm measures the error between the ellipsoid
determined by dε2

maxE−1(JaJT
a) and the unit sphere. Defined this way, Qarm indicates how well

the noise ellipsoid and the high probability force closure region are aligned, with higher values
representing more robustness to noise. Since, for a given grasp, only E−1 is needed, we thereby
store this information along with the grasp after the process of calculating the high probability force
closure region.

The overall pipeline for our entire system is shown in Figure 5.2, and is divided into an
offline and an online stage. For a given object, during the offline process, grasps with good quality
are calculated along with their associated high probability force closure region. Each grasp is stored
with its corresponding E−1 matrix in a database for online use. During the online process, the
relative pose between the arm and the object to be grasped is determined, usually through by a vision
pipeline as we did in [61]. Next, using IKFAST we obtain a set of candidate arm configurations,
and determine which one to use after ranking them using the Qarm metric we just introduced.

Figure 5.2: The framework of our entire system.

Algorithm 3 sketches the online part of the algorithm. The input is the target grasp pose,
pr, and the matrix, E−1, associated with the grasp. The output is the best arm configuration, qa.
The online part of the algorithm is efficient because it relies just on one call to IKFAST and several
matrix multiplications.

51

Algorithm 3 Qarm ranking algorithm
1: Input : pr,E−1

2: Output: Best arm configuration qa

3: Q← IKFAST(pr)
4: for all q j ∈ Q do
5: J j ← Jacobian(q j)
6: ei ← eigenvalues(dε2

maxE−1(J jJT
j))

7: Qarm j ←
1

Σi(
√

ei−1)2

8: qa ← {q j| j = arg max j Qarm j}

Methods comparison

In this section, we provide two ways to approximate the noise distribution at the end-effector,
i.e., the sampling based approach and the analytical based approach. The sampling based approach
is capable of providing a rather accurate distribution. In order to maintain accuracy, more time
is required to process enough samples, whereas, the analytical based approach only relies on the
calculation of the noise ellipsoid, making it more efficient. The major calculation of the noise
ellipsoid is based on the computation of the Jacobian matrix, which is usually calculated upfront.
However, the distribution given by analytical based approximation is inaccurate. We will show
in the experiment section, the noise ellipsoid is only useful to predict how the noise distribution is
aligned. When relating these two methods to grasping, the sampling method is more accurate, which
is capable of providing a tight estimate of the end-effector distribution. However, this method is
limited in practice due to its inefficiency in calculating the bound. On the other hand, the analytical
based approach can not provide a tight bound, but it can be used to guide the online process to
quickly select the best arm configuration based on the predetermination of the high probability
force closure region.

5.2 Experiments

Here, we first provide an illustration of the performance of empirical estimators of mean,
variance and skewness on end-effector position and showcase the differences in noise profiles that
can occur, even for simple planar linkages. Then, we consider sampling based aproximation of
grasp quality for a 7-DOF Kuka Leightweight (LWR) robot arm. Next, we show how analytical
based approximation is used to estimate the end-effector pose. Finally, we provide an example
of the calculation of the high probability force closure region and show the performance of the
analytical based approach in simulation.

5.2.1 Empirical estimation of noise on end-effector position

We start by considering the simple planar 2 and 3 link arms depicted in Figure 5.3. We apply
zero mean Gaussian Noise with a variance of σ2 = 0.01752, and display two nominal arm positions

52

with an identical end-effector pose (x, y) = (2, 2), as well as a visualization of the end-effector
position for 10, 000 samples from the noise distribution.

Figure 5.3: A two and three link planar robot arm with mean joint configurations and samples of
end-effector poses under Gaussian Noise. Observe that while in both cases the nominal configura-
tion q0 would bring the end effector to the same position, because of the noise, we have different
empirical means and covariances.

The distributions of the end effector positions differ not only in spatial orientation, but also
in spread. Their empirical covariances Σ1,Σ2 differing in Frobenius norm by 0.000437 for the
two link arm 0.0014 for the three links arm. To better understand the convergence of these sam-
pling based estimators for the end-effector position, we sampled 10,000 samples from N(0, σ2) for
σ2 ∈ {0.00332, 0.01332, 0.02332, 0.03332} in 10 trials. The top panel in Figure 5.4 displays the
convergence of the mean of these 10 runs for the estimators of mean, covariance and skewness to
a ‘ground truth’ given by the mean estimate of 100,000 samples. As we can observe, the num-
ber of required samples to obtain satisfactory convergence heavily depends on the variance of the
noise profile. The bottom panel in the same figure displays the same experiment for the Kuka LWR
arm. The charts show that despite the different number of degrees of freedom, 10,000 samples is
sufficient to numerically determine the empirical estimators.

5.2.2 Grasp Quality and Noise

We next study the dependence of grasp quality on nominal grasp configuration under noise.
After describing our experimental setup, we consider the convergence of sampling based grasp
quality estimators followed by experiments illustrating interesting cases of the dependence of prob-
abilistic grasp success on variance, object shape and joint configuration.

5.2.2.1 Experimental setup

We used the VRep simulator [83] to simulate a 7 degree of freedom leightweight KUKA arm
with a Schunk Dexterous hand with three fingers and 7 DOF displayed in Fig. 5.1. We determined
a nominal pre-grasp joint configuration using a grasp planner we developed following the same
ideas used in GraspIT! [67], i.e., we sample hand poses around the object to be grasped and through
physical simulation we determine if the grasp obtained closing the fingers from the corresponding
pose results in a force closure grasp. If this is the case the grasp configuration is retained, otherwise it
is discarded. Figure 5.5 illustrates this process. All computations are performed using VRrep’s built

53

Figure 5.4: L2 error convergence of mean position, covariance error (measured in Frobenius norm),
and skewness under isotropic Gaussian Noise as the number of samples is increased. The top three
figures display results for the 2 link arm, while the bottom three display results for the Kuka LWR.
We observe that the standard deviation influences the initial convergence rate, but in all cases 10,000
samples seem sufficient to empirically determine the estimators.

54

in features for collision detection, and the method eventually returns a set of pre-grasp configurations
that will give force closure grasps.

Figure 5.5: The left figure displays the arm and hand in a pre-grasp configuration. Pre-grasp config-
urations are generated randomly. Next, the fingers are closed and contact points with the surface of
the objects are determined as shown on the right figure. If the resulting set of contact points gives
force closure the grasp is retained, otherwise it is discarded.

At run time, to generate random samples for a nominal joint-configuration, we added isotropic
Gaussian NoiseN(0, σ2) to each joint of the robot arm and executed the auto-close procedure. Due
to noise, the grasp may fail for various reasons. First, the fingers may miss the object during the
auto-close step, and therefore enough contact points cannot be established to restrain the object.
In addition, there are cases in which all fingers make contact with the object, but the resulting
placements still does not yield a force closure configuration. Both these instances will be indicated
as failures in the following, because due to noise during the execution, a planned grasp does not
achieve its desired force closure objective. If instead all fingers establish contact with the object and
these points indeed yield force closure, we compute the Ferrari and Canny grasp quality measure.
For our experiments, we used the objects displayed in Figure 5.6.

Figure 5.6: Objects used in experiment

5.2.2.2 Empirical estimation of noise on grasp quality and probability of force closure

Paralleling the experiments we presented in section 5.2.1, we start by assessing the impact of
noise on grasp effectiveness. In particular we empirically estimate the probability of force closure,
i.e., the probability of obtaining a successful grasp and the grasp quality metric when a successful
grasp is established. Figure 5.7 show the empirical estimation for the probability of force closure
P(FC) (bottom two charts) and the grasp quality metric (top two charts). The curves were obtained

55

averaging five different grasps for the spray flask object and show a slower convergence rate when
compared with Figure 5.4. This is true for both the grasp quality metric Q and P(FC)2.

Figure 5.7: Empirical estimation of the convergence rate for the estimators of the Ferrari and Canny
grasp quality metric (top charts) and probability of force closure (bottom charts).

5.2.2.3 Impact of arm configuration

One of the limitations of current grasp metrics is that they do not consider the arm config-
uration used to implement a target grasp. However, when noise is explicitly modeled, significant
differences may emerge when comparing the robustness of different arm configurations achieving
the same contact points. To study this effect, we start by considering two objects grasped with
the same contact points but different arm configuration. Figure 5.8 shows the two objects and the
variability for the grasp. Colored sticks are used to display the normal to the object surface at each

2Note that since P(FC) is the probability of a binary indicator random variable, the mean of FC is equal to P(FC).

56

Figure 5.8: Distribution of grasp contact points on two objects where two different arm configura-
tions are used to implement the same grasp.

contact point, with different colors used for the three fingers. The figures display the results ob-
tained with 10,000 samples. For the drill object we determine that the mean grasp quality metric
is comparable in the two cases (0.0982 versues 0.0910) and the variance is comparable too (0.0025
versus 0.0028). However, there is a remarkable difference in the probability of force closure P(FC).
The left configuration achieves a value of P(FC) = 0.50, whereas the right configuration has a value
P(FC) = 0.31. Similar observations are made for the spray flask, where the right configuration has
P(FC) = 0.57 and the left one has P(FC) = 0.42.

5.2.2.4 Impact of noise on grasp quality

Finally, we evaluate the impact of noise on P(FC) and the grasp quality metric for different
objects, grasps, and noise levels. We start considering the spray flask object with five different
grasps and four different noise levels. Figure 5.9 shows the distribution of normals to the contact
points using the same coloring used in Figure 5.8. Each row corresponds to a different grasp, and
each column to a different variance in the joints, i.e., 0, 00332, 0.01332, 0.02332, 0.03332 (left to
right). Table 5.10 displays the numerical results for these grasps, i.e., probability of force closure
P(FC) and the mean and variance of the Ferrari and Canny grasp quality metric for the successful
grasps. Results are obtained using 10,000 samples. From the table we can observe that P(FC)
appears to be more sensitive to variations in the joint noise, as measured in terms of the variance σ2.
Grasp quality varies too, although the variation is more modest and at times even non-monotonic.

57

σ2 = 0.00332 σ2 = 0.01332 σ2 = 0.02332 σ2 = 0.03332

Mean Variance P(FC) Mean Variance P(FC) Mean Variance P(FC) Mean Variance P(FC)
0.026383 0.000683 0.5275 0.071357 0.003324 0.3094 0.071521 0.002820 0.2158 0.069315 0.002447 0.1972
0.161483 0.002088 0.4763 0.105348 0.004519 0.5033 0.094063 0.003341 0.3777 0.091105 0.003066 0.3040
0.055606 0.000868 0.6537 0.069675 0.002674 0.3228 0.073776 0.002924 0.2264 0.072395 0.002666 0.1850
0.067810 0.000094 0.6038 0.070409 0.001154 0.2673 0.066890 0.001361 0.1899 0.067309 0.001477 0.1625
0.141029 0.001225 0.5084 0.100313 0.002700 0.5749 0.089174 0.002718 0.3995 0.087669 0.002671 0.3422

Table 5.1: Probability of force closure, mean and variance of the grasp quality metric for the grasps
in Figure 5.9. Grasp quality metric is computed only for successful grasps.

Figure 5.9: Distribution of the normals to the contact points for different grasps over the spray flask
object.

For the next experiment, we considered ten different grasps and evaluate the effect of noise
in terms of P(FC) and grasp quality for the successful grasps for the same four objects shown
in Figure 5.6. Results are displayed in Figures 5.10 and 5.11. Figure 5.10 displays the result

58

Figure 5.10: Success rate, quality measure, and error for ten different grasps with different contact
points and different arm configurations.

for grasps configurations consisting of different contact points and different arm configurations.
Figure 5.11, instead, considers the same contact points, but with different arm configurations due to
different placements of the objects with respect to the arm. In both cases joint angles were affected
by Gaussian Noise N(0, 0.00332). As shown below in Figure 5.11, P(FC) is high for a simple
object like the cube, but dramatically varies for more complex objects. The quality measure is the
average value for the Ferrari and Canny metric and is limited to the grasps for which force closure
is obtained. In the two figures we can see more variation for the first case that involve both the
contact points and the arm configuration. Finally Error is the difference between the theoretical
grasp quality metric predicted by the planner without considering noise sources, and the average
grasp quality metric experimentally determined. As shown, this value is almost always positive,
indicating that, in most cases, noise alters the contact points in a way that negatively impacts the
quality measure, although in some cases this observation is not valid, i.e., noise actually ends up
generating contact points with a better quality.

5.2.3 Analytical based estimation of noise on end-effector pose

The noise ellipsoid produces an ellipsoid approximately aligned with the sampled end-effector
distribution when a bounded noise is applied at each joint. Figure 5.12 shows the result of a simple
experiment for a planar three-link arm. The noise applied to each joint is drawn from a uniform
distribution with support [−0.01, 0.01]. The top subfigure shows the ratio between the eigenvalues
defining the noise ellipsoid and the sampled end-effector position distribution with the same end-
effector position. With over 1,000 samples we can observe that the ratio between the maximum and

59

Figure 5.11: Success rate, quality measure, and error for ten different grasps with same contact
points but different arm configurations.

minimum eigenvalue remains close to 1. The bottom subfigure shows, instead, the 2-norm of the
difference between the eigenvector matrices. The small values indicate the substantial alignment be-
tween the noise ellipsoid and the sampled end-effector position, i.e., the fact that the approximation
error introduced by the first order expansion, is limited.

Similarly, Figure 5.13 shows the comparison of the noise ellipsoid and the actual sampled
end-effector distribution for a KUKA LWR arm. Data was gathered in simulation, thus allowing
for flexibility in noise generation while relying on a high fidelity model for the arm. The noise
applied at each of the seven joints is drawn from a uniform distribution with support [−0.01, 0.01].
The left subfigure shows the mean and variance of the scale between the eigenvalues, while the
right subfigure shows the determinant of the difference in the matrix containing eigenvectors. Both
figures confirm that the error is small.

Finally, Figure 5.14 contrasts the sampled end-effector position distribution, when noise
drawn from a uniform distribution with support [−0.01, 0.01] is applied to all joints. For each shown
configuration, 10,000 samples were generated to determine the distribution of the end-effector po-
sition. The figure confirms that the sampled end-effector distribution is well aligned with the noise
ellipsoid. For the 7 DOF KUKA arm, the noise ellipsoid therefore provides a good indication of the
actual sampled noise distribution.

5.2.3.1 High Probability Force Closure Region

Our grasp quality measure Qarm relies on the high probability force closure region. Figure
5.15 shows a SDH hand grasping a bottle (this study is instead done using the VREP simulator),

60

Figure 5.12: The top subfigure shows the ratio between the eigenvalues of the noise ellipsoid and
the sampled end-effector position distribution for a 3 link planar arm. The red line represents the
ratio of maximum eigenvalue and the blue line represents the ratio of minimum eigenvalue. The
bottom subfigure shows the 2-norm of the difference in the matrix representing all eigenvectors.

Figure 5.13: The left subfigure shows the mean and variance of the scale between the eigenvalues
of the noise ellipsoid and the sampled end-effector position distribution for KUKA LWR. The right
subfigure shows the determinant value of the difference in the matrix representing all eigenvectors.

61

Figure 5.14: Sampled end-effector position distribution with noise shown in blue and noise ellipsoid
for a 7 DOF KUKA arm (shown in colored ellipsoid).

whereas Figure 5.16 shows the corresponding high probability force closure region projected in
the position domain and the orientation domain. All points shown as either red dots or blue dots
represent force closure grasps, but red dots are the points within the ellipsoid associated with the
high probability force closure region. To be more specific, the high probability force closure region
is sampled around the grasp with the bound b = 0.03 and step size s = 0.06. The confidence
percentage c was set to 70% to filter out points too far away from the center of the ellipsoid E. The
quality threshold was selected with tq = 0.2144, which is equal to half of the maximum quality
value over all samples. This value is selected to achieve a force closure probability of more than
50% within the high probability force closure region. As shown in Figure 5.16, the ellipsoid in the
orientation domain is comparably larger than the ellipsoid in the position domain. Blue dots in the
left figure are not evenly distributed, as can be observed, noting the lack of points in the left part.
These observations confirms that the high probability force closure region is biased towards good
grasps, so choosing the associated arm configuration will benefit the final outcome.

Figure 5.15: Example grasp on a bottle object.

Figure 5.17 shows the relationship between the force closure probability and the volume of
the ellipsoid E with respect to the quality threshold tq. tq is sampled from 10% of the maximum

62

Figure 5.16: The High Probability Force Closure Region projected in XYZ-coordinate system (left)
and RPY-coordinate system (right).

quality up to 90% of the maximum quality (that in this specific case is 0.4288). As tq increases,
the force closure probability also increases whereas the volume of E shrinks as expected. The
ideal probability force closure region would be the largest region enclosing the probability thresh-
old. Thus, our iterative method that increases tq at each iteration is sufficient to locate the ideal
probability force closure region.

Figure 5.17: Trend of force closure probability (left) and volume of fitting ellipsoid (right) with
respect to tq.

To accelerate the speed to compute the high probability force closure region, we can first
investigate the variance of the end-effector distribution in both the position and orientation domains.
For example, the end-effector distribution of the KUKA LWR arm distribution varies more in the
position domain compared to the orientation domain. Therefore, we can decrease the size of the
bound b for the orientation domain to improve the efficiency of the algorithm.

However, since the high probability force closure region is either generated using fixed uni-
form sampling or random sampling, some limitations may apply. Figure 5.18 shows two examples
of the high probability force closure region in 2D. The left example represents a worst case for
using fixed uniform sampling while the right example represents a worst case for random sampling.
Both examples use the confidence percentage c = 0.75 and the probability force closure values are

63

64.86% and 56.25% from left to right. As for the left example, only if the region of the end-effector
noise distribution is larger than the high probability force closure region, will we be able to include
all of the force closure grasps. That is to say, if we apply relatively small noise, then we might
not be able to obtain any force closure grasps. For the right example, since the probability force
closure value is calculated by the percentage of force closure grasps among all grasps within the
high probability force closure region, there might exist a huge portion of the high probability force
closure region outside bound b that has not been explored. In this case, the actual probability force
closure value for the entire high probability force closure region might be significantly smaller than
the calculated value, i.e., 56.25%.

Figure 5.18: Two examples of HPFC in worst case scenario. The blue points are non-force closure
grasps, red points are force closure grasps, and the ellipsoid is the calculated high probability force
closure region.

5.2.3.2 Validation in Simulation

To perform an end-to-end validation of our method in simulation, we generate the end-effector
noise distribution by applying noise drawn from a truncated Gaussian distribution at each joint and
for each end-effector pose we compute the corresponding grasp quality. In particularly, we compare
the the best arm configuration and the worst arm configuration selected by Qarm optimizing P(FC)
as defined before and E

¯
[Q] defined as the expected force closure quality among all force closure

grasps. Figure 5.19 shows the comparison between the best arm configuration (in red) and the
worst arm configuration (in blue) for five different objects under different noise averaging over 10
different grasps. The P(FC) and E

¯
[Q] values of the best configuration for all objects are in average

higher than the value for the worst arm configuration, especially when the noise is large. The high
probability force closure region is computed by sampling within a certain range. For a relatively
small noise, most arm configurations might be included inside the high probability force closure

64

region, therefore the P(FC) shows less change among all arm configurations. The difference is
more significant when the noise is large, such that a more aligned noise distribution against the
high probability force closure region has a higher chance to be force closure. Similar results were
obtained for other objects.

Figure 5.19: P(FC) and E
¯
[Q] for 5 different objects under different noise boundary. For each value

ε for the noise bound, the superimposed noise is a truncated Gaussian N(0, (ε3)2, ε).

5.3 Conclusions and future work

In this chapter we have formulated two frameworks to study the interplay between grasp
quality evaluation functions, noise, and the mechanical structure of the robotic arm. This work fills
a gap in the grasp evaluation literature because grasp quality metric studies have mostly evaluated
grasps as a set of deterministic contact points. The first framework used a sample based approach to
explicitly point out the importance of considering the mechanical structure of the robotic arm with
respect to applied joint noise. Unsurprisingly, our experiments show that the probability of grasp
quality is strongly affected by this aspect. However, the sampling based approach only illustrated
the importance of the problem but is very inefficient for online use. As an extension, we proposed
an analytical based approach to solve this problem efficiently, which made it applicable for online
use. The analytical method is based on two important concepts, i.e., the high probability force
closure region, and a new grasp quality metric Qarm, to explicitly consider the structure of the arm
and disturbances when evaluating different ways to implement a target grasp. The outcome of this
approach will be the arm configuration that provides a relatively high staleness when actuating the
associated grasp. This metric can be integrated with existing grasp quality measures to quantify the
quality of the entire robotic system.

In this chapter we have mostly concentrated on the noise affecting the robot joints and how it
impacts the pose of the end effector and the success rate of a grasp or its quality. One could argue
that in some robots this noise may be negligible, though the recent advent of low cost platforms

65

with passive joints like Baxter, demonstrate the opposite. Irrespective of that, our study outlines the
effects of a mismatch between the expected relative pose between the robotic hand and the object to
be grasped. Hence, our same conclusions extend to the case where the noise affecting the robot is
negligible, but there is uncertainty in the pose of the object being grasped.

Acknowledgments

We thank Jeff Mahler at UC Berkeley for providing the meshes for the objects used in the
experiments and Florian Pokorny and Ken Goldberg at UC Berkeley for useful discussions regarding
this work.

66

Chapter 6

Grasp Quality Metric Improvement
Considering Hand Configuration and
Target Object

In this chapter, we focus on embedding hand features and local geometry information into
the grasp quality metric. The methods we propose are all based on the friction cone. Our main
focus is on hand configuration and how the hand configuration affects the maximum force, which
can be applied at each contact. We formulate the maximum force as a variable that scales the unit
friction cone at each contact. This scaled friction cone will then shape the grasp wrench space and
produce more robust grasp candidates. Interestingly, we found that we can also use the friction cone
to add information of an object’s local geometry. We are particularly interested on concave objects
because we believe that having contact at the concave portion of the object will provide additional
support to restrain the object. This effect can be addressed by expanding the friction cone along the
direction of the additional supports reflecting the local geometry of the object.

Let us first start with two examples. First lets look at Figure 6.1. This figure displays the same
gripper having two grasps with identical contact points on the same object. Using any metric related
to the grasp wrench space would give you identical results in quality. However, due to a different
hand configuration, the maximum force, which can be applied on the object, is also different. In
section 6.1, we will discuss in detail, how the maximum finger force is calculated at each contact. In
general, the grasp with higher force applied at each contact is considered to hold the object tighter,
i.e., the ability to resist disturbance force is better. This feature should be taken into account for
grasp quality measure.

Now, lets consider the second example shown in Figure 6.2. The leftmost figure shows a
concave object with the blue dots indicating two contact points for a possible grasp. Similarly, the
rightmost figure illustrates a convex object and the blue dots also indicate two contact points for a
grasp. Most grasp quality metrics would rank these two grasps as equivalent because, as shown in
the middle figure, locally, the two surfaces coincide and, therefore, the same grasp wrench space is
generated. Real world experience and common sense, however, indicate that the one on the left is
more stable, i.e., it will be capable of resisting disturbance wrenches of a higher magnitude (think

67

Figure 6.1: The above figures display two grasps with identical contact point configurations.

for example of a disturbance force acting vertically on the middle of the lower edge of both objects).
This effect is magnified if we also consider that, in practice, contacts hardly occur at just one point.

Figure 6.2: Subfigure (a) shows two grasping points on the surface of a concave planar object,
whereas subfigure (c) considers a convex planar object. Subfigure (b) in the middle show that the
normals at the grasping points are identical.

These two simple examples motivate the work present in this chapter. We start with revising
the definition of the friction cone with the objective of better evaluating the ability to restrain objects
featuring negative curvature boundaries, i.e., concave objects, and taking into account the effect of
finger force. This approach overcomes classical methods that exclusively consider normals at the
contact point, but ignore the maximum possible force at each fingertip and the curvature of the local
neighborhood to the contact point.

The rest of the chapter is structured as follows. In section 6.1 we formalize the concept of the
hand force dependent grasp quality metric and the curvature dependent grasp quality metric. We
sketch how this can be used for grasp planning. The approach is demonstrated in simulation and on
a real robotic arm with a multifingered robotic hand in section 6.2. Finally, we draw conclusions
and outline future work in section 6.3.

68

6.1 Grasp Quality Metric Improvement

In this section we will develop the mathematical foundations for the method we propose.
The section is organized into two parts. In this first part, we will focus on hand configuration. We
will address the fundamental way to derive the maximum finger force applied at each contact and
formulate the friction cone to take this information into account for the grasp quality measure. In the
second part, we will propose our method to connect grasp quality and local geometry of the object
being grasp that exist in a negative curvature feature. This connection is also established through
the friction cone. To explain the concepts, we use pictures displaying planar objects, but the method
we develop aims at the three-dimensional scenario.

6.1.1 Grasp Quality Metric with Hand Configuration

To start with, we address this problem on a dexterous hand with a limited configuration space
for each finger. In particular, we will start with the most commonly used finger type, which only
has two phalanges and limits each finger to move in a 2D plane.

Let’s consider the setup shown in Figure 6.3 with such a basic configuration.

Figure 6.3: Simple two link finger model.

Assume the joint angles are θi for joint i. Li denotes the length of the phalanges connected to
joint i. The fingertip pose pee can then be derived as:

pee =

(
L0 cos θ0 + L1 cos(θ0 + θ1)
L0 sin θ0 + L1 sin(θ0 + θ1)

)
(6.1)

The corresponding Jacobian matrix, defined as J =
δpee
δθ , can be expressed using the following

equation:

J =

(
−L0 sin θ0 − L1 sin(θ0 + θ1) −L1 sin(θ0 + θ1)
L0 cos θ0 + L1 cos(θ0 + θ1) L1 cos(θ0 + θ1)

)
(6.2)

Assume the torque applied at each joint is represented as T = [τ0, τ1]T and the force applied at the
contact is F. The relation between T and F is therefore:

T = JT F (6.3)

69

The derivation of the equation 6.3 is straightforward. In general, work is the dot-product of
a force and a displacement or a torque with an angular displacement. According to the principle of
virtual work, assume these displacements become infinitesimally small, then:

Fδpee = Tδθ (6.4)

Since by the definition of the Jacobian matrix, where J =
δpee
δθ , equation 6.4 may also be written as:

FT Jδθ = TTδθ (6.5)

Which yields to equation 6.3.
So if we want to know the end effector force range we can use the inverse Jacobian matrix:

F = (JT)−1T (6.6)

Assume that the maximum torque provided by each joint τmax, such that the amount of torque
applied at each joint is within the range [−τmax, τmax]. Then the force ellipsoid can be derived to
represent all possible forces that can be applied at each contact. Following equation 6.6, the force
ellipsoid is then represented as:

FT JJT F = cτ2
max (6.7)

where c is the number of joints of each finger. Note that the force ellipsoid for a finger moving in
2D is, indeed, an ellipse instead of an ellipsoid.

This problem can be easily generalized to 3D. However, if the finger can move in 3D, then
the finger itself forms a simple manipulator. The force applied at contact is therefore generalized to

F = (JT)+T (6.8)

where (JT)+ is the pseudo-inverse of the transpose of the Jacobian matrix. After obtaining the force
distribution at each finger contact, we can start to formalize it and embed it into the grasp quality
metric using the friction cone.

To prevent slipping on the surface, only the forces within the friction cone should be consid-
ered. Assume that f j(p) denotes the force generated by the hand at contact point p maximized along
jth direction inside the contact friction cone. We can therefore write f j(p) as

f j(p) = f j(p)N + f j(p)T (6.9)

where f j(p)N and f j(p)T is the decomposition of f j(p) along the surface of its normal direction and
its tangential direction. f j(p)T will be cancelled by the friction. Therefore the force we take into
account is f j(p)N . The magnitude of this force is, thereby, the actual force that affects the contact.
Therefore, the maximum force fH applied at contact point p with friction coefficient mu can be
represented by

fH(p) = max j
{
f j(p)N | f j(p)T ≤ µ f j(p)N

}
(6.10)

Figure 6.4 shows an 2D example for the forces at contact point p. The black ellipse captures
the possible force a 2D finger can apply. The lines in red are the boundary for the friction cone. The

70

area in green is the intersection of the friction cone and possible finger force, which shows the valid
finger force that can be applied. The line in blue captures the maximum finger force fH(p), it has
the maximum projection along the normal direction of the friction cone. The only difference for the
3D case with a 2D finger is that the friction cone is represented as a cone in 3D instead of a cone in
2D.

Figure 6.4: 2D example that locates fH(p)

In order to reflect this information in the grasp wrench space, we can simply scale the friction
cone at contact point p with fH(p) instead of using a unit friction cone. Assume that f1 is the unit
normal vector of the friction cone and f2 and f3 forms the tangent plane with respect to f1. Therefore
we define the hand friction cone FH(p) as

FH(p) =

{
f |

√
f 2
2 + f 2

3 ≤ µ fH(p) f1
}

(6.11)

The newly defined FH(p) captures the effect of the maximum finger force and can be applied
directly to generate the grasp wrench space. The grasp wrench space generated using the hand
friction cone will be based on the hand force, which will guide the grasp quality measures using the
grasp wrench space.

6.1.2 Grasp Quality Metrics with Negative Curvature

From an analytic perspective, differential geometry offers pertinent tools and concepts [48],
although, as we will outline in the next section, objects are most often represented using triangular
meshes and they, therefore, feature many local non-differentiable patches. Moreover, as we ex-
plained in the previous section, in practical scenarios, most representations rely on discrete models
(e.g., discretized friction cones). Therefore it will be necessary to eventually reconcile the continu-
ous models and representations with their discrete counterparts. For the time being we assume that
the boundary of the object being grasped can be decomposed as a finite collection of surfaces and
that grasping points are placed at differentiable points. That is to say that if p ∈ R3 is a contact point
on the surface of the object, then a neighborhood of p exists such that the points x on the surface

71

satisfy the equation g(x) = 0, where g : R3 → R is a suitable function twice differentiable in p.
Moreover, points inside the object are such that g(x) < 0. To begin with, consider Figure 6.5. The
three blue dots display three possible contact points on the surface of an object. According to our
previous considerations, point number 1 and number 3 lie in locally convex and concave patches on
the surface. Therefore point number 3 is more valuable than point number 1 in terms of its ability
to resist an external wrench, e.g., a wrench due to an external lateral force. Point number 2 repre-
sents an intermediate situation, whereby an orthogonal force applied there would help resist forces
pushing the object up, but not down.

Figure 6.5: Three different conditions for contact points on a curved surface bounding the object
from above.

Next, consider Figure 6.6. All cases depict contact points in locally convex patches on the
surface. However, from left to right, the local curvature increases, and then, intuitively, one would
prefer the rightmost contact point for its ability to restrain a disturbance wrench.

Figure 6.6: Contact points in blue on the black surface with different ratios of curvature.

Starting from the above observations, we then aim at the analytic definition of a quality metric
incorporating them. The idea is to dilate the friction cone F(p) at the contact point considering the
local curvature on the surface at the contact point. According to our assumptions, the Hessian matrix
of the function g at p exists. Let H(p) be such matrix. The local concavity or convexity of g in p
can be determined from the properties of H(p). If g is locally convex, then the friction cone remains
unchanged, as suggested by the first contact point in Figure 6.5. If g is instead locally concave, then
the friction cone should be expanded, as for the third contact point in Figure 6.5. Such expansion
should not be isotropic (i.e., uniform), but rather dependent on the local curvature. In other words,

72

the friction cone should be expanded more towards the directions in which g grows more, and vice
versa. Different surface curvature measures have been proposed in differential geometry. However,
aiming at a definition that can be turned into an easily computed method, we instead estimate the
curvature, and then the expansion of the friction code considering directional slices of function g.
Let v be a unit length vector on the tangent plane Tp, and let gv be the unidimensional function
obtained, evaluating g along the direction identified by v. For a given small constant h, we therefore
define

∇g′v =
g′(x + hv) − g′(x)

h
(6.12)

where g′ is a well defined derivative of the single variable function g evaluated along v. From an
algorithmic standpoint this can be achieved considering a few directions on the plane tangent to
g in p and then computing the ∇g′v along these directions. Directions can be uniformly spaced
or randomly selected. The same idea can be applied when g is locally concave, convex, or neither
convex nor concave (e.g., a saddle point). In each case the friction cone F(p) is expanded exclusively
in the directions along which ∇g′v is positive. This idea can be formalized as follows. For a given
force f, let vf be the unit length vector lying in Tp and having the same direction defined by f2 and
f3. In the frame t,u,w, vf is then1

vf =

0 f2√
f 2
2 + f 2

3

f3√
f 2
2 + f 2

3

 . (6.13)

We then define the expanded friction cone, namely object friction cone, FO(p) as

FO(p) =


f |

√
f 2
2 + f 2

3 ≤ µ f1 if ∇g′vf
(p) ≤ 0

f |
√

f 2
2 + f 2

3 ≤ (µ + ζ) f1 if ∇g′vf
(p) > 0

(6.14)

Where ζ = k∇g′vf
(p) and k is a fixed parameter k > 0. Note that in this definition we did not

write the condition f1 ≥ 0 in the interest of space, but this should nevertheless be assumed.
The newly defined FO(p) formally captures the cases intuitively discussed in Figure 6.5 and

6.6, i.e., it expands F(p) only along directions of negative curvature, and it moreover performs an
anisotropic expansion, i.e., the cone is grown more in the directions of larger negative curvature.
Note that from a geometric standpoint, FO(p) is still a cone, however, its base is no longer circular.

From a practical perspective, as we mentioned in the previous section, the friction cone F(p)
is most often represented by a regular pyramid. Moreover, as explained in the next section, ∇g′v f

is evaluated only along a finite number of directions. A convenient approach is to evaluate it only
along directions orthogonal to the pyramid edges, and to then expand only the edges associated with
directions revealing negative curvatures.

1Recall that the first component is along the orthogonal axis t.

73

6.1.3 Combining the Hand Friction Cone and Object Friction Cone

In previous sections, we proposed 2 kinds of a modified friction cone; one taking into account
the hand information and the other one considering the object local geometry. Furthermore, these
two friction cones can be simply combined since that scaling of the friction cone, along its normal
direction, is not in conflict with expanding the friction cone along the tangent direction. Therefore,
we define a new combined friction cone FC(p) as

FC(p) =


f |

√
f 2
2 + f 2

3 ≤ µ fH(p) f1 if ∇g′vf
(p) ≤ 0

f |
√

f 2
2 + f 2

3 ≤ (µ + k∇g′vf
(p)) fH(p) f1 if ∇g′vf

(p) > 0
(6.15)

This newly defined friction cone combines maximum hand force and object local geometry,
which, will provide a tighter and more comprehensive grasp quality measure.

6.2 Experiments and Results

6.2.1 Preliminary Results Considering Hand Configuration

To illustrate the effect of using the hand friction cone instead of the unit friction cone, we first
consider a simple planar grasp. In order to quantify the grasp, we use the quality measure formerly
introduce, namely the Ferrari and Canny metric (indicated as QGWS or Quality). The object to be
grasped is a rectangle where the hand is constructed by a palm with two fingers, each with two joints.
We control the hand to always make the same contact with respect to the object, while changing the
hand configurations from fully bent to fully stretched. Figure 6.7 shows the simple plot for four
sample cases, where, from left to right, the hand is stretched out, holding the rectangle object shown
in cyan further away from the palm. The red ellipse represents the force ellipsoid and the green
part of this ellipsoid is the intersection of the force ellipsoid with the friction cone. Notably, the
resultant hand friction cone, shown in black, is shrinking as the hand is stretched out. Similarly
the corresponding quality measure of QGWS , using the hand friction cone, is also decreasing. On
the other hand, if we used the unit friction cone, QGWS will remain constant for all four cases.
Furthermore, Figure 6.8 captures the change of the scalar value (in red) used for the hand friction
cone and the corresponding quality (in blue) with respect to the hand configuration from fully bent
to fully stretched. Note that the curves are following a similar trend for the scalar and quality since
the grasp wrench space used to calculate the quality is scaled entirely by the corresponding scalar.
However, this phenomenon will only hold when the scalar for all fingers are the same.

Note that the Jacobian matrix for the hand configuration representing fully bent and fully
stretched is singular, which is the case we want to avoid. Therefore, the experiments in this subsec-
tion only approached fully bent and fully stretched without actually taking these two situations into
account.

74

Figure 6.7: An example of a two finger hand (shown in blue) grasping a planar object (shown
in cyan) at the same contact position with different hand configurations. The force ellipsoid is
represented in red, the discretized points (shown in green) are the intersecting points between the
force ellipsoid and the friction cone, and finally, the cone (shown in black) is the hand friction cone.

Figure 6.8: The scale of the friction and the corresponding quality measure with respect to the hand
configuration. From left to right, the hand is changing from fully bent to fully stretched.

6.2.2 Preliminary Results Considering The Target Object

Revisiting Figures 6.5 and 6.6, our first experiment shows the effect of the revised definition
of the friction cone on the value of the grasp metrics. In particular, we start considering the depen-
dence on the ratio of negative curvature. In the following we consider two quality measures formerly
discussed, namely the Ferrari and Canny metric (indicated as QGWS or Quality) and the volume of
the grasp wrench space (indicated as VGWS). The reason to also consider this second metric will
become clear later on in this section. We consider objects similar to Figure 6.2(a), where the curve
is generated by the function x−(y) = −αy2 − c and x+(y) = αy2 + c. By varying y within [−y0, y0],
we obtain an object with the center of mass located at (0, 0). We fix our grasp point p1 at (−c, 0) and
p2 (c, 0). Therefore, we use the expanded friction cone FO(p1) and FO(p2) to calculate the grasp
wrench space.

The top row in Figure 6.9 shows an example with c = 2, k = 0.05 and α = 0, 2, 4. We
approximate ∇g′vf

(p) with h = 0.001, so that ∇g′vf
(p) = 2α. The Ferrari and Canny quality and grasp

wrench space volume are indicated below each object. The examples show that in this case both
metrics are increased as the curvature of the object increases and the friction cone is correspondingly

75

Figure 6.9: 2D example of objects with different contacting curvature. Red line shows the expanded
friction cone at the contact point.

expanded. Figure 6.10 displays the relationship between the Ferrari and Canny grasp quality and
the curvature.

Next, we consider a situation similar to point (2) in Figure 6.5. In this case the curve is
generated by function x−(y) = αy3 − c and x+(y) = αy3 + c, with y within [−y0, y0]. The center of
mass is still located at (0, 0) and we fix our grasp points at p1 at (−c, 0) and p2 (c, 0). Then, we use
the expanded friction cone FO(p1) and FO(p2) to calculate the grasp wrench space. The bottom row
in Figure 6.9 shows some examples with with c = 2, k = 33.33 and α = 0, 2, 4. We approximate
∇g′vf

(p) with h = 0.001, so that ∇g′vf
(p) = 0.003α. As for the previous examples, the values for both

the Ferrari and Canny and VGWS metrics are shown. These last examples show why we considered
VGWS , too. In this case the Ferrari and Canny metric does not change because it is defined by the
worst case disturbance. In this case, the asymmetric expansion of the friction cone helps in resisting
disturbance forces, but is neutral with respect to a disturbance torque rotating the object counter
clockwise. This is consistent with the metric definition, but is, indeed, one of the weaknesses of this
metric, i.e., it is defined by worst case scenarios that may hardly occur in practice. On the contrary,
the metric considering the volume of the grasp wrench space grows, indicating that the grasp can
resist a wider range of force disturbances. Note that this would not happen with the classic definition
of friction cone.

6.2.3 Results on Combined Friction Cone

In section 6.2.1 and 6.2.2, we separately showed the impact of both modified versions of
the friction cones. However, as mentioned earlier, these two ways of modifying the friction cone
can be combined following equation 6.15. Figure 6.11 shows the effect of the combined friction
cone. From left to right, the figure follows 6.7, where the hand is stretching out, and, from top to
bottom, the figure is following Figure 6.9, where the negative curvature at each contact is increasing.
However, we ignore the fact that for some cases the object is in collision with the hand, because we
only want to illustrate the impact of the combined friction cone. As obtained directly from Figure
6.11, the friction cone is shrinking from left to right and is expanding from top to bottom, while the

76

Figure 6.10: The relationship between grasp quality and the curvature of the surface for setup shown
in Figure 6.9.

quality is decreasing from left to right and increasing from top to bottom.

6.2.4 Impact on Grasp Planning

In this section we discuss, in detail, the impact of using the hand friction cone instead of a
unit friction cone on grasp planning. Note that the negative curvature feature can be used directly
to construct a grasp planner, and will be introduced in chapter 7. Therefore in this section, we only
focus on the effect of the hand.

The grasp planner we used to compare the effect of the hand friction cone and the unit friction
cone is based on a random planner similar to the approach presented in GraspIt! [67]. The hand we
used in this experiment is the Schunk Dextrous Hand (SDH) with its model shown in Figure 6.12.
This hand is a fully actuated hand that has three fingers and each finger has two joints controlled
independently using gear boxes. During the planning process, the SDH hand is randomly placed
with respect to a target object. We apply a random configuration on the upper joint of each finger
and close the hand to locate contact points. Once the contact points are determined, we calculate
the Jacobian matrix at each contact point with respect to the base of the finger to determine the
scale value used for the hand friction cone. Finally, we calculate the QGWS quality value of the
grasp using both the hand friction cone and the unit friction cone. Figure 6.13 shows the quality
difference measure by QGWS HFC − QGWS UFC for three different objects for over 400 runs. Refer
to 6.14 for the models. The difference can be either positive or negative, indicating that some grasps
are preferred by QGWS using the hand friction cone and some are preferred by QGWS using the unit
friction cone.

Figure 6.14 shows the best grasp, i.e., the grasp that has the highest quality measure by both
QGWS using the hand friction cone, as in the top row, and by QGWS using the unit friction cone, as
in the bottom row, for 3 different objects. The major difference between the best grasps is that the
grasps selected by QGWS , using the hand friction cone, are making contact closer to the bottom of
the fingers, which generates a larger contact force. On the other hand, the best grasps selected by
QGWS , using the unit friction cone, are only affected by the contact location regardless to the hand.
This result matches the results presented in section 6.2.1.

77

Figure 6.11: An example of a hand (in blue) with two fingers, each with two link grasping objects
shown in cyan. The force ellipsoid is represented in red, the discretized points (shown in green) are
the intersecting points between the force ellipsoid and the friction cone, and finally, the cone shown
in black is the combined friction cone.

6.3 Conclusions

In this chapter, we addressed the effect of the hand configuration with respect to grasp quality.
By limiting the maximum torque at each joint of the hand, we can use the Jacobian matrix, with
regards to the hand configuration, to calculate the maximum force, which can be applied at each
contact point. This maximum force guides the scale of the unit friction cone in order to connect the
hand configuration with the grasp wrench space. We proposed the hand friction cone to represent
the effect of hand configuration and used it to derive the quality of the grasp. We also considered the
problem of grasping objects with negative curvature. More specifically, we showed that grasping at

78

Figure 6.12: The model for Schunk Dextrous Hand.

Figure 6.13: The quality difference between QGWS for the hand friction cone and the unit friction
cone for random grasps on 3 different objects: a DoraLogo, a bottle and a duck.

negative curvature points are, in general, more stable compared to other kinds of surface geometry.
We formulated the effect and gain of negative curvature contact and connected this feature with
grasp wrench space through a modified version of the friction cone.

Both the negative curvature feature on the target object and the hand configuration affect the
representation of the friction cone. However, the negative curvature feature is modifying the friction
cone by expanding the unit friction cone along its tangent direction while the hand configuration is
scaling it along its normal direction. We noticed that it is possible to combine them. The resultant
version of the combined friction cone will contain both the negative curvature feature and the hand
configuration. Therefore, we proposed a modified grasp quality metric that accounts for finger
forces and local curvatures and have shown that it overcomes many of the problems associated with
commonly used metrics.

79

Figure 6.14: The best grasps selected by QGWS using the hand friction cone, shown in the top
row, and by QGWS using the unit friction cone, shown in the bottom row, for 3 different objects: a
DoraLogo, a bottle and a duck.

80

Chapter 7

Grasp Planner Development

In this chapter we propose three grasp planners we developed. In general, grasp planners
can be classified into two categories; namely, model-less grasp planners and model-based grasp
planners. Model-less grasp planners directly process captured data, i.e., from vision or touch, and
locate features for the actuator to grasp. The model-based grasp planners take advantage of the
object model and plan grasps upfront. The three planners we introduce in this chapter cover both
types of planners: one model-less and two model-based. The model-less planner was based on the
negative curvature feature introduced in chapter 6. One of the model-based planners also takes ad-
vantage of the negative curvature and calculates candidate grasps using the object geometry. These
two planners will be introduced in section 7.1. The other model-based planner uses an optimization
approach and moves the contact globally on the surface of the object to find local optimal grasps.
This planner will be discussed in 7.2. The quality metric we used in this chapter is QGWS . However,
this can be substituted with any metric, including the metrics we proposed in chapter 6.

7.1 Grasp Planner using Negative Curvature

In this section we present two grasp planners using the grasp quality metric we presented in
section 6.1.2 to inform its search through the space of possible grasps. The model based planner
follows the pipeline shown in Figure 2.2, where, in the precomputation step, all grasp candidates are
computed with respect to the negative curvature features. The other model-less planner is developed
according to the pipeline shown in Figure 2.4. This planner passes the sensorial data to a feature
locator, which locates negative curvature features directly from the input point cloud. While the
underlying principles are aiming to validate the algorithm on our existing robotic hardware, some
implementation choices are made considering the hardware we will use. In particular, we focus on
the multifingered Dora Hand produced by Dorabot, Inc., whose CAD rendering is shown in Figure
7.1. Note that while the fingers can be closed, they cannot be moved around the palm of the hand,
and therefore the relative position of their first joint remains constant. The finger on the left of the
figure is indicated as finger 1 in the following.

81

Figure 7.1: Dora Hand model.

7.1.1 Model Based Grasp Planning

As formerly noted in [24], in most scenarios, objects are represented using triangular meshes.
This is often true when also considering objects with curved surfaces since they can be modeled as a
large collection of small size triangles. In the following, we hypothesize that the objects’ surface is
represented by meshes of triangles, and it is, therefore, necessary to appropriately adapt the general
concepts we developed, assuming differential surfaces.

The planner starts locating all edges whose adjacent faces form a concave region. Figure 7.2
shows a side view of two adjacent faces forming in a convex (left) and a concave (right) region. We
can identify whether the region is convex or concave by calculating the dot product of two vectors.
The first vector,

−→
N , is the sum of the normal vectors of these two adjacent faces,

−→
N1 and

−→
N2. The

other vector,
−→
V ′ is formed by the midpoint point of the vertices of these two adjacent faces that are

not on the common edge, V1 and V ′1, and one of the vertices on the common edge, V0 or V2. Note
that in our case of triangular mesh representation, the normal vector of each face is always pointing
towards the outside of the object. If the region formed by two adjacent faces is convex, the midpoint
point of V1 and V ′1 must be inside of the object, and the dot product of

−→
N and

−→
V ′ will be negative. On

the other other hand, if the dot product is positive, then the region is concave. A special case arises
when

−→
N1 =

−→
N2, i.e., the two adjacent faces are on the same plane. In this case, the dot product will

be 0 which also indicates these two faces forms a region that is neither strictly convex nor concave.
Figure 7.3 shows some examples, with the common edges of two adjacent faces forming a concave
region shown in red, while the normals of the two adjacent faces are shown in green and blue.

Figure 7.2: Side view of two adjacent faces forming convex and concave region.

82

Figure 7.3: Examples of the objects we used in simulation. The top row also shows the negative
curvature attached to edges in red lines. Blue and green lines are the normal vector of the two
adjacent faces connected by the negative curve edge.

The planner we developed is inspired by the approach presented in GraspIt! [67], i.e., it ran-
domly generates hand positions around the object to be grasped and then determines the contact
points by simulating finger closure. Eventually, the grasp with the highest value for the grasping
metric is returned. This idea is adapted to the hand we consider as follows. First, a point of neg-
ative curvature is determined on the triangular mesh. A hand configuration is then generated by
approaching the fingertip of finger 1 towards the negative curvature point. We here refer to the fin-
gertip as the center of the top phalanx. If both sides of finger 1 make contact with the object and the
face normal at each contact forms a concave region, we move on to the next step. Otherwise, this
negative curvature point is rejected. Note that when we first locate a point of negative curvature, the
size of the negative curvature is relevant to the face size. Since the size of each face varies, not all
negative curvature points will generate a valid grasping point on the negative curvature. Next, the
other two contact points are determined by projecting where the other two fingers will make contact
when closed. At this point the quality of the grasp configuration is determined. The process is
then repeated multiple times, and at each iteration a new point with negative curvature is randomly
chosen. Figure 7.4 shows some example grasps computed by the planner we just described. Note
that the finger 1 always makes contact on the surface on negative curvature.

After obtaining grasp candidates, they are measured by the grasp quality metric QGWS . We
then construct a database with grasps that have a quality value higher than a predefined threshold.
We set the threshold to be 80% of the highest quality calculated for this target object. The database
we constructed stores three sets of information: object ID, the relative pose of the hand with respect
to the object and hand configuration. The object ID is used to determine whether the grasp is
matched to the detected object. The relative pose of the hand, with respect to the object, is used
to determine the grasp and check if it is feasible to grasp from. The hand configuration stores, in
detail, how the joints of the hand is positioned when the object is grasped. Both relative pose and

83

hand configuration are useful to compute a pregrasp pose.

Figure 7.4: Example output from the model-based grasp planner for six different objects.

Perception Pipeline Using a Model-less Approach

For a typical model-based grasp planner, precise information, including an object’s ID and
pose, are given to the database. This information is usually handled by human knowledge instead
of sensor data captured in real-time. However, in order to develop an autonomous framework,
we use a model-less approach based on vision to obtain the object’s ID and pose. This vision
pipeline containing object segmentation, recognition and pose estimation, is used in order to identify
the object to be grasped and determine the pose of the object. Segmentation is done by Locally
Convex Connected Patches (LCCP) algorithm described in [20]. This algorithm decomposes the
scene into a voxel grid based adjacency-graph of surface patches. A novel combination of simple
criteria, which operate on the local geometry of these patches, is then used to classify edges in the
graph as convex or concave. As a result, the graph is segmented into locally convex connected
subgraphs, which represent object parts with high accuracy. A descriptor for 3D point cloud data,
called the Viewpoint Feature Histogram (VFH) [84], was used for object recognition and pose
estimation. VFH encodes geometry and viewpoint, which is used as a distinctive signature that
allows simultaneous recognition of the object and its pose. However, the pose estimated by this
algorithm is not very accurate. Another algorithm, called Iterative Closest Point (ICP) algorithm [9],
is then used to produce an accurate pose. ICP matches the segmented point cloud with a prestored
point cloud representing the object we recognized using VFH. This algorithm works at the scale of
points and tries to minimize the sum distance between all matching point pairs. Due to these reasons,
ICP is known as one of most accurate algorithms for pose estimation. Once these visions related
processes are finished, we will know the model of the object along with its pose in the environment.
Thus, we can query grasps with high quality measure from the database we previously constructed
to execute on real robots.

7.1.2 Model-less Grasp Planner

In general, negative curvature is a valuable feature that can be determined directly using
point clouds. We hereby developed an algorithm which takes a point cloud captured in real time

84

as an input and outputs a pose array listing of all possible fingertip poses at a point with negative
curvature.

The input point cloud is raw data, as shown in 7.5(a), which is too noisy to locate negative
curvatures. Therefore we first pass the point cloud through some pre-process steps in the following
order using Point Cloud Library (PCL) [85]:

• Remove error data, which are either NaN or having 0 depth value. An example of this step is
shown in Figure 7.5(b).

• Remove outliers caused by noisy measurements, based on the computation of the distribution
of a point to its neighbor’s distances. The output of an example of this step is shown in Figure
7.5(b). 1

• Smooth and resample noisy data using Moving Least Squares(MLS) surface reconstruction
method. Figure 7.5(c) shows an example of the smoothing step. 2

Figure 7.5: An example of step by step point cloud processing demonstration. The input point cloud
is shown in (a). (b) shows the filtered point cloud after removing error and noise data. A smoothed
point cloud is then shown in (c). (d) shows the resultant down-sampled point cloud. (e) shows the
output point cloud with negative curvature points shown in red.

1Refer to http://pointclouds.org/documentation/tutorials/statistical outlier.php for a detailed instruction.
2Refer to http://pointclouds.org/documentation/tutorials/resampling.php for a detailed instruction.

85

After these preprocessing steps, we obtain a cleaner and less noisy point cloud for us to
start with, namely P0. A step by step point cloud demonstration is shown in Figure 7.5, where the
preprocessing steps are shown from subfigures (a) to (c).

After preprocessing, an algorithm focused on points instead of the entire point cloud is de-
veloped in order to locate negative curvature points. Furthermore, a hand configuration that makes
contact between one of the fingertips and a negative curvature point is calculated considering the
model of the hand. This algorithm follows the steps below:

Figure 7.6: An example of step by step demonstration of our algorithm that constructs fingertip
pose from the initial point cloud. The initial point cloud is shown in (a). (b) shows the result
after querying. (c) shows the partitioned point cloud and the constructed bin separated by colored
lines. The corresponding partition of the points into the bins are also shown. (d) shows the height
calculation of each bin with positive values representing a negative curvature along the bin direction
and negative values representing a positive curvature along the bin direction. The output fingertip
pose (in red arrow) is shown in (e).

Normal Calculation: Calculate the surface normal for all points in P0 with the viewing
point set to the camera. The calculation of surface normal with respect to a point is calculated using
Principal Component Analysis (PCA) of a covariance matrix created from the nearest neighbors of

86

this point. The nearest neighbors are set within a range defined by the user. Note that since we are
dealing with a point cloud, we do not need to consider the special case where points on the boundary
does not have normal.3

Down Sampling: Down sample the point cloud using a voxelized grid approach to obtain a
subset Pd with a limited amount of points. The outcome of this step is shown in 7.5(d). 4 This down
sampling step is necessary because processing all points within the point cloud to locate negative
curvature is very inefficient. A region of the concave feature usually contains a set of points, and
any point from this set is sufficient to represent the entire set.

Querying: For all points pi in Pd, query all points pi j in P0 such that r1 ≤ ||pi − pi j||2 ≤ r2,
i.e., querying point from P0 within a spherical ring for all points in set Pd. r1 and r2 are constants
relevant to the size of the fingertip. This step is shown in Figure 7.6(b). The reason to set a lower
bound is that if the point very close to pi is some noisy data, then it will have a huge impact in
the partition step, which will produce wrong results. Also, time will be saved by processing less
points. We set an upper bound with regards to the fingertip size because we are only looking for
local negative curvature points, which are not affected by the points further away.

Projection: Project pi j for all j to the tangent plane of the normal of pi. Therefore, the
tangent plane projection will be bounded by a circle with radius r2, shown in Figure 7.6(c).

Bin Construction: Equally divide the tangent plane determined by pi into 4s bin, namely bk,
k ∈ [0, 4s] shown in Figure 7.6(c), where s is a constant integer. We chose the number of bins to be
a multiple of 4 in order to simplify later steps.

Partition: We now project the normalized vector
−−−−−−→pi j−pi
||pi j−pi ||2

for all j on the normal of pi. As-

sume
−→
d0 is an arbitrary direction within the tangent plane determined by the normal of pi. The bin

index k is determined by the angle α between −−−−−−→pi j − pi and
−→
d0, where k = b 2αs

π c. The projection

length pli j, as defined in Lemma 9 in chapter 4, is calculated with respect to
−−−−−−→pi j−pi
||pi j−pi ||2

. This step is

also shown in Figure 7.6(c). The reason we used normalized vector
−−−−−−→pi j−pi
||pi j−pi ||2

instead of −−−−−−→pi j − pi is
because we are focused on the curvature with regards to the size of bins rather than each points.

Bin Height Calculation: For each bin bk, calculate the average value of the projected length
lk, where lk = Avg({pli j|pli j ∈ bk}). This step is shown in Figure 7.6(d).

Locate Points with Negative Curvature Feature: If ll < lk < lu, ll < lk+2s < lu, lk+s < 0 and
lk+3s < 0, where ll and lu are the lower and upper threshold that we chose to set for the curvature
value and 0 ≤ ll < lu ≤ 1, then we define this point as a point that has the negative curvature feature
along the direction defined by lk and lk+s. Otherwise, this point is not a point with the negative
curvature feature along the direction defined by lk and lk+s. In the case of grasp planning, our goal
is to gain support for each finger. This requires two conditions. The first one is the support must be
along both sides of the finger and the second one is we must be able to place a finger at this point.
In order to satisfy both conditions, we need to look at two directions orthogonal to each other in
the tangent plane, where along one direction it forms a negative curvature and along its orthogonal
direction, the curvature is non negative.

3Refer to http://pointclouds.org/documentation/tutorials/normal estimation.php for a detailed instruction.
4Refer to http://pointclouds.org/documentation/tutorials/voxel grid.php for a detailed instruction.

87

Figure 7.7: Coordinate system at the fingertip.

Construct Fingertip Pose: After determining the direction of a negative curvature point, we
can align one finger of our gripper. Figure 7.7 shows the coordinate system at the fingertip. The
output poses of the fingertip will then have the translation equal to the position of pi; the z-axis
of orientation aligned with the normal of pi, facing towards the object; the y-axis aligned with the
direction defined by bk and bk+2s and x-axis aligned with bk+s and bk+3s. An example is shown in
Figure 7.6(e). Note that for every negative curvature point, the fingertip pose is generated in pairs,
where the y-axis of the fingertip can be aligned with both directions defined by bk and bk+2s.

Construct Hand Pose: After obtaining the fingertip pose, the next problem is how to set the
hand pose. This step is purely based on the robotic hand being used. For our case, DoraHand is
used to perform in real robot experiment. The hand pose, with regard to this hand, is set to a pose
facing towards the object and placed with an offset equal to the gripper length along the direction
determined by bk+s and bk+3s, with respect to the negative curvature point. The left column of Figure
7.8 shows some examples of where the hand is placed. In general, as long as one of the fingertips
can be place on the negative curvature point, it would be a valid hand pose to set.

Algorithm Sketch

Putting all the previous steps together we obtain algorithm 4. The input of the algorithm is
the raw point cloud Praw and parameters r1, r2, s, ll and lu, defined in the previous steps. The output
of the algorithm is the pose array that stores the end-effector pose with respect to the hand. The
stored information guarantees that one of the fingertips of the hand will be in contact with a point
having a negative curvature feature. Line 3 to 5 are the preprocessing steps on the raw point cloud.
Line 6 to 21 are the main steps to locate a point with negative curvature. Line 22 to 24 calculates the
corresponding end-effector pose with respect to each negative curvature point. The time complexity
of the algorithm is directly related to the size of the raw point cloud. The size of Pd and the size of
P′i is comparably smaller than the size of the raw point cloud.

88

Algorithm 4 Negative curvature feature locator algorithm
1: Data : Praw, r1, r2, s, ll, lu
2: Result : PAe f f

3: P f iltered ← RemoveErrorData(Praw)
4: P f iltered ← RemoveOutlier(P f iltered)
5: P0 ← S mooth(P f iltered)
6: N ← NormalCalculation(P0)
7: Pd ← DownS ample(P0)
8: for pi ∈ Pd do
9: Pi ← {pi j|r1 ≤ ||pi − pi j||2 ≤ r2}

10: P′i ← Pro jectAlongNi(Pi)
11: b← ConstructBin(4s)
12: Set

−→
d0

13: for pi j ∈ P′i do
14: α← GetAngle(−−−−−−→pi j − pi,

−→
d0)

15: k ← b2αs
π c

16: pli j ← Pro jectionLength(
−−−−−−→pi j−pi
||pi j−pi ||2

)
17: Partition pli j to bk

18: for k ← 1 to 4s do
19: lk ← Avg({pli j|pli j ∈ bk})
20: for k ← 1 to s do
21: if ll < lk < lu and ll < lk+2s < lu and lk+s < 0 and lk+3s < 0 then
22: p f inger ← ConstructFingerPose(pi)
23: phand ← ConstructHandPose(p f inger)
24: PAe f f ← PushBack(phand)

Figure 7.8 shows the outcome of our planner. The left side shows the real time captured
point cloud in Rviz5. The red arrows are the pose array containing feasible poses for the hand.
The axis in RGB is the one we selected to perform grasping. The right side of the figure shows
the actual grasp executed on the robot. The run time is limited by the amount of points in the
input cloud. Although we had embedded a down-sampling technique to decrease the number of
points to be processed, when a huge point cloud with rich environmental information is fed into the
system, it will still be time consuming. A possible way to improve the calculation speed for this
case would be designing a point cloud filter based on the environment setup and remove as much
environment information as possible, keeping just the object’s point cloud. Environment, for most
cases, are modelled upfront for collision checking, ensuring the safety and correctness of the real
robot actuation. This information can be used directly to construct the point cloud filter.

5Refer to http://wiki.ros.org/rviz for more information

89

Figure 7.8: Input point clouds captured in real time showing on the left and the resultant grasp of
the real robot shown in the right for three objects.

7.1.3 Negative Curvature Planner Comparison

The model-based grasp planner relies on a vision pipeline to recognize the object and obtain
its pose. This is more time consuming compared to the model-less grasp planner which only needs
to locate negative curvature points for a given point cloud. Also, the model-based grasp planner
faces the limitation of the set of objects it is capable of dealing with. If the object is unknown, this
planner will not be able to recognize the object and obtain grasp candidates. On the other hand,
the model-less grasp planner can process any object as long as a negative curvature feature can be
seen. Preprocesses such as filtering environment and segmentation will help to speed up the whole
pipeline, although it is not necessary and we would still get valid results. The downside of this
model-less planner is that we would not be able to guarantee a high quality grasp. One way to
improve would be projecting the point to the plane determined by the negative curvature point’s
normal direction and negative curvature direction. Then we can calculate the quality for this planar

90

Figure 7.9: Grasp quality comparison with same amount of grasps for 3 different objects.

grasp. Although grasping at negative curvature points would be beneficial for the quality, it is not
possible for all objects with this feature to ensure a force closure grasp. Consider the cap of a bottle
that forms a negative curve. Even grasping at this featured point is totally valid, but since it is too
off to one side of the object, a huge torque will occur, which the hand will be unable to resist.

In conclusion, if we are constrained with only a limited amount of objects, then the model-
based grasp planner would be more stable. However, the model-less grasp planner is more adaptive
and would be a good start when facing more general object setup.

7.1.4 Experiments and Results

In this section we present some results illustrating the metric we proposed in chapter 6. Both
planners were also validated on a commercially available robot and the comparison result between
these two planners will also be given.

7.1.4.1 Grasp Planning Comparison

To show how the grasp planner we developed takes advantage of negative curvatures, we
compare it with a baseline random grasp planner, as it is often done in literature [58, 75]. In the
following, our planner is referred to as NC planner, where NC stands for negative curvature. The
random grasp planner was implemented by simply giving a random pose of the object with respect
to the hand, then closing the hand based on its hardware structure and measure the quality of the
grasp. This is basically the GraspIt! approach.

We chose the 3 objects shown in Figure 7.12, i.e. a duck, a bottle and an eight-shaped object
representing the logo of Dorabot, Inc., (referred to as DoraLogo in the following). Figure 7.9 shows
the comparison results between our grasp planner and the random grasp planner with both of them
generating the same amount of grasps. Negative curvatures on given objects are limited to a fix
amount, so that grasp candidates are also limited for the NC grasp planner. In order to show a more
meaningful comparison, we generate the same amount of grasps using a random grasp planner. The
time spent to generate grasps using our NC grasp planner and the random planner are shown in
Table 7.1. Clearly, our NC grasp planner is more efficient in generating grasps with higher quality.

91

Object DoraLogo Bottle Duck
Grasp planner NC Rand NC Rand NC Rand
Avg Time(s) 4.974 8.735 0.832 5.523 2.535 13.715

Table 7.1: Comparison result for time to generate grasps in the simulation.

For fairness, it is also important to notice that the NC grasp planner has some limitations.
The first drawback is that our NC grasp planner offers no advantages if the object to be grasped has
no negative curvature areas. Secondly, due to the limited amount of finger placement on negative
curvatures, the database may only contains grasps from certain directions. However, this might not
be enough depending on the placement of the object. In addition, being biased towards areas of
negative curvature might end up in low quality grasps if the center of mass of the object is far from
these areas.

7.1.5 Real Robot Experiment

7.1.5.1 Model-Based Grasp Planner

We conclude the validation of the method we proposed using a Dorabot mobile manipulator
(see Figure 7.10). This robot features an omni-directional mobile base with 360 degree coverage
by a lidar sensor, and it includes a lifter, a UR5 robot arm, and a reconfigurable dexterous robot
hand with an eye-in-hand RGBD vision sensor. The platform can be controlled using ROS. The
hand is designed in a modular fashion, and all flanges in the fingers are the same module. Each
joint may be under actuated or not. Each finger can have any number of phalanges, and a hand can
have any number of fingers. Every finger can bend in any direction, and all phalanges are equipped
with tactile sensors and a joint angle sensor. The hand can then function in multiple ways, from a
parallel jaw gripper to an anthropomorphic mode. The software pipeline is shown in Figure 7.11,
and our grasp planar results intervenes in the third step—retrieving the grasp from the database.
In this section, we show the real robot performance of grasping objects with and without negative
curvature. The objects we used to perform our test are those shown in Figure 7.12.

We ran 10 grasp tests on each object with the database generated by the NC grasp planner
and a random grasp planner. Successful runs are determined by fully grasping the object from the
bin, picking it up, and dropping the object at a predefined location, while failure is defined as not
being able to complete the whole process. Failure is typically caused by the object sliding during
motion or being unable to determine an appropriate grasp configuration. Figure 7.13 shows suc-
cessful grasps for each object with our NC grasp planner whereas Table 7.2 summarizes the overall
result.

92

Figure 7.10: Robot hardware.

Figure 7.11: Software pipeline.

Figure 7.13: Grasp example with real robot.

The NC grasp planner clearly outperforms the grasps from the baseline random grasp planner.
Since sliding may occur while the object is moving, grasping on a negative curve can better restrain
the object, so we get fewer failures caused by sliding.

Figure 7.12: Objects used in real robot example.

93

Object DoraLogo Bottle Duck
Grasp planner NC Rand NC Rand NC Rand

Success 8 4 6 5 7 4
Success (sliding) 1 1 2 1 0 0

Fail (sliding) 1 2 0 1 3 4
Fail (motion planning) 0 3 2 3 0 2

Table 7.2: Comparison results from the real robot experiment.

7.1.5.2 Model-less Grasp Planner

The setup of the real robot experiment for the model-less grasp planner is simpler compared
to the experiment setup for the model-based grasp planner. We moved the robot down from its
mobile base and placed it directly on the ground as shown in Figure 7.14. The objects were placed
on a table top instead of a bin. Such setup can bypass the locate bin step. Also, since we are
directly processing the point cloud, the segmentation and object recognition step is also redundant.
Therefore, the pipeline for this setup is reduced to the diagram shown in Figure 7.15.

Figure 7.14: Robot hardware

Figure 7.15: Software pipeline.

To address the adaptivity of the model-less planner, we perform the same test, i.e. run 10
grasp tests on each object, on 6 different objects. Three of them were used in the previous tests
shown in 7.12, and three of them were newly introduced, shown in Figure 7.16. One thing needing
clarification is that in these experiments we control the relative pose of the object against the camera
in order to guarantee that the input point cloud contains negative curvature. The results of the test
are shown in table 7.3. Table 7.3 has one more entry: fail with grasp planning. This item stands

94

Figure 7.16: Objects used in real robot example.

Object DoraLogo Bottle Duck Goggle Box Ball Gripper Vase
Success 9 7 5 6 6 5

Success (sliding) 0 1 0 2 1 1
Fail (sliding) 1 1 2 2 2 3

Fail (motion planning) 0 0 2 0 0 1
Fail (grasp planning) 0 1 1 0 1 0

Table 7.3: Test results of real robot experiment for the model-less grasp planner.

for when the planner failed to locate a negative curve feature directly from the input point cloud.
Therefore it fails with grasp planning.

As shown in table 7.3, the success rate for the model-less planner is comparable to the results
using the database, shown in table 7.2. It is also shown that the model-less performs well with
unknown objects. However, there are still some limitations using the model-less planner. The most
significant one is the viewing angle. Since this method grasps objects based only on the point cloud,
the viewing angle of the point cloud will have a major impact. If the input point cloud is captured
from an angle that does not contain a negative curvature, then this method will definitely fail. On
the other hand, if we use the model-based grasp planner, although the negative feature is not seen,
it still works as long as the object is recognized.

7.2 Global Grasp Planning Using Triangular Meshes

In this section, we will introduce the grasp planner we built aiming to find local optimal grasps
over the entire object. We assume that B is represented using a triangular mesh. This assumption is
consistent with current practices in CAD software [24]. We will show how the planner is capable
of exploring the whole object and how much we can gain compared to the base line random grasp
method. A variation of this planner is also proposed to consider hand structure. These two versions
share the same framework where the first one optimizes over the contact point and the other one

95

optimizes over the hand configuration.

7.2.1 Continuity

The objective function for grasp planner problems is the quality of the grasp. The variable
that controls the optimization are the contact points. Although the quality measure we use here is
computed through the convex hull, the quality Q is measured by a point on the convex hull, i.e., the
closest point on the convex hull to the origin. This point is a linear combination of the approximated
friction cone related to each contact. The reason gradient based approaches work in this case, is that
the surface to place contact on is continuous, such that the gradient can be found. However, for the
triangular mesh representation, the edge intersecting two triangles is not continuous. In this case,
a strictly gradient based method will not fit if we want to optimize over all surfaces, but a sample
based objective driven method will have the ability to perform such process, i.e., sample the points
around current contacts, the one that returns the best quality (objective function value) is considered
to be the direction with maximum gradient. Also, optimizing over all contacts at same time using
this method can be difficult. Therefore, we use coordinate descent approach, which optimizes over
one contact then moves to the next one. Since, by construction, we get a better objective function
value, once it converges, it must have reached a local maximum.

The problem configuration is similar to the hill climbing problem. It is known that for such
a problem, a global optimum is not guaranteed to be found. Many methods have been proposed to
find better a local maximum such as random restarts, local beam, and so on. We use random restarts
to help us solve the problem.

7.2.2 Proposed Approach

Let T = {T1, . . .TN} be the set of N triangles in the mesh. A grasp on B with n contacts
will then associate each finger with one of the N triangles. In general, multiple fingers could be
associated with the same triangle. Unless the object to be grasped is simple, this case will usually
not result in a satisfactory grasp.

Our grasp planning method works as follows. A sequence of random grasps assigning each
of the n fingers to one of the triangles are tested on the object. This is an online process that will set
a threshold Thr for initial grasps. Then, we again run random grasps until the score is above some
percentage of Thr. After that, an iterative improvement process runs as follows. The positions of
n − 1 fingers are kept fixed, while the position of the remaining finger explores the points around
it in order to improve a given score function g. During this phase the position of the finger is not
bound to stay inside the triangle it started from, but it can cross the boundary and move to one
of the neighboring ones. The ability to move from one triangle to another overcomes some of the
major limitations of other methods. In particular we are able to cross sharp edges on the boundary
of the object. When it is no longer possible to improve the score of the grasp by moving that
finger, its position becomes fixed and a local improvement is then sought by moving another finger.
This process is iterated until no further improvements are possible. Each of the steps necessary to
implement this strategy is described in the following subsections.

96

Contact point representation

At the core of the method we propose lies a parametric representation for a generic point
inside an arbitrary triangle. Figure 7.17 illustrates the idea.

Figure 7.17: Any point inside the given triangle can be represented as a constrained linear combi-
nation of v2 − v1 and v3 − v1.

Indicating with v1, v2, v3 the coordinates of the three vertices of the triangle T , referred to a
given reference frame, the coordinates of a generic point p inside T can be written as

p = α1(v2 − v1) + α2(v3 − v1) (7.1)

subject to the constraints α1,2 ≥ 0 and α1 +α2 ≤ 1. In the following, we indicate with pi the contact
point of the ith finger. We furthermore indicate as T (i) ∈ T the triangle in which pi is located,
and let α(i)

1 , α
(i)
2 the coefficients to obtain pi using Eq. 7.1. We will also implicitly assume that the

numbering of the vertices in T (i) is unambiguously determined6 and stored together with T (i).

Score function

A score function maps a set of contact points to a real value. We therefore write g(p1, . . . ,pn).
In the following works we will consider different score functions and details will be presented in the
results section. The logic underlying the algorithm does not change as long as the score function is
monotonic with grasp quality (the better the grasp, the higher the score.) In the following we will
just write g without explicitly specifying which one we are using.

In particular, the score function we chose to evaluate the grasps is calculated by the Partial
QuickHull for Grasp Wrench Space algorithm we proposed in chapter 4. This score function is
beneficial in many ways. First, the metric to evaluate force closure grasps is the most well known
Ferrari and Canny metric [29], which aims to balance disturbances with the minimal effort. Second,
to deal with non-force closure grasps, we can quickly calculate the distance from the convex hull
to the origin, which can also be used to guide the exploration step towards a local optimal grasp.
Finally, PQHGWS improved the calculation speed of the original method by a factor of 40 for grasps
with 4 contacts and 8 edge approximations of the friction cone.

6Eq. 7.1 relies on a precise ordering of the vertices in the triangle. If the order is changed, the expression is still
valid, but the coefficients change as well.

97

Local improvement

Let us assume the ith finger is the one whose contact point position is being modified to
increase the objective function while the remaining ones are kept fixed. The coordinates of contact
point pi can then be written using Eq. 7.1. Six different vectors µ1, . . . ,µ6 are then computed as
follows to generate six new candidate contact points:

µ1 = (α(i)
1 + S)(v2 − v1) + α(i)

2 (v3 − v1) (7.2)

µ2 = (α(i)
1 − S)(v2 − v1) + α(i)

2 (v3 − v1) (7.3)

µ3 = α(i)
1 (v2 − v1) + (α(i)

2 + S)(v3 − v1) (7.4)

µ4 = α(i)
1 (v2 − v1) + (α(i)

2 − S)(v3 − v1) (7.5)

µ5 = (α(i)
1 + S)(v2 − v1) + (α(i)

2 − S)(v3 − v1) (7.6)

µ6 = (α(i)
1 − S)(v2 − v1) + (α(i)

2 + S)(v3 − v1). (7.7)

The parameter S (step size) determines the magnitude of the local exploration and is iteratively
altered during the computation, according to a schedule described later. The score function g is then
computed for all grasps p1, . . . ,pi−1,µ j,pi+1, . . .pn, (1 ≤ j ≤ 6) obtained by changing pi with µ j.
If no improvement is obtained, the local improvement for the ith finger is stopped. Otherwise pi is
substituted by the new point µ j achieving the highest value for the score function and the process
continues.

It is evident that there exists combinations of values for pi and S such that one or more of the
new candidate contact points µ j may fall outside the triangle T (i) in which pi is located. This is the
case when α(i)

1,2 + S > 1 or α(i)
1,2 − S < 0, or α(i)

1 + α(i)
2 > 1. Assume µ j lies outside T (i). Then, the

segment between µ j and pi must cross one of the edges of T (i) and the neighboring triangle Tk can
be efficiently determined, for example, using a doubly-connected edge list data structure [24] (see
Figure 7.18).

Figure 7.18: When µi is outside T (i), the neighboring triangle Tk can be efficiently determined.

In this case µ j is replaced with a random point inside Tk. Then, if the score function obtained
substituting pi with µ j ∈ Tk is the best among the new candidates, the ith finger moves to the new
triangle, i.e., T (i) is replaced by Tk. T (i) and Tk are not bound to lie on the same plane, but could be
arbitrarily positioned (e.g., they could lie on two orthogonal planes.) This feature allows the local
improvement phase to cross boundaries that normally limit the exploration range of gradient based
methods relying on smooth surfaces.

98

Step size update

Eqs. 7.2-7.7 depend on the step size parameter S . The parameter is initially set at 0.5. This
choice is motivated by the constraints on α(i)

1,2 ensuring pi is insideT (i). A larger value would provide
a too strong bias towards pointsmu j outside T (i), while we strive to balance exploration inside and
outside the triangle. As the process continues, S decreases according to the formula (S ′ is the new
step)

S ′ = S
v − b
|v|

where v is the value of the score function for the newly determined best score and b is the previous
best value. Therefore, as the magnitude of the improvement decreases, the new step size decreases
too and is eventually set to 0 when v = b.

Global optimization

As mention earlier, the problem we aim to solve is similar to the hill climbing problem.
There exist many algorithm to help solve such a problem and in particular, we use random restarts
to help us solve the problem. One important observation for using random restarts is that if the
starting point is poor, i.e., with low quality, then the local optimal solution from this starting point
is also affected. Due to this observation, we decided to set a threshold for each starting point.
This threshold is calculated by measuring a fix number of randomly generated grasps. After the
threshold is obtained, each start point, also generated randomly, must satisfy this threshold in order
to continue. At the end of this algorithm, the best grasp is selected to be the one with the highest
measure over all runs.

Algorithmic sketch

Putting all the previous steps together we obtain algorithms 5 and 6. Algorithm 5 is the high
level control part. It first generates K random grasps and the best score is set to be the threshold
Thr. Then we again generate random grasps until the score of the grasp is larger than Thr and use
algorithm 6 to improve the score and push it into local maximum. We do random restarts for this
second part R times and the grasp with the highest score is chosen to be the final grasp. The process
for generating random grasps is extremely rapid. So the first step which calculates Thr will favor
us in a way that we won’t start the optimization process from a particularly disadvantageous initial
grasp. Higher values of K are evidently desirable but come at the cost of a longer preprocessing
step. In our experiments we setK to 90 and R to 10, but the overall performance is not too sensitive
to these parameters, neither in terms of quality of the solution, nor in terms of time.

99

Algorithm 5 Global optimization algorithm
1: Data : T = {T1, . . .TN}, n
2: Result : p1, . . . ,pn

3: Thr ← −∞
4: for i← 1 to K do
5: (pr1, ...,prn ← RandomGrasp
6: if Q(pr1, ...,prn) > Thr then
7: Thr ← Q(pr1, ...,prn)
8: Best ← −∞
9: S ← 0.5

10: for i← 1 to R do
11: Converged ← false
12: while Q(p1, ...,pn) < Thr do
13: (p1, ...,pn)← RandomGrasp
14: repeat
15: RP← RandomPermutation(1, ..., n)
16: for j← 1ton do
17: pR(i), vi ← Improve(R(i),p1, . . . ,pn, S)
18: if maxi vi > Best then
19: Best ← maxi vi

20: S ← NewS tep
21: else
22: Converged ← true
23: until Converged = true

Algorithm 6 Local improvement step
1: i,p1, . . . ,pn, S
2: pi, v

3: repeat
4: Compute µ1, . . . ,µ6 from pi and S as in Eq. 7.2-7.7
5: for j← 1to6 do
6: if µ j < T

(i) then
7: Determine triangle Tk neighbor of T (i)

8: µ j ←RadomPoint in Tk

9: pi ← arg maxµ j,pi g(p1, . . . ,µ j, . . .pn)
10: if needed then
11: Update T (i)

12: until pi does not change anymore
13: v← g(p1, . . . ,pi, . . .pn)

It is obvious that the algorithm eventually converges. This is true because for each step the
score function improves, otherwise the whole process will terminate with a local optimal solution.

100

Algorithm Limitations and Improvement

The algorithm we developed plans on the object model directly with no extra information
taken into account. This type of algorithm often faces some limitations. The first major problem
is that the output grasp configuration may not be applied by the robotic hand we are using. For
example, if we are planning a grasp on a 1m×1m×1m box for a parallel jaw gripper, which can
only open to 20cm, then no solution obtained by the planner will be valid for the gripper. This type
of planner is often designed for a robotic hand with high degree of freedom on each finger such as
the Shadow Hand or Schunk Hand. However, this problem can be overcome by setting the hand
structure up as constraints during local improvement step. While we are exploring the surface of the
object, instead of moving the contact with respect to the faces, we move the contact by changing the
configuration of the finger. This improvement guarantees that every step is mapped to a valid hand
configuration, but since we are constrained to explore the object surface with respect to the hand,
we may lose the ability to plan over the entire object. The second problem is that the output grasp
configuration may contain contacts that are not feasible in reality. For instance, for the object teacup
shown in Figure 7.20, the inside of the spout is also included in the mesh model, but it is infeasible to
grasp at that part of the object. One way to overcome this problem would be marking the infeasible
part of the mesh, which is represented as a set of triangles. During the local improvement step, if
the face, we moved the contact into along direction −→vd, is a marked triangle, we force that contact
to keep moving along −→vd until the face is not marked. Therefore, the infeasible regions are avoided
while global exploration is still guaranteed.

Local improvement for Schunk Dexterous Hand

To overcome one of the limitations mentioned above, we propose a local improvement algo-
rithm designed for Schunk Dexterous Hand (SDH hand). This algorithm can substitute algorithm
6 and be put in use directly. The model of the SDH hand is shown in Figure 7.19. SDH hand is
a fully actuated hand that has three fingers and each finger has two joints controlled independently
using gear boxes. This hand also features a rotational joint that controls the rotation for finger 1 and
finger 3 together with a 90 degree freedom. Using this joint, finger 1 and finger 3 can change from
facing each other to facing finger 2.

Figure 7.19: The model for Schunk Dextrous Hand.

101

Assume the lower joint, which connects the base of the hand with each finger, is denoted as
jil for finger i. The upper joint, which connects the two links of the finger, is denoted as jiu for
finger i. The finger rotational joint on the base that controls the rotation of finger 1 and finger 3 is
denoted as jbr. Since we are planning for fingertip grasps, different types of joints can be understood
differently. The upper joints control the distance between the fingertip and the base. The lower joint
can be used to determine the exact contact point by performing a close action. The finger rotational
joints determine the closing direction for finger 1 and finger 3. Based on this observation, the upper
joint and the finger rotational joint are used as parameters for the hand configuration, while the lower
joints are variables to be determined when the hand is in contact with the object. After the hand
configuration is defined, in order to form a grasp, we also need to know the relative pose between
the hand and the object. Assume the relative pose is denoted as a 6D vector (x, y, z, roll, pitch, yaw),
where the first 3 elements determines the relative position and the last 3 elements determines the
orientation. Similar to Eq. 7.2-7.7, we define the equations 7.8-7.27 used as the local exploration of
the object.

µ′1 = j1u + S (7.8)

µ′2 = j1u − S (7.9)

µ′3 = j2u + S (7.10)

µ′4 = j2u − S (7.11)

µ′5 = j3u + S (7.12)

µ′6 = j3u − S (7.13)

µ′7 = jbr + S (7.14)

µ′8 = jbr − S (7.15)

µ′9 = x + S ′ (7.16)

µ′10 = x − S ′ (7.17)

µ′11 = y + S ′ (7.18)

µ′12 = y − S ′ (7.19)

µ′13 = z + S ′ (7.20)

µ′14 = z − S ′ (7.21)

µ′15 = roll + S (7.22)

µ′16 = roll − S (7.23)

µ′17 = pitch + S (7.24)

µ′18 = pitch − S (7.25)

µ′19 = yaw + S (7.26)

µ′20 = yaw − S (7.27)

The parameter S and S ′ (step sizes) determines the magnitude of the local exploration, which was
previously defined. S and S ′ should be treated with different initial values since S is the step size in

102

the angle domain and S ′ is the step size in the distance domain. Eq. 7.8-7.27 represents all possible
hand configuration changes with step size S and S ′. Different from the previous local improvement
step, we are exploring the object with respect to the hand instead of the contacts.

After the hand configuration and hand pose is set, the next step is to locate the contacts
ci. Since the model of the object and the model hand are determined, this step can be done by
interpolating the lower joints. This is a common strategy used in simulation based grasp planners.
After the contacts are located, assume its represented as pi, the score function g is then computed.
In total, we would have 20 different scores determined by µ′1 to µ′20. If all the scores are lower than
the current score, i.e., the score computed without any contact change, the local improvement step
is terminated. Otherwise, we move to the new configuration with the highest score. This algorithm
is sketched in algorithm 7, where C is the set of configurations containing the hand configuration
and relative hand pose.

Algorithm 7 Local improvement step for SDH hand
1: C = { j1l, j2l, j3l, j1u, j2u, j3u, jbr, x, y, z, roll, pitch, yaw}
2: C, v
3: repeat
4: Compute µ′1, . . . ,µ20′ from S and S ′ as in Eq. 7.8-7.27
5: for j← 1 to 20 do
6: Compute contacts cj by closing j1l, j2l, j3l with change µ′j in C
7: C ← arg maxµ′j g(cj)
8: until C does not change anymore
9: v← g(C)

Note that although this algorithm is exploring with 20 new options, it covers all the fingers.
For the previous local planner algorithm, each finger is exploring with 6 options. This planner, built
for the SDH hand, faces certain drawbacks. This planner can only plan for fingertip grasps. If the
contact is not made at the fingertip, then it is not taken into account. Also, the model to represent
the SDH hand is a simple skeleton which simplifies the calculation of contact points. Due to this
reason, the resultant grasp might be in collision with the object. The calculation for contacts based
on the skeleton does not have any collision checking. Thus, while interpolating the closing action,
parts other than the fingertip might be in collision with the object. If collision checking is enabled,
the parts that first collide with the object can then be used as contacts of the grasp. However, this
planner can be combined with simulation software such as GraspIT! [67] or V-REP [83]. After the
grasp is planned, we can use the collision checking enabled by the simulation software to verify the
resultant grasp is feasible. We have developed the entire pipeline starting from planning the grasp
till solving a feasible motion plan using V-REP. The result will be shown in the experiment section.

7.2.3 Experimental Results

In this section we present the results we obtained using the algorithm we proposed. The
code is written in C++ using the Partial QuickHull for Grasp Wrench Space algorithm we proposed
in chapter 4 and publicly available GSL Library. All the experiments were run in Linux under a
2.8GHz Intel i7 with 8 Gb RAM machine.

103

In the default case, the experiment were running for four contact points and the friction coef-
ficient µ is set to 0.5. The friction cone is approximated with eight edges. Table 7.4 shows the five
objects and its related number of triangle meshes we did our test on. Figure 7.20 gives a geometric
view of the first three object.

Object # Tri
Joystick 1134
C shape 96
Teapot 992
Cube 12

Sphere 960

Table 7.4: Number of triangles in the meshes

Figure 7.20: Three of the objects used to test the algorithm. In the following they are referred to as
joystick, c-shape and teapot.

7.2.3.1 Global Grasp Planner

The result of the first experiment is shown in Figure 7.21. It ran 100 episodes, each with
mathcalK=90 and R=10. The score on the y axis is the Q quality measure formally described.
Similar trends for all five objects are shown in Table 7.5 and 7.6. Comparing Table 7.6 and 7.4, one
can conclude that the run time is not strictly related to the number of triangle meshes of the object.
In fact, the run time is related to the smoothness of the entire surface. For the five objects we tested
on, the order of smoothness should be sphere, cube, joystick, teapot and C shape, which is similar
to the timing order. Also from table 7.6, it is shown that the run time is hard to achieve in real time.
As a matter of fact, our algorithm can run faster, having the advantage of multi-processor parallel
computing. For the first K run, they do independent random grasp and for the last R run, they are
also independent to each other. Thus, it is possible to use this algorithm in real time computation.

Figure 7.22 illustrates one of the major features of the algorithm we proposed; the ability to
move the contact points between the different parts of an object.

104

Figure 7.21: Performance on the Joystick and Teapot

7.2.3.2 Global Grasp Planner for SDH Hand

Taking into account the hand structure for the SDH hand, we first show the result in Figure
7.23, which is similar to Figure 7.21. It also runs 100 episodes each with K=90 and R=10 using the
local planner substituted by the local planner for SDH hand. The score on the y axis is the Q quality
measure formally described. Similar trends for all five objects are shown in Table 7.7 and 7.8. The
results in table 7.7 and 7.8 are similar to the result in table 7.5 and 7.6. However, the average time
using the SDH hand planner is higher then the regular planner.

7.2.3.3 Grasp Planner Comparison

The final experiment is to show the comparison between our two algorithms and the base line
algorithm random grasp, as in Figure 7.24. The x-axis is the number of grasps evaluated, which can
also be considered as the number of QuickHull functions. Since this is the most time consuming
part of the algorithm, the x-axis also reflects time. The y-axis is the highest score trend. It is clear
that our algorithm with and without the SDH hand, shown in green and red, reaches a higher score
in less number of grasps evaluated compared to the randomized planner with and without the SDH
hand, shown in cyan and blue. For the first 90 runs, four algorithms have a similar convergence rate
which is obvious since all algorithms are running random grasp. After that, our algorithm improves

105

Object Avg. Q Std. Q
Joystick 0.4432 0.0281
C shape 0.4279 0.0263
Teapot 0.5377 0.0441
Cube 0.3619 0.0376

Sphere 0.6667 0.0260

Table 7.5: Grasp quality for different objects. Average and standard deviations are computed over
100 episodes

Object Avg. T Std. T
Joystick 8.48 7.6422
C shape 10.17 15.5095
Teapot 8.33 11.4297
Cube 8.09 9.8105

Sphere 3.26 0.8287

Table 7.6: Time spent for different objects. Average and standard deviations are computed over 100
episodes

faster in the optimization part. Even though we do multiple grasp evaluation in one restart, we can
still beat the randomized algorithm. Between our algorithms, the quality of the one using SDH hand
is lower than the one without SDH hand. This is clearly understandable since by using SDH hand,
we added more constraints compared to the regular planner.

As clearly shown above, our algorithm beats the baseline algorithm in both score and time. As
a matter of fact, our algorithm can run even faster, taking the advantage of multi-processor parallel
computing. For the first K runs, they do independent random grasp and for the last R runs, they are
also independent of each other. Thus, it is possible to use this algorithm in real time computation.

Figure 7.22: The figure shows the path followed by three contact points for object joystick (red
line). Each contact point starts from the cyan location and ends in blue.

106

Figure 7.23: Performance on the Joystick and Teapot for SDH hand

7.2.3.4 Validation using V-REP of the grasp planner based on SDH hand

Figure 7.25 shows the validation of our algorithm based on SDH hand in V-REP. Our algo-
rithm is designed as a plug-in which computes grasp candidates for the given object for an SDH
hand. After the grasp is computed, it is processed through collision checking to determine if there
is any collision between the hand with the target object and the environment. If the only collision is
between the fingertip of the hand and the target object, then the grasp is feasible and passed on to an
IK solver to plan an arm configuration for the KUKA LWR arm. Otherwise, this grasp is rejected
and the planner will plan the next grasp. At the bottom of the figure shows the grasp quality QGWS

for the grasp planned for all five objects. The range of the quality is from 0.0949 up to 0.4461.

Object Avg. Q Std. Q
Joystick 0.4399 0.0053
C shape 0.3097 0.1103
Teapot 0.4338 0.0056
Cube 0.4263 0.0255

Sphere 0.4518 0.0027

Table 7.7: Grasp quality for different objects using the SDH hand planner. Average and standard
deviations are computed over 100 episodes

107

Object Avg. T Std. T
Joystick 11.4004 1.6270
C shape 10.3624 9.7375
Teapot 15.7029 5.3058
Cube 16.0449 11.2558

Sphere 18.0850 2.3751

Table 7.8: Time spent for different objects using the SDH hand planner. Average and standard
deviations are computed over 100 episodes

Figure 7.24: Comparison between the proposed algorithms and a randomized grasp planners.

This is reflecting one of the advantages of our planner, such that the threshold is set separately for
different objects.

7.3 Conclusion

In this chapter, we proposed three grasp planner algorithms solving the grasp planning prob-
lem from different angles. The first two planners considered the problem of grasping objects with
negative curvature and the related problem of evaluating grasp configurations where the fingers
make contact in points of negative curvature. One of the planners is developed based on the geo-
metric model of the target object, i.e., model-based grasp planner. This planner has been contrasted
with a baseline planner using randomized grasps commonly used in literature and it was shown to
be largely superior regarding both quality and time. Validation occurred both in simulation and
on a mobile manipulator with consistent results. The other grasp planner based on negative curva-
ture works directly with the point cloud to locate negative curvature features and compute grasps
directly, i.e., model-less grasp planner. A vision pipeline to process the input point cloud and calcu-
late points satisfying constraints defined for negative curvature feature was developed. This planner
is efficient to grasp unknown objects with negative curvature features. Validation on real robot is

108

Figure 7.25: Example of a grasp planner based on the SDH hand visualized in V-REP. The corre-
sponding IK solution is also solved for a KUKA arm.

provided, which shows some valuable results. The last grasp planner in this chapter plans grasps to
obtain force closure on objects whose surface is represented using a triangle mesh. The algorithm
can plan grasps for an arbitrary number of contact points and the result is obtained through an it-
erative process aiming at optimizing a commonly used grasp quality function. Besides the triangle
mesh, the algorithm does not require any other preliminary information, like the initial placement of
the contact points. Our simulations outline two major findings. First, the computational time grows
very slowly with the number of triangles in the meshes and this enables the use of meshes with a
large number of triangles to provide accurate approximations of objects featuring curved surfaces.
We have also demonstrated that the algorithm is indeed global in the sense that during the explo-
ration stage the contact points can move through different patches of the surface, thus overcoming
one of the limitations of methods requiring smooth representations and imposing constraints on the
area to be explored. The algorithm also clearly outperforms a baseline randomized planner. A vari-
ation of this planner was also presented. Instead of optimizing over the contacts, the new version
considers the hand configuration, in particular, for the SDH hand. This modified version follows the
same framework and overcomes the problem of connecting the planned grasp with an actual hand.
The experiments for this planner based on the SDH hand is designed similar to the original version
and the result agrees with our previous findings. This planner is also validated using a simulation
software, V-REP, which enables the pipeline connecting grasp planning to motion planning.

109

Chapter 8

Conclusions and Future Work

In this dissertation, we focused on solving robot grasping related problems, in particular,
computing force closure grasps with good quality. We tackled this problem mainly by improving
grasp quality metrics and using these metrics to generate force closure grasps. Currently, grasp
quality metrics are often based on a single feature, such as disturbance force rejection. Although
some researchers try to combine multiple grasp quality metrics in serial or in parallel, each metric
is still treated independently. Our goal is to improve what is usually considered when evaluating
grasps and treat grasp evaluation as a property of the entire robot system. In this thesis we considered
the effects of some of the most important features of the robot system and improved existing grasp
quality metrics by taking these features into account. We also provided some insights for combining
these metrics with probability and direct contact force. Our contributions are the following:

• Improved the calculation speed for two important quality metrics, i.e., the grasp wrench space
metric and the object wrench space metric.

• Connected grasp quality measures with arm configuration using a probabilistic formulation.

• Connected grasp quality measures with local geometry information using the friction cone.

• Connected grasp quality measures with hand configurations using the friction cone.

• Developed a framework to combine the previous elements into a single grasp quality metric.

• Developed a global grasp planner that generates high quality force closure grasps using tri-
angular meshes as object representations.

• Developed a model-based and a model-less grasp planner based on local geometry informa-
tion.

The grasp wrench space metric is one of the most popular grasp quality measures and the
object wrench space metric can be seen as a more precise, but time consuming version of the grasp
wrench space metric. Our first effort, proposed in chapter 4, shows a significant speed improvement
for both metrics, which made these metrics more appealing for online use. Moreover, these two

110

metrics are focused on resisting disturbance forces, which is the most important factor in obtaining
stable grasps. Both metrics use the grasp wrench space, which is the key to adding in more features.
In chapter 6, we proposed a modified version of the friction cone to embed local geometry infor-
mation and hand configurations into the process of generating grasp wrench spaces. The resultant
quality metric includes features like disturbance force rejection, hand structure and the local geom-
etry of the object being grasped. In chapter 5, we combined arm information by adding probability
to the grasp wrench space metric, which can also be substituted by the metric we had proposed in
chapter 6. We also proposed a framework to rank arm configurations based on pre-sampled high
probability force closure regions. We showed in simulation that using this framework will increase
the stability of performing the grasp. A robot system for grasping is usually constructed by hand,
arm, target object and the environment, where the environment is the key source to generating distur-
bance force. Clearly, the metric we proposed in chapters 5 and 6 is built upon all the important parts
of the robot system. Although one could argue that this metric lacks enough features to represent
the robot system, we hope it shows a direction and sets up a stepping stone for future improvements.
Apart from our work in grasp quality metrics, we also developed multiple grasp planners in chapter
7 to use these metrics to generate grasps. One model-less grasp planner was developed to directly
process the point cloud and efficiently calculate a grasp plan using the negative curvature feature.
One model-based grasp planner also takes advantage of negative curvature feature and computes all
grasps located at negative curvature point. The results of this planner are more robust and efficient
compared to the baseline random grasp planner. Both planners were validated using a real robot and
were more robust compared to the random grasp planner. The last planner we developed aims to
globally identify local maximum grasp solutions for objects represented as triangular meshes. We
also proposed a modified version of this planner that considers hand constraints during the planning
process. Both versions show significant improvements in speed and quality compared to the random
grasp planner.

The work presented in this thesis could be extended in various directions, e.g.:

• Develop a framework to embed more features into grasp quality metrics by considering the
physical effects, such as influence in contact wrench, or by considering the probability of
achieving a force closure grasp.

• Develop a simulation software that not only simulates geometrically but use well defined
physical properties.

Friction cone plays a very important as it addresses the most direct physical effect at contact
points. Referring to our work in chapter 6, we had successfully integrated local geometry of the
target object and hand configuration into grasp quality metrics by modifying the friction cone. More
features that affect contact wrench can also be interpreted using the friction following a similar
strategy. For example, for the type of objects that deform when applying force at the contact point,
the contact naturally forms a negative curvature region. So if we are measuring grasps for this type
of object, we can take the level of the deformation of the object into account and quantifies the
problem by the friction cone.

Another way to embed new features into grasp quality metrics is through adding force closure
probability. As introduced in chapter 5, we provided a guide to measure the effect of arm configu-
rations on grasp quality using the probability force closure grasps. As we pointed out in chapter 5,

111

grasp quality metrics can be considered as a random variable influenced by the entire hardware sys-
tem. Any feature that brings uncertainty to this system can be integrated into grasp quality metrics
by considering the probability of achieving a force closure grasp. For example, the vision pipeline
of a real robot system is one of the major sources that cause uncertainty. We can investigate the
distribution of the target object pose returned by the vision pipeline and follow a similar framework
proposed in chapter 5 to quantify it.

As we previously discussed in chapter 2, one of the most deployed methods to solve grasping
problems is based on the construction of a grasping database using a simulation software. However,
the simulators being actively used in the grasping community suffer from a major drawback that
affects the performance of grasping using a real robot. These simulators are limited to simulating
behaviors geometrically instead of physically. For example, contacts between the hand and the
object are simulated by sticking the object to the hand, the contact force is not considered as well
as friction or object deformation. The gap between simulation and the real world has a huge impact
on the success rate of grasping. If a simulator is capable to account all physical behavior occurred
in the real world, then performing the solution calculated in the simulation will most likely succeed
using a real robot.

112

Bibliography

[1] J. Abel, W. Holzmann, and J. McCarthy. On grasping planar objects with two articulated fingers. IEEE Journal
on Robotics and Automation, 1(4):211–214, 1985.

[2] J. Aleotti and S. Caselli. Interactive teaching of task-oriented robot grasps. Robotics and Autonomous Systems,
58(5):539–550, 2010.

[3] A. M Andrew. Another efficient algorithm for convex hulls in two dimensions. Information Processing Letters,
9(5):216–219, 1979.

[4] B. Balaguer and S. Carpin. Efficient grasping of novel objects through dimensionality reduction. In Proceedings
of the IEEE International Conference on Robotics and Automation, pages 1279–1285, 2010.

[5] C. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quickhull algorithm for convex hulls. ACM Transactions on
Mathematical Software, 22(4):469–483, 1996.

[6] J. Barber, R. Volz, R. Desai, R. Rubinfeld, B. Schipper, and J. Wolter. Automatic two-fingered grip selection. In
Proceedings of the IEEE International Conferene on Robotics and Automation, pages 890–896, 1986.

[7] J. Barber, R. Volz, R. Desai, R. Rubinfeld, B. Schipper, and J. Wolter. Automatic evaluation of two-fingered grips.
IEEE Journal on Robotics and Automation, 3(4):356–361, 1987.

[8] P.R. Barragan, L.P. Kaelbling, and T. Lozano-Perez. Interactive bayesian identification of kinematic mechanisms.
In Proceedings of the IEEE International Conferene on Robotics and Automation, pages 2013–2020, 2014.

[9] P. J Besl and N. D McKay. A method for registration of 3-d shapes. IEEE Transactions on pattern analysis and
machine intelligence, 14(2):239–256, 1992.

[10] A. Bicchi and V. Kumar. Robotic grasping and manipulation. In Ramsete: Articulated and mobile robots for
services and Technology, volume 270, chapter 4, pages 55–74. Springer, 2001.

[11] L. Birglen, T. Laliberté, and C. Gosselin. Underactuated robotic hands, volume 40 of Springer Tracts in Advanced
Robotics. Springer, 2007.

[12] E. Boivin, I. Sharf, and M. Doyon. Optimum grasp of planar and revolute objects with gripper geometry con-
straints. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 326–332, 2004.

[13] G. M Bone, A. Lambert, and M. Edwards. Automated modeling and robotic grasping of unknown three-
dimensional objects. In Proceedings of the IEEE International Conference on Robotics and Automation, pages
292–298, 2008.

[14] C. Borst, M. Fischer, and G. Hirzinger. Grasp planning: how to choose a suitable task wrench space. In Proceed-
ings of the IEEE International Conference on Robotics and Automation, pages 319–325, 2006.

[15] H. Bronnimann, B. Chazelle, and J. Matousek. Product range spaces, sensitive sampling, and derandomization.
In Proceedings of the IEEE 34th Annual Symposium on Foundations of Computer Science, pages 400–409, 1993.

[16] B. Calli, M. Wisse, and P. Jonker. Grasping of unknown objects via curvature maximization using active vision. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 995–1001, 2011.

[17] T. M. Chan. Output-sensitive results on convex hulls, extreme points and related problems. Discrete Computa-
tional Geometry, 16:369–387, 1996.

113

[18] B. Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete Computational Geometry,
10:377–409, 1993.

[19] S. L Chiu. Task compatibility of manipulator postures. The International Journal of Robotics Research, 7(5):13–
21, 1988.

[20] S. Christoph Stein, M. Schoeler, J. Papon, and F. Worgotter. Object partitioning using local convexity. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 304–311, 2014.

[21] K. Clarkson and P. Shor. Applications of random sampling in computational geometry. Discrete Computational
Geometry, 4:387–421, 1989.

[22] M. R Cutkosky. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Transac-
tions on Robotics and Automation, 5(3):269–279, 1989.

[23] H. Dai, A. Majumdar, and R. Tedrake. Synthesis and optimization of force closure grasps via sequential semidef-
inite programming. In International Symposium on Robotics Research, pages 285–305, 2015.

[24] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry. Springer, 3rd edition,
2008.

[25] R. Diankov. Automated construction of robotic manipulation programs. PhD thesis, Carnegie Mellon University,
2010.

[26] R. Diankov and J. Kuffner. Openrave: A planning architecture for autonomous robotics. Robotics Institute,
Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08-34, 79, 2008.

[27] D. Dornfeld and M. M Helu. Precision manufacturing. Springer Science & Business Media, 2007.

[28] B. Faverjon and J. Ponce. On computing two-finger force-closure grasps of curved 2d objects. In Proceedings of
the IEEE International Conference on Robotics and Automation, pages 424–429, 1991.

[29] C. Ferrari and J. Canny. Planning optimal grasps. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 2290–2295. 1992.

[30] D. Fischinger, A. Weiss, and M. Vincze. Learning grasps with topographic features. The International Journal of
Robotics Research, 34(9):1167–1194, 2015.

[31] C. Goldfeder and P. K Allen. Data-driven grasping. Autonomous Robots, 31(1):1–20, 2011.

[32] C. Goldfeder, M. Ciocarlie, H. Dang, and P.K. Allen. The Columbia grasp database. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 1710–1716, 2009.

[33] R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Information processing
letters, 1(132-133), 1972.

[34] E. Guizzo and E. Ackerman. The rise of the robot worker. IEEE Spectrum, 49(10):34–41, 2012.

[35] K. Hang, J. A. Stork, F. T. Pokorny, and D. Kragic. Combinatorial optimization for hierarchical contact-level
grasping. Proceedings of the IEEE International Conference on Robotics and Automation, pages 381–388, 2014.

[36] R. He, Y. Zhao, S. Yang, and S. Yang. Kinematic-parameter identification for serial-robot calibration based on
poe formula. IEEE Transactions on Robotics, 26(3):411–423, 2010.

[37] R. Hester, M. Çetin, C. Kapoor, and D. Tesar. A criteria-based approach to grasp synthesis. In Proceedings of the
IEEE International Conference on Robotics and Automation, pages 1255–1260, 1999.

[38] C. A. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.

[39] T. Iberall. The nature of human prehension: Three dextrous hands in one. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 396–401, 1987.

[40] R. A Jarvis. On the identification of the convex hull of a finite set of points in the plane. Information Processing
Letters, 2(1):18–21, 1973.

[41] H. Jeong and J. Cheong. Evaluation of 3d grasps with physical interpretations using object wrench space. Robotica,
30(3):405–417, 2012.

[42] S. El Khouri, L. Miao, and A. Billard. Bridging the gap: One shot grasp synthesis approach. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2027– 2034, 2012.

114

[43] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM Journal of Computation,
15:287–299, 1986.

[44] D.G. Kirkpatrick, B. Mishra, and C.K. Yap. Quantitative Steintz’s theorems with applications to multifingered
grasping. In Proceedings of the ACM Symposium on Theory of Computing, pages 341–351, 1990.

[45] C. A Klein and B. E Blaho. Dexterity measures for the design and control of kinematically redundant manipulators.
The International Journal of Robotics Research, 6(2):72–83, 1987.

[46] R. Köker, T. Çakar, and Y. Sari. A neural-network committee machine approach to the inverse kinematics problem
solution of robotic manipulators. Engineering with Computers, 30(4):641–649, 2014.

[47] G. A Kragten and J. L Herder. The ability of underactuated hands to grasp and hold objects. Mechanism and
Machine Theory, 45(3):408–425, 2010.

[48] E. Kreyszig. Differential Geometry. Dover, 1991.

[49] R. Krug, Y. Bekirogluz, and M. A. Roa. Grasp quality evaluation done right: How assumed contact force bounds
affect wrench-based quality metrics. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation, pages 1595–1600, 2017.

[50] R. Krug, D. Dimitrov, K. Charusta, and B. Iliev. On the efficient computation of independent contact regions for
force closure grasps. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 586–591, 2010.

[51] M. Laskey, J. Mahler, Z. McCarthy, F.T. Pokorny, S. Patil, J. van den Berg, D. Kragic, P. Abbeel, and K. Goldberg.
Multi-armed bandit models for 2d grasp planning with uncertainty. In Proceedings of the IEEE International
Conference on Automation Science and Engineering, pages 572–579, 2015.

[52] C. Laugier. A program for automatic grasping of objects with a robot arm. In Proceedings of the 11th International
Symposium on Industrial Robots, pages 287–294, 1981.

[53] C. Laugier. Planning fine motion strategies by reasoning in the contact space. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 653–659, 1989.

[54] J. Li, H. Liu, and H. Cai. On computing three-finger force-closure grasps of 2-d and 3-d objects. IEEE Transactions
on Robotics and Automation, 19(1):155–161, 2003.

[55] Z. Li and S.S. Sastry. Task oriented optimal grasping by multifingered robot hands. IEEE Journal of Robotics and
Automation, 4(1):32–44, 1988.

[56] Y. Lin and Y. Sun. Grasp planning to maximize task coverage. The International Journal of Robotics Research,
34(9):1195–1210, 2015.

[57] G. Liu, X. Xu, J.and Wang, and Z. Li. On quality functions for grasp synthesis, fixture planning, and coordinated
manipulation. IEEE Transactions on Automation Science and Engineering, 1(2):146–162, 2004.

[58] S. Liu and S. Carpin. Global grasp planning using triangular meshes. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 4904–4910, 2015.

[59] S. Liu and S. Carpin. Kinematic noise propagation and grasp quality evaluation. In Proceedings of the IEEE
Conference on Automation Science and Engineering, pages 1177–1183, 2016.

[60] S. Liu and S. Carpin. Partial convex hull algorithms for efficient grasp quality evaluation. Robotics and Au-
tonomous Systems, 86:57–69, 2016.

[61] S. Liu, Z. Hu, H. Zhang, M. Kwon, Z. Wang, Y. Xu, and S. Carpin. Grasp quality evaluation and planning for
objects with negative curvature. In Proceedings of the IEEE International Conference on Robotics and Automation,
pages 2223–2229, 2017.

[62] M. Luo, T. Mei, X. Wang, and Y. Yu. Grasp characteristics of an underactuated robot hand. In Proceedings of the
IEEE International Conference on Robotics and Automation, pages 2236–2241, 2004.

[63] J. Mahler, F. T Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry, K. Kohlhoff, T. Kröger, J. Kuffner, and
K. Goldberg. Dex-net 1.0: A cloud-based network of 3d objects for robust grasp planning using a multi-armed
bandit model with correlated rewards. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 1957–1964, 2016.

115

[64] X. Markenscoff and C. H Papadimitriou. Optimum grip of a polygon. The International Journal of Robotics
Research, 8(2):17–29, 1989.

[65] M. T Mason. Compliance and force control for computer controlled manipulators. IEEE Transactions on Systems,
Man, and Cybernetics, 11(6):418–432, 1981.

[66] A. T Miller and P. K Allen. Graspit!: A versatile simulator for grasp analysis. In Proceedings of the ASME
Dynamic Systems and Control Division, pages 1251–1258, 2000.

[67] A. T. Miller and P. K. Allen. Graspit! a versatile simulator for robotic grasping. Robotics & Automation Magazine,
IEEE, 11(4):110–122, 2004.

[68] S. Momani, Z. S Abo-Hammour, and O. MK Alsmadi. Solution of inverse kinematics problem using genetic
algorithms. Applied Mathematics & Information Sciences, 10(1):225, 2016.

[69] H. Moravec. Mind children: The future of robot and human intelligence. Harvard University Press, 1988.

[70] R.M. Murray, Z. Li, and S.S. Sastry. A mathematical introduction to robotic manipulation. CRC Press, 1994.

[71] Y. Nakamura and H. Hanafusa. Inverse kinematic solutions with singularity robustness for robot manipulator
control. ASME, Transactions, Journal of Dynamic Systems, Measurement, and Control, 108:163–171, 1986.

[72] D.S. Necsulescu, A. Fahim, and C. Lu. Stochastic error propagation in robot arms. Advanced Robotics, 8(5):459–
476, 1994.

[73] V. Nguyen. Constructing force-closure grasps. The International Journal of Robotics Research, 7(3):3–16, 1988.

[74] Y. C Park and G. P Starr. Grasp synthesis of polygonal objects using a three-fingered robot hand. The International
Journal of Robotics Research, 11(3):163–184, 1992.

[75] F.T. Pokorny and D. Kragic. Classical grasp quality evaluation: New theory and algorithms. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3493– 3500, 2013.

[76] N. Pollard. Parallel methods for synthesizing whole-hand grasps from generalized prototypes. PhD thesis, MIT,
1994.

[77] J. Ponce, S. Sullivan, A. Sudsang, J. Boissonnat, and J. Merlet. On computing four-finger equilibrium and force-
closure grasps of polyhedral objects. The International Journal of Robotics Research, 16(1):11–35, 1997.

[78] M. Prats, P. J Sanz, and A. P Del Pobil. Task-oriented grasping using hand preshapes and task frames. In
Proceedings of the IEEE International Conference on Robotics and Automation, pages 1794–1799, 2007.

[79] D. Pratticchizzo and J.C. Trinkle. Grasping. In B. Siciliano and O. Khatib, editors, Handbook of robotics, chap-
ter 28, pages 671–700. Springer, 2008.

[80] F. P. Preparata and S. J Hong. Convex hulls of finite sets of points in two and three dimensions. Communications
of the ACM, 20(2):87–93, 1977.

[81] M. A Roa and R. Suárez. Computation of independent contact regions for grasping 3-d objects. IEEE Transactions
on Robotics, 25(4):839–850, 2009.

[82] M. A Roa and R. Suárez. Grasp quality measures: review and performance. Autonomous Robots, 38(1):65–88,
2015.

[83] E. Rohmer, S. PN Singh, and M. Freese. V-rep: A versatile and scalable robot simulation framework. In Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1321–1326, 2013.

[84] R. B Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3d recognition and pose using the viewpoint feature histogram.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2155–2162,
2010.

[85] R. B Rusu and S. Cousins. 3d is here: Point cloud library (PCL). In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1–4, 2011.

[86] A. Sahbani, S. El-Khoury, and P. Bidaud. An overview of 3d object grasp synthesis algorithms. Robotics and
Autonomous Systems, 60(3):326–336, 2012.

[87] J. K Salisbury and J. J Craig. Articulated hands: Force control and kinematic issues. The International Journal of
Robotics research, 1(1):4–17, 1982.

116

[88] A. Saxena, J. Driemeyer, and A.Y. Ng. Robotic grasping of novel objects using vision. The International Journal
of Robotics Research, 27(2):157–173, 2008.

[89] R. Seidel. Constructing higher-dimensional convex hulls at logarithmic cost per face. In Proceedings of the
eighteenth annual ACM symposium on Theory of computing, pages 404–413. ACM, 1986.

[90] R. Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete & Computational Geom-
etry, 6(1):423–434, 1991.

[91] R. Seidel. Convex hull computations. In J. E. Goodman and J. O’ Rourke, editors, Handbook of discrete and
computational geometry, chapter 22. Chapman & Hall/CRC, 2004.

[92] K. B Shimoga. Robot grasp synthesis algorithms: A survey. The International Journal of Robotics Research,
15(3):230–266, 1996.

[93] S. A Stansfield. Robotic grasping of unknown objects: A knowledge-based approach. The International Journal
of Robotics Research, 10(4):314–326, 1991.

[94] A. Stein, E. Geva, and J. El-Sana. Cudahull: Fast parallel 3d convex hull on the gpu. Computers & Graphics,
36(4):265–271, 2012.

[95] M. Strandberg. A grasp evaluation procedure based on disturbance forces. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1699–1704, 2002.

[96] M. Strandberg and B. Wahlberg. A method for grasp evaluation based on disturbance force rejection. IEEE
Transactions on Robotics, 22(3):461–469, 2006.

[97] J. Sturm, C. Stachniss, and W. Burgard. A probabilistic framework for learning kinematic models of articulated
objects. Journal of Artificial Intelligence Research, pages 477–526, 2011.

[98] I. A. Şucan, M. Moll, and L. E. Kavraki. The Open Motion Planning Library. IEEE Robotics & Automation
Magazine, 19(4):72–82, 2012. http://ompl.kavrakilab.org.

[99] M. Taylor, A. Blake, and A. Cox. Visually guided grasping in 3d. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 761–766, 1994.

[100] H. Toshani and M. Farrokhi. Real-time inverse kinematics of redundant manipulators using neural networks and
quadratic programming: a lyapunov-based approach. Robotics and Autonomous Systems, 62(6):766–781, 2014.

[101] J. Trinkle, J. Abel, and R. Paul. Enveloping, frictionless, planar grasping. In Proceedings of the IEEE International
Conferene on Robotics and Automation, pages 246–251, 1987.

[102] M. Trobina and A. Leonardis. Grasping arbitrarily shaped 3-d objects from a pile. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 241–246, 1995.

[103] C. Tung and A. C Kak. Fast construction of force-closure grasps. IEEE Transactions on Robotics and Automation,
12(4):615–626, 1996.

[104] J. Varley, C. DeChant, A. Richardson, A. Nair, J. Ruales, and P. K Allen. Shape completion enabled robotic
grasping. arXiv preprint arXiv:1609.08546, 2016.

[105] C. W Wampler. Manipulator inverse kinematic solutions based on vector formulations and damped least-squares
methods. IEEE Transactions on Systems, Man, and Cybernetics, 16(1):93–101, 1986.

[106] J. Weisz and P. K Allen. Pose error robust grasping from contact wrench space metrics. In Proceedings of the
IEEE International Conference on Robotics and Automation, pages 557–562, 2012.

[107] D. E Whitney. Resolved motion rate control of manipulators and human prostheses. IEEE Transactions on man-
machine systems, 10(2):47–53, 1969.

[108] W. Wolovich and H. Elliot. A computational technique for inverse kinematics. In Proceedings of The 23rd IEEE
Conference on Decision and Control, pages 1359–1363, 1984.

[109] J. D Wolter, R. A Volz, and A. C Woo. Automatic generation of gripping positions. IEEE transactions on systems,
man, and cybernetics, (2):204–213, 1985.

[110] Z. Xue, J M. Zoellner, and R. Dillmann. Automatic optimal grasp planning based on found contact points. In
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pages 1053–1058, 2008.

117

[111] A. C. Yao. A lower bound to finding convex hulls. Journal of the ACM, 28(780-787), 1981.

[112] T. Yoshikawa. Manipulability of robotic mechanisms. The International Journal of Robotics Research, 4(2):3–9,
1985.

[113] J. Zhang, G. Mei, N. Xu, and K Zhao. A novel implementation of quickhull algorithm on the gpu. arXiv preprint
arXiv:1501.04706, 2015.

[114] T. Zheng. An efficient algorithm for a grasp quality measure. IEEE Transactions on Robotics, 29(2):579–585,
2013.

[115] Y. Zheng and W. Qian. Improving grasp quality evaluation. Robotics and Autonomous Systems, 57(6):665–673,
2009.

[116] X. Zhu and J. Wang. Synthesis of force-closure grasps on 3-d objects based on the Q distance. IEEE Transactions
on Robotics and Automation, 19(4):669–679, 2003.

118

